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ABSTRACT

Recent studies have shown that deep neural networks are vulnerable to adversarial
examples. Numerous defenses have been proposed to improve model robustness,
among which adversarial training is most successful. In this work, we revisit the
robust overfitting phenomenon. In particular, we argue that overconfident models
produced during adversarial training could be a potential cause, supported by the
empirical observation that the predicted labels of adversarial examples generated
by models with better robust generalization ability tend to have significantly more
even distributions. Based on the proposed definition of adversarial certainty, we
incorporate an extragradient step in the adversarial training framework to search for
models that can generate adversarially perturbed inputs with lower certainty, further
improving robust generalization. Our approach is general and can be easily com-
bined with other variants of adversarial training methods. Extensive experiments
on image benchmarks demonstrate that our method effectively alleviates robust
overfitting and is able to produce models with consistently improved robustness.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved exceptional performance and been widely adopted in
various applications, including computer vision (He et al., 2016), natural language processing (Devlin
et al., 2019) and recommendation systems (Covington et al., 2016). However, DNNs have been shown
to be vulnerable to classifying inputs, also known as adversarial examples (Szegedy et al., 2014;
Goodfellow et al., 2015), crafted with imperceptible perturbations that are designed to trick the model
into making wrong predictions. The prevalence of adversarial examples has raised serious concerns
regarding the robustness of DNNs, especially when deployed in security-critical and safety-critical
applications such as self-driving cars (Chen et al., 2015), biometric facial recognition (Komkov &
Petiushko, 2021) and medical diagnosis (Finlayson et al., 2019; Ma et al., 2021).

To improve the resilience of DNNs against adversarial examples, numerous defense mechanisms
have been proposed, e.g., distillation (Papernot et al., 2016), adversarial detection (Ma et al., 2018),
feature denoising (Xie et al., 2019), randomized smoothing (Cohen et al., 2019) and semi-supervised
methods (Alayrac et al., 2019). Among them, adversarial training (Madry et al., 2018; Zhang et al.,
2019) is by far one of the most effective methods in producing adversarially robust models. However,
even the state-of-the-art adversarial training methods (Croce et al., 2020; Rebuffi et al., 2021; Wang
et al., 2023) cannot achieve satisfactory robustness performance on simple classification tasks like
classifying CIFAR-10 images. Witnessing the empirical challenges in further improving adversarial
robustness, many recent studies focus on understanding the behavior of adversarial training (Tu
et al., 2019; Gao et al., 2019; Wu et al., 2020; Zhang et al., 2020; Yu et al., 2022). In particular,
Rice et al. (2020) observed that the testing-time model robustness immediately increases by a large
margin after the first learning rate decay but keeps decreasing afterwards during adversarial training,
termed as the robust overfitting phenomenon. Robust overfitting has attracted a lot of attention
since then, as overfitting is not an issue for standard deep learning but appears to be dominant for
adversarially-trained DNNs. In addition, recognizing the fundamental cause of robust overfitting may
provide us with important insights in designing better ways to produce more robust models.

This paper revisits the robust overfitting phenomenon to provide a different perspective on explaining
why it happens and develop a new algorithmic solution inspired by the gained insight to enhance
robust generalization. More specifically, we observe that models produced during adversarial training
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tend to be overconfident in predicting the label of the training-time adversarial examples generated
by the model but not for adversarially-perturbed testing samples, where the gap potentially induces
robust overfitting. Inspired by this observation, we propose an extragradient step in adversarial
training to search models that can generate less certain adversarial examples.

Contributions. By comparing the classwise distributions of predicted labels of adversarial examples
generated at different epochs during adversarial training, we observe that models with better robust
generalization ability exhibit more even distributions. In contrast, the final model produced by
adversarial training is significantly overconfident in predicting the labels of training-time adversarial
examples, resulting in robust overfitting (Figure 1). We introduce a general notion of adversarial

certainty to capture a model’s confidence in classifying adversarial examples generated by the model
at a logit level (Definition 2.1), and show a similar trend that models with better robust generalization
have lower adversarial certainty with respect to training examples, which motivates us to prevent
adversarially-trained models from being overconfident (Section 2).

Built upon the definition, we propose a novel Extragradient-type method to explicitly Decrease

Adversarial Certainty (EDAC) for adversarial training (Section 3). EDAC first finds the steepest
descent direction of model weights to decrease adversarial certainty, aiming to generate less certain
adversarial examples during training, then the newly generated adversarial examples with lower
certainty are used to optimize model robustness. As the model learns from less certain adversarial
examples, the robust generalization gap between training and testing will then be shrunk. Experiments
on image benchmark datasets demonstrate that our method consistently produces more robust models
when combined with various adversarial training methods, confirming the importance of generating
less certain adversarial examples, and that robust overfitting is significantly mitigated with the help of
our EDAC (Section 4.1). Besides, we investigate the cooperation of adversarial certainty with other
helpful insights for model robustness, where our method shows further generalizability by compatibly
improving them (Section 4.2). In general, these improvements empirically depict the correlation with
adversarial certainty, indicating that our method helps generate less certain adversarial examples and
improves the robust generalization of adversarially-trained models.

Related Work. Adversarial training is a promising defense framework for improving model robust-
ness against adversarial examples (Goodfellow et al., 2015; Madry et al., 2018; Zhang et al., 2019;
Wang et al., 2020; Tramèr et al., 2017; Shafahi et al., 2019; Andriushchenko & Flammarion, 2020;
Wong et al., 2020; Jin et al., 2022). In particular, Goodfellow et al. (2015) proposed to adversarially
train models using perturbations generated by the fast gradient sign method (FGSM). Later on,
Madry et al. (2018) incorporated perturbations produced by iterative projected gradient decent (PGD)
into adversarial training, which learns models with more reliable and robust performance. Other
variants of adversarial training have been proposed, which typically modify the training objective but
also use PGD. For instance, Zhang et al. (2019) designed TRADES, which considers the standard
classification loss and encourages the decision boundary to be smooth, while Wang et al. (2020)
proposed MART to emphasize the importance of misclassified examples during adversarial training.

Besides improving adversarial training, several recent works focus on understanding robust general-
ization and leveraging the gained insight to build more robust models (Rice et al., 2020; Stutz et al.,
2021; Hwang et al., 2021; Chen et al., 2021; Yu et al., 2022; Xu et al., 2023). In particular, Rice et al.
(2020) discovered that, unlike standard deep learning, robust overfitting is a dominant phenomenon
for adversarially-trained DNNs that hinders robust generalization, and advocated the use of early
stopping, while Wu et al. (2020) discovered that the flatness of weight loss landscape is an important
factor related to robust generalization, which inspires them to adversarially perturb the model weights
during adversarial training. In addition, Tack et al. (2022) proposed a consistency regularization term
based on data augmentation to mitigate robust overfitting. Our work complements these methods,
where we explain why overconfidence in generating adversarial examples is highly related to the
robust overfitting phenomenon and illustrate how to improve robust generalization by promoting less
certain perturbed inputs for adversarial training.

We are also aware of two recent works that focus on improving adversarial training with the consid-
eration of model overconfidence (Stutz et al., 2020; Setlur et al., 2022). These works are aligned
with our insight for designing EDAC but target different objectives. Specifically, Stutz et al. (2020)
developed a confidence-calibrated adversarial training method that achieves better robustness against
unseen attacks, while Setlur et al. (2022) proposed a regularization technique to maximize the entropy
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(d) Best Model (Test)

Figure 1: Heatmaps of predicted class distribution of training-time and testing-time generated
adversarial examples with respect to models produced from the last epoch and the best epoch of
adversarial training, where darker colors indicate larger probabilities.
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Figure 2: Histograms of (a) label-level variances and (b) adversarial certainty of training-time
adversarial examples generated by Last Model and Best Model across different ground-truth CIFAR-
10 classes.

of model predictions on out-of-distribution data with larger perturbations, thus improving model
accuracy on unseen examples.

2 ADVERSARIAL TRAINING PRODUCES OVERCONFIDENT MODELS

This section explains why robust overfitting happens from the perspective of overconfidence. Due
to the space limit, we present the necessary notations and related concepts, including adversarial
robustness, robust generalization and adversarial training, with detailed definitions in Appendix A.

To gain a deeper understanding of the phenomenon, we plot the heatmaps of the predicted label
distribution for the adversarially-perturbed CIFAR-10 images in Figure 1, respectively generated
by the model with the best robust generalization during adversarial training, denoted as Best Model,
and the final model produced in the last epoch, denoted as Last Model. Here, the ground-truth label
represents the underlying class of clean images and the predicted label is the class of adversarially-
perturbed images generated by PGD-Attack predicted by the corresponding model. Figure 1 shows
disparate characteristics between the label distributions of training- and testing-time adversarial
examples with respect to the best and last models produced from adversarial training. Specifically,
the testing-time predicted label distributions look much less certain than the training-time ones.
Besides, in the training time, the distribution with respect to the Last Model mainly concentrates on
the ground-truth class, whereas the Best Model with better robust generalization produces a more even
distribution which is more similar to that of the corresponding testing samples. More experimental
details and the scaled-up version of Figure 1 are depicted in Appendix B.

Moreover, we measure the variance of the class probabilities of the predicted labels, denoted as
label-level variance, with respect to the training-time adversarial examples for each ground-truth
category in Figure 2(a). In particular, we observe that the Best Model with better robust generalization
performance exhibits a lower label-level variance than that of the Last Model, which is consistent with
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the results illustrated in Figure 1. Even though the label-level variance best characterizes the predicted
label distribution and reflects how certain the training-time generated adversarial examples are, such
statistics are on a classwise distribution level, which is not easy to optimize. Therefore, we propose
an alternative logit-level definition, termed as adversarial certainty, to capture the certainty of a
model in classifying the adversarial examples generated by some attack method (e.g., PGD-Attack),
where a lower value indicates lower model certainty in predicting adversarial examples:
Definition 2.1 (Adversarial Certainty). Let X be the input space and Y be the label space. Suppose
µ is the underlying distribution and S is a set of sampled examples. Let ✏ � 0, � be the perturbation
metric and A be some specific attack method for generating adversarial examples. For any neural
network M✓ : X ! Y , we define the adversarial certainty of M✓ with respect to S and A as:

AC✏(M✓;S,A) =
1

|S|
X

(x,y)2S

Var

✓
fM✓

⇥
A(x; y,M✓, ✏)

⇤◆
. (1)

Here, fM✓ : X ! R|Y| is the mapping from the input space to the logit layer of M✓ and Var(u) =�P
k2[K] (uk � u)2/K

�1/2 for any u 2 RK , where u denotes the average of all elements in u.

Different from the label-level variance, adversarial certainty is an averaged sample-wise metric,
which computes the variance of the logits returned by the model M✓ for each adversarially-perturbed
example A(x; y,M✓, ✏). Similar to Figure 2(a), we compute the adversarial certainty of the Best

Model and the Last Model for each ground-truth category, which is further visualized in Figure 2(b).
Since predicted labels are decided by the corresponding class with the highest predicted probabilities,
the adversarial certainty depicts a similar pattern to the label-level variance as expected.

Our Perspective. Based on the empirical observations demonstrated in Figures 1 and 2, we further
explain why model overconfidence is not beneficial for robust generalization, which is a potential
cause for robust overfitting. Adversarial training aims to learn a model that can best classify the
adversarial examples generated based on the model itself. Such an objective will encourage the model
to keep improving its confidence in predicting the ground-truth with respect to the adversarially-
perturbed training examples, which eventually leads to producing an overconfident model. However,
this overconfidence property is detrimental to robust generalization, because the model cannot
generate perturbed training inputs with low enough certainty, which is different from the typical
generated adversarial examples during testing time. Consequently, the model will not be able to well
predict the less certain test-time adversarial examples, thus resulting in a larger robust generalization
gap between training and testing time. We hypothesize that such a large gap limits adversarially
robust generalization. To the best of our knowledge, this perspective is new to the field of adversarial
machine learning and is intuitively aligned with the classical machine learning theory that if the
testing distribution deviates more from the training distribution (in our case, the prediction certainty
of adversarial examples between training and testing), standard machine learners are expected to
exhibit a decreased generalization performance (in our case, the robust generalization performance).

3 DECREASING ADVERSARIAL CERTAINTY WITH EXTRAGRADIENT STEPS

Motivated by the findings in Section 2, we propose a novel Extragradient-type method to explicitly

Decrease Adversarial Certainty (EDAC), which searches for models with lower adversarial certainty
by involving an extragradient step (Mertikopoulos et al., 2019; Zhang & Yu, 2020) in each training
iteration to improve robust generalization. 1 More specifically, EDAC aims to solve the following
optimization problem to encourage models to generate less certain adversarial examples:

min
✓2⇥

1

|Str|
X

(x,y)2Str

max
x02B✏(x)

L
�
M✓0 ,x0, y

�
,where ✓0 = argmin

✓02C(✓)
AC✏(M✓0 ;Str,A), (2)

1Our work is mainly supported by intuitive explanation and empirical evidence. Regarding rigorous theoreti-
cal analysis, we think it would be a non-trivial task as both the training and testing distributions of adversarial
examples are dynamically changed during adversarial training, which is a clear difference from the standard
supervised machine learning regime. We view it as an interesting future work and plan to investigate it under
simplified settings as the next step, e.g., optimization with a single iteration on a robust-overfitting model.
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where Str is the clean training dataset, A denotes a specific attack method (e.g., the PGD-Attack
Apgd), and C(✓) represents the feasible search region for ✓0. Here, ✓0 can be understood as a function
of ✓ which we aim to optimize in Equation 2. We remark that imposing the constraint of C(✓) is
necessary since adversarial certainty should be optimized towards that of testing examples to increase
the training-testing similarity of predicted label distributions, whereas unconstrained optimization will
cause ✓0 deviating too much from the initial ✓, inducing a negative impact on robust generalization
(see Figure 3(b) for more results and discussions regarding the design choice of the constraint set).

Directly solving the min-max-min problem specified in Equation 2 is challenging due to the non-
convex nature of the optimization and the implicit definition of C(✓), thus we resort to gradient-based
methods for an approximate solver. To be more specific, we take the (t+1)-th iteration of adversarial
training as an example to illustrate our design of EDAC. Given a set of clean training examples Str, a
specific attack method A, and a classification model M✓, our EDAC method can be formulated as a
two-step optimization for the (t+ 1)-th iteration:

✓t+0.5 = ✓t � ⌘ ·r✓AC✏(M✓;Str,A)

���
✓=✓t

,

✓t+1 = ✓t+0.5 � � ·r✓Lrob(M✓;Str,A)

���
✓=✓t+0.5

,
(3)

where ⌘ > 0 and � > 0 represent the step sizes of the two optimization steps, AC✏(M✓;Str,A) de-
notes the adversarial certainty of M✓ with respect to Str and A in Definition 2.1, and Lrob(M✓;Str,A)

can be roughly understood as a robust loss except the inner maximization is approximated using some
attack method A. The first step in Equation 3 optimizes the adversarial certainty, where it changes the
model parameters ✓t in a direction that decreases the model’s adversarial certainty the most, whereas
the second step in Equation 3 optimizes the model’s ability in distinguishing adversarial examples
generated by the model itself as used in standard adversarial training.

As a result, the adversarial certainty of M✓t+0.5 will be decreased after the first optimization step,
i.e., AC✏(M✓t+0.5 ;Str,A) < AC✏(M✓t ;Str,A). According to the insights presented in Section 2,
the model is expected to gain a better robust generalization ability after conducting the second opti-
mization step on less certain adversarial examples generated based on M✓t+0.5 . Thus, as adversarial
training proceeds, such decreased adversarial certainty and improved robust generalization ability
will be iteratively learned to the final model, which mitigates the undesirable robust overfitting and
improves model robustness. In each iteration, the extragradient step optimizes adversarial certainty to
help find less certain adversarial examples corresponding to the current model status. This is why
EDAC could work even if decreasing cross-entropy loss in the previous iteration and decreasing
adversarial certainty in the current iteration are in different directions, i.e., M✓t+1 will enjoy the
newly optimized adversarial certainty, compared with M✓t .

Correlation Analysis. Since our work aims to improve robust generalization by decreasing adversar-
ial certainty, it is natural to ask:

Does lower adversarial certainty imply better robust generalization?

Recall that in Equation 2, C(✓) defines the feasible region for optimizing adversarial certainty.
Therefore, the answer should intuitively be positive within this region, i.e., decreasing adversarial
certainty will increase test robust accuracy. To better answer this question with empirical evidence,
we conduct a correlation analysis between adversarial certainty and robust generalization. The results
are illustrated in Figure 3(b). Specifically, we use an AT-trained model as the starting point, from
which the heatmaps (Figure 1) are derived. Then, we separately update one more epoch on the model
by EDAC using different step sizes (from 0.1 to 2.0) in extragradient steps to decrease adversarial
certainty. Afterward, we measure the training-time adversarial certainty (i.e., the blue bars) and robust
test accuracy (i.e., the orange curve) of the result models. As expected, adversarial certainty keeps
decreasing with the increase in step size. Meanwhile, the model robustness first keeps improving, but
it decreases when the step size is larger than 1.3. These results indicate that when the step size is
appropriately selected, the optimized model parameters are still within the feasible search region,
wherein lower training-time adversarial certainty corresponds to higher robustness. However, when
the model is out of the feasible search region, decreasing adversarial certainty will not help improve
robust generalization anymore.

Why Extragradient Steps? Our algorithmic design of utilizing extragradient steps is inspired by the
existing literature on min-max optimization (Daskalakis & Panageas, 2018; Diakonikolas et al., 2021;
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Figure 3: (a) Training curves of adversarial certainty for different methods. (b) Correlation analysis
between adversarial certainty and robust accuracy, where x-axis is the step size used in extra gradient,
blue bars are training-time adversarial certainty, and the orange curve denotes robust test accuracy.

Hsieh et al., 2021; Pethick et al., 2022). In particular, these related works illustrate that standard
first-order methods, such as stochastic gradient descent/ascent (SGDA), can converge to recurrent
orbits that do not contain any critical point of the underlying min-max problem, regardless of the basic
convex-concave regime or general non-convex/non-concave problems. Extragradient-type methods
have been studied as a first-order alternative to SGDA that can avoid such failure modes and have
proven to be a principled way to find local solutions (e.g., a stationary point) to the underlying min-
max problems under various settings. This sheds light on the potential of using extragradient steps
to solve min-max problems more effectively. Nevertheless, our proposed method that optimizes for
adversarial robustness is slightly different from the standard extragradient method typically studied in
the optimization literature, because the extra gradient is computed with respect to adversarial certainty
instead of cross-entropy loss. Still, it shares a similar insight of escaping the failure mode of the
standard first-order min-max solver with the help of extragradient steps. As will be demonstrated in
Section 4, the introduced extragradient step for optimizing adversarial certainty is essential to obtain
a stable and improved robustness performance across various benchmarks and different settings,
compared with other optimization schemes (e.g., adding an extra regularizer on adversarial certainty).

Application Scope. Our method can be summarized as a two-step iterative optimization framework:
✓t�!✓t+0.5�!✓t+1. We remark that this framework provides a generic way to explicitly optimize a
specified property (e.g., adversarial certainty) in the first step, and then to take advantage of the newly
generated training samples with a better property to find a more robust model in the second step.
Intuitively, this framework is generally applicable to any adversarial defense that requires training-
time adversarial examples generated based on the to-be-updated model, because the optimization
of adversarial robustness relies on the generated adversarial examples, i.e., training samples with
updated properties would benefit model robustness. In Section 4, we will examine the compatibility
of our EDAC method with several PGD-based methods, including adversarial training and its variants.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of our EDAC method in improving robust generalization
with respect to different model architecture PreActResNet-18 (PRN18) and WideResNet-34 (WRN34)
under the threat model of `1 trained by several benchmark adversarial defenses, i.e., AT (Madry et al.,
2018), TRADES (Zhang et al., 2019) and MART (Wang et al., 2020) on CIFAR-10 in Section 4.1.
Then, we evaluate the compatibility of EDAC with AWP (Wu et al., 2020) and Consistency (Tack
et al., 2022) in Section 4.2. In addition, to examine the generalizability to other settings, we provide
results of EDAC on more benchmark datasets, including CIFAR-10, CIFAR-100 and SVHN, and `2
norm-bounded perturbations in Appendix D. All experimental details are depicted in Appendix C.

4.1 MAIN RESULTS

Results on CIFAR-10. We evaluate the robust generalization of our proposed EDAC on CIFAR-10,
a commonly-used image benchmark. The results are depicted in Table 1. We can see that, EDAC
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Table 1: Testing-time adversarial robustness (%) with/without EDAC on CIFAR-10 under `1 threat
model across different model architectures and adversarial training methods.

Architecture Method Clean PGD-20 PGD-100 CW1 AutoAttack

PRN18

AT 82.88 (82.68) 41.51 (49.23) 40.96 (48.92) 41.61 (48.07) 39.66 (45.71)
+ EDAC 84.64 (83.55) 45.55 (52.20) 44.94 (51.87) 44.55 (50.05) 42.78 (48.20)

TRADES 82.10 (81.33) 47.44 (51.65) 46.95 (51.42) 46.64 (49.18) 44.99 (48.06)
+ EDAC 83.18 (82.80) 49.32 (52.90) 48.81 (52.67) 48.30 (50.11) 46.40 (48.96)

MART 80.85 (78.27) 50.23 (52.28) 49.71 (52.13) 46.88 (47.83) 44.68 (46.01)
+ EDAC 81.12 (79.37) 52.38 (53.25) 52.04 (53.14) 48.97 (49.25) 47.24 (47.69)

WRN34

AT 86.47 (85.86) 47.25 (55.31) 46.73 (55.00) 47.85 (54.04) 45.84 (51.94)
+ EDAC 86.48 (85.10) 52.02 (57.93) 51.69 (57.68) 51.51 (54.98) 49.75 (53.33)

TRADES 86.01 (84.74) 49.66 (53.72) 48.44 (53.60) 48.56 (52.35) 46.53 (51.31)
+ EDAC 86.75 (85.18) 53.70 (55.86) 53.09 (55.59) 52.73 (53.72) 50.50 (52.42)

MART 83.11 (81.31) 48.93 (53.87) 48.31 (53.68) 46.32 (49.65) 44.89 (48.00)
+ EDAC 84.69 (83.23) 52.00 (55.57) 51.32 (55.22) 49.50 (51.43) 47.65 (49.92)
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Figure 4: The visualized results evaluating robust overtfitting and adversarial certainty, where “-P”
and “-W” in the x-axis of Figure 4(a) represent PRN18 and WRN34 respectively.

significantly enhances testing-time adversarial robustness across different adversarial attacks. These
results show the effectiveness of EDAC, indicating the significance of less certain adversarial examples
for robust generalization. Besides, we investigate the influence of EDAC on robust overfitting which
is an attention-worthy phenomenon. Specifically, Figure 4(a) evaluates the gap of testing-time
adversarial robustness between the best and the last models. We can observe that EDAC consistently
mitigates robust overfitting across different settings. These results indicate that decreasing adversarial
certainty could mitigate the degradation of robust generalization induced by robust overfitting.

Moreover, we find that WRN34 suffers from more severe robust overfitting in adversarial training,
however, could benefit more mitigation by using our EDAC method. This suggests that WRN34
is superior to PRN18 in terms of robust generalization with the help of EDAC. Besides adversarial
robustness, the clean accuracy for testing images is also worth attention since they measure the
standard generalization ability of the model. As expected, EDAC consistently improves the clean test
accuracy in all cases as shown in the Clean column of Table 1. This promotion shows that EDAC
also could help models gain better robustness against unseen clean images even by learning from
adversarial examples, which also benefits from the improvement of generalization.

EDAC Improves Adversarial Certainty. Since EDAC has been empirically shown effective to
improve robust generalization, in this part, we want to demonstrate this is because EDAC could
decrease adversarial certainty. To this end, we train a sequence of models by AT and TRADES for
200 epochs, and by MART for 120 epochs, respectively. And for every 20 epochs in this sequence,
we update the same intermediate model by one further epoch using the original adversarial defenses
with and without the help of EDAC, respectively. Then, we measure the adversarial certainty of all
further-updated models following Equation 1. In Figure 4(b), we compare AT with AT-EDAC and
observe that – consistent with our findings in Section 2 and design purpose explained in Section 3 –
EDAC could indeed help models generate less certain adversarial examples, which would bring better
robust generalization. The cases of TRADES and MART are measured in Figure 7(a) and Figure 7(b)
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Table 2: Testing-time adversarial robustness (%) of AT with/without EDAC/EDAC_Reg on CIFAR-10
and PRN18 under `1 threat model.

Architecture Method Clean PGD-20 PGD-100 CW1 AutoAttack

PRN18
AT 82.88 (82.68) 41.51 (49.23) 40.96 (48.92) 41.61 (48.07) 39.66 (45.71)
+ EDAC 84.64 (83.55) 45.55 (52.20) 44.94 (51.87) 44.55 (50.05) 42.78 (48.20)
+ EDAC_Reg 83.78 (83.54) 45.39 (50.86) 44.87 (50.49) 44.18 (48.96) 42.41 (47.02)

Table 3: Testing-time adversarial robustness (%) of AWP and Consistency with/without EDAC on
CIFAR-10 and PRN18 under `1 threat model.

Method Clean PGD-20 PGD-100 CW1 AutoAttack

AT-AWP 83.76 (82.37) 52.99 (54.04) 52.71 (53.89) 51.07 (51.22) 48.75 (49.33)
+ EDAC 84.07 (82.67) 54.55 (55.17) 54.30 (55.00) 51.76 (52.03) 49.80 (49.96)

AT-Consistency 85.28 (84.66) 55.43 (56.72) 55.16 (56.46) 50.81 (51.13) 48.08 (48.48)
+ EDAC 85.36 (85.17) 56.65 (57.19) 56.31 (56.90) 51.29 (51.72) 49.00 (49.46)

respectively in Appendix D, which show similar trends. Moreover, we measure the adversarial
certainty gap between the best model and the last model on AT and AT-EDAC in Figure 4(c). We
find that the adversarial certainty gap of AT-EDAC is significantly smaller, which indicates closer
adversarial robustness of the best model and the last model. This result explains why EDAC could
mitigate robust overfitting by decreasing adversarial certainty in extragradient steps.

Alternative Regularization Method. As we only conceptually illustrate involving extragradient
steps for EDAC in Section 3, this section will empirically demonstrate the necessity of this decision
by comparing EDAC with decreasing adversarial certainty without extragradient steps. Specifically,
we construct a regularization term to decrease the adversarial certainty, and add it to robust loss.
Then, similar to adversarial training, in each iteration, we only conduct a single step of optimization
according to the regularized robust loss, which is termed as EDAC_Reg. Due to the space limit,
we only depict the evaluation of a PRN18 model on CIFAR-10 in Table 2, while the full results on
SVHN, CIFAR-10 and CIFAR-100 datasets with both PRN18 and WRN34 models are shown in
Table 4 in Appendix D.

We can see that EDAC_Reg could improve the robust generalization of AT due to the regularization to
decrease adversarial certainty, but EDAC brings better and more stable improvements, which indicates
the advantage of involving extragradient steps. These results comply with our discussion in Section 3
that existing literature on min-max optimization shows the potential of using extragradient-type
methods to avoid limit cycles with respect to standard gradient descent/ascent approaches. In addition,
we measure the adversarial certainty of a sequence of models trained by AT, EDAC and EDAC_Reg,
respectively, in Figure 3(a). We could observe that EDAC gains the lowest adversarial certainty (even
only with a slight gap over EDAC_Reg), indicating that higher robust generalization corresponds to
lower adversarial certainty.

4.2 EXTENSION TO OTHER ADVERSARIAL TRAINING METHODS

Previous sections show the efficacy of EDAC on adversarial training and its variants. We note that
some recent works also focus on understanding robust generalization and developing methods to
improve adversarial training towards more robust models, including Adversarial Weight Perturba-
tion (Wu et al., 2020) – AWP for short – and Consistency Reguarlaization (Tack et al., 2022) –
Consistency for short. However, since these methods focus on different insights to improve robust
generalization, whether our proposed EDAC framework is compatible with them remains elusive.
In this section, we empirically study the generalizability of our EDAC to AWP and Consistency
regularization. We evaluate the case of AT in Table 3, while the full results of AT, TRADES and
MART are provided in Table 5 in Appendix D.
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Figure 5: The visualized results on CIFAR-10 with respect to PRN18 for comparing adversarial
certainty of AT, AT-AWP and AT-Consistency based on (a) last model, and (b) best model.

Adversarial Weight Perturbation. AWP discovered that the flatness of the weight loss landscape
is an important factor related to robust generalization, while EDAC seeks less certain training-time
adversarial examples. AWP shares some similarities with our work, where both EDAC and AWP
find new model status by gradient-based method before optimizing model robustness, i.e., in the
(t + 1)-th iteration, model parameters ✓t+1 is derived from the optimization on ✓t+0.5, instead of
directly from ✓t. However, there is a main difference between AWP and our work: In our work,
✓t+0.5 �! ✓t+1 is optimized on the adversarial examples generated by ✓t+0.5, which takes advantage
of the optimized adversarial certainty of ✓t+0.5, while AWP uses the adversarial examples generated
by ✓t to derive ✓t+1. Consequently, EDAC and AWP aim at different directions to help models. In that
case, we attempt to cooperate EDAC with AWP by adding another extragradient step before weight
perturbation to optimize the certainty of adversarial examples, and use the updated intermediate model
to generate new adversarial examples for the following AWP optimization. As shown in Table 3,
EDAC could compatibly work with AWP and gain further improvements in robust generalization.

Consistency Regularization. The method of Tack et al. (2022) regularizes the adversarial consistency
based on various data augmentations. In that case, we first use extragradient steps to update the
adversarial certainty on augmented samples, and then follow the Consistency optimization. From
Table 3, we can see that EDAC could cooperatively improve the robust generalization of Consistency,
which shows the feasibility of EDAC in the augmentation-based domain.

In general, the improvement of EDAC on AWP and Consistency is not as significant as previous ones.
We hypothesize this is because AWP and Consistency could implicitly decrease adversarial certainty
when helping models toward their specified directions. Thus, when EDAC conducts the explicit
optimization of adversarial certainty, it can only achieve slight improvements that are derived from
less certain training samples generated in extragradient steps. To this end, we measure the adversarial
certainty of AWP and Consistency on the last and the best models of AT in Figure 5. We could
see that both methods of AT-AWP and AT-Consistency, which achieve better robust generalization
performance than AT, also implicitly decrease the adversarial certainty. This suggests that different
insights for helping model robustness would be compatible with each other to some extent, but how
to coordinate them for a better unified improvement is worth exploring in the future.

5 CONCLUSION

We revisited the robust overfitting phenomenon of adversarial training and discovered that overfitting
to training data might result from the training-time adversarial examples generated by overconfident
models. Specifically, we observed that models with better robust generalization performance corre-
spond to significantly more even predicted label distributions of training-time adversarial examples.
Built upon a new notion of adversarial certainty, we proposed to involve an extragradient step to
generate less certain examples by decreasing adversarial certainty, which can be combined with
various attack methods for generating adversarial examples. Extensive experiments substantiated the
effectiveness of our method in mitigating robust overfitting and learning more robust models.
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