
A Study of the Power of Heuristic-based Pruning via SAT Planning

Christopher Johnson, Pascal Bercher, Charles Gretton
Australian National University

{christopher.johnson, pascal.bercher, charles.gretton}@anu.edu.au

Abstract
Planning as SAT (satisfiability) is the method of represent-
ing a horizon-bounded planning problem as a Boolean SAT
problem, and using a SAT decision procedure to solve that
problem. Representations are direct, thus a solution plan can
be obtained directly from a satisfying valuation. By query-
ing a SAT solver over a series of horizon lengths, up to a
completeness threshold, this approach can be the basis of a
complete planning procedure. SAT planning algorithms have
been theoretically contrasted with IDA∗ search, a heuristic
state-based search algorithm, where a theoretical exponential
separation is demonstrated in favour of the SAT approach.
Here a nominated heuristic is implemented in SAT with the
query formulae encoding heuristic information.
We make two practical contributions related to this back-
ground. First, we provide to the best of our knowledge the
first practical implementation of a theoretical SAT encoding
of the h2 heuristic. Second, we empirically evaluate SAT-
based pruning by implementing heuristics hmax and h2.

Introduction
The research topic of encoding planning tasks in SAT is well
understood, and numerous methods have been proposed for
representing the classical deterministic planning problem in
SAT (Kautz and Selman 1992, 1996; Kautz, McAllester,
and Selman 1996; Ernst, Millstein, and Weld 1997; Biere
et al. 1999; Rintanen, Heljanko, and Niemelä 2006; Robin-
son et al. 2009; Höller and Behnke 2022). Encoding plan-
ning search heuristics in SAT formulae has proven to be less
straightforward, and is a topic that has received relatively
little attention in the literature. If you implement a heuristic
in the SAT representation of the horizon-bound problem, a
fast procedure called unit propagation (UP) is able to effi-
ciently deduce that the goal cannot be achieved. Rintanen
(2011) proves that if a heuristic has been implemented in
the SAT formula encoding of a planning task, solving the
problem via the standard SAT workflow can simulate Itera-
tive Deepening A* (IDA*) (Korf 1985) within the same time
and space bounds. Rintanen also shows that it is possible to
construct a planning problem such that A* and IDA* take
exponentially more computation to find a solution than the
aforementioned SAT-based approach using a UP procedure
to prune the set of explored models.

It is possible to combine a state-based forward search, us-
ing a bounded search algorithm such as IDA*, and the UP-

powered heuristic-based pruning. Each time a state is dis-
covered, we can perform UP on the combined SAT formula
of the planning task, heuristic, and encoding of the search
state, and if this formula is found to be unsatisfiable, one can
completely prune the state from the search – i.e., because we
know a goal cannot be reached from that state given the hori-
zon bound. With parts of the search space thereby pruned
away, we can potentially improve the efficiency of find-
ing plans contrasting to a regular state-space search with-
out such pruning. Whether or not this method results in an
overall advantage—or whether the overhead of implement-
ing and running such processes dominates any resulting effi-
ciency gains—is an interesting question that we investigate
in this work. Our empirical work thus far is faithful to the
analytical results established by Rintanen (2011), thus here
we do not explore the many possibilities of synergies with
search optimisation techniques and advanced approaches to
representing problems and knoweldge about problems.

Definitions and Notations
We use the SAS+ (Sandewall and Rönnquist 1986) plan-
ning formalism, in which variables that characterise state are
multi-valued, being assigned one value from a finite domain,
instead of being restricted to the binary domain of True and
False as in STRIPS (Fikes and Nilsson 1971). We assume
a uniform action cost setting, where all actions have cost 1
– i.e., the cost of a plan is its serial length. The following
definition of a SAS+ planning task is adapted from Huang,
Chen, and Zhang (2012).

Definition 1 (SAS+ Planning) An instance of a planning
task Π in SAS+ is a tuple Π = ⟨X,A, s0, G⟩, where:

• X = {x1, . . . , xn} is a set of multi-valued variables,
each with a finite domain dom(x). A variable assignment
is written x 7→ v where value v ∈ dom(x). We also refer
to such a variable assignment as a fact, forming the set
of facts F = {x 7→ v | x ∈ X, v ∈ dom(x)}.

• A is a set of actions. Each action a ∈ A has two as-
sociated sets of partial variable assignments pre(a) and
eff(a), representing action preconditions and effects re-
spectively.

• A state s is a full assignment (a set of assignments that
assigns a value to every state variable). If an assignment

x 7→ v is in s, we can write s(x) = v. The set of all states
is represented by S.

• s0 ∈ S is the initial state of the problem.
• G is a partial assignment of variables that make up the

goal conditions of the problem. A state s ∈ S is a goal
state iff G ⊆ s.

Definition 2 (Action Application) An action a is applica-
ble in a state s iff pre(a) ⊆ s, i.e. the preconditions of the
action are met. The successor state s′ = succa(s) is the
result of applying the action a from state s, given it is appli-
cable. The state s′ contains the same variable assignments
as s except for the corresponding assignments specified in
eff(a), which replace the values in s. Formally:

s′ = {(x′ 7→ v′) | (x′ 7→ v′) ∈ s s.t. ∀(x 7→ v) ∈
eff(a) x ̸= x′} ∪ {(x 7→ v) ∈ eff(a)}

The successor function succa(s) is not defined when s does
not satisfy the preconditions of a, making it a partial func-
tion. This means that actions that are not applicable to a
state cannot be used from that state.

Definition 3 (SAS+ Delete Set) We define del(a) as the
SAS+ analogue of the delete set used in STRIPS, which rep-
resents all the facts that are no longer true after the action a
is applied. Formally we can define this as:

del(a)={(x 7→ v) | (x 7→ v)∈ F, (x 7→ r) ∈ eff(a), r ̸=v}

In other words, for each effect fact in which a variable x
is assigned to value v, del(a) includes all other facts that
assign the variable x to a value other than v.

Definition 4 (Sequential Plan) A sequential plan π of
length n ∈ N for a planning task Π is a se-
quence of actions π = [a1, . . . , an] for which G ⊆
succan(succan−1

(. . . (succa1(s0)))). We explicitly ignore
the degenerate case of the empty plan, resulting from G ⊆
s0. |π| denotes the length of the plan π. A sequential plan is
optimal if there does not exist any shorter plan π′ for which
|π′| < |π|.

Encoding SAS+ in Boolean SAT
We assume familiarity with (Boolean) SAT solving and re-
lated concepts in propositional logic. In order to leverage
SAT solving to help find plans in a planning task, we need a
way to encode the planning task as a CNF Boolean formula.
Representing a planning task in propositional logic was first
done by Kautz and Selman (1992), with various other repre-
sentations created since, with the example by Huang, Chen,
and Zhang (2012) somewhat pertinent here. We will be using
a version of the Direct Encoding (Balyo 2014), which uses
a unique propositional variable for each action and variable
assignment at each discrete timestep. If one of these propo-
sitions is true, this means that the action or variable assign-
ment holds (is true at a state) at that timestep, and does not
hold (is false at a state) if it is false. The direct encoding
also dictates how these propositions can change between two
consecutive timesteps. It is necessary for the planning task
to have a bound on plan length (the horizon) in order for
the encoding to have a finite number of variables, as each

fact and action needs its own propositional variable for ev-
ery possible timestep of the planning task.

Specifically, we want to create a CNF formula HT such
that HT is satisfiable iff there exists a valid plan of length at
most T in our original planning task Π = ⟨X,A, s0, G⟩. Ad-
ditionally, our selected encoding is constructive and there-
fore relatively simple to extract the plan if a satisfying as-
signment for HT is found. The encoding uses two kinds of
Boolean variables:
• Action variables a@t, which indicate whether the action
a is used at the t-th timestep, for each action a ∈ A
and each timestep (not including the horizon itself) t ∈
{0, . . . , T−1}.

• Fact variables fx 7→v@t, which indicate whether variable
x is assigned the value v at the start of timestep t (before
the actions of the timestep are applied), for each variable
x ∈ X , value v ∈ dom(x), and timestep (including the
horizon) t ∈ {0, . . . , T}.

Using these variables, we can now provide the clauses that
HT is comprised of. Each state variable has a value:

(fx 7→v1@t ∨ fx 7→v2@t ∨ · · · ∨ fx 7→vd@t)

∀x ∈ X, dom(x) = {v1, v2, . . . , vd}, ∀t ∈ {0, . . . , T}
Each state variable has at most one value:

(¬fx 7→vi@t ∨ ¬fx 7→vj@t)

∀x ∈ X, vi ̸= vj , {vi, vj} ⊆ dom(x), ∀t ∈ {0, . . . , T}
If an action is taken at a step t, then its preconditions must
hold at the beginning of step t:

(¬a@t ∨ fx 7→v@t)

∀a ∈ A, ∀(x 7→ v) ∈ pre(a), ∀t ∈ {0, . . . , T−1}
If an action is taken at step t, then its effects must hold at the
start of step t+1:

(¬a@t ∨ fx7→v@t+1)

∀a ∈ A, ∀(x 7→ v) ∈ eff(a), ∀t ∈ {0, . . . , T−1}
Variable assignments do not change between two consecu-
tive timesteps unless some action has changed them (known
as frame axioms):

(fx7→v@t ∨ ¬fx 7→v@t+1 ∨ as1@t ∨ · · · ∨ asj@t)
∀x ∈ X, v ∈ dom(x), support(x 7→ v) = {as1 , . . . , asj},

∀t ∈ {0, . . . , T−1}
Here, support(x 7→ v) ⊆ A is the set of supporting actions of
the assignment x 7→ v. An action a is a supporting action of
an assignment x 7→ v if the assignment is one of the effects
of the action, i.e. (x 7→ v) ∈ eff(a). Because we are looking
for a sequential plan, we must forbid any two actions from
being executed at the same timestep:

(¬ai@t ∨ ¬aj@t)
∀{ai, aj} ∈ A, ai ̸= aj , ∀t ∈ {0, . . . , T−1}

Finally, the initial state assignments must be true at the first
timestep, and the partial goal state assignments at the final
timestep: ∧

x 7→v∈s0

fx 7→v@0 ∧
∧

x7→v∈G
fx7→v@T

The final formula HT is the conjunction of each set of
formulae described above. If α is a satisfying assignment of
HT , then a valid plan can be extracted directly from α, as
the t-th action of the plan sequence is the action a ∈ A of
which α(a@t) = True. In other words, the action that is true
at each timestep forms the sequence of actions in the plan.
If the plan includes no-ops, then there will exist at least one
timestep t in which a@t = False for all actions, representing
a timestep where a no-op action is taken. For the proof that
this encoding is satisfiable if and only if the original plan-
ning task has a valid plan, see Balyo (2014).

We define HT−G as HT without the final clause set de-
scribing the goal conditions. We use S@t, where S is any
set of facts, to mean the conjunction f1@t ∧ . . . ∧ fn@t
where {f1, . . . , fn} = S. Using these definitions, we can
define the optimal planning problem as finding a T such
that HT−G ∧ G@T is satisfiable but HT−G ∧ G@T−1 is
not. We can also define the satisficing planning problem (in
which any plan is to be found, not necessarily the best one)
as simply whether or not a T exists that satisfies HT . These
definitions will allow us to make more general statements
about the SAT encoding in the next section.

Implementing Heuristics in SAT
Heuristics are the defining factor for the efficiency of in-
formed search algorithms. A good heuristic provides addi-
tional information on the goal conditions that can guide the
search towards a plan faster, while also being able to pre-
emptively rule out entire branches of the search if it is known
that a goal cannot be found within a given horizon. So far we
have defined an encoding of a planning task as SAT, but cur-
rently it does not obviously contain any heuristic informa-
tion. In this section, we begin by defining what it means to
“implement” a heuristic in a SAT encoding, before exploring
two such heuristic implementations.

At the heart of what we will write about is Unit Prop-
agation (UP), an efficient inference procedure that plays an
important role in systematic SAT solving algorithms. Apply-
ing UP exhaustively on a formula can be done in linear time
proportional to the number of clauses in the formula. This
efficiency makes it a prime candidate for how we define the
implementation of heuristics in a SAT solving procedure.

The aim for implementing a heuristic in SAT is to find a
way to identify states where the heuristic lower bound sig-
nifies that reaching a goal from that state is impossible to do
before hitting the horizon first.

If performing UP on a set of clauses C results in a clause
c, we denote this by C ⊢UP c. The implementation of an
admissible heuristic in a SAT encoding of a planning task is
defined as follows (Rintanen 2011):

Definition 5 (Implemented Heuristic) Let f be a fact and
T the horizon bound. A clause set χT implements the ad-
missible heuristic hf (s) if for all t ∈ {0, . . . , T}, all states
s, and all t′ ∈ {t, . . . ,min(T, t + hf (s) − 1)}, we have
s@t ∧HT ∧ χT ⊢UP ¬f@t′.

For more clarity, this definition can be generalised for any
set of goals G as follows (Huang 2012):

Definition 6 (Generalised Implemented Heuristic) A set
of clauses χT implements the heuristic function hG(s), for
a given horizon T , if s@t ∧HT ∧ χT ⊢UP ⊥ for all states s
and times t ∈ {0, . . . , T} such that (T − t) < hG(s).

In other words, an admissible heuristic is implemented for
a given horizon if for all states, UP will derive an empty
clause for each timestep in which the distance between
that timestep and horizon is less than the heuristic value of
achieving a goal from that state.

Encodings that Implement Heuristics
The hmax heuristic (Bonet and Geffner 2001), generally
speaking, is concerned with the cost of the most expensive
subgoal. Interestingly, creating the χT formula for the hmax
heuristic implementation is unnecessary, because we actu-
ally get this for free in the problem encoding HT itself. See
(Rintanen 2011) for the full proof of this property. Formally,
we can say that the empty clause set χT = ∅ for any T ≥ 0
implements hfmax for any fact f .

The hm set of heuristics (Haslum and Geffner 2000) are
similar to hmax in the sense that they are also estimating
the distance to the entire set of goal facts via the cost of
achieving smaller subsets of facts. Whereas hmax is con-
cerned with the single most expensive fact, hm uses the cost
of achieving the most expensive subset of facts of size at
most m. In this sense, we can view hmax as being a special
case of hm, where hmax = h1.

Definition 7 (hm) The hm heuristic value for achieving the
set of facts ψ ∈ F from state s is:

hmψ (s) =


0 if ψ ⊆ s

minah
m
R(ψ,a)(s) + 1 if |ψ| ≤ m

maxψ′⊊ψ,|ψ′|=mh
m
ψ′(s) if |ψ| > m

(1)

where R(ψ, a) is the regression operator, defined as ψ \
eff(a))∪ pre(a) if both eff(a)∩ψ ̸= ∅ and del(a)∩ψ = ∅,
and is undefined otherwise.

In this definition, the min ranges over all actions a such that
R(ψ, a) is defined. Also recall from our SAS+ definition
that the del(a) set contains the facts that are no longer true
once the action is applied. To obtain the hm heuristic value
for the current state to a goal state, simply take the heuristic
value on the set of goal facts hmG (s).

The hm heuristic is unfortunately not implemented for
free like hmax is, therefore we must create a non-empty
clause set χT to do so. The implementation we outline here
was described by Huang (2012), and is defined as the con-
junction of multiple clause types, similar to the Direct En-
coding. We label these clauses as Types 1 through 4.

In order to implement hm, we need Boolean variables that
correspond to the truth of a set of facts. Specifically, for ev-
ery set of facts ϕ ⊆ F such that 2 ≤ |ϕ| ≤ m, we create
a meta-fact fϕ, which implies the truth of all facts in ϕ. We
begin outlining the clauses of χmT by encoding this property
in SAT:

(¬fϕ@t ∨ f@t)
∀t ∈ {0, . . . , T}, ∀f ∈ ϕ

(Type 1)

In the case when ϕ = {f}, fϕ is just an alias for f , thus fϕ
is defined for all ϕ ⊆ F such that 1 ≤ |ϕ| ≤ m.

Next we define the frame axiom for each meta-fact, which
gives the condition under which the value of fϕ can change
from False to True. It consists of the following clauses for
each t ∈ {0, . . . , T−1}:

(fϕ@t ∨ ¬fϕ@t+1 ∨ x1 ∨ . . . ∨ xp) (Type 2)

(¬xi@t ∨ fϕ′@t)

∀ϕ′ ⊆ R(ϕ.ai) ̸= ∅,
|ϕ′| = min(m, |R(ϕ, ai)|),∀i ∈ {1, . . . , p}

(Type 3)

where a1, . . . , ap are all the actions for which R(ϕ, ai) is
defined, and x1, . . . , xp are a set of auxiliary variables. In
other words, clause set Type 3 represents that if a set of
facts has changed from False to True, this means that for
at least one action that applies to that set of facts, a subset
of facts (of size at most m) obtained from regressing that
action must be True. It is perhaps worth noting that the aux-
iliary variable may not necessarily be distinct, as xi and xj
are the same variable if R(ϕ, ai) = R(ϕ, aj). Also when-
ever R(ϕ, ai) = ∅, the set of clauses Type 3 is empty but
xi appears in clause Type 2 regardless. This represents cases
where the set of facts ϕ can be achieved by an action with
no preconditions.

The last clause set is to ensure that the goals are met in
terms of meta-facts:

(fϕ′@T)

∀ϕ ⊆ G, 2 ≤ |ϕ| ≤ m
(Type 4)

Together, the conjunction of clause sets Type 1, Type 2, Type
3, and Type 4 define χmT , the implementation of the hm
heuristic in SAT. For the proof of this, see Huang (2012).

Search with SAT-based Heuristic Pruning

We describe a heuristic forward search of the problem state
space that will make use of an implementation of a heuris-
tic in SAT to prune states from the search. We begin at
the point where the search software has parsed the planning
task, translating the problem to a SAS+ representation and
preparing to begin the state space forward search. We have
seen that a heuristic can be implemented in SAT so that in-
ference by UP is able to determine when the state cannot
reach the goal given a horizon bound. Picture the case where
we happen to be in the middle of a bounded forward search
and decide to pass the current state of the search to a SAT
solver as described before. If UNSAT is obtained from the
given clause set, then we can effectively prune this state from
the search. In Figure 1 we provide a graphical example of
how such a pruning step can occur.

horizon

s0

goalt

s

T

h(s)

prune!

Figure 1: For the state s, (T − t) < h(s), and so s@t∧HT ∧
χT ⊢UP ⊥ (provided that h is an admissible heuristic). This
UNSAT result tells us that the state cannot reach any goal
within the horizon, so we can prune the search at that state.

For an implementation of this idea, before the search is
initiated we extract the variables (and their domains), ac-
tions (and their preconditions and effects), goal conditions,
and the initial state. For every timestep up until the hori-
zon, every fact (i.e. every possible value assignment for each
variable) is associated with a unique Boolean variable. Ad-
ditionally, for every timestep up until but not including the
horizon, each action is associated with a unique Boolean
variable, distinct from the set of fact variables. These rep-
resent the Boolean variables introduced in the Direct En-
coding. Using these variables, all of the clauses defined by
the formulae of our SAT encoding for SAS+—hereby re-
ferred to as the base encoding—are generated and passed to
the SAT solver. These clauses will never change during the
search, as they represent the ground truth information de-
scribed by the problem domain and instance, i.e. they hold
irrespective of the current search state. The base encoding
represents the clause set HT described earlier.

Next, we generate the heuristic encoding χT using the
same set of fact and action variables. The clauses generated
in this step are added to the set of clauses from the base en-
coding, and likewise do not change throughout the search
process. Our approach initialises an incremental SAT solver
with a formula of the form HT ∧ χT , encoding the base
planning problem HT along with the implemented heuristic
χT . We assume familiarity with incremental SAT (Fazekas,
Biere, and Scholl 2019). Notice at this point that we have
two heuristic “implementations” at work here: (i) the search
heuristic, which evaluates each state with a heuristic value in
order to prioritise which states in the search frontier should
be explored first, and (ii) what we call the prune heuristic,
which is what is encoded in the SAT formula χT in order
to prune states that cannot reach a goal state before hitting
the horizon according to the heuristic value of the state. The
heuristic used for state prioritisation in search, and that used
for pruning, do not need to be the same. Any heuristic can
be used for either, provided that the prune heuristic is admis-
sible and there exists a SAT encoding of it that satisfies the
definition of an implemented heuristic.

The SAT-based pruning step occurs when the search con-
siders adding a new state of the frontier. The incremental
SAT solver is queried for every such state, with the query
assumption corresponding to the unit clauses asserting s@t.
Because a state s is defined as a set of facts {f1, f2, . . . , fn}
that are true at that point in time, and due to the SAS+ defini-
tion requiring every variable in a state to be set to a particular

value, we can take the literal of each fact in the set and create
a conjunction of unit clauses f1@t∧f2@t∧ . . .∧fn@t, forc-
ing each of those facts to be true in the combined SAT for-
mula. The value of t in this case (representing the timestep
of the plan in which these facts are true) is set to the g(s)
value – i.e., g(s) is the timestep that the state has been dis-
covered at since s0. With all of this in place, the incremental
SAT solver is modified to return three possible results:

1. UNSAT: The solver has detected an empty clause during
the UP procedure. There is no way to reach a goal before
hitting the horizon from this state, due to the condition
s@t ∧HT ∧ χT ⊢UP ⊥ (from the generalised definition)
being satisfied. In this case, the state is not added to the
frontier, effectively pruning it from the search, and the
search continues.

2. SAT: The solver has found an assignment for every literal
that satisfies the formula (and thus s@t ∧HT ∧ χT ⊬UP
⊥). This means that the SAT solver has managed to find a
valid plan for the original problem during the UP proce-
dure. In this case, because the planning task is now solved
and there is no need to continue, the entire planning pro-
cess can be terminated. All that is remaining is to extract
the valid plan from the literal assignments, which can be
done as follows: for every literal corresponding to an ac-
tion variable a@t, if its assignment is True, then action a
is performed at timestep t in the plan. Due to how HT is
defined, there will be exactly one action for each timestep
t ∈ {0, . . . , T − 1}, or in cases where no-op actions are
included, at most one action.

3. UNKNOWN: If neither UNSAT nor SAT are returned
then the result is unknown, as the solver did not solve
the formula nor did it generate any empty clauses within
the conflict budget – i.e., using UP only. This means that
UP via the implemented heuristic cannot detect that it is
certain the horizon will be reached before any goal. It
is still entirely possible that a goal state is impossible to
reach from this state, due to the horizon or otherwise, but
at the very least the heuristic information is not sufficient
to deduce this with UP. In this case, the intercepted state
is added to the frontier as usual, and the search continues.

If the planning task remains unsolved after the SAT query,
the search continues as normal: a state is popped off the fron-
tier queue based on the search heuristic priority, and unex-
plored states adjacent to it are ready to be added to the fron-
tier, being intercepted by our pruning process before they
can do so. This continues for every explored state until ei-
ther the search finds a goal state, the SAT solver returns SAT,
or the entire state space is explored (and therefore there does
not exist a valid plan for the planning task at hand). This en-
tire process of search with heuristic-based pruning can be
seen in Algorithm 1.

This approach begs the question of how exactly such a
procedure can be applicable, as a single “bounded search”
is rarely seen in practice when one can simply continue
the search until a goal is eventually found. Aside from
search under strict memory limitations, one particular use-
case (and the use-case we are particularly interested in) is
IDA*, which conducts a series of depth-bounded searches

1 create literals();
2 HT := generate base clauses();
3 χT := generate heuristic clauses();
4 s0.depth := 0;
5 push s0 onto queue;
6 mark s0 as visited;
7 while queue not empty do
8 s := pop state from queue;
9 if s ⊇ G then

10 return get plan(s)
// -=+=- Begin Pruning -=+=-

11 s@t := generate state assumptions();
12 result := {HT , χT }.unit propagate(s@t);
13 if result == UNSAT then
14 continue;
15 if result == SAT then
16 plan := [];
17 for each t in {0..T−1} do
18 for each a in A do
19 if a@t then
20 plan.add(a@t);
21 break;

22 return plan;
// -=+=- End Pruning -=+=-

23 if s′.depth < T then
24 for a in {a | pre(a) ⊆ s} do
25 s′ := the result of applying a from s;
26 s′.parent := s;
27 s′.action := a;
28 s′.depth := s.depth+1;
29 if s′ is not visited then
30 mark s′ as visited;
31 push s′ onto queue;

32 return Search failed: state space exhausted;
Algorithm 1: State Space Forward Search with
Heuristic-based Pruning

by definition. By implementing this “heuristic pruning” pro-
cedure during IDA*, we retain the benefits of an iterative-
deepening search (i.e. beneficial for memory-constrained
environments), while aiming to improve the time efficiency
of the search itself by reducing the size of the state space at
each iteration.

It could seem strange at first that using the same heuristic
for search and pruning results in fewer expanded states than
using only the search heuristic, as it may seem that the states
that get pruned from the search would not be visited by the
search in the first place (even without the pruning). There
are a few examples of where this gap tends to occur. First,
the case where UP actually manages to solve the entire SAT
formula, allowing the search iteration to end prematurely.
The other explanation for this behaviour stems from the fact
that the heuristic-based pruning requires performing UP on
both the heuristic encoding and the encoding of the entire

problem itself. This means that the pruning procedure has
access to more information than the search heuristic alone,
and can potentially result in states being pruned for reasons
that the search heuristic is not aware of. For example, if
no goal states exist within the current search bound, regular
search will exhaustively search the state space, whereas the
heuristic-based pruning is likely to notice early in the search
that no goal is achievable before the horizon and will prune
away most of the state space. In particularly lucky cases this
occurs at the initial state, allowing the search to skip to the
next iteration immediately. Either way, this results in fewer
states expanded when using heuristic-based pruning, despite
the same heuristic being used for search in both cases.

Experimental Results and Analysis
For each of our experiments, a modified version of the plan-
ning system Fast Downward and an integrated SAT solver
MiniSAT are used to perform the heuristic-based state prun-
ing. Each experiment runs a number of jobs concurrently,
where each job is assigned to a domain from the selection
of domains (listed below), and is given a time limit and a
memory limit. A job continues until either all problems in
the domain are solved, the time limit is met, or the memory
limit is met. In any case, the job stops working on the cur-
rent domain and starts working on another domain that has
not yet been taken by another job. These jobs continue until
all domains have been worked on, the experiment ends, and
data is collected.

A domain being “worked on” refers to attempting to solve
each problem in the domain in sequence in an iterative-
deepening fashion. Specifically, the job calls Fast Downward
with the appropriate search heuristic, prune heuristic, and
search algorithm as parameters at an initial bound, and the
job moves onto the next problem if a solution is found. If no
solution is found and the (potentially pruned) search space
has been searched exhaustively, the job increases the bound
by one and calls Fast Downward again with this new bound
value. This repeats with progressively increasing bounds un-
til a solution is found, or until the time/memory limit is met.
It is worth noting that all of the selected domains contain
only problems that are solvable within a finite bound, so we
do not have to handle the case where a job is stuck trying to
find a solution to an unsolvable problem. Additionally, do-
mains typically sort their problems from easiest to hardest
to solve, but this is not a guarantee. For our experiments, we
solve problems lexicographically, which tends to be easiest
to hardest for most domains.

We make one particular modification to the iterative-
deepening method at this stage, motivated by the efficiency
loss of starting every search at a bound of 1, often wasting
time searching within unreasonable bounds. To help miti-
gate this, we choose the initial bound strategically. Because
admissible heuristics always give a lower bound of the ac-
tual distance to a goal—and therefore never overestimate the
goal distance—we can take an admissible heuristic value
of the initial state and use that as our initial bound for the
iterative-deepening search. Better yet, we can take multi-
ple admissible heuristics, obtain the value of the initial state
from each, and take the maximum of those to get as close

as possible to the optimal distance (and bound). We achieve
this by simply calling Fast Downward with a bound of 1
before each problem is solved, and extracting the heuristic
information from that run to be used for the first search iter-
ation.

When a job is finished with a problem, we take the result-
ing output and extract the time taken to find a solution to the
problem, and the number of states expanded (i.e. all succes-
sors of the state have been generated) during the search. We
can use the time data to evaluate efficiency and expanded
states data to display any early backtracking caused by our
implementation.

For each of our experiments, we specifically run 10 jobs
concurrently, with each job being given a 30 minute time
limit and an 8 GB memory limit, chosen to match typical
official International Planning Competition (IPC) settings.
The hardware specifications of the machine that the exper-
iments were run on are as follows: Intel(R) Xeon(R) Gold
6252 CPU @ 2.10Ghz, 92 cores, 196.46 GB of memory,
and Linux 4.15.0-156-generic #163-Ubuntu SMP as the OS.

A selection of 24 planning domains were tested in each
of the experiments, covering a wide range of problems and
difficulty levels. However, only 15 of these domains had at
least one problem solved amongst all of the experiments.
The list of these 15 domains are: agricola-sat18-strips,
blocks, depot, driverlog, floortile-sat14-strips, logistics00,
miconic, philosophers, pipesworld-notankage, pipesworld-
tankage, rovers, satellite, sokoban-sat11-strips, telegraph,
and zenotravel.

All of the domains used aside from philosophers and tele-
graph can be found at the University of Basel AI Group
Github alongside the rest of the packaged Fast Downward
benchmark domains. The philosophers and telegraph do-
mains (Fabre et al. 2010), originally used for IPC4, both
model deadlock detection problems that are generated au-
tomatically by translating from models originally defined
in PROMELA (Process/Protocol Meta Language). Deadlock
problem instances were generated with an increasing num-
ber of philosophers/stations, with the initial problem of each
domain containing 2.

Results and Evaluation
This section aims to display some relevant results obtained
from the experiments and to evaluate the effectiveness of our
approach. We run the experiments using the IDA* search
algorithm, exploring the practicality of an existing theo-
rem about SAT-implemented heuristics in the context of
our heuristic-based pruning. The set of experiments de-
tailed here are concerned with exploring the difference in
solve time and expanded states among a collection of search
heuristics, with and without heuristic pruning. We are also
particularly interested in the specific case where the search
heuristic and prune heuristic are the same, and how this com-
pares to having no prune heuristic at all. This aims to test
whether there exists a significant separation of A* and SAT
in practice, similar to the exponential separation result in
(Rintanen 2011) Theorem 10: “state space search with A*
and a heuristic h is sometimes exponentially slower than any

algorithm for SAT that uses unit resolution, if the latter im-
plements h”.

To make this section clearer in its distinction between dis-
cussion of search heuristics and prune heuristics, we will re-
fer to the hmax (i.e. h1) prune heuristic as χ1, and the h2
prune heuristic as χ2.

Specifically, we run IDA* with the hmax and h2 search
heuristics, and compare the effectiveness of each search with
χ1 and χ2, against the baseline of no pruning at all. Addi-
tionally, to test how well the pruning method works with
a generally high-performant search, we also run the exper-
iments using a greedy search algorithm and the FF (Fast-
Forward) search heuristic (Hoffmann and Nebel 2001),
which finds a plan to the delete relaxation of the problem
from a state, and using the cost of that plan as a heuristic
value for that state.

Comparing no pruning to χ1 when the hmax search al-
gorithm is used, and comparing no pruning to χ2 when the
h2 search algorithm is used, will help explore the theorem
of exponential separation for hmax and h2 respectively, as
they share the same heuristic, allowing us to directly see the
effects of the early backtracking.

Figure 2 shows the results of each of these experiments
for the blocks and pipesworld-tankage domains. These two
domains were chosen in particular to emphasise the varying
effectiveness of our approach, with blocks being somewhat
of an outlier with its highly effective performance using cer-
tain parameters, and the more common case of pipesworld-
tankage in which our approach generally underperforms.
Note that we omit the case where the FF search heuristic
is used with χ2, as only one problem was able to be solved
in the specified time and memory limits.

Pruning Using the hmax Search Heuristic
In terms of states expanded, χ2 expands fewer states than χ1

most of the time, and both χ2 and χ1 always expand fewer
states than no pruning. This shows that early backtracking
is indeed occurring as expected. A particularly extreme case
of this is blocks problem 18, where the difference of states
between χ2 and no pruning is almost 24 million states, thus
managing to prune 99.991% of states from the search. De-
spite this, χ2 is still approximately 25 seconds slower to find
a solution, mainly due to the overhead of both generating the
HT and χT clauses and the SAT solving at each search step.

Because of the significant amount of time generating χT
in particular, χ2 tends to vastly underperform in terms of
problems solved and solve time. A few exceptions exist,
such as χ2 solving more problems than χ1 in the blocks
domain, matching the number of problems that no pruning
solved in that same domain. Also, there exists two problems
in blocks (15 and 16) where χ2 is faster than χ1. These
problems appear to be rare outlier cases for this particular
domain, however, as χ2 is consistently the slowest option
elsewhere.

Likewise, the last problem solved in both the pipesworld-
tankage and zenotravel domains are solved faster using χ1

than no pruning. It would be tempting to believe that per-
haps the time saved from using χ1 is beginning to appear

Expanded States Time (seconds)

1 5 10 15 20

100

102

104

106

108

bl
oc

ks
-h

m
a
x

none
χ1

χ2

1 5 10 15 20

10−3

10−1

101

103

1 5 10

100

102

104

106

108

bl
oc

ks
-h

2

1 5 10

10−3

10−1

101

103

1 5 10 15 20

100

102

104

106

108

bl
oc

ks
-F

F
1 5 10 15 20

10−3

10−1

101

103

1 5

100

102

104

106

pi
pe

s
-h

m
a
x

1 5
10−3

100

103

1 5

100

102

104

106

pi
pe

s
-F

F

1 5
10−3

100

103

Figure 2: Various search heuristics (by row) and prune
heuristics (by plot mark) for the blocks and pipesworld-
tankage domains. Number of expanded states for each prob-
lem are displayed in the left column of plots, and total time
to solve each problem are displayed in the right column. The
h2 search heuristic plots for the pipesworld-tankage domain
have been omitted due to lack of data points. The x-axis rep-
resents the lexicographical order of the problems in the do-
main specified.

from that point onwards, and will only increase if more prob-
lems were to be solved. However, upon further inspection
into these cases, they seem to also be coincidental outliers.
Artificially giving the solver the optimal bound to search (to
save time searching through unsolvable bounds) and solv-

ing further problems in these domains result in χ1 returning
to underperformance immediately afterwards. This could be
the result of UP managing to solve the problem entirely at
some point, ending the search prematurely. In summary, it
appears that heuristic pruning using hmax as a search heuris-
tic, while decreasing the search space to an often significant
degree, is ineffective in terms of solve time.

Pruning Using the h2 Search Heuristic
For this search heuristic, χ2 expands fewer states than χ1

a majority of the time as well, though there are more ex-
ceptions in this case. Similarly, both χ2 and χ1 almost al-
ways expand fewer states than no pruning, but now there
are a few problems where this is not the case. This shows
that while pruning may decrease the total search space, it
does not guarantee that a solution will be found earlier in
the search.

The key difference in the h2 search heuristic case, com-
mon among most domains, is that heuristic pruning is gen-
erally faster than using no pruning. This is particularly ap-
parent in domains such as miconic and philosophers, where
χ1 always results in the most efficient solve times. Overall,
it appears that heuristic pruning using h2 as a search heuris-
tic is generally more effective than using no pruning, both in
terms of expanded states and time.

For hmax, when comparing the results of no pruning and
pruning with the same heuristic as the search, it seems that
the exponential separation theorem from (Rintanen 2011)
unfortunately does not occur in our hybrid approach, and
doing so results in consistently slower solve times. On the
other hand, the same comparison for the h2 search heuris-
tic shows that there could be an advantage to using heuristic
pruning, and though the separation may not be exponential
in practice, there is still a noteworthy performance gain.

Pruning Using the FF Search Heuristic
With regards to states expanded in this case, χ2 generally
expands significantly less states than no pruning. However,
apart from the blocks domain, the difference between χ2

and χ1 is minimal. In some cases, χ1 even expands fewer
states than χ2. The data overall appears to bear a resem-
blance to the data obtained from the hmax search heuris-
tic experiments, with the exception of the miconic domain,
which tends to be a lot more chaotic and results in what ap-
pears to be a less stable difficulty progression.

In terms of solve time, χ1 manages to beat no pruning in
a few more occasions, though it is still slower overall. χ2

remains consistently worse than any of the other options in
terms of time efficiency. χ1 appears to shine the most in the
miconic domain, where it beats the solve time of no prun-
ing in 12 of the 50 problems solved. The solve time for
this domain is quite variable in general when using the FF
search heuristic, which is particularly clear in cases such as
problems 43 and 45, which take 0.003 and 222 seconds re-
spectively using FF, but 27 and 121 seconds using hmax. FF
appears to be a lot less stable with solving problems such
as these, which could allow for heuristic pruning to obtain
an advantage by smoothing out cases where the heuristic

alone underperforms, guiding the search towards the solu-
tion faster than the overhead can overshadow.

The curious cases of pipesworld-tankage problem 7 and
zenotravel problem 8 are even more pronounced here, with
χ1 being even better than the previous experiments when it
comes to beating no pruning with solve time. This suggests
that more efficient search heuristics will only increase the
advantages of heuristic pruning in problems where heuristic
pruning has proven to be well-suited in terms of runtime.

All experiments considered, χ2 appears to be especially
well-suited for the blocks domain, as it is able to solve more
problems here than any other configuration. The states ex-
panded for χ2 has a tendency to plateau while other config-
urations explode. blocks is quite a difficult domain to solve
optimally in general, and it is possible that this advantageous
performance could also occur in other planning domains that
we have not experimented on.

In summary, while the speed of heuristic pruning is im-
proved in some cases, using a performant heuristic such as
FF still results in no heuristic pruning being faster in general.

Conclusion and Future Work
Overall, our results showed that despite heuristic-based
pruning resulting in fewer explored nodes, no pruning is the
fastest method using either the hmax or FF search heuristic,
though χ2 is the fastest when using the h2 search heuristic.
Generally we find that the cost of generating the SAT rep-
resentation of the heuristic—and regularly performing UP
based inference on SAT problems—outweighs the benefit of
the resulting reduced search space. This is a particularly big
problem for χ2, where the generation of the SAT formula
tends to dominate runtime.

A particularly interesting result is that χ2 performs very
well in the blocks domain specifically, sometimes even
beating no pruning in terms of time efficiency and prob-
lems solved. This shows us that there exists domains where
heuristic-based pruning can be advantageous.

We find the following ideas to be compelling future re-
search directions. Exploring the use of heuristic pruning
where search is performed strategically using plan length
bounds, such as decreasing from a known upper bound (Rin-
tanen and Gretton 2013), query-based strategies (Streeter
and Smith 2007), and non-sequential approaches (Rintanen
2004). Heuristic pruning works with any admissible heuris-
tic, provided that it has a SAT implementation χT . With that
in mind, Pattern Database (PDB) heuristics (Culberson and
Schaeffer 1998) are an interesting candidate for future ex-
ploration. Furthermore, with other types of search knowl-
edge in mind, we expect pruning using knowledge other
than the horizon bound, such as bounds one can derive using
landmarks (Hoffmann, Porteous, and Sebastia 2004), to be a
possible fruitful direction for future study. While our imple-
mentation uses the Direct Encoding to represent problems
in SAT, there exist other encodings that could potentially
be faster to generate, such as the SASE encoding (Huang,
Chen, and Zhang 2010), ∃-Step encodings (Rintanen, Hel-
janko, and Niemelä 2006), or encodings that make use of a
split representations (Robinson et al. 2009).

References
Balyo, T. 2014. Modelling and Solving Problems Using SAT
Techniques. Ph.D. thesis, Univerzita Karlova, Matematicko-
fyzikálnı́ fakulta, Katedra teoretické informatiky a matemat-
ické logiky.
Biere, A.; Cimatti, A.; Clarke, E. M.; and Zhu, Y. 1999.
Symbolic Model Checking without BDDs. In Proc. TACAS
’99, volume 1579 of Lecture Notes in Computer Science,
193–207. Springer.
Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artif. Intell., 129(1-2): 5–33.
Culberson, J. C.; and Schaeffer, J. 1998. Pattern Databases.
Comput. Intell., 14(3): 318–334.
Ernst, M. D.; Millstein, T. D.; and Weld, D. S. 1997. Au-
tomatic SAT-Compilation of Planning Problems. In Pro. IJ-
CAI ’97. Morgan Kaufmann.
Fabre, E.; Jezequel, L.; Haslum, P.; and Thiébaux, S. 2010.
Cost-Optimal Factored Planning: Promises and Pitfalls. In
Proc. ICAPS ’10. AAAI.
Fazekas, K.; Biere, A.; and Scholl, C. 2019. Incremental In-
processing in SAT Solving. In Proc. SAT ’19, volume 11628
of Lecture Notes in Computer Science. Springer.
Fikes, R.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artif. Intell., 2(3/4): 189–208.
Haslum, P.; and Geffner, H. 2000. Admissible Heuristics for
Optimal Planning. In Proc AAAI ’00. AAAI.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. J. Artif. In-
tell. Res., 14: 253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning. J. Artif. Intell. Res., 22: 215–278.
Huang, J. 2012. Implementation of Critical Path Heuristics
for SAT. In Proc. ECAI ’12, volume 242. IOS Press.
Huang, R.; Chen, Y.; and Zhang, W. 2010. A Novel Transi-
tion Based Encoding Scheme for Planning as Satisfiability.
In Proc. AAAI 10. AAAI Press.
Huang, R.; Chen, Y.; and Zhang, W. 2012. SAS+ Planning
as Satisfiability. J. Artif. Intell. Res., 43: 293–328.
Höller, D.; and Behnke, G. 2022. Encoding Lifted Classical
Planning in Propositional Logic. In (to appear) Proc. ICAPS
22.
Kautz, H. A.; McAllester, D. A.; and Selman, B. 1996. En-
coding Plans in Propositional Logic. In Proc. KR ’96. Mor-
gan Kaufmann.
Kautz, H. A.; and Selman, B. 1992. Planning as Satisfiabil-
ity. In Proc. ECAI ’92. John Wiley and Sons.
Kautz, H. A.; and Selman, B. 1996. Pushing the Envelope:
Planning, Propositional Logic and Stochastic Search. In
Proc. AAAI ’96.
Korf, R. E. 1985. Depth-First Iterative-Deepening: An Op-
timal Admissible Tree Search. Artif. Intell., 27(1): 97–109.
Rintanen, J. 2004. Evaluation Strategies for Planning as Sat-
isfiability. In Proc. ECAI ’04. IOS Press.

Rintanen, J. 2011. Planning with SAT, Admissible Heuris-
tics and A*. In Proc. IJCAI ’11. AAAI.
Rintanen, J.; and Gretton, C. 2013. Computing Upper
Bounds on Lengths of Transition Sequences. In Proc. IJ-
CAI ’13. AAAI.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artif. Intell., 170(12-13): 1031–1080.
Robinson, N.; Gretton, C.; Pham, D. N.; and Sattar, A. 2009.
SAT-Based Parallel Planning Using a Split Representation
of Actions. In Proc. ICAPS ’09. AAAI.
Sandewall, E.; and Rönnquist, R. 1986. A Representation
of Action Structures. In Kehler, T., ed., Proc. AAAI ’86.
Morgan Kaufmann.
Streeter, M. J.; and Smith, S. F. 2007. Using Decision Pro-
cedures Efficiently for Optimization. In Proc. ICAPS ’07.
AAAI.

