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Abstract—As a core component in power systems, the 
monitoring and early warning of electric transformer operation 
status are of great importance. Oil chromatography analysis is an 
effective method for detecting internal faults of electric 
transformers, and accurate prediction of oil chromatography gas 
concentration is crucial for judging the operation status of electric 
transformers and detecting potential faults. This study proposes 
an EMA-Autoformer algorithm based on an improved model with 
self-attention and exponential moving average. Firstly, the 
exponential moving average method is used to fill the missing 
values in oil chromatography gas data. Secondly, the self-attention 
mechanism based on auto-correlation algorithm in the 
Autoformer model is employed to extract the time correlation of 
gas concentration time series, enabling accurate prediction of gas 
concentration. Experimental results show that the accuracy of the 
EMA-Autoformer algorithm in predicting oil chromatography gas 
concentration significantly surpasses that of time series prediction 
models such as Autoformer, Refomer, and Informer. Moreover, 
compared to Refomer and Informer, Autoformer performs better 
on the gas concentration data processed by EMA. 

Keywords-Gas concentration prediction, Exponential moving 
average, Auto-correlation, Self-attention mechanism 

. Introduction 

The stable operation of power system equipment is of 
significant importance for ensuring production safety. Among 
them, electric transformers are widely used in power systems, 
which can achieve voltage and current transformation and 
energy transmission, thus ensuring the normal maintenance and 
operation of power systems. However, in actual operation, the 
safe operation of electric transformer equipment may be 
affected by external environmental factors or the operating 
status of internal electrical equipment. Oil chromatography 
analysis technology is an important means to detect the 
operating status of electric transformer equipment. By 
analyzing the gas concentration in the oil, the operating 
condition of the equipment can be judged, and the potential 
fault risk can be predicted. Traditional gas concentration 
detection methods depend on manual inspection and laboratory 
analysis, which have problems of long detection cycles and 
inability to effectively predict gas concentration. As an adaptive 
and efficient prediction method, deep neural networks have 
achieved significant results in many fields. Applying deep 
neural networks to the prediction of gas concentration in oil 
chromatography equipment can effectively achieve real-time 
detection and early warning of equipment operating status. 

Taking the power system of the West-East Gas 
Transmission station as an example, a large amount of oil 
chromatography gas concentration data was collected, and the 

improved model with self-attention mechanism was introduced 
into the gas concentration prediction field for the first time, 
proposing the EMA-Autoformer algorithm. Firstly, the missing 
values in the oil chromatography gas concentration time series 
were processed using the exponential moving average (EMA) 
method[1]; subsequently, the local time correlation and global 
correlation of the sequence were extracted using the self-
correlated self-attention mechanism model (Autoformer)[2] to 
achieve accurate prediction of equipment gas concentration. 
Finally, the performance of the proposed model was evaluated 
by comparing the prediction errors of various models, 
providing an effective method for predicting the gas 
concentration of oil chromatography in power systems. 

. Related Work 

In recent years, gas concentration prediction methods have 
mainly been based on machine learning algorithms, deep 
learning algorithms, and combinations of these two types of 
algorithms. 

In order to improve the prediction accuracy of the least 
squares support vector machine algorithm (LSSVM) for gas 
concentration, Zhu et al.[3] proposed an enhanced sparrow 
search algorithm (ISSA) and compared it with the particle 
swarm optimization algorithm (PSO) and the original sparrow 
search algorithm (SSA). The newly proposed model 
significantly enhances the prediction accuracy of gas 
concentration compared to the original model. 

Zhang et al.[4] proposed a fully-connected temporal 
multilayer graph convolutional network, which first utilizes 
multi-graph convolutional layers (MGC) to learn the 
topological structure of the gas sensor network, enhancing the 
extraction capability of data spatial features. Subsequently, 
gated recurrent units (GRU) are employed to extract the 
temporal features of gas time series, and finally, fully connected 
layers are used to process these features. 

Liu et al.[5] proposed a method that combines Pearson's 
correlation coefficient and long-short term memory (LSTM) 
networks. This approach utilizes Pearson's correlation 
coefficient to select features of gas concentration data, followed 
by feeding the feature sequences into the LSTM network to 
extract temporal correlations. By doing so, predictions of gas 
concentration at future time steps can be made, with adaptive 
moment estimation (Adam) employed for parameter 
optimization. 

Dey et al.[6] proposed a model that combines t-distributed 
stochastic neighbor embedding (t-SNE), variational 
autoencoder (VAE), and bidirectional LSTM networks. Firstly, 
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the t-SNE algorithm is employed to reduce the dimensionality 
of gas concentration data. Secondly, the VAE algorithm is 
utilized to reconstruct the internal features of low-dimensional 
gas concentration. Finally, the obtained gas concentration 
features are input into the bidirectional LSTM network to make 
predictions on gas concentration. 

However, in existing gas concentration prediction methods, 
machine learning algorithms have lower complexity than deep 
learning algorithms, which often lead to issues of underfitting 
or overfitting. Among the existing deep learning algorithms, 
recurrent neural networks (RNNs) dominated by LSTM or 
GRU are always employed due to their ability to effectively 
extract local correlations in sequences[7, 8]. However, these 
networks cannot simultaneously consider the global 
correlations, resulting in the loss of some important information. 
Moreover, existing methods cannot utilize effective strategies 
to fill missing values in data, thereby breaking the continuity of 
gas concentration time series. The proposed EMA-Autoformer 
method fills missing values in data using the EMA algorithm to 
enhance temporal continuity, and extracts both local and global 
correlations in gas concentration time series using the 
Autoformer algorithm. 

d 

In practical scenarios, power system equipment may 
encounter data missing issues when collecting gas 
concentration data from oil chromatography due to complex 
external factors or internal device influences. This study first 
fills the missing values in the time series of oil chromatography 
gas concentration data reasonably and then utilizes a network 
capable of accurately extracting time-related features to predict 
future gas concentrations. For the first time, an improved model 
with self-attention mechanisms is applied to the processing of 
gas concentration time series. The proposed EMA-Autoformer 
method fills missing values in gas concentration data using the 
EMA algorithm, forming a sequence with stronger temporal 
continuity. Furthermore, a self-attention mechanism model 
based on auto-correlation is employed to extract the strong 
temporal continuity, enabling accurate predictions of gas 
concentrations. 

A. EMA  
Exponential moving average algorithm, as a weighted 

moving average algorithm with exponential decay, can be used 
to fill missing values in gas concentration. Its core idea is to fill 
the missing value at the current time by taking a weighted sum 
of values from previous moments, assigning larger weights to 
data that are closer in time and smaller weights to data that are 
further away in time. The weights exponentially decay over 
time[1]. This method can effectively fill missing values in gas 
concentration. 

Due to the input data being vector sequences, each 
dimension of the vector represents the concentration value of a 
certain gas. When filling missing values, the vector sequences 
are divided into dimensions, and each gas forms a separate 
concentration time series for processing. In each concentration 
time series of a gas, starting from a non-missing value before 
the missing value, an exponential moving average is performed 
gradually towards the end of the sequence until the missing 

value moment is reached. The formula for calculating the filled 
value at the missing value position is: 

= + (1 )  ( ) (1) 

Where  represents the exponential moving average 
result at time t starting from the exponential moving average 
origin ( = 0 ),  denotes the weighted values,  
represents the true gas concentration at time , and  is the 
sequence length used for calculating the moving average. The 
final result of  will be used as the filled value for missing 
value positions, ensuring a better temporal continuity in the 
sequence.  

B. Autoformer  
The overall structure of the Autoformer is similar to that of 

the Transformer[9], consisting of encoders and decoders. The 
overall structure is shown in Figure 1, where the decompose 
module is used for sequence decomposition, the Auto-
correlation module is the self-attention layers based on auto-
correlation, also referred to as auto-correlation layer, the Add 
& Norm module represents residual and normalization layers, 
and the Feed Forward module refers to the feed-forward layers. 
In the original Transformer model, the , , and  vectors 
generated for each vector are calculated directly through matrix 
multiplication to obtain attention scores and outputs. The 
distinguishing feature of the Autoformer is its use of a sequence 
decomposition architecture to divide sequences into seasonal 
and trend components, and the repeated use of sequence 
decomposition modules and self-attention modules based on 
auto-correlation to calculate attention scores and outputs in both 
encoders and decoders. 

1) Sequence decomposition 
The sequence decomposition module can decompose time 

series into trend and seasonal components, achieving better 
results by deeply processing the seasonal and trend components 
separately. The seasonal and trend components are achieved 
through simple moving average[2]. 

= ( ( ))       (2) 

=                     (3) 

Where  represents the trend component of the input 
sequence ,  denotes its seasonal component, 

( )  refers to the simple moving average 
algorithm, and ( )  represents the operation of edge 
supplementing the sequence. We use , = ( ) 
to represent the above equation. 

The input to the model encoder is the gas concentration time 
series  of the past  time steps. The initial input to the 
decoder includes the initialization of the trend component and 
the initialization of the seasonal component, both of which are 

formed by the latter half of , denoted as [ : ]. Their 

calculation formulas are as follows: 

_ , _ = ( [ : ])           (4) 

In this formula, _  and _  represent the 

initialization of the trend and seasonal components, 
respectively. The mean of the input data is added to the tail of 
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the trend component, and zeros are added to the tail of the 

seasonal component to form a sequence of length . This 

sequence serves as the initial input to the decoder at the initial 
time. 

In the encoder and decoder of the model, the output of the 
auto-correlation layers or feed-forward layers needs to go 
through the sequence decomposition module to become the 
input of the next layer. The calculation method is as follows: 

, = ( )             (5) 

In this equation,  represents the output sequence of the 
model's auto-correlation layer or feed-forward layer, and  and 

 denote the trend and seasonal components obtained from , 
respectively. The calculation in each layer of the encoder only 
uses the seasonal components . The output obtained is used 
for cross-attention calculation with the intermediate layer 
output of the decoder, helping the decoder focus on information 
with greater global relevance. In addition to using the seasonal 
components  to calculate self-attention and feed-forward 
output in the decoder, the trend components  is also added to 
the output result to supplement the changing trend information 
of the sequence. 

 

Figure 1. The overall structure of the Autoformer model. 

2) Auto-correlation 
In the Autoformer, the auto-correlation layer is the self-

attention layer based on auto-correlation, which utilizes the 
auto-correlation values of the query ( ) and key ( ) vectors to 
represent the attention scores between vectors. Additionally, it 
employs an auto-correlation-based method to compute the 
weighted sum of the value ( ) vector, resulting in the output[2]. 
The auto-correlation layer captures the local time correlation of 
the gas concentration sequence by using the attention scoring 
method based on auto-correlation calculations. Furthermore, it 
obtains the global correlation of the entire sequence through the 
self-attention mechanism. 

Based on the theory of stochastic processes[10], the 
calculation formula for the auto-correlation ( )  of a 
sequence is as follows: 

( ) =                     (6) 

( )  represents the time-delay correlation between 
discrete-time sequences  and , which largely indicates 
the intrinsic local temporal correlation within the sequences. In 
this method, the largest  values in the auto-correlation results 
are selected as the attention scores to obtain the weighted sum 
as the output. 

Linear Linear Linear

FFT FFT

×

Time Delay & Weighted Sum

IFFT

KQ V

Single-head Output

Topk

 

Figure 2. The calculation process of the auto-correlation layer. 

The calculation process of the auto-correlation layer is 
shown in Figure 2, where FFT and IFFT modules represent fast 
Fourier transform and its inverse transform, respectively. 
“Topk” represents the top  largest values and their 
corresponding delays in the auto-correlation. The Time Delay 
& Weighted Sum module indicates that the input sequence is 
shifted cyclically according to the delays in Topk, and the 
weighted sum of the auto-correlation corresponding to the 
delays is calculated. Taking one head of the multi-head 
attention as an example, we first generate , ,  vectors for 
each vector in the input vector sequence of length , and 
concatenate them to form , , sequences. Subsequently, it is 
necessary to calculate the attention score matrix based on auto-
correlation using and sequences. According to the Wiener–
Khinchin theorem, the auto-correlation of a sequence can be 
calculated using Fourier transform[10]. Considering sequences 

 and  as time series  and , the calculation formula for 
the attention score based on auto-correlation is as follows: 

, ( ) = ( ) ( )              (7) 

, ( ) = ( , ( ))                (8) 

In this formula, , ( )  and , ( )  represent the auto-

correlation and its frequency-domain representation of 
sequences  and , respectively.  and  denote the 
Fourier forward and inverse transforms, while  indicates 
conjugation. 
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Then, the following formula is used for calculating self-
attention based on auto-correlation: 

, ( ), . . . , , ( ) = ( , ( ))          (9) 

, ( ), . . . , , ( ) = ( , ( ), . . . , , ( ))

 (10) 

= ( , ) , ( ) (11) 

Where ( ) represents selecting the top  values from 
the auto-correlation. ( , ) denotes the result of performing 
a circular shift of sequence  with a length of . The output is 
obtained by computing the weighted sum of the auto-
correlation corresponding to its time delay. 

The above illustration demonstrates the calculation method 
for the single-head output in the multi-head attention 
mechanism. By concatenating the output vector sequences of 
each head in order according to the aforementioned method and 
feeding them into the fully connected layer for adjustment, the 
final output sequence can be obtained. 

 

In order to provide a clearer understanding of the 
experimental results, this section first introduces the structure 
of the gas concentration dataset. Subsequently, the performance 
of the algorithm is evaluated using commonly used metrics in 
the field of time series forecasting, namely Mean Absolute 
Error (MAE) and Root Mean Square Error (RMSE). A 
comparison is made with existing algorithms to demonstrate the 
effectiveness of the EMA-Autoformer method in the field of 
gas concentration prediction. 

A. Description of the dataset. 
The dataset used in this study originates from the electric 

transformer oil chromatography data of the West-East Gas 
Transmission station power system. This dataset consists of 
time series containing multiple time points, with each time 
point represented by an 8-dimensional vector. Each dimension 
represents the concentration of hydrogen, carbon monoxide, 
carbon dioxide, methane, ethylene, acetylene, ethane, and water 
vapor at that specific time point, with units of parts per million 
by volume (ppmv). Furthermore, the dataset will be divided 
into training, testing, validation sets for model training, testing, 
and validation, respectively. Due to external factors or internal 
device factors, some gas concentrations in the data at certain 
time points are missing. When performing gas concentration 
prediction, the gas concentration sequence from past moments 
is input into the network model to predict the gas concentration 
values at future moments. 

B. Experimental Results and Evaluation. 
This study evaluates the performance of the EMA-

Autoformer algorithm by comparing the Mean Absolute Error 
(MAE) and Root Mean Square Error (RMSE) between 
predicted sequences and true sequences in the testing set. The 
EMA-Autoformer algorithm is compared with the Autoformer 
algorithm to demonstrate the improvement achieved by using 
the EMA algorithm in conjunction with the model. Additionally, 
a comparison is made with the Refomer and Informer models, 
both with and without the EMA algorithm, to highlight the 

effectiveness of combining the two algorithms in the EMA-
Autoformer approach. The MAE and MSE for each algorithm 
are presented in Table 1. 

Table 1. Formatting sections, subsections and subsubsections. 

 
Autoformer Reformer Informer 

MAE RMSE MAE RMSE MAE RMSE 

w/o EMA 0.2033 0.6599 0.2040 0.6483 0.1903 0.6511 

w/ EMA 0.0236 0.0304 0.0508 0.0664 0.0334 0.0422 

Compared to directly using the Autoformer algorithm to 
process gas concentration data without any preprocessing, the 
MAE of the EMA-Autoformer algorithm decreased by 88.39%, 
and the RMSE decreased by 95.39%. This indicates that the 
EMA algorithm can significantly enhance the time continuity 
of gas concentration data with missing values, allowing the 
Autoformer model to extract more accurate time-related 
patterns. As a result, the accuracy of the model for predicting 
gas concentration has been significantly improved. Meanwhile, 
compared to the Reformer and Informer models using EMA for 
data preprocessing, the MAE of the EMA-Autoformer 
algorithm decreased by 53.54% and 29.34%, respectively, and 
the RMSE decreased by 54.21% and 27.96%, respectively. This 
suggests that the Autoformer model performs better on gas 
concentration prediction when using gas data processed by 
EMA. By comparing the MAE and RMSE errors of the 
algorithms in the table, it can be known that the EMA-
Autoformer algorithm has a good effect on gas concentration 
prediction, enabling effective monitoring and early warning of 
the safe operation status of equipment. 

 

This study addresses the existing problems in gas 
concentration prediction methods and introduces an improved 
model using self-attention mechanism in this field for the first 
time. A novel EMA-Autoformer prediction method is proposed, 
which fills the missing values in gas chromatography data using 
the EMA algorithm and predicts gas concentrations using the 
Autoformer model. This approach achieves high prediction 
accuracy and provides an effective method for detecting and 
alerting the operational status of power system equipment. 

Experimental results demonstrate that the proposed EMA-
Autoformer method has significant advantages over other 
algorithms in oil chromatography gas concentration prediction 
tasks. This indicates the effectiveness of the EMA algorithm in 
handling incomplete gas data and the superiority of the 
Autoformer model in capturing local and global correlation 
information in gas concentration time series. It also highlights 
the better performance of Autoformer on gas data processed by 
EMA. 
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