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ABSTRACT

Deep stereo disparity estimation has long been dominated by a matching-centric
paradigm, built on constructing cost volumes and iteratively refining local corre-
spondences. Despite its success, this paradigm exhibits an intrinsic vulnerability:
visual ambiguities from occlusion or non-Lambertian surfaces invevitably induce
errorneous matches that refinement cannot recover. This paper introduces Dis-
pViT, a new architecture that establishes a regression-centric paradigm. Instead
of explicit matching, DispViT directly regresses disparity from tokenized binoc-
ular representations using a single-stream Vision Transformer. This is enabled
by a set of lightweight yet critical designs, such as a probability-based disparity
parameterization for stable training and an asymmetrically initialized stereo tok-
enizer for effective view distinction. To better align the two views during stereo
tokenization, we introduce a novel shift-embedding mechanism that encodes dif-
ferent disparity shifts into channel groups, preserving geometric cues even under
large view displacements. A lightweight refinement module then sharpens the re-
gressed disparity map for fine-grained accuracy. By prioritizing holistic regression
over explicit matching, DispViT streamlines the stereo pipeline while improving
robustness and efficiency. Experiments on standard benchmarks show that our
approach achieves state-of-the-art accuracy, with strong resilience to matching
ambiguities and wide disparity ranges. Code will be released.

1 INTRODUCTION

Stereo disparity estimation is one of the core challenges in computer vision, with applications in
autonomous driving (Geiger et al., 2013), augmented reality (Kim et al., 2018), and robotic manipu-
lation (Fang et al., 2023). The objective is to compute the horizontal displacement of pixels between
two rectified images from a stereo camera rig. A dominant paradigm for stereo disparity estimation
has been matching-centric, which explicitly establishes pixel-level correspondence between the left
and right views. This perspective has driven the prevalence of pipelines (Žbontar & LeCun, 2016;
Kendall et al., 2017; Lipson et al., 2021; Li et al., 2021) built around cost volumes and iterative
refinement. While effective, the matching-centric paradigm exhibits an intrinsic limitation: match-
ing is inherently ill-posed in the presence of visual ambiguities such as transparency, occlusion, or
repeated patterns. Moreover, unreliable matches are often difficult to recover via subsequent local
refinements, leaving the pipeline brittle in cases where robustness is critical. This motivates us to re-
think stereo disparity estimation from a different perspective—one that bypasses explicit matching.

Currently, Vision Transformers (ViTs) have demonstrated remarkable capabilities in geometry re-
gression tasks like monocular depth estimation (Yang et al., 2024; Piccinelli et al., 2024) and feed-
forward 3D reconstruction (Wang et al., 2024a; 2025). However, the use of ViTs in stereo networks
has been largely confined to view feature extractors (Wen et al., 2025; Liu et al., 2024) within
conventional matching pipelines, leaving their potential for direct stereo disparity regression largely
unexplored. In this work, we advocate a regression-centric perspective: rather than building increas-
ingly elaborate cost volumes and refinement mechanisms, we harness the global reasoning capacity
of a ViT (Dosovitskiy et al., 2020) to perform direct disparity regression through holistic analysis
of context and binocular cues. This holistic regression yields a strong initial estimate, which we
complement with a lightweight refinement module for fine-grained accuracy. By rethinking stereo
disparity estimation around regression rather than matching, our approach circumvents the core vul-
nerability of matching pipelines: their susceptibility to visual ambiguities.
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This paradigm shift raises a key design question: how should binocular images be tokenized for a
ViT to enable direct regression? Conventional matching-centric approaches encode the two views
separately (Li et al., 2021; Weinzaepfel et al., 2023) for establishing matching. Departing from
this dual-stream manner, our regression-first philosophy pursues a single-stream formulation. The
pioneering regression-centric work of DispNetS (Mayer et al., 2016) simply concatenated stereo
pairs along the channel dimension for a CNN to regress disparity. While conceptually elegant, this
method was fundamentally limited by the localized receptive field of convolution, which hindered
effective reasoning over large disparities or complex global contexts, ultimately constraining gen-
eralization. The global attention mechanism of ViTs offers an effective remedy, enabling holistic
reasoning across both views without the locality bottleneck. However, directly concatenating the
two views poses its own challenge: significant pre-attention misalignment at the token level caused
by large disparities, which corrupts the ViT’s input and impedes its ability to infer binocular geome-
try. This motivates a new stereo tokenization design that is expected to mitigate early misalignment
and allow a single-stream ViT to operate effectively.

To this end, we propose a shift-embedding stereo tokenizer that mitigates input-level misalignment
by horizontally shifting the right view with a set of predefined offsets. Each shifted variant is in-
dependently tokenized into a separate channel group and then blended with the left-view tokens,
allowing each spatial token to encode a spectrum of potential alignments and easing reasoning over
large disparities. Complementing this, we introduce a simple yet effective asymmetric initialization
of the patchification convolution, which distinguishes the left and right views from the earliest stage
of training and prevents early degeneracy. To further embed binocular geometry priors into holistic
reasoning, we extend Rotary Position Embeddings (RoPE) (Su et al., 2024) to a disparity-aware
formulation (DA-RoPE), enabling aggregated features to remain geometry-consistent even at large
displacements. Together, these lightweight yet critical components form the foundation of DispViT,
a single-stream Vision Transformer that successfully bypasses explicit matching to directly regress
the disparity from a holistically reasoned binocular representation, as depicted in Figure 1.

Our DispViT, pretrained on a large corpus of data, exhibits superior robustness to matching ambi-
guities (see Figure 4). When complemented with a lightweight refinement module for fine-grained
details, it achieves state-of-the-art performance while maintaining efficiency. In summary, we in-
troduce DispViT, the first single-stream ViT framework that bypasses explicit matching to directly
regress stereo disparity from tokenized binocular representations. At its core is a single-stream ViT
backbone, equipped with shift-embedding stereo tokenizer, probability-based parameterization of
disparity, asymmetric initialization, and Disparity-Aware RoPE (DA-RoPE). This regression-first
formulation provides a strong disparity initialization that, together with lightweight refinement, es-
tablishes a robust and efficient alternative to long-standing matching-centric pipelines.

2 RELATED WORK

Deep Stereo Matching. The foundation of modern deep stereo matching is built upon the paradigm
of extracting discriminative features from a binocular pair and then establishing matching through
cost volume or cross-view attention. Seminal works such as GC-Net (Kendall et al., 2017) and PSM-
Net (Chang & Chen, 2018) pioneered the 3D cost volume architecture: using 2D CNNs for feature
extraction, constructing a 3D volume, and processing it with 3D convolutions for cost aggregation.
Subsequent research has extensively refined this framework by incorporating richer contextual in-
formation (Xu et al., 2022; Shen et al., 2022; 2021) and developing more powerful aggregation
networks (Zhang et al., 2019; Guan et al., 2024). RAFT-Stereo (Lipson et al., 2021) fundamentally
shifted the matching paradigm by replacing explicit cost volume processing with a recurrent decoder
that queries a pre-computed, multi-scale 4D correlation space for iterative disparity refinement. This
paradigm evolved through innovations like IGEV’s geometric encoding (Xu et al., 2023a), frequency
decomposition of DNLR (Zhao et al., 2023) and Selective-Stereo (Wang et al., 2024b), and Mocha-
Stereo’s motif-based attention (Chen et al., 2024), which further enhanced accuracy and generaliza-
tion. In contrast with iterative local refinement, another line of research (Li et al., 2021; Xu et al.,
2023b; Weinzaepfel et al., 2023; Min et al., 2025) employs cross-view attention between separately
encoded view features to perform global matching.

Recognizing the inherent ambiguities of matching, a growing line of research leverages monocular
depth estimation to bootstrap stereo. Recent approaches such as Monster (Cheng et al., 2025) and
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Figure 1: Overview of DispViT. We introduce a regression-centric paradigm for stereo disparity
estimation using a simple single-stream ViT. The effectiveness of this simple architecture is enabled
by lightweight yet critical designs, such as probability-based parameterization of disparity and stereo
tokenizer exemplified here, among other critical components explored in the text.

DEFOM-Stereo (Jiang et al., 2025) initialize RAFT-style iterative refinement with a scale-aligned
monocular disparity map. This initialization, inherently free from matching ambiguities, provides a
strong prior that markedly enhances both the accuracy and robustness of stereo disparity estimation.
The concurrent BridgeDepth (Guan et al., 2025) unifies monocular and stereo reasoning through
iterative bidirectional alignment of latent representations, efficiently synthesizing stereo precision
with monocular robustness. All these advances harness the core advantage of monocular disparity
regression: immune to matching ambiguities. The success of these hybrid approaches inspires our
pivotal departure—to directly regress disparity from the binocular input without explicit matching.

ViTs for Correspondence. ViTs have demonstrated a strong ability to model visual correspon-
dence by adhering to an encoder-aggregator architecture. Feed-forward 3D reconstruction methods
like MASt3R (Leroy et al., 2024) and VGGT (Wang et al., 2025) ground image matching in 3D
reconstruction, generating structure-aware dense local features to establish cross-view correspon-
dences. Furthermore, CrocoV2 (Weinzaepfel et al., 2023) and UFM (Zhang et al., 2025) directly
predict correspondence fields with a DPT (Ranftl et al., 2021) head after feature aggregation us-
ing cross-attention or alternate-attention. In stereo matching, FoundationStereo (Wen et al., 2025)
employs a ViT as the feature extractor, complemented by a CNN to fuse global context with fine
details. Despite architectural variations, these approaches are inherently matching-centric, focusing
on aligning features across images. In contrast, DispViT departs from the encoder-aggregator design
and introduces a single-stream ViT that directly regresses disparity from binocular input, recasting
stereo matching as regression rather than correspondence search.

3 METHOD

Given a rectified stereo pair (IL, IR) ∈ RH×W×3, our goal is to predict the disparity map of the left
view D ∈ RH×W . To this end, we propose a transformer-based architecture that directly regresses
the disparity map from a unified token representation of the two views using a single-stream ViT:

D̂0 = DPT
(
Φ ◦ T (IL, IR)

)
, (1)

where T tokenizes the binocular input into a single sequence and Φ denotes a ViT enhanced with a
novel disparity-aware Rotary Positional Embeddings (RoPE). A DPT (Ranftl et al., 2021) head fuses
the transformer’s multi-scale features to regress an initial disparity map D̂0, which is subsequently
sharpened by a lightweight refinement module to produce the final prediction D̂.

3.1 STEREO TOKENIZATION

Stereo tokenization is the crucial first step for enabling direct disparity regression within a single-
stream ViT. It patchifies the left and right views and blends them into a single sequence. To inherit
the power of pretrained models, the PatchEmbed module of DINOv2 (Oquab et al., 2023) is
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adapted to handle binocular input. This standard tokenization layer, denoted as E , is essentially a
strided 2D convolution, mapping 3-channel RGB to patchified high-dimensional embeddings. A
straightforward extension would be to concatenate the two views along the channel dimension, du-
plicate the convolution weights, and scale them by half, as in Marigold (Ke et al., 2024) when
adapting Stable Diffusion to monocular depth estimation.

However, we found asymmetric initialization yields substantially superior performance in practice.
Concretely, we initialize the new convolution kernel by concatenating the original pretrained weights
with a zero tensor of identical shape instead of duplicating and halving them. We hypothesize this
“half-zero” initialization provides a critical inductive bias: the pretrained branch processes the left
view as a clear, stable reference, while the zero-initialized branch is compelled to learn specialized
features that complement the reference from the right view. This asymmetry encourages the model
to distinguish the two views from the first layer, a property that symmetric initialization lacks.

Furthermore, large disparities introduce spatial misalignment between the two views. Direct channel
concatenation in this case mixes features from unrelated image regions, leading to incoherent token
representations. To mitigate this, we design a shift-embedding tokenizer that encodes multiple
alignment hypotheses within each token. Let {sk}Kk=1 be a set of predefined horizontal shift offsets.
For each offset sk, the right image IR is shifted by sk and passed through a specific convolution Ek

R,
producing channel groups

T (k)
R = Ek

R

(
Shift(IR, sk)

)
, k = 1, · · · ,K. (2)

These groups are concatenated along the channel dimension to form the right-view embedding TR =

Concat
(
{T (k)

R }Kk=1

)
. Meanwhile, the left view IL is tokenized by the pretrained PatchEmbed E .

The asymmetric initialization is still employed, i.e., E retains the pretrained weights while {Ek
R}Kk=1

are initialized with zeros. Finally, the stereo tokens are blended pixelwise by summation, T =
TL + TR, yielding a unified token sequence in which each spatial token embeds a spectrum of
potential disparities. This design preserves disparity structure at the input level and facilitates ViT’s
reasoning over large displacements. Compared to direct channel concatenation, our shift-embedding
tokenizer incurs negligible overhead since TR can be implemented using an optimized groupwise
convolution, while outperforming with an appreciated margin.

3.2 SINGLE-STREAM VISION TRANSFORMER

At the core of our architecture lies a single-stream vision transformer (ViT), which unifies feature
extraction and correspondence reasoning within a single transformer backbone, thereby bypassing
the need for explicit matching modules. We build upon a pretrained DINOv2 ViT backbone, capital-
izing on its robust visual representations while ensuring compatibility with our stereo tokenization
scheme. The transformed multi-scale features are then consumed by a DPT head to predict disparity.

To provide the ViT with spatial awareness, DINOv2 adds learnable absolute positional embeddings
(APE) to each token. However, we found APE ill-suited for disparity regression. We hypothesize
the issue lies in its lack of translational equivariance: disparity is inherently a relative offset, yet APE
encodes only absolute locations without an effective mechanism to capture relative displacements.
Unlike APE, Rotary Positional Embeddings (RoPE) (Su et al., 2024) encode positions by rotating
queries and keys such that attention depends on relative offsets rather than absolute coordinates. This
inductive bias aligns naturally with stereo geometry, where disparity manifests as horizontal trans-
lation. Empirically, we observe that substituting APE with RoPE brings substantial performance
gains, underscoring the necessity of modeling relative geometry in disparity regression.

While RoPE ensures attention weights are translationally equivariant, it leaves the value vectors
agnostic to relative position. But, for disparity estimation, the semantic meaning of a feature is
intrinsically tied to its position relative to the viewer. Motivated by this intuition, we introduce a
Disparity-Aware RoPE (DA-RoPE), which conditions value encoding on relative position. Con-
cretely, each value is rotated by its position R(pj)vj , aggregated with the attention weights, and
counter-rotated by the query position R(−pi). The resulting representation

z̃i = R(−pi)

∑
j

αijR(pj)vj

 =
∑
j

αijR(pj − pi)vj (3)
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Left Image Ground Truth Selective-IGEV NMRF DEFOM-Stereo DispViT

Left Image Ground Truth Selective-IGEV NMRF DEFOM-Stereo DispViT

Left Image Ground Truth Selective-IGEV NMRF DEFOM-Stereo DispViT

Left Image Ground Truth Selective-IGEV NMRF DEFOM-Stereo DispViT

Figure 2: Zero-shot generalization on real-world datasets. Qualitative comparison with Selective-
IGEV, NMRF, and DEFOM-Stereo across four datasets. Our DispViT (last column) exhibits supe-
rior robustness to matching ambiguities, including low-texture regions (“black holes”) and complex
surface materials like reflections and transparency. Best viewed in color and zoomed in.

is equivalent to rotating each vj by the relative position pj − pi before aggregation. Intuitively,
DA-RoPE re-expresses features in the query’s local reference frame before aggregation, ensuring
that both attention weights and aggregated features are consistently disparity-aware. This design
embeds translational equivariance directly into the value pathway and equips the ViT with a stronger
inductive bias for robust disparity estimation, especially under large disparities.

Prediction head. We adopt a DPT head to fuse multi-scale features from the ViT backbone for dis-
parity estimation. A key design choice lies in the parameterization of disparity prediction. Instead of
regressing disparity values directly, we discretize the disparity range into uniformly spaced bins and
let the head output a probability distribution over these bins (inspired by Zholus et al. (2025)). The
final disparity estimate is computed as the expectation over the distribution within a local window
around the peak probability. This probabilistic formulation provides two advantages: it naturally
reflects the bounded disparity range with a well-structured output space, and it allows the model
to capture uncertainty in ambiguous regions rather than collapsing to a scalar value. Experiments
suggest this probability parameterization is one of the most important components in our archi-
tecture. The network is supervised with a combined loss function that includes cross-entropy loss
for the discrete distribution P and an L1 loss on the continuous estimate D̂0 to ensure accuracy, i.e.,

Lregress = CE
(
P, bilinear(D∗)

)
+ λ1L1(D̂0,D∗), (4)

where bilinear(D∗) denotes the bilinear assignment of the ground-truth disparity to discrete bins.

3.3 REFINEMENT

While the single-stream ViT generates a strong and robust disparity estimate, it inevitably misses
fine-grained details, as no explicit two-view comparison is performed within the backbone. To re-
cover these details, we introduce a lightweight refinement module applied after the direct regression.
This module revisits the stereo pair and focuses on local correspondence cues, enabling sharper ob-
ject boundaries and better reconstruction of thin structures. By design, it complements the ViT’s
global reasoning with precise local matching, yielding a complete and accurate disparity estimate.

To maintain efficiency, our refinement avoids reconstructing a cost volume. Instead, we adopt the
refinement module of NMRF (Guan et al., 2024), which anchors local matching on a single-pass
geometry warping guided by the initial disparity estimate, in contrast to the iterative cost-volume
indexing of RAFT-style refinement. Specifically, the predicted disparity is used to warp the right
image features toward the left view, producing aligned correspondences that highlight local incon-
sistencies. A lightweight Swin transformer (Liu et al., 2021) then integrates these warped features
with the initial prediction to correct fine details.

Decoupled training. We adopt a two-stage training scheme to preserve modularity and flexibility.
First, our single-stream ViT is trained independently using the loss presented in Equation 4, yielding
a robust direct disparity regressor. Subsequently, we train the refinement model following the NMRF
protocol, with the ViT regressor kept frozen. This decoupled strategy ensures that the ViT regressor
can serve as a standalone model, directly deployable in applications where efficiency is paramount,
or seamlessly integrated with external refinement modules to recover fine-grained details.
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3.4 DISCUSSION

A key contribution of this work is new baseline for direct disparity regression, which was previously
thought to be ill-posed due to the lack of explicit matching mechanisms. This capability is unlocked
by several key designs. In particular: (1) The probability parameterization of disparity predic-
tion significantly stabilizes training and boosts accuracy compared to scalar value regression; (2)
Our shift-embedding stereo tokenizer preserves disparity structure in the blended token represen-
tation of two views; (3) The Disparity-Aware RoPE ((DA-RoPE) extension equips ViT attention
with the translational equivariance inductive bias crucial for disparity matching; (4) Asymmetric
initialization prevents early-stage training degeneracy, ensuring balanced gradient flow across both
views. Collectively, these innovations close the accuracy gap between the simplistic single-stream
regressor and more elaborate matching-centric pipelines, while demonstrating superior robustness
in ambiguous regions.

4 EXPERIMENTS

In this section, we describe our implementation details and evaluation protocol. Then we compare
our pretrained DispViT model and the variant enhanced with external refinement module (DispViT+)
to state-of-the-art methods in terms of accuracy and robustness. Then we ablate the design choices.

Implementation details. Unless otherwise specified, we adopt the following implementation. Our
model uses a ViT-L backbone initialized with DepthAnythingV2 (DAv2) (Yang et al., 2024) weights.
Tokenizer: The shift-embedding tokenizer shifts the right image K = 8 times, with each shift off-
set by 24 pixels, resulting in an embedding dimension of d/8 for each shifted view, where d is the
ViT-L channel dimension. Parameterization: Disparity is represented as a probability distribution
over 128 bins uniformly discretizing the range [0, 381]. The loss weight λ1 in Equation 4 is set to
0.1. Position encoding: We employ disparity-aware rotary position embeddings (DA-RoPE) with
asymmetric frequencies—100 for the vertical direction and 1000 for the horizontal direction—to
better capture the geometric priors of stereo imagery. Refinement: The refinement module adopts
the feature extractor and refinement network of NMRF (Guan et al., 2024), while discarding its
disparity proposal network and multi-hypothesis inference components to focus solely on refine-
ment capability. Training: All models are trained on image crops of size 392×768. The single-
stream regression model is first pretrained on a mixed dataset, consisting of FSD (Wen et al., 2025),
Scene Flow (Mayer et al., 2016), TartanAir (Wang et al., 2020), CREStereo (Li et al., 2022), In-
Stereo2K (Bao et al., 2020), FallingThings (Tremblay et al., 2018), Sintel (Butler et al., 2012), and
Virtual KITTI 2 (Cabon et al., 2020).

Evaluation protocol. We evaluate across five representative datasets to assess performance under
both controlled synthetic and challenging real-world conditions. For large-scale synthetic evalua-
tion, we use the Scene Flow dataset (Mayer et al., 2016), which provides over 35,000 training pairs
and 4,370 testing pairs at 540×960 resolution, spanning diverse scenarios from the FlyingThings3D,
Driving, and Monkaa subsets. Real-world performance is assessed on the KITTI 2012 (Geiger et al.,
2013) and KITTI 2015 (Menze & Geiger, 2015) benchmarks, including 194/195 and 200/200 train-
ing/testing pairs, respectively, with sparse and inherently noisy LiDAR-based ground truth from
urban driving scenes. To probe cross-domain generalization, we further conduct zero-shot eval-
uation on the training set of Middlebury V3 (Scharstein et al., 2014), which offers high-resolution
indoor scenes with dense structured-light annotations, and ETH3D (Schops et al., 2017), comprising
grayscale stereo pairs of indoor and outdoor environments with challenging low-texture regions.

Our evaluation adheres to established protocols in stereo benchmarking (Mayer et al., 2016; Menze
& Geiger, 2015; Wen et al., 2025). We compute three standard metrics over all valid pixels: (1)
End-Point Error (EPE), the mean absolute disparity error in pixels; (2) Bad-Pixel Rate (BP-X),
the percentage of pixels whose absolute error exceeds X pixels; and (3) D1, the official KITTI 2015
metric which measures the percentage of pixels with an absolute error greater than 3 pixels and
exceeding 5% of the ground-truth disparity.

4.1 COMPARISON TO THE STATE-OF-THE-ART

The core contribution of this work is to introduce a competitive regression-centric paradigm as an
alternative to the long-standing dominance of matching-centric approaches. To validate this shift,
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Table 1: Quantitative evaluation on Scene Flow
test set. DispViT delivers competitive performance,
even surpassing the ground-breaking RAFT-Stereo.
A lightweight refinement (DispViT+) boosts accu-
racy, highlighting the robustness of DispViT as a re-
gression prior. ♣: matching-centeric methods, ♠:
hybrid methods. †: Benchmarked on RTX 3090.

Method EPE ↓ BP-1 ↓ Time† [s]

♣
RAFT-Stereo 0.56 6.63 0.40
DLNR 0.48 5.39 0.33
Selective-IGEV 0.44 4.98 0.25
NMRF 0.45 4.50 0.10

♠ DEFOM-Stereo 0.42 5.10 0.63
BridgeDepth 0.37 3.67 0.14

DispViT (Ours) 0.55 5.70 0.12
DispViT+ (Ours) 0.35 3.51 0.14

Table 2: Ablation studies. Upper: removal
studies, where each component is individually
removed from the baseline to quantify the ne-
cessity. Lower: addition studies, where com-
ponents are incrementally incorporated into the
baseline model to isolate their contributions.

Model EPE ↓ BP-1 ↓ Time [s]

Baseline (ViT-B) 0.89 10.05 0.056
- No DAv2 (scratch) 1.81 20.13 0.056
- No DAv2 (DINOv2) 0.92 10.79 0.056
- No probability 1.07 15.56 0.043
- No asymmetric init 0.97 11.88 0.056
- No RoPE (APE) 0.96 3.34 0.058

addition studies

+ shift-embedding (SE) 0.84 9.22 0.059
+ DA-RoPE (DA) 0.82 8.84 0.062
+ asymmetric freq (AF) 0.76 8.27 0.062

we compare DispViT with leading matching-centric methods and hybrid methods that synthesize
monocular regression and stereo matching. Beyond standalone regression, we further demonstrate
that complementing DispViT with a lightweight refinement network achieves state-of-the-art accu-
racy, while retaining the robustness and efficiency inherent to the regression-centric paradigm.

Scene Flow. For the Scene Flow benchmark, we follow the convention of restricting evaluation
to pixels with ground-truth disparities up to 192 pixels. In this evaluation, our pretrained DispViT
model is first finetuned on all 35,000 training pairs. Subsequently, the refinement network is trained
from scratch with the DispViT frozen. As shown in Table 1, our single-stream regression model
achieves performance comparable to leading matching-centric pipelines, e.g., RAFT-Stereo (Lipson
et al., 2021). Enhanced with a lightweight refinement module (∼20 ms), DispViT+ outperforms
them with a notable margin. Since the refinement module is directly borrowed from NMRF (Guan
et al., 2024), the substantial performance gain (+22%) of DispViT+ over NMRF indicates that
the improvement stems from the robustness of DispViT as a reliable regression prior rather
than the refinement architecture itself. This observation resonates with recent trends in hybrid
methods like DEFOM-Stereo (Jiang et al., 2025) and Monster (Cheng et al., 2025), and more broadly
establishes robust regression priors as a new cornerstone for advancing stereo disparity estimation.

Zero-shot evaluation. To assess the robustness of our regression-centric paradigm, we perform
zero-shot evaluation on four real-world datasets: KITTI 2012/2015, Middlebury, and ETH3D. We
compare our pretrained DispViT with strong contemporary baselines, including Selective-IGEV,
NMRF, and DEFOM-Stereo. Since our DispViT (ViT-L backbone) is empowered by a significantly
larger pretraining corpus, direct quantitative comparison is less equitable; instead, we emphasize
qualitative analysis for clearer insights. As illustrated in Figure 2, DispViT consistently exhibits su-
perior robustness, particularly on low-texture regions (“black holes”) and challenging surfaces such
as reflections and transparency, where matching-centric methods like Selective-IGEV and NMRF
frequently break down. Moreover, the hybrid method DEFOM-Stereo, despite leveraging DAv2
estimation as initialization, also fails to preserve the robustness of DAv2, likely due to its heavy
reliance on iterative local refinement. Nonetheless, as shown in the last row of Figure 2, DispViT
remains susceptible to severe visual illusions from glass mirroring, which are rare in current syn-
thetic datasets. This limitation motivates future work on scaling stereo pretraining data or distilling
the strong prior of monocular depth models to stereo with monocular disparity as affine-invariant
pseudo-labels to further enhance robustness.

Kitti benchmark. For evaluation on the KITTI benchmarks, we freeze the pretrained DispViT
model and train only the refinement module from scratch using the combined KITTI 2012 and KITTI
2015 training sets. Unlike synthetic datasets with dense and accurate ground-truth disparity, KITTI
annotations are sparse and often noisy, especially near object boundaries. Similar annotation chal-
lenges persist in other benchmarks, e.g., ETH3D lacks ground truth for the non-Lambertian surfaces
where robustness is most critical (last row in Figure 2). This setup presents a particular challenge
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for our method (DispViT+): the frozen regressor cannot adapt to dataset-specific noise, leaving the
lightweight refinement to cope with the noisy labels while simultaneously correcting initialization
errors from the regressor. To strengthen its capacity for KITTI noise adaptation, we employ a sim-
ple strategy, i.e., stacking the refinement network twice. As shown in Table 3, DispViT+ achieves
superior or competitive performance compared to state-of-the-art methods. We emphasize that the
goal of this evaluation is not to chase leader-board rankings by overfitting to dataset-specific noise,
but rather to validate the effectiveness of our regression-centric paradigm in real-world scenarios.

Booster. Finally, we conduct a qualitative analysis on the test set of Booster dataset (Zama Ramirez
et al., 2022) to examine the performance of DispViT in complex indoor scenarios containing re-
flective and transparent objects. Representative examples in Figure 4 highlights the robustness of
DispViT dealing with complex conditions as well as the limitation in case of mirroring illusions.

4.2 ABLATION STUDY

We conduct experiments to examine the impact of each proposed design choice. Unless otherwise
mentioned, all experiments use the Scene Flow dataset for training and evaluation, with a ViT-B
backbone to keep the ablation study more affordable. Since certain components are critical for
DispViT to reach a reasonable level of performance, we first establish a baseline configuration that
achieves stable and meaningful results. This baseline is defined as a ViT-B model initialized with
DepthAnythingV2 (DAv2) weights, combined with probability-based parameterization of disparity
(Sec. 3.2), standard RoPE, and asymmetric initialization (Sec. 3.1). From this baseline, we perform
two complementary analyses: (1) removal studies, where individual components are removed to
quantify their necessity, and (2) addition studies, where components are incrementally incorporated
into the baseline model to isolate their contributions.

Removal studies. The results of our removal studies are summarized in the upper part of Table 2.
Removing pretrained weights, i.e., training from scratch, causes the most dramatic degradation, with
clear signs of overfitting. This underscores the necessity of large-scale pretraining not only for con-
vergence but also as a powerful regularizer, consistent with findings in foundational vision models.
We also find that probability parameterization of disparity is essential: by imposing a well-structured
output space, it stabilizes training and yields a substantial performance gain (+17%), though at the
cost of a ∼30% latency overhead. Moreover, both asymmetric initialization of the stereo tokenizer
and RoPE prove indispensable, each contributing ∼10% EPE reduction by preventing early train-
ing collapse and injecting inductive biases aligned with stereo geometry, respectively. Finally, we
observe that initializing from DAv2 slightly outperforms DINOv2, suggesting that geometry-aware
pretraining provides a stronger prior for stereo disparity estimation.

Addition studies. The results of our addition studies are reported in the lower part of Table 2. We
incrementally integrate three proposed designs into the baseline: shift-embedding, disparity-aware
RoPE (DA-RoPE), and asymmetric RoPE frequency (assigning higher frequencies to the horizontal
axis to better capture horizontal displacements).

Each component yields consistent
gains, and together they contribute
a cumulative +15% improvement.
Notably, shift-embedding (SE) and
DA-RoPE (DA) specifically enhance
performance at large disparities, mit-
igating a core weakness of single-
stream regression models, as illus-
trated in Figure 3. However, we also
observe a slight trade-off with shift-
embedding: while significantly im-
proving large-disparity estimation,
it marginally degrades accuracy for
small disparities (< 32 pixels), likely
due to reduced channel capacity
per shifted view, which compro-
mises fine-grained details necessary
for small displacement estimation.

32 64 96 128 160 192 224 256 288 320 352 384
Disparity Range

0.5
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Figure 3: End-point error (EPE) across disparity
ranges. Shift-embedding (SE) and DA-RoPE (DA) specif-
ically improve large-disparity estimation, while asymmet-
ric RoPE frequency (AF) yields consistent gains across all
ranges by better encoding horizontal stereo geometry.
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Table 3: Benchmark results on KITTI 2012/2015 datasets. Metrics for KITTI 2012 are the outlier
ratio (Out-x) for disparities errors greater than x pixels in non-occluded (Noc) and all (All) regions.
For KITTI 2015, results are reported using the D1 error rate across background (BG) and foreground
(FG). (†): Benchmarked on GTX 3090 GPUs.

KITTI 2012 KITTI 2015

Method Out-2 Out-3 BG FG Time†

Noc All Noc All Noc All Noc All (s)
LEAStereo 1.90 2.39 1.13 1.45 1.29 1.40 2.65 2.91 -
PCWNet 1.69 2.18 1.04 1.37 1.26 1.37 2.93 3.16 -
ACVNet 1.83 2.35 1.13 1.47 1.26 1.37 2.84 3.07 0.2
RAFT-Stereo 1.92 2.42 1.30 1.66 - 1.58 - 3.05 0.38
IGEV-Stereo 1.71 2.17 1.12 1.44 1.27 1.38 2.62 2.67 0.18
Selective-IGEV 1.59 2.05 1.07 1.38 1.22 1.33 2.55 2.61 0.24
NMRF 1.59 2.07 1.01 1.35 1.18 1.28 2.90 3.13 0.09
Mocha-Stereo 1.64 2.07 1.06 1.36 1.24 1.36 2.42 2.43 -
LoS 1.69 2.12 1.10 1.38 1.29 1.42 2.66 2.81 -
MonSter 1.36 1.75 0.84 1.09 1.05 1.13 2.76 2.81 0.45
DEFOM-Stereo 1.43 1.79 0.94 1.18 1.25 1.15 2.23 2.24 0.61
IGEV++ 1.36 1.74 0.89 1.13 1.07 2.80 2.80 2.80 0.48
BridgeDepth 1.32 1.65 0.83 1.03 1.05 1.13 2.73 2.62 0.14
DispViT+ (Ours) 1.26 1.59 0.82 1.02 1.04 1.12 3.10 3.26 0.15

DispViT
Left Image

Figure 4: Qualitative results on the challenging test set of Booster (Zama Ramirez et al., 2022).
The pretrained DispViT exhibits robustness to matching ambiguities such as transparency, low-
texture, and reflections, where conventional matching methods often struggle. However, it remains
susceptible to mirroring illusions (last column), a case that monocular models typically handle better.

These ablation studies provide key insights into the architectural requirements for effective single-
stream disparity regression. The results underscore that our lightweight designs act synergistically
to meet the core demands of single-stream disparity regression, thereby solidifying the regression-
centric paradigm as a powerful alternative to matching-based pipelines.

5 CONCLUSION AND FUTURE WORK

We presented DispViT, a regression-centric architecture for stereo disparity estimation that departs
from the dominant matching-based paradigm. Through lightweight yet critical architectural adapta-
tions, a single-stream ViT directly regresses disparity from binocular inputs. Despite its simplicity,
DispViT delivers superior robustness and competitive benchmark results. Looking forward, we plan
to distill monocular depth priors into DispViT to further enhance its scalability and resilience.

Acknowledgement. The authors thank DeepSeek and GPT-5 language models for their assistance
in polishing the presentation of the methodology section.
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