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ABSTRACT

Code completion, a key downstream task in code generation, is one of the most
frequent and impactful methods for enhancing developer productivity in software
development. As intelligent completion tools evolve, we need a robust evaluation
benchmark that enables meaningful comparisons between products and guides
future advancements. However, existing benchmarks focus more on coarse-grained
tasks without industrial analysis resembling general code generation rather than
the real-world scenarios developers encounter. Moreover, these benchmarks often
rely on costly and time-consuming human annotation, and the standalone test cases
fail to leverage minimal tests for maximum repository-level understanding and
code coverage. To address these limitations, we first analyze business data from an
industrial code completion tool and redefine the evaluation criteria to better align
with the developer’s intent and desired completion behavior throughout the coding
process 1. Based on these insights, we introduce Codev-Agent, an agent-based sys-
tem that automates repository crawling, constructs execution environments, extracts
dynamic calling chains from existing unit tests, and generates new test samples to
avoid data leakage, ensuring fair and effective comparisons. Using Codev-Agent,
we present the Code-Development Benchmark (Codev-Bench), a fine-grained, real-
world, repository-level, and developer-centric evaluation framework. Codev-Bench
assesses whether a code completion tool can capture a developer’s immediate intent
and suggest appropriate code across diverse contexts, providing a more realistic
benchmark for code completion in modern software development.

1 INTRODUCTION

With the rapid development of large language models (LLMs), LLM4X gains popularity cross various
domains, including healthcare [8], question answering [23, 24], and education [13]. In software
engineering, code LLMs such as Codeqwen [28], Codegeex [37], and Starcoder [20] also demonstrate
strong capability in code generation [22, 21]. Several code assistants including TONGYI Lingma [4]
and Copilot [17], begin integrating these code LLMs into industrial products. Among these tools,
code completion remains one of the most frequent and effective functionalities for boosting developer
productivity in daily software development [5]. With the emergence of various tools, there is an
urgent need for a comprehensive benchmark to compare their performance [31].

Initially, general code generation benchmarks like HumanEval [4] and ClassEval [6] are used to
evaluate completion abilities in form-closed, self-constrained Python functions and classes. However,
these benchmarks are too isolated to reflect real-world development practices. In response, DevEval
[15] and CrossCodeEval [9] introduce repository-level benchmarks that evaluate the code completion
about cross-file contextual understanding and retrieval capabilities, making them more aligned with
actual development environments. The latest work, RepoMasterEval [30], further conducts an study
to analyze the correlation between user acceptance and benchmark performance, demonstrating that
a well-designed benchmark can guide the product improvement in practical settings. However, three
key challenges remain: (1) the coarse-grained tasks without industrial analysis resemble general
code generation rather than the real-world scenarios developers face; (2) limited extensibility, as

1A programming tool that suggests and completes code snippets as typing, based on a thorough understanding
of the current context of a project. It not just fills in the blanks, but also suggests variable names, functions, classes,
methods, and even entire code blocks, depending on the user’s desired completion behavior. ——swimm.io

1

https://swimm.io/ai-tools-for-developers/code-completion-in-the-age-of-generative-ai
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human annotation of data samples and test cases is time-consuming and costly, making continuous
updates cumbersome and inflexible; and (3) the standalone generation of test samples fails to leverage
minimal tests for maximum repository-level understanding and code coverage.

To address these limitations, we first analyze feedback from an industrial code completion tool and
redefine the evaluation criteria to better align with the developer’s intent and desired completion
behavior throughout the coding process, tackling challenge (1), as discussed in Section 3.1. Based on
these insights, we introduce Codev-Agent to address challenge (2) and (3), as detailed in Section 3.2.
Codev-Agent is an agent-based system that automates repository crawling, constructs execution
environments, extracts dynamic call chains from existing unit tests, and generates test samples to avoid
data leakage, ensuring fair and effective comparisons. Furthermore, it supports user customization
and optimization, allowing users to tailor the benchmark to specific needs and scenarios, making it
more adaptable and comprehensive than previous work. With Codev-Agent, we present the developer-
centric Code-Development Benchmark (Codev-Bench), a fine-grained, real-world, and repository-
level evaluation framework, as outlined in Section 3.3. It assesses whether a code completion tool can
capture a developer’s immediate intent and suggest appropriate code cross diverse contexts, offering
a more realistic and actionable evaluation for code completion in modern software development.

After evaluating state-of-the-art general and code-specific LLMs on Codev-Bench, we gain significant
insights into their performance and applicability in developer-centric code completion scenarios.
Common issues observed include incorrect code indentation, predictions that erroneously span multi-
ple code blocks, incomplete code generation, failure to stop appropriately at the right point, redundant
code that repeats the surrounding context, incorrect API calls or parameter values, and misidentifi-
cation of the correct block type to generate. These problems severely impact the user experience
when using code completion tools in practical settings, yet existing benchmarks fail to capture this
diverse range of errors. This highlights our core innovation — an automated evaluation framework
that assesses code completion from a developer’s perspective, ensuring a more comprehensive and
realistic evaluation of code completion tools in real-world development environments.

In summary, this paper makes the following contributions to the community:
• We conduct a comprehensive business analysis from an industrial code completion product

to redefine evaluation criteria that better align with developers’ intent and desired completion
behavior throughout the coding process.

• We introduce Codev-Agent, a unified system that automates the entire process: crawling
repositories, setting up execution environments, analyzing call chains from existing unit
tests, extracting scenario samples, and evaluating LLMs. Codev-Agent is also adaptable,
supporting user customization and optimization to tailor the benchmark to specific needs.

• We propose Codev-Bench, a developer-centric, fine-grained, real-world, and repository-level
evaluation framework. Codev-Bench assesses whether a code completion tool can capture a
developer’s immediate intent and suggest appropriate code snippets across diverse contexts,
offering a more realistic evaluation for code completion in modern software development.

• We present evaluation results on several state-of-the-art LLMs and provide insights that can
guide future research and improvements in the development of LLMs for code completion.

2 BACKGROUND AND RELATED WORK

We begin by introducing existing LLMs designed for code generation. Next, we outline the bench-
marks for general code generation task and the more specific code completion task. It is important
to note that code completion is a key downstream task in code generation, as it is one of the most
frequent and impactful methods for enhancing developer productivity in software development.
Unlike coarse-grained tasks such as class or function generation, code completion often requires finer
granularity. As a result, its evaluation demands more fine-grained and developer-centric scenarios,
distinct from those used in general code generation.

2.1 LLM FOR CODE GENERATION

The evolution of Code LLMs starts from basic code generation to highly specialized models designed
for complex programming tasks. Codeqwen-1.5b [28] marks a step forward with its extensive
pretraining on programming languages, refining its precision in code generation. Following this,
Deepseek-coder-v2-lite [38] introduces a lightweight, efficient model suited for rapid completion
and debugging in constrained environments. The development of Codegeex-4-9b [37] highlights a

2
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shift toward tackling real-world scenarios with its Fill-In-Middle strategy, excelling in mid-segment
code generation. Starcoder-2-7b [20] further advances multi-language support, increasing its utility
in popular languages like Python and JavaScript. Finally, Codegemma-7b [27] exemplifies the trend
toward enterprise-scale code generation, focusing on managing and refining large codebases, meeting
the growing needs of software maintenance and development. Together, these models showcase the
continuous innovation in Code LLMs, expanding their capabilities and real-world applications.

2.2 BENCHMARK FOR CODE GENERATION

Early works introduce benchmarks [35, 10] to evaluate code generation on form-closed and self-
constrained Python functions, such as HumanEval [4] and MBPP [3]. ClassEval [6] proposes a class-
level code generation dataset containing 100 human-crafted, self-contained Python classes. CoderEval
[34] extends the evaluation to non-standalone programs. DevEval [15] and CrossCodeEval [9] align
these evaluations with real-world code repositories, addressing more complex code generation
scenarios. Meanwhile, XCodeEval [12] and HumanEval-X [37] expand the scope to multilingual
programming beyond just Python. In these works, the correctness of generated code snippets,
measured by test cases (e.g., Pass@k [34]), and the semantic similarity between generated code and
the ground truth (e.g., CodeBLEU [25]) are common evaluation metrics. Test cases derive either
from human annotations or from general-purpose LLMs (GPT-4 [1]). The former (human annotation)
is time-consuming and costly, while the latter (GPT-4-generated test cases) tends to be unstable and
often fails to capture key correlations across a repository.

2.3 BENCHMARK FOR CODE COMPLETION

With the emergence of various code assistant tools, such as Copilot [4], Visual Studio IntelliCode [7],
and TONGYI Lingma [17], people start to incorporate code LLMs in real-world development. Code
completion is one of the most frequent and useful functionalities. CrossCodeEval [5], RepoBench
[19], and RepoEval [36] propose benchmarks to evaluate the repository-level code completion
across different dimensions, such as cross-file contextual understanding, retrieval capability, and
various levels of generation granularity. The most recent work, RepoMasterEval [30], also conducts
an industrial study to evaluate the benchmark in a practical setting. However, these work face
three common challenges: (1) human annotation of data samples and test cases is time-consuming
and costly, (2) coarse-grained tasks such as class and function completion resemble general code
generation more than the real-world scenarios developer faced, and (3) unsatisfying and standalone
generated test cases fail to reveal code LLMs’ ability to understand context at the repository level.
To address these gaps, we first analyze the feedback data from industrial code completion tool and
redefine the evaluation criteria to better capture a developer’s intent and desired completion behavior
throughout the coding process. Finally, we deliver the Codev-Agent and Codev-Bench.

3 METHODOLOGY

As mentioned earlier, there are three common challenges: (1) coarse-grained tasks resemble general
code generation more than real-world scenarios faced by developers, (2) human annotation of data
samples and test cases is time-consuming and costly, and (3) standalone generated test cases fail to
demonstrate LLMs’ ability to understand context at the repository level. To address challenge (1),
we request business data from a real-world deployed code completion product through our partner
company, which helps us understand the actual needs of developers when using code assistants.
For challenges (2) and (3), we introduce an LLM-based agent, Codev-Agent, which automatically
crawls up-to-date repositories, constructs execution environments, extracts dynamic call chains from
existing unit tests, and generates new test samples based on dynamic data flow to prevent data
leakage, ensuring fair and effective comparisons. Built on top of this agent, we provide a fine-grained,
real-world, repository-level, and developer-centric benchmark: Codev-Bench.

3.1 PRODUCT BUSINESS DATA ANALYSIS

The diverse scenarios in which users trigger code completions involve many variables that affect
code assistants’ performance. Collaborating with a partner company, we access business data from
a real-world code completion product. Analyzing this data helps us understand developers’ actual
needs and typical usage contexts, guiding the design of a test dataset that mirrors real development
environments for more realistic evaluation. Based on the product data, we identify key patterns in
how users need code completions:

3
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(B)

(C)

(A)

Figure 1: Business data analysis. (A) code block
categories distribution. (B) Completion lines
distribution. (C) Prompt length distribution.

Code Block Categories Pending Completion
(Figure 1.A): The majority of completions, about
68.51%, are triggered for general code statements,
reflecting a developer’s need for broad, context-
aware suggestions. Other significant categories
include single-line comments (9.06%) and more
specific structures like functions (5.71%) and con-
trol logic (6.53%). These distributions highlight
the diversity of developer needs and the impor-
tance of covering a wide range of code structures
in the test dataset.

Number of Completion Lines (Figure 1.B):
The data shows that in nearly half of the cases
(49.31%), the entire line is completed by the assis-
tant, with a significant portion (32.35%) complet-
ing part of a line. This suggests that developers
often rely on code assistants for both line comple-
tion and generating larger blocks of code, support-
ing the importance of testing across varying code
lengths and completion contexts.

Length of User Prompts (Figure 1.C): We ob-
serve that 41% of user prompts contain more than
10 tokens, indicating that developers often provide
detailed input to guide code completions. How-
ever, there are also cases where prompts contain
fewer tokens or even none (31.51%), suggesting
that code assistants need to be flexible in handling
both detailed and minimal input. This informs
our decision to test completions in a variety of
prompt conditions, from highly specific to more
ambiguous inputs.

By analyzing these key statistics, we ensure that
our test dataset aligns closely with real-world us-
age, covering a broad range of code completion
scenarios, varying completion lengths, and dif-

fering levels of user input. This data-driven approach enables us to construct a benchmark that
accurately reflects the diversity and complexity of developer workflows, ultimately resulting in a
more comprehensive and practical evaluation of code completion tools.

3.2 CODEV-AGENT

LLM-based Codev-Agent aims to automatically update our benchmark to avoid data leakage, ensuring
fair and effective comparisons with minimal cost. It can minimize the human effort but keep the
stability in repositories selection, execution environment setup, test samples extraction based on
dynamic data flow of existing unit test files. Figure 2 visualizes the pipeline.
Automated Repository Crawling As shown in Figure 2a, a LLM-based crawler discovers and
crawls up-to-date repositories, gathering the most relevant and current data for analysis and test case
generation. The crawler operates based on the following criteria: (1) only repositories created within
the last four months are considered to ensure data timeliness; (2) only repositories with a high star
count (more than 50 stars) are selected to guarantee community engagement and project popularity;
(3) after scanning the file directory, only repositories containing unit test files are retained, ensuring
the presence of relevant testing infrastructure; (4) by leveraging the Qwen to understand and analyze
the README file, the crawler filters for repositories that require only lightweight configuration
environments for execution, thus optimizing for efficiency and reducing complexity.
Execution Environment Setup After gathering the qualifying repositories and their associated unit
tests from the crawling phase, Codev-Agent sets up the corresponding execution environments through
an iterative process. As illustrated in Figure 2b, the first step involves detecting and extracting the
unit tests from each repository (Step 0). Next, the agent utilizes Qwen to analyze the README.md

4
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Figure 2: Overview of Codev-Agent. (a) A LLM-based crawler selects up-to-date, lightweight,
highly-starred, non-forked repositories with unit test files. (b) Codev-Agent utilize LLM (Qwen)
to read README files, generating installation commands and iteratively refining them based on
logs and error reports from running unit tests, until successful execution. (c) Codev-Agent combines
dynamic data flow analysis during unit test execution with static code parsing (AST), creating a fused
code chain that reflects both dynamic and static perspectives. (d) Test Sample Generation extracts test
samples from the fusion results based on real-world business scenarios, delivering our Codev-Bench.

file and generate the necessary setup commands for the current environment (Step 1). After the
initial setup, the agent executes the extracted unit tests to verify whether they run without errors
or warnings (Step 3). Based on the logs from the test executions and command outputs, Qwen
determines whether to repeat the process (Steps 1–4), regenerating setup commands if needed, or to
finalize the environment setup with executable unit tests.
Dynamic and Static Call Chain Analysis After completing the environment setup and extracting
runnable units, Codev-Agent first parses the code files and unit tests in each repository, transforming
them into static Abstract Syntax Trees (AST) that include various node types such as Class, Method,
If, While, For, Try, Catch, Expression, Statement, and Import, as shown at the bottom of Figure 2c.
Simultaneously, Codev-Agent traces the dynamic data flow during the execution of the unit tests,
capturing the program’s overall behavior and generating the corresponding call chains, depicted at the
top of Figure 2c. By fusing the dynamic call chains with the static AST, we can easily extract specific
scenarios from the unit test execution process. This module is also adaptable for repositories with
few or no existing unit tests, making it an efficient tool for enhancing our benchmark. We can simply
design minimal unit tests, and Codev-Agent will automatically and efficiently extract the desired
scenarios, saving time spent combing code details through the entire repository.
Test Sample Generation As shown in Figure 2d, once Codev-Agent obtain the dynamic
call chains from the unit tests and the static AST structures of the repositories, we can ex-
tract the corresponding test samples for each real-world scenario summarized in Section 3.1.

Figure 3: Final test sample in JSON format.

For example, if we want to
simulate the scenario where
a user is writing a function
and has just completed the
function header but has yet
to write the function body,
we can start by analyzing a
specific unit test. We ex-
tract each function that is
called or entered during the
execution of this unit test.
Then, by removing the func-
tion body of each extracted
function and rerunning the

5
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unit test, if the test becomes unable to execute correctly, we can generate a corresponding prompt
based on the current context of the function and save this as a test sample. Following this approach,
we systematically extract test samples that match the distribution of real-world business scenarios,
using them to simulate realistic code completion use cases based on the business scenarios we
summarized. In addtion, Codev-Agent also allows users to design new test units for every repository
for augmenting the benchmark with minimal human effort.
Evaluation Execution After completing the benchmark, Codev-Agent prompts each under-evaluate
LLM to generate recommended code snippets based on the standard prompt such as Figure 4,

Figure 4: A sample of prompting under-evaluate LLM to complete.
The complete prompt is shown in Appendix C

and then executes the corre-
sponding unit tests in their
respective environments. If
the unit tests pass without
any errors or warnings us-
ing the generated code, it
is considered a positive re-
sult; otherwise, it is con-
sidered negative. Codev-
Agent follows this process
to test each scenario one by
by to conclude a final result.

3.3 CODEV-BENCH

With Codev-Agent’s support, we deliver a fine-grained, real-world, repository-level, and developer-
centric evaluation framework, Codev-Bench. It assesses whether a code completion tool can capture
a developer’s immediate intent and suggest appropriate code snippets across diverse contexts.

3.3.1 FEATURES OF CODEV-BENCH

Table 1: Comparison between existing benchmarks and Codev-Bench.
Benchmark Extensibility Auto Annotation Real Repo Industry Granularity Agent
HumanEval [4] % % % % Function %

MBPP [3] % % % % Function %

RepoBench [19] % " " % Line %

RepoEval [36] % " " % Line %

HumanEval+ [18] % % % % Function %

ClassEval [6] % % % % Class %

CoderEval [34] % " " % Function %

EvoCodeBench [14] % % " % Function %

CrossCodeEval [5] % % " % Line %

RepoMasterEval[30] % % " Line %

Codev-Bench " " " " Every "

Extensibility: Codev-Bench stands out as the most extensible benchmark compared to others.
Other baselines rely on manually or LLM-generated datasets where the data samples need to be
extracted one by one, and corresponding unit tests must be generated for validation. This process is
time-consuming and labor-intensive. In contrast, Codev-Bench uses a dynamic-static analysis module
of Codev-Agent as shown in Figure 2.c, which starts from existing unit tests, extracting samples
directly from the data flow via simple string-matching operations. This method minimizes effort in
validating feasibility. Even for repositories with few or no unit tests, we only need to write the test
cases, and the system can generate numerous test data samples from the data flow, making it scalable.
Auto Annotation: Codev-Bench does not rely on LLMs or human intervention for annotation. It
extracts annotations directly from the dynamic data flow of the existing unit tests by parsing code.
This process ensures that all necessary annotations are derived without any manual effort, unlike
other baselines that require manual or LLM-assisted annotations.
Developer-Centric Benchmark with Industrial Analysis: Most prior benchmarks are constructed
based on the researchers’ understanding of what is needed, without any developer-centric focus.
None of the baselines analyze real-world code completion products or utilize real user feedback to
identify actual scenarios that developers face. Codev-Bench is the first benchmark to analyze top-tier,
industry-level, developer-centric data from an already deployed code assistant tool. As discussed
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in Section 3.1, this ensures that Codev-Bench aligns closely with real-world usage. Although
RepoMasterEval does touch on some industry analysis, it only explores the relationship between
tool’s suggestion acceptance and benchmark performance without diving deep into user needs.
Granularity: Prior datasets have a coarse, one-size-fits-all granularity, focusing on completing a
function body based on its signature, which is far from industrial code completion. Codev-Bench,
on the other hand, includes a wide variety of granular, real-world code completion tasks. These
range from completing logic blocks like if, for, and while, to completing individual statements, filling
in comment sections, completing argument lists for function calls, and more. The diversity and
flexibility of these tasks make Codev-Bench much more reflective of actual code completion needs.
Agent Integration: Previous benchmarks are based on manually curated datasets, which limits
them to small-scale repositories and only provides the final dataset. Codev-Bench, however, offers a
fully integrated framework with Codev-Agent, which automates the entire process. This includes
crawling repositories, setting up execution environments, analyzing call chains, extracting scenario
samples, and evaluating LLMs—all in one unified architecture. It also supports user customization
and optimization, allowing them to tailor the benchmarks to specific needs and scenarios, making it
far more adaptable and comprehensive than any previous efforts.

In summary, Codev-Bench surpasses existing benchmarks in every key area, offering high extensibil-
ity, real-world relevance, comprehensive automation, and fine-grained scenario-based evaluations.

3.3.2 BENCHMARK STATISTICS, AND FUTURE EXTENSIONS

Table 2: Statistics for Different Projects

Metric Scene1 Scene2 Scene3 Scene4

Ave METHOD 2.6 5.2 4.0 2.6
Ave IF 7.7 15.4 13.9 7.7
Ave FOR 6.3 12.6 12.6 6.3
Ave TRY 4.6 9.2 4.6 4.6
Ave STATEMENT 10.0 19.6 17.9 10.0

Statistic Current statistics of Codev-
Bench are in Table 2. For this submis-
sion, we select 10 repositories due to
storage limitations. These repositories
contain a total of 862 code files and
191 existing test cases. After extrac-
tion, our test samples cover 55 code
files, all 191 test files, and 296 code
blocks. In the future, we plan to pro-
cess additional repositories and make

them publicly available on both Hugging Face and GitHub.
Future Extensions Codev-Bench currently deliver test samples on Python languages. As our
Codev-Agent is adaptable for every language, Codev-Bench can be extended to more languages.
In addition, our Codev-Agent allow users to only design new unit tests for every repository for
augmenting the benchmark with minimal human effort, further enhancing the extensibility.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Scenario 1 - Full block completion: In this scenario, the model is tasked with completing a full
code block (e.g., function, if, for, try, or statement) based on a complete, unbroken surrounding
context. To pass, the model must accurately complete the block and stop at the correct point, ensuring
it passes the unit test successfully. Scenario 2 - Inner block completion: In this scenario, the
model is required to complete a portion of code block based on a complete, unbroken surrounding
context. In addition, 20% of the samples in this scenario have an empty ground truth, evaluating
the ability to recognize when the current block is already complete and no further completion is
needed. Scenario 3 - Incomplete suffix completion: Compared to Scenario 1, this scenario focuses
on cases where the suffix content following the current cursor is incomplete. It covers two sub-cases:
one where all the suffix content after the cursor in entire file is empty, and another where only
the content within the current function body after the cursor is missing. Scenario 4 - RAG-based
completion: In this scenario, the model builds upon the full block completion task by incorporating a
Retrieval-Augmented Generation (RAG) module. The repository is partitioned into chunks, with only
functions being considered as candidates. The function containing the current code is used as the
query, and the query’s embedding is compared with the embeddings of the candidate functions. The
top 3 most similar candidates are then inserted back into the prompt as hints to guide code generation.
4.2 BASE MODELS

General LLMs. General LLMs are evaluated in the code understanding. They exhibit diverse
strengths in tasks involving complex reasoning and context handling. Claude-3.5-Sonnet [2]:

7
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Anthropic designs it for tasks requiring nuanced reasoning, multilingual support, and high-level
coding proficiency. It excels in complex multistep workflows, achieving top benchmarks in reasoning
(90.4% MMLU) and coding (92% HumanEval). Deepseek-v2 [16]: A 236B parameter Mixture-of-
Experts model, with only 21B activated per token, reducing training costs by 42.5% and boosting
generation throughput by 5.76x. Mistral-123b [11]: A 123B parameter model with a 128k context
window, supporting multi-languages and 80+ coding languages. It excel in code and reasoning tasks.
Yi-1.5-34b [33]: An enhanced version of Yi, pre-trained on 500B tokens and fine-tuned on 3M
diverse samples, improving in coding, math, reasoning, and instruction-following. Qwen-2-54b-
moe & Qwen-2-72b [32]: They incorporate mixture-of-experts (MoE), allowing dynamic routing
to improve performance while maintaining efficiency. Llama-3.1-70b & Llama-3.1-405b [29]:
They are iterated with expanding parameter count, resulting in enhanced reasoning and multitask
capabilities in long-context scenarios. GPT4 & 4o [1]: The most powerful LLM from OpenAI.

Code LLMs. We also evaluate specialized code LLMs designed to handle programming tasks. They
implement strategies like Fill-In-Middle to enhance coding accuracy and generation. Codeqwen-1.5b
[28]: Qwen series, tuned specifically for code completion tasks. It leverages extensive pretraining on
programming languages to excel in code generation. Deepseek-coder-v2-lite [38]: A lightweight
version of Deepseek’s code models, optimized for rapid completion and debugging in constrained
environments. Codegeex-4-9b [37]: With its focus on Fill-In-Middle tasks, Codegeex is tailored for
real-world code completion scenarios, excelling in solving mid-segment coding problems. Starcoder-
2-7b [20]: This model builds upon the original Starcoder, aiming to improve multi-language support
and efficiency in common code languages like Python and JavaScript. Codegemma-7b [27]: A
relatively new model, Codegemma focuses on generating and refining large codebases, making it
ideal for enterprise-level code maintenance and development.

4.3 EVALUATION METRICS

Test Case Pass Rate: We generate code snippets by prompting LLMs and inserting them back
into the original code, then rerun the corresponding unit tests. If the test passes without errors, the
generated completion is considered successful. We use Pass@1 as the metric, which represents
the probability that the LLM generates a code snippet that passes on the first attempt. This metric
provides a clear evaluation of how effectively the LLM generates valid, executable code completions.
Edit Similarity (ES) Levenshtein distance quantifies the number of single-character ed-
its—insertions, substitutions, or deletions—required to transform one sequence of tokens into another
[26]. In practice, developers accept approximate code completions and make manual edits. Therefore,
ES is a crucial metric for evaluating how closely a generated completion matches the intended result.
The Levenshtein distance between two strings is calculated using dynamic programming.

4.4 EXPERIMENTAL RESULS

Full Block Completion in Full Context We evaluate the performance of general and code-specific
LLMs on completing full code blocks based on complete context (Scenario 1) with results in Table 3
and Table 4. General LLMs struggle with function and try blocks, with a Pass@1 of 0.00% for
function completion across all general LLMs except GPT-4 and GPT-4o. However, some models
perform well on simpler constructs like statements, where Llama-3.1-405b achieves 78.00%. Those
code LLMs in fill-in-the-middle mode show much stronger performance. Codegemma leads with a
53.85% on average, significantly outperforming general LLMs across all block types.

Insight 1: Simpler blocks like statements are easier to complete, while complex blocks (e.g., functions,
condition logic blocks, loop logic blocks) remain challenging. Code LLMs outperform general models,
but there is still room for improvement, especially in generating accurate and complete function
bodies and logical blocks.

We found that many models struggle to stop generating content at the appropriate position (shown in
Appendix D.1). Consequently, even though the models might generate high-quality code, their overall
accuracy remains very low—particularly with models like Starcoder-2-7b and Yi-1.5-34b. This is
further corroborated by the average lines of generated codes shown in Figure 5. This issue becomes
especially pronounced during real user interactions with code completion models. Users not only
face longer waiting times for the model’s predictions but also need to remove a considerable amount
of extraneous code generated by the model, leading to a significant decline in user experience.

Sensitivity to Internal Block Completion We evaluate general and code LLMs to complete
internal parts of code blocks based on a complete context (Scenario 2) with results in Table 3 and
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Table 3: Comparing Pass@1 of different models across multiple scenarios.

Model Scenario 1 Scenario 2 Scenario 3 Scenario 4

General LLMs (Natural Language Mode)

GPT-4 27.56 15.47 6.94 25.32
GPT-4o 45.19 12.08 5.32 41.99
GPT-4o-mini 19.23 3.02 2.58 20.51
Claude-3.5-Sonnet 17.95 48.87 7.74 16.35
Deepseek-v2 3.21 24.72 1.29 8.97
Mistral-123b 8.65 4.15 0.48 11.86
Yi-1.5-34b 3.85 15.47 0.00 2.56
Qwen-2-54b-moe 2.24 23.58 0.16 1.92
Qwen-2-72b 27.88 8.30 2.10 26.60
Llama-3.1-70b 23.72 5.47 1.45 25.00
Llama-3.1-405b 38.78 21.89 6.77 40.38

Code LLMs (Fill-In-Middle Mode)

Codeqwen-1.5 39.10 54.72 5.44 40.71
Deepseek-coder-v2-lite 47.12 78.62 3.75 45.19
Codegeex-4-9b 16.67 32.70 0.50 17.63
Starcoder-2-7b 1.28 0.00 0.25 0.96
Codegemma-7b 53.85 77.36 4.84 55.77

* Due to space limitations, we have omitted the Pass@1 scores for different types of code blocks in
each scenario and provided detailed results in the Appendix A.

Table 5. Among general LLMs, performance is inconsistent, with lower scores for try and statement
completions. Claude-3.5 performs best with an average Pass@1 of 48.87%, while models like GPT-
4o-mini and Mistral underperform, particularly on try and statement blocks. In contrast, code LLMs
excel in this scenario, with Codegemma achieving the highest average Pass@1 score of 77.36%, and
Deepspeek-coder-v2-lite performing particularly well, scoring 100.00% on function completions.

Insight 2: Code LLMs significantly outperform general LLMs in internal block completion tasks,
particularly on complex code structures. While general LLMs struggle with try and statement blocks,
code LLMs show greater sensitivity to internal block context across all block types.

Many models struggle to effectively recognize whether the current scenario requires code completion
within a block (shown in Appendix D.2) or if the existing code snippet is already complete and
does not need any additions (shown in Appendix D.3). This subset is designed to assess a model’s
ability to effectively complete code within a block and to recognize when no completion is necessary.
Models that perform poorly in this scenario may cause significant disruption for users in real-world
applications of code completion.

Completion with Incomplete Suffix We evaluate completing code blocks when the suffix content
following the cursor is incomplete or missing (Scenario 3) in Table 3 and Table 6. General LLMs
perform poorly in this task, especially for more complex block types. For example, most general
models achieved a 0.00% Pass@1 on function completions, while the highest performing general
model, Llama-3.1-405b, only managed 6.77% on average. On the other hand, code LLMs show
slightly better performance. Codegemma achieves the highest average Pass@1 of 6.86% across all
block types, with a stronger performance on statements and try blocks, scoring 11.94% and 9.77%,
respectively. However, the overall performance of both general and code LLMs remains limited in
this scenario, indicating the difficulty of completing code accurately when future context is missing.

Insight 3: Both general and code LLMs fail in incomplete suffix completions, particularly for complex
structures such as functions and try blocks. Code LLMs show a slight advantage, but overall
performance highlights the challenge of this completion scenario with missing or incomplete suffixes.

This subset aligns more closely with real user interactions with code completion tools. Our statistics
indicate that in over 20% of cases, the cursor position within the function the user is currently writing
has no content following it, and sometimes even the entire file has nothing after the cursor position.
Therefore, the model’s performance in this scenario is crucial for users utilizing code completion
tools. We found that both general LLMs and code LLMs do not perform well in this scenario. This is
primarily because the contextual information provided by the surrounding code may be insufficient
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for completing the current content. This also highlights that the code completion task continues to
present significant challenges.

RAG-Based Completion We evaluate the RAG-based completion (Scenario 4) in Table 3 and
Table 7. Among general LLMs, the performance is mixed, with Llama-3.1-405b achieving the
highest average Pass@1 score of 40.38%, and notable performance on functions (33.33%) and
try blocks (19.57%). However, most other general LLMs struggle with this task, especially on
function completions, achieving a Pass@1 score of 0.00%. Code LLMs, as expected, demonstrate
better overall performance. Codegemma leads the group with an average Pass@1 score of 55.77%,
showing strong results on statements (70.00%) and try blocks (44.44%). Deepspeek-coder-v2-lite
also performs well, with an average score of 52.17%, excelling in the retrieval of for and try blocks.

Insight 4: General LLMs still struggle with RAG-based tasks, particularly for more complex block
types, where code LLMs show a clear advantage. Codegemma and Deepspeek can leverage RAG
more effectively, achieving significantly better performance across most block types.

In real project-level code development, referencing code snippets from other files is quite common.
The improvements observed in this scenario test set compared to the results from Scenario 1 reflect
the model’s ability to recognize and utilize similar code snippets from other files for code completion.

Finally, we examine the correlation between the two metrics: test pass rate (Pass@1) and edit
similarity (ES). By calculating the results of each model across four scenarios for these two metrics,
we found that, apart from Scenario 2, which has a correlation of 0.991, the correlation in the other
three scenarios is below 0.85, specifically 0.793 from Scenario 1, 0.529 from Scenario 3, and 0.822
from Scenario 4. The detailed results are presented in the Appendix B. This indicates that, in most
cases, using edit similarity as a statistical measure does not objectively reflect the quality of the
model’s generation in the code completion task. We also show some
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Figure 5: Comparing average lines of generated code by different models in four scenarios.

5 SUMMARY AND FUTURE WORK

In this work, we redefined evaluation criteria for code completion tools through a comprehensive busi-
ness analysis and introduced Codev-Agent, an automated system for repository crawling, environment
setup, call chain analysis, and LLM evaluation. We also proposed Codev-Bench, a developer-centric,
real-world framework that assesses whether code completion tools capture developers’ intent across
diverse contexts. Our evaluation of several state-of-the-art LLMs offered insights for future improve-
ments in code completion models. Looking forward, we aim to extend Codev-Agent to support
multiple programming languages, generating a multilingual dataset, while also refining Codev-Bench
to handle more complex developer scenarios.
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Codev-Bench: How Do LLMs Understand Developer-Centric
Code Completion?

Appendices

A MORE EVALUATION RESULTS OF CODEV-BENCH

In contrast to Table 3, we present a more detailed evaluation of the results in Table 4, Table 5, Table 6
and Table 7. For each scenario, we assess the test pass rates corresponding to various types of code
blocks, including functions, logical condition blocks, loop blocks, exception handling blocks, and
ordinary statements. Furthermore, we compare the performance of general LLMs with code LLMs.
The general LLMs utilize a prompt format based on natural language, while the code LLMs employ
a fill-in-middle prompt format.

Table 4: Comparing Pass@1 of different models on full block completion subset.

Model Function If For Try Statement Average

General LLMs (Natural Language Mode)

GPT-4 15.38 22.08 12.70 15.22 50.00 27.56
GPT-4o 23.08 42.86 33.33 26.09 69.00 45.19
GPT-4o-mini 0.00 16.88 14.29 2.17 37.00 19.23
Claude-3.5-Sonnet 0.00 7.79 6.35 0.00 46.00 17.95
Deepseek-v2 0.00 1.30 0.00 0.00 9.00 3.21
Mistral-123b 0.00 3.90 0.00 0.00 24.00 8.65
Yi-1.5-34b 0.00 3.90 0.00 0.00 9.00 3.85
Qwen-2-54b-moe 0.00 1.30 0.00 0.00 6.00 2.24
Qwen-2-72b 0.00 19.48 4.76 0.00 69.00 27.88
Llama-3.1-70b 0.00 9.09 1.59 0.00 66.00 23.72
Llama-3.1-405b 0.00 23.38 28.57 15.22 78.00 38.78

Code LLMs (Fill-In-Middle Mode)

Codeqwen-1.5 26.92 36.36 20.63 47.83 52.00 39.10
Deepseek-coder-v2-lite 53.85 32.47 33.33 56.52 61.00 47.12
Codegeex-4-9b 11.54 11.69 19.05 17.39 20.0 16.67
Starcoder-2-7b 0.00 2.60 0.00 2.17 1.00 1.28
Codegemma-7b 46.15 41.56 33.33 71.74 70.00 53.85

B THE CORRELATION BETWEEN PASS@1 AND ES

In this paper, we analyze the prediction results of various models across four scenarios, evaluating
them based on test pass rates and edit distance similarity. Our goal in this section is to assess whether
there is consistency between the predictions of the test pass rates and edit distance similarity. An
introduction to the test pass rates and edit distance similarity is provided in Section 4.3.

In the four scenarios, we calculate the average Pass@1 and average Edit Similarity (ES) values
predicted by each general LLMs and code LLMs. To visualize these results, we plot each model’s
outcomes in Figure 6 using a scatter plot, with the X-axis representing the average Pass@1 and the
Y-axis representing the average ES value. Additionally, we calculate the Pearson correlation between
the average Pass@1 and average Edit Similarity (ES) values predicted by each model in the four
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Table 5: Comparing Pass@1 of different models on inner block completion subset.

Model Function If For Try Statement Average

General LLMs (Natural Language Mode)

GPT-4 10.0 16.55 19.05 10.87 14.53 15.47
GPT-4o 2.5 13.67 19.05 0.0 11.17 12.08
GPT-4o-mini 2.5 3.6 2.38 4.35 2.79 3.02
Claude-3.5-Sonnet 37.5 46.76 46.83 50.0 54.19 48.87
Deepseek-v2 20.0 30.94 19.84 32.61 22.35 24.72
Mistral-123b 7.5 4.32 7.14 4.35 1.12 4.15
Yi-1.5-34b 12.5 14.39 13.49 23.91 16.20 15.47
Qwen-2-54b-moe 35.0 23.02 20.63 41.3 18.99 23.58
Qwen-2-72b 15.0 8.63 7.14 6.52 7.82 8.30
Llama-3.1-70b 0.0 5.76 6.35 2.17 6.70 5.47
Llama-3.1-405b 15.0 23.74 34.13 8.70 16.76 21.89

Code LLMs (Fill-In-Middle Mode)

Codeqwen-1.5 75.0 38.85 65.87 47.83 56.42 54.72
Deepseek-coder-v2-lite 66.67 68.48 87.21 100.0 79.82 78.62
Codegeex-4-9b 22.22 36.96 26.74 100.0 27.52 32.70
Starcoder-2-7b 0.0 0.0 0.0 0.0 0.0 0.0
Codegemma-7b 88.89 71.74 79.07 76.92 78.90 77.36

Table 6: Comparing Pass@1 of different models on incomplete suffix completion dataset.

Model Function If For Try Statement Average

General LLMs (Natural Language Mode)

GPT-4 0.00 0.00 0.79 13.04 15.31 6.94
GPT-4o 0.00 1.95 1.59 8.70 10.20 5.32
GPT-4o-mini 0.00 1.30 0.79 5.43 4.08 2.58
Claude-3.5-Sonnet 1.92 3.25 7.14 6.52 13.78 7.74
Deepseek-v2 0.00 0.65 0.00 2.17 2.55 1.29
Mistral-123b 0.00 0.00 0.00 0.00 1.53 0.48
Yi-1.5-34b 0.00 0.00 0.00 0.00 0.00 0.00
Qwen-2-54b-moe 0.00 0.00 0.00 0.00 0.51 0.16
Qwen-2-72b 0.00 0.00 2.38 2.17 4.08 2.10
Llama-3.1-70b 0.00 0.00 0.00 1.09 4.08 1.45
Llama-3.1-405b 0.00 1.30 0.79 6.52 16.84 6.77

Code LLMs (Fill-In-Middle Mode)

Codeqwen-1.5 0.00 1.57 5.10 7.76 9.02 5.44
Deepseek-coder-v2-lite 0.00 0.94 3.49 10.42 5.08 3.75
Codegeex-4-9b 0.00 0.00 0.00 0.00 1.69 0.50
Starcoder-2-7b 0.00 0.00 0.00 0.00 0.85 0.25
Codegemma-7b 0.00 3.64 3.05 10.00 6.38 4.84

scenarios as follows,

r =

∑n
i=1(Pi − P̄ )(Ei − Ē)√∑n

i=1(Pi − P̄ )2
√∑n

i=1(Ei − Ē)2
, (1)

where, Pi refers to the Pass@1 value of i-th model and Ei refers to the ES value of i-th model, P̄
and Ē refer to the average value of each model’s Pass@1 and ES value, n refers to the number of
models to be tested.
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Table 7: Comparing Pass@1 of different models on RAG-based completion subset.

Model Function If For Try Statement Average

General LLMs (Natural Language Mode)

GPT-4 11.54 18.18 12.70 10.87 49.00 25.32
GPT-4o 15.38 35.06 34.92 19.57 69.00 41.99
GPT-4o-mini 0.00 11.69 19.05 0.00 43.00 20.51
Claude-3.5-Sonnet 0.00 3.90 0.00 2.17 47.00 16.35
Deepseek-v2 0.00 1.30 1.59 0.00 26.00 8.97
Mistral-123b 3.85 3.90 0.00 0.00 33.00 11.86
Yi-1.5-34b 0.00 1.30 0.00 0.00 7.00 2.56
Qwen-2-54b-moe 0.00 0.00 0.00 0.00 6.00 1.92
Qwen-2-72b 0.00 16.88 4.76 2.17 66.00 26.60
Llama-3.1-70b 0.00 7.79 1.59 0.00 71.00 25.00
Llama-3.1-405b 3.85 22.08 33.33 19.57 78.00 40.38

Code LLMs (Fill-In-Middle Mode)

Codeqwen-1.5 42.31 31.17 30.16 41.30 54.00 40.71
Deepseek-coder-v2-lite 0.00 0.00 0.00 0.00 0.00 0.00
Codegeex-4-9b 7.69 10.39 17.46 23.91 23.0 17.63
Starcoder-2-7b 0.00 1.30 0.00 0.00 2.00 0.96
Codegemma-7b 42.31 45.45 44.44 65.22 70.00 55.77

Finally, the correlations in all the four scenarios are 0.793, 0.991, 0.529 and 0.822. This indicates
that, in most cases, using edit similarity as a statistical measure does not objectively reflect the quality
of the model’s generation in the code completion task.
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Figure 6: Comparing the correlation of average Pass@1 and average ES in different models.
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C COMPLETE PROMPT OF GENERAL LLMS TO ACCOMPLISH CODE
COMPLETION TASKS

We designed prompts to enable general LLMs to comprehend both the preceding and following
context of code, allowing them to predict the exact code snippets that fit between these contexts. This
serves as an agent for the code completion task. The specific prompts are as follows:

If you were a code completion agent, I would provide you with a snippet of code, and you would
need to return the completed code segment. The content after <filename> indicates the name
of the file to complete, the content after <fim_prefix> indicates the content from the
cursor position to the beginning of the file (the context), and the content after
<fim_suffix> indicates the content from the cursor position to the end of the file (the
continuation). You need to predict the content that should be completed between the
context and the continuation. The predicted completion should be output after
<fim_middle>.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

# Example
Original Code:
```
<filename>solutions/solution_1.py<fim_prefix># Here is the correct implementation of the code

exercise↪→
def maxPresum ( a , b ) :

"""
Maximum Prefix Sum possible by merging two given arrays
"""
<fim_suffix><fim_middle>

```
Completion Needed:
```
X = max ( a [ 0 ] , 0 )

for i in range ( 1 , len ( a ) ) :
a [ i ] += a [ i - 1 ]
X = max ( X , a [ i ] )

Y = max ( b [ 0 ] , 0 )
for i in range ( 1 , len ( b ) ) :

b [ i ] += b [ i - 1 ]
Y = max ( Y , b [ i ] )

return X + Y
```
# Task
Original Code:
```
question here
```
# Important Points
## Point 1
- If the current code block that needs completion is a statement, just complete that statement

without completing any subsequent statements.↪→
- If the current code block that needs completion is a class/function, complete that

class/function in its entirety.↪→
- If the current code block that needs completion is a logical block (e.g. if, for, while, try,

etc.), complete the entire current logical block.↪→
- If the current code block is already complete, return nothing (an empty response).
## Point 2
Only return the recommended code snippet for completion; do not return the original code. The

returned code should be enclosed in ``````.↪→

"""
Completion results:
```
code for completion
```
"""

D MAJOR TYPES OF COMPLETION ERRORS

In this section, we introduce several common types of code completion errors, including the inability
to stop at the correct position, failure to recognize that completion is within one code block, and the
inability to identify when no content should be completed.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D.1 STRUGGLING TO STOP GENERATING CONTENT AT THE APPROPRIATE POSITION

In this example, the model predicts the target statement “correction_term_mean =
np.mean(np.real(kernel_values, axis=-1))”, however, it continues to predict some other code lines.
This makes the unit test fail to pass. That is to say, this model encounters the error of struggling to
stop generating content at the appropriate position.

Figure 7: Completion error of struggling to stop generating content at the appropriate position.

D.2 STRUGGLING TO RECOGNIZE THAT COMPLETION IS WITHIN ONE CODE BLOCK

In this example, the model only needs to predict “ += ” symbol to fill the code within one code block
“self._id_count += len(instances)”. However, this model predict “ = len(self._prev_instances)” and
then write another “else” block. This error indicates that the model fail to recognize that this type of
completion is within one code block.

D.3 STRUGGLING TO IDENTIFY WHEN NO CONTENT SHOULD BE COMPLETED

In this example, “mask = norms > min_distance_between_sector_points_in_px” is already completed,
thus the model only need to predict nothing. However, this model still predicts two code lines.
Although there are no syntax errors in this prediction, but this might cause significant disruption to
users and makes the unit test fail to pass. This type of error indicates the model struggling to identify
when no content should be completed.
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Figure 8: Completion error of struggling to recognize that completion is within one code block.

Figure 9: Completion error of struggling to identify when no content should be completed.
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