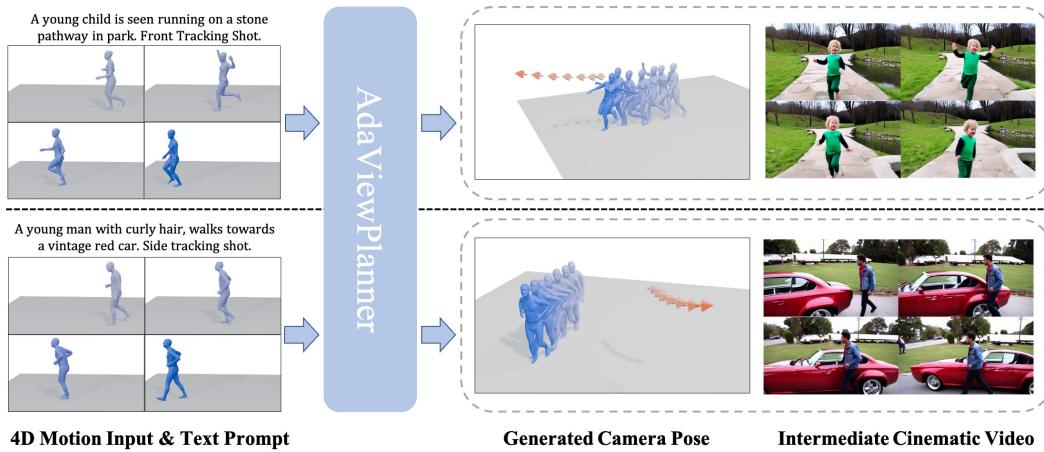


000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 ADAVIEWPLANNER: ADAPTING VIDEO DIFFUSION MODELS FOR VIEWPOINT PLANNING IN 4D SCENES

005 **Anonymous authors**

006 Paper under double-blind review



024 Figure 1: Showcasing AdaViewPlanner: Given 4D contents and text prompts that depicts scene
025 context and desired camera movements, we adapt pre-trained video diffusion models to generate
026 coordinate-aligned camera pose sequence as well as an corresponding video visualization.

027 028 ABSTRACT

029
030 Recent Text-to-Video (T2V) models have demonstrated powerful capability in vi-
031 sual simulation of real-world geometry and physical laws, indicating its potential
032 as implicit world models. Inspired by this, we explore the feasibility of leverag-
033 ing the video generation prior for viewpoint planning from given 4D scenes, since
034 videos internally accompany dynamic scenes with natural viewpoints. To this end,
035 we propose a two-stage paradigm to adapt pre-trained T2V models for viewpoint
036 prediction, in a compatible manner. First, we inject the 4D scene representation
037 into the pre-trained T2V model via an adaptive learning branch, where the 4D
038 scene is viewpoint-agnostic and the conditional generated video embeds the view-
039 points visually. Then, we formulate viewpoint extraction as a hybrid-condition
040 guided camera extrinsic denoising process. Specifically, a camera extrinsic diffu-
041 sion branch is further introduced onto the pre-trained T2V model, by taking the
042 generated video and 4D scene as input. Experimental results show the superiority
043 of our proposed method over existing competitors, and ablation studies validate
044 the effectiveness of our key technical designs. To some extent, this work proves
045 the potential of video generation models toward 4D interaction in real world.

046 1 INTRODUCTION

047
048 Digital animation has crucial applications in fields like gaming, education, and film. Dynamic 3D
049 content, or 4D scenes, can be created in various ways—such as virtual modeling, scanning or recon-
050 struction from real-world scene. Ultimately, these scenes require carefully designed virtual camera
051 viewpoints to be rendered as engaging videos. However, manually arranging the camera shots and
052 movements for specific targets is both tedious and requires specialized expertise. Therefore, there is
053 a high demand for automatic cinematography generation techniques that can operate based on given
4D content and instructions.

Existing research (Wang et al., 2024c; Courant et al., 2024) typically relies on specialized models trained on limited datasets. While these methods have achieved impressive results in specific scenarios, they often struggle to generalize to open-world scenes and lack support for preference controls, such as text instructions. Inspired by the powerful capabilities of recent text-to-video (T2V) models, we explore the feasibility of repurposing such models as virtual cinematographers to design professional camera trajectories for 4D scenes. Our key insight is that pre-trained T2V models can generate vivid dynamic content with professional camera movements based on text prompts, which indicates their internal knowledge of how to match camera movements to dynamic scenes. Importantly, their vast training data provides strong generalization to various scenes, and their text-following ability can be inherited naturally.

Building on this insight, we propose to leverage the cinematographic expertise embedded within pre-trained video generation models. To inherit this generative prior smoothly, we designed a two-stage paradigm, where each stage integrates the original video generation path with a conditional control or parameter prediction. Firstly, we use an adaptive learning branch to inject a 4D scene representation into a pre-trained text-to-video (T2V) model. While the 4D scene itself is viewpoint-agnostic, the video generated from it visually embeds the target camera viewpoints. However, the ambiguous projecting relationship between the rendered video and the 4D content can lead to training collapse. To prevent this, we introduce a guided learning scheme that randomly provides ground-truth camera poses to the model as hints. This helps the model understand the 4D input and synthesize video content with plausible camera movements. Second, we formulate viewpoint extraction as a hybrid-condition guided camera parameter denoising process. We introduce a dedicated camera diffusion branch to the motion-conditioned T2V model, which takes both the generated video and the 4D scene as input. Through this two-stage method, we can obtain a sequence of camera poses that are aligned with the input 4D scene’s coordinate system, along with a corresponding video that visualizes the 4D scene from the predicted camera viewpoints.

Experimental results illustrate that our proposed method outperforms existing competitors by a large margin, thanks to the powerful generative capability of pre-trained foundation models. In addition, extensive ablation studies are conducted to validate the effectiveness of our key technical designs, which explains how the advantages of our method were achieved. Our contributions can be summarized as follows.

- We are the first to explore adapting pre-trained T2V models for viewpoint planning in 4D scenes, which offers advantages in open-world generalization and prompt-following.
- We propose a novel two-stage method that leverages the video generation prior to arrange camera poses based on conditional 4D content in a compatible manner.
- Our work offers a promising proof of concept for the potential of using video generation models as “world models” for 4D interaction.

2 RELATED WORKS

Camera Planning. Automated camera planning, or computational cinematography, seeks to generate optimal camera trajectories for virtual scenes to enhance storytelling and user experience (Zhang et al., 2025; Jiang et al., 2024; Rao et al., 2023). Early data-driven methods (Jiang et al., 2020; 2021; Hou et al., 2024) relied on reference-based frameworks, while recent approaches leverage deep generative models to synthesize novel trajectories from diverse inputs. A key line of work focuses on character-driven camera motion, e.g., imitation learning for drone filming (Huang et al., 2019; Wang et al., 2023b) and GAN-based planning in interactive environments (Yu et al., 2023). Multi-modal extensions include DanceCamera3D (Wang et al., 2024c) and Dancecamanimator (Wang et al., 2024d), which conditions camera motion on dance and music. Text-conditioned generation has also emerged, with models such as Director (Courant et al., 2024) and Director3D (Li et al., 2024) enabling intuitive control and 3D scene synthesis. Related generative techniques further extend to domains like robot navigation (Bar et al., 2025), demonstrating the broad applicability.

Human Motion Control for VDMs. Recent work in controllable human video generation has progressed from 2D pose guidance (Hu, 2024; Xu et al., 2024; Peng et al., 2024) to leveraging 3D motion conditions (Zhu et al., 2024; Ding et al., 2025; Shao et al., 2024), which resolve depth

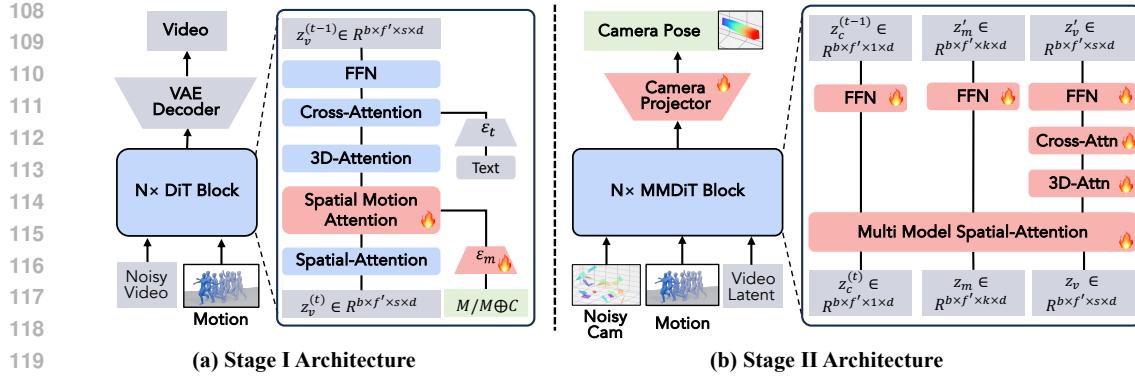


Figure 2: (a) Stage I model for motion-conditioned cinematic video generation: a pose encoder processes human motion data (M) from 4D scenes and integrates it with video tokens via spatial motion attention to produce videos with cinematic camera movements. Camera parameters used for guidance are denoted as C . (b) Stage II model: three branches for video, camera, and human motion are combined in an MMDiT framework to extract camera pose.

ambiguity and self-occlusion by providing explicit geometric information. A key challenge is integrating such 3D structure into generative models like diffusion. Some methods incorporate raw 3D motion directly, e.g., MTVCrafter (Ding et al., 2025) and ISA-4D (Shao et al., 2025), while others adapt pre-trained models through sparse keypose control (Guo et al., 2025). Beyond motion alone, Uni3C (Cao et al., 2025) and RealisMotion (Liang et al., 2025) embed characters into coherent 3D scene or world coordinate spaces, enabling unified control of motion and camera. These works underscore the growing importance of explicit 3D representations for human video synthesis. However, prior methods either rely on fixed-viewpoint 2D human pose sequences as input, or require 4D human poses together with camera parameters. Our approach, by comparison, conditions only on normalized 4D human poses, while the video model itself plans the viewpoints and camera motions.

3 METHOD

Training over vast amounts of film footage, video generation models can synthesize various dynamic scenes with rich cinematic skills. Based on this observation, we aim to leverage this capability by repurposing these models as virtual cinematographers to design professional camera trajectories for given 4D scenes. For simplicity, we explore and validate this concept by only considering moving human in 4D scenes, which serves as the major context of interest in applications.

Problem Formulation. Given a sequence of human motion represented as SMPL-X (Pavlakos et al., 2019) 3D joint positions $M \in \mathbb{R}^{f \times k \times 3}$, where f denotes the number of frames and $k = 22$ represents the selected body joints, our objective is to generate a corresponding camera trajectory $C \in \mathbb{R}^{f \times 9}$, so that the scene content could be visualized as a video with professional and plausible camera movements. The camera parameters for each frame consist of a 3D translation vector (t_x, t_y, t_z) and a 6D rotation representation using the first two rows of the rotation matrix $(R_{11}, R_{12}, R_{13}, R_{21}, R_{22}, R_{23})$, which can be orthogonalized to obtain a valid rotation matrix.

Overview. To smoothly leverage the prior knowledge embedded in pre-trained text-to-video (T2V) models (Chen et al., 2024; Wan et al., 2025), we propose a two-stage approach. Firstly, we equip a pre-trained video generation model with an adaptive learning branch to synthesize cinematographically-informed video content based on human motion. This process effectively determines the target camera trajectories through video rendering. Secondly, we formulate camera parameter extraction as a hybrid-condition guided camera extrinsic denoising process. To do this, we introduce a new camera extrinsic diffusion branch to the motion-conditioned T2V model, which takes the generated video and skeleton sequence as input. Since our approach inherits the capabilities of the pre-trained T2V model, text prompts can be used to control both the scene’s context and the camera’s movement style. In essence, this feature enriches the conditional representation of 4D scene, which is otherwise based solely on human skeletons.

162 3.1 STAGE I: MOTION-CONDITIONED CINEMATIC VIDEO GENERATION
163

164 In the first stage, we train a video generation model to autonomously design the camera trajectory for
165 a given 4D human motion sequence. Unlike conventional human animation approaches that operate
166 from fixed viewpoints using 2D human pose sequences, or recent methods (Shao et al., 2025; Li
167 et al., 2025a) that require explicit camera parameters as additional input, our approach takes only a
168 normalized 4D human motion sequence as input, and leverages learned cinematographic priors to
169 determine optimal camera viewpoints and movements.

170 **Spatial Motion Attention.** Inspired by 3DTrajMaster (Fu et al., 2024), we inject the motion con-
171 dition through a spatial motion attention mechanism integrated within the DiT (Peebles & Xie, 2023)
172 framework. Specifically, a pose encoder first maps the input motion sequence $M \in \mathbb{R}^{f \times k \times 3}$ into a
173 latent embedding $z_m \in \mathbb{R}^{f' \times k \times d}$, where temporal downsampling modules is adopted to align the
174 temporal resolution f' with the VAE-encoded video latents. Subsequently, we concatenate the video
175 tokens $z_v^{(t)}$ with the human motion tokens z_m along the spatial dimension before feeding them into
176 the self-attention block, leveraging the natural frame-wise correspondence.
177

$$178 T = [z_v^{(t)}; z_m] \in \mathbb{R}^{f' \times (h \cdot w + k) \times d} \quad (1)$$

179 Standard self-attention is then applied to the combined sequence:
180

$$181 q = W_Q \cdot T, \quad k = W_K \cdot T, \quad v = W_V \cdot T \quad (2)$$

$$182 z_v^{(t)} = z_v^{(t)} + \text{Truncate}(\text{Attn}(q, k, v))$$

183 where Truncate discards the human motion token outputs and retains only the updated video tokens.
184

185 **Guided Learning Scheme.** We found that generating cinematically appealing videos from motion
186 alone is challenging. This direct, unguided learning requires the model to simultaneously understand
187 3D human dynamics and cinematographic principles, then render motion-consistent 2D videos with
188 implicit camera trajectories. To address this complexity, we introduce a curriculum learning strategy.
189 With probability p , we provide the model with explicit camera information z_c , obtained by encoding
190 the camera pose through an independent pose encoder structurally analogous to the human pose
191 encoder, creating a combined token sequence for joint camera-motion control.
192

$$193 T = \begin{cases} [z_v^{(t)}; z_m; z_c] \in \mathbb{R}^{f' \times (h \cdot w + k + 1) \times d}, & \text{with prob. } p, \\ [z_v^{(t)}; z_m] \in \mathbb{R}^{f' \times (h \cdot w + k) \times d}, & \text{with prob. } 1 - p. \end{cases} \quad (3)$$

196 This guidance helps the model learn to render videos that conform to given human motion under
197 given camera views before tackling autonomous camera design, effectively reducing the training
198 complexity. Similar to MTVCrafter (Ding et al., 2025), we use 3D spatial RoPE (Su et al., 2024) to
199 encode the human motion tokens and employ pose-specific RoPE encodings to differentiate between
200 motion and camera tokens.

201 During this stage, we freeze the base video model and exclusively train the newly introduced human
202 motion encoder and the spatial motion attention layers.
203

204 3.2 STAGE II: CAMERA POSE EXTRACTION
205

206 The model trained in the first stage generates videos with implicit, model-designed cinematography
207 for given 4D human motion sequences. In the second stage, camera poses are explicitly extracted
208 and aligned with the reference 4D human motion coordinate system.
209

210 While existing camera estimation methods (Li et al., 2025b; Zhang et al., 2024; Wang et al., 2024a)
211 can extract camera poses from video, they typically face two critical limitations in our context: (1)
212 they require complex post-processing to align the estimated camera pose with the human motion
213 coordinate frame, and (2) AI-generated videos often contain geometric and texture inconsistencies
214 that compromise feature-matching-based estimation, leading to trajectory jitter, fragmented camera
215 paths, and failures in scene reconstruction, as shown in Figure 11.

216 To address these challenges, we train a direct estimation model using paired human motion and
217 video sequences to predict absolute camera poses within the reference human coordinate system. We
218

216 adopt the MMDiT framework (Esser et al., 2024) with three specialized branches to accommodate
 217 the distinct characteristics of our multi-modal input—the video containing the cinematic information
 218 and the human motion providing the reference coordinate frame, as illustrated in Figure 2(b). The
 219 video branch is initialized from the pre-trained video model, while the camera and human motion
 220 branches are randomly initialized with simplified architectures consisting of spatial attention and
 221 FFN layers. Similar to Stage I, we employ pose encoders to encode the camera and motion inputs.

222 We adopt a flow-matching (Lipman et al., 2022) objective, training the model to predict the vector
 223 field that transports noisy camera parameters toward the clean ones (Wang et al., 2023a). During
 224 training, video tokens z_v and human motion tokens z_m serve as clean conditions while camera
 225 tokens $z_c^{(t)}$ linearly combine with noise depending on the randomly sampled timestep. The multi-
 226 modal spatial attention operates on concatenated tokens along the spatial dimension:

$$227 \quad q = [q_v; q_m; q_c^{(t)}], \quad k = [k_v; k_m; k_c^{(t)}], \quad v = [v_v; v_m; v_c^{(t)}] \quad (4)$$

228 For training, we employ synthetic data rendered from Unreal Engine (UE) (Epic Games, 2022),
 229 which provides diverse human motions along with precise camera parameters. Furthermore, we
 230 employ GVHMR (Shen et al., 2024) to reconstruct the 4D human motion and unify the camera and
 231 human motion data into a common coordinate system.

234 4 EXPERIMENTAL RESULTS

235 4.1 EXPERIMENT SETTINGS

236 **Implementation Details.** Both the Stage I and Stage II models are initialized from a pretrained 1B
 237 Transformer T2V backbone built for internal research. For the Stage I model, we first train on 400k
 238 unfiltered videos of resolution 384×672 for 15k iterations, followed by fine-tuning on 10k curated
 239 high-quality internal videos with camera motion for another 10k iterations. Training employs the
 240 Adam optimizer on 16 NVIDIA H800 GPUs with a total batch size of 64, a learning rate of 5×10^{-5} ,
 241 a timestep shift of 15, and the probability of using camera guidance is 0.5. The Stage II model is
 242 trained on 101k MultiCamVideo (Bai et al., 2025), 43k HumanVid UE (Wang et al., 2024b), and
 243 100k internal UE videos. It proceeds in two phases: first, a model is trained to predict relative
 244 camera poses for 10k iterations; then, based on this model, we introduce a human motion branch
 245 and further train it to predict absolute camera poses for 40k iterations. Here, the timestep shift is
 246 reduced to 1, while other hyperparameters remain unchanged from Stage I. During inference, both
 247 models use 50 sampling steps. We use GVHMR (Shen et al., 2024) to reconstruct 4D human motion
 248 from video data and transform it into the canonical space. Details can be found in Appendix B.

249 **Baselines.** Due to the lack of existing works with an identical experimental setting, we select the
 250 following methods as our baselines for comparison. E.T. (Courant et al., 2024) generates camera
 251 motion conditioned on text and character trajectory, modeling the character as a single point whose
 252 continuous motion is represented as a point trajectory. DanceCamera3D (Wang et al., 2024c) syn-
 253 thesizes camera motion from audio and dance poses. The original model is incompatible with our
 254 evaluation protocol as it requires audio input and uses a different skeleton representation. There-
 255 fore, we adapt their framework to our task by replacing the audio condition with a text prompt and
 256 retraining the model on our own dataset.

257 **Evaluation Metrics.** Existing metrics like Fréchet Camera Distance (FCD) and Text-Camera Con-
 258 sistency Score (CS) from prior work (Courant et al., 2024) suffer from distributional bias and fail
 259 to capture camera-human interaction. To address these limitations, we propose a comprehensive
 260 three-part evaluation framework. **(1) Rule-based Assessment:** We adapt and significantly refine
 261 the rule-based metrics from DanceCamera3D (Wang et al., 2024c) for objective evaluation, includ-
 262 ing human visibility (Human Missing Rate), camera smoothness via jerk, and a geometrically-aware
 263 shot diversity metric capable of distinguishing different perspectives, which is an improvement over
 264 prior view-invariant methods. **(2) MLLM-based Evaluation:** Given the lack of automated metrics
 265 for evaluating high-level qualities of trajectories, we introduce an MLLM-based evaluator lever-
 266 aging Gemini 2.5 Pro (Comanici et al., 2025) that analyzes orthographic trajectory visualizations,
 267 scores text-camera consistency on a 0-2 scale with detailed justification, and quantifies the diversity
 268 of cinematographic style by calculating the entropy of categorized camera attributes (e.g., motion
 269 type). **(3) User Study:** We invited 12 researchers in computer vision-related fields to participate in

Figure 3: Visualization of results. (Left) Human motion conditions; (Middle) Stage I generated videos; (Right) Stage II generated camera trajectories. AdaViewPlanner demonstrates the ability to design diverse, instruction-consistent, and human-centered camera trajectories.

our user study. Our user study consisted of two test sets: the E.T. test set with 21 samples and our own test set with 30 samples. In the questionnaire, we clearly explained the evaluation procedure and criteria to the participants. Specifically, each question presented the textual description of the camera motion along with three randomly ordered results generated by different methods. The evaluation criteria included: (1) consistency between the camera trajectory and the textual instruction, (2) professionalism of the camera motion, and (3) the coherence between the camera motion and the human actions. Each participant was asked to select the option they believed to be the best for each sample. We then aggregated all responses and computed the preference rate for each method on each test set. Detailed evaluation protocols are provided in Appendix C.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Qualitative Results. Figure 3 presents the complete results of our method, showing that it can design human-centric, cinematic camera motions for diverse instructions and actions, with Stage I preview videos offering strong qualitative demonstrations. Furthermore, as illustrated in Figure 4, we analyze the effects of random seeds, scene styles, and camera instructions. The top rows show that varying the initial noise for the same human motion yields different trajectories. The middle rows show that our method adapts to various scene styles, generating camera motions that match the visual aesthetics of each environment. The bottom rows highlight the model’s ability to follow camera instructions, producing multi-view and multi-motion trajectories centered on the subject.

Figure 5 compares AdaViewPlanner with other approaches. Since E.T. reduces human motion to point trajectories, it fails to capture complex, meaningful actions, resulting in simple trajectories lacking diversity and cinematic style. Our improved DanceCam*, though trained on the same dataset, struggles with convergence due to the divergent nature of the task and ultimately collapses to a single trajectory with limited diversity, as further shown in Figure 7. In contrast, AdaViewPlanner leverages video models to encode strong 4D scene priors and rich cinematic knowledge learned from data, with its two-stage pipeline effectively addressing these challenges.

Quantitative Results. We compare our method with baselines in Section 4.1. Evaluation is conducted on the SMPL-based test set from E.T., refined to 500 samples to reduce jitter and artifacts. We also build an internal dataset of 240 samples with higher-quality poses.

As shown in Table 1, our method outperforms all baselines on both test sets. HMR results show our generated cameras are more character-centered, while Jerk results indicate smoother trajectories. For in-place character motions, E.T. can only take a static point, leading to mostly stationary cameras and thus lower $Jerk_t$ values. However, jitter in its rotation matrices still undermines trajectory smoothness. The Dist results show that our cameras achieve greater diversity across the 360° space around the character. Benefiting from the video model’s ability to plan camera motions conditioned on text and actions, the MLLM-based evaluation confirms that our trajectories better follow textual descriptions and exhibit higher cinematographic diversity. **The user study results show that**

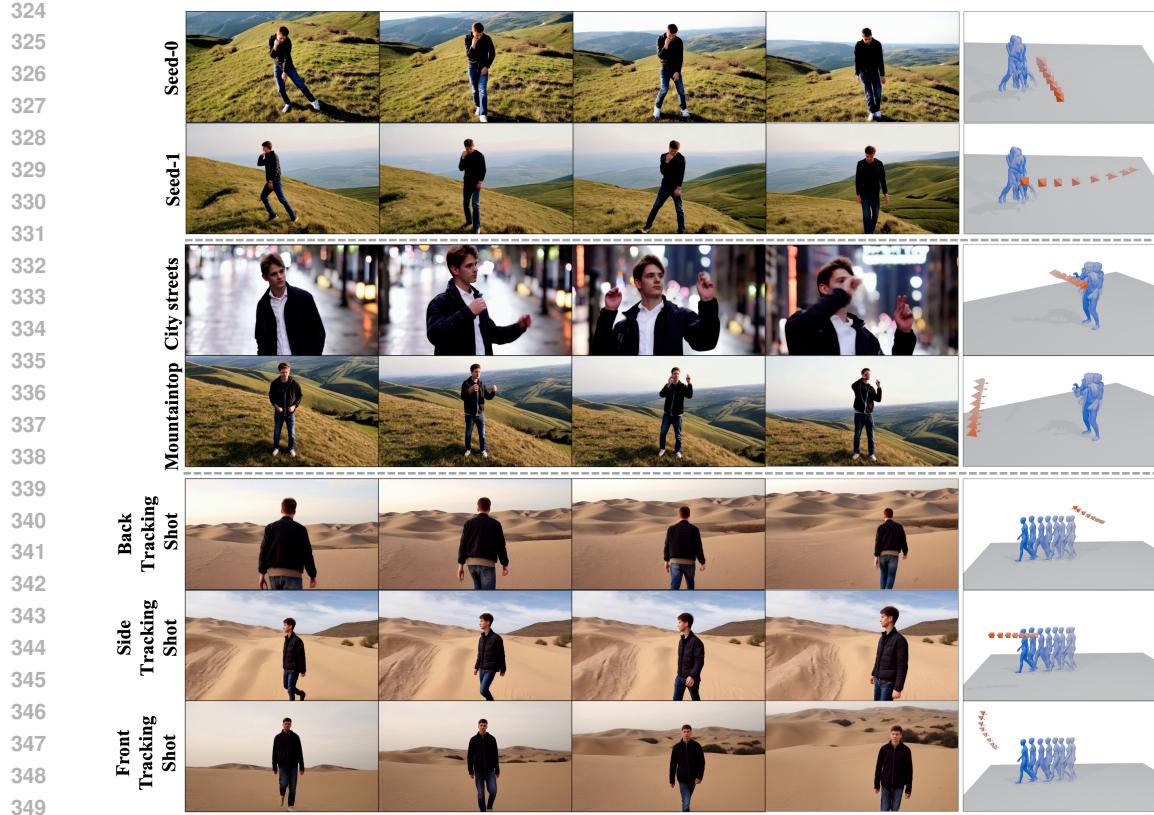


Figure 4: Camera generation results with varied random seed (**top**), scene context prompt (**middle**), and camera movement prompt (**bottom**).

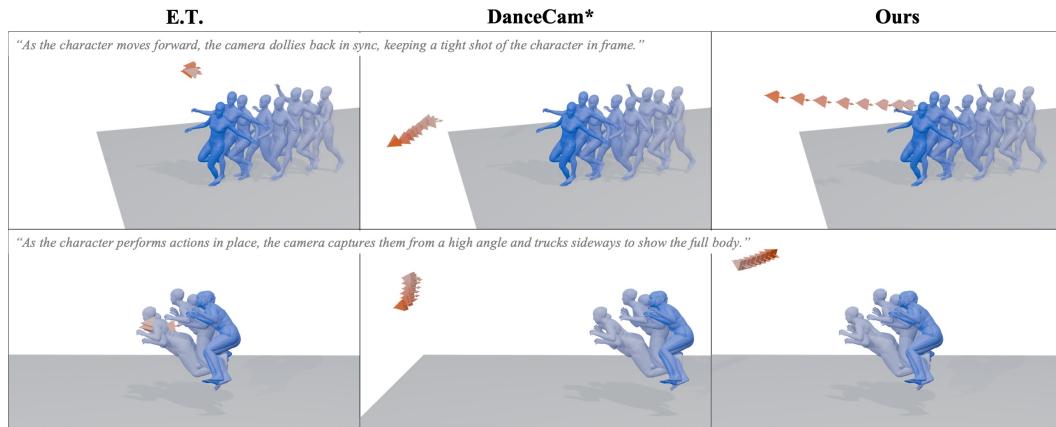


Figure 5: Compared with other methods, our model generates smoother trajectories that better follow instructions, while also exhibiting a cinematographic style centered on human actions.

our method achieved over 60% user preference across both test sets, indicating that the camera trajectories generated for 4D scenes were more favorably received.

4.3 MORE ANALYSIS AND ABLATION STUDIES

Comparison of Human Motion Control. The videos obtained in the first stage, which exhibit stronger consistency with human motion, help improve the camera results in the second stage. When

378
 379 Table 1: Quantitative results on the E.T. testset and our curated testset. Metrics: *HMR* (Human
 380 Missing Rate), *Jerk_t/Jerk_r* (Camera Jerk of Translation/Rotation), *Dist_t/Dist_r* (Shot Diversity of
 381 Translation/Rotation), *TCC* (Text-Camera Consistency), *CSD* (Cinematographic Style Diversity).
 382 DanceCam* denotes our re-implementation of DanceCamera3D using our skeleton format.

Method	Rule-based					MLLM-based		User Study
	HMR ↓	Jerk _t ↓	Jerk _r ↓	Dist _t ↑	Dist _r ↑	TCC ↑	CSD ↑	Pref. (%) ↑
<i>E.T. Testset</i>								
E.T.	0.064	0.001	0.026	0.538	0.540	0.850	0.608	23.81
DanceCam*	0.053	0.013	0.003	1.236	0.290	0.975	0.569	14.29
Ours (Full)	0.044	0.007	0.002	2.826	0.533	1.125	0.686	61.90
<i>Ours Testset</i>								
E.T.	0.048	0.001	0.029	0.700	0.225	0.790	0.623	20.83
DanceCam*	0.024	0.014	0.002	1.535	0.189	0.867	0.593	15.83
Ours (Full)	0.018	0.003	0.001	1.415	0.529	1.385	0.711	63.33

390
 391 Table 2: Quantitative comparison for 4D human motion control on TikTok (dance domain) and our
 392 curated general domain testsets. We report *WA-MPJPE* and *PA-MPJPE* in millimeters. Here, *Ours*
 393 *Subopt* denotes an early-training checkpoint included as a performance-degraded reference.

Method	TikTok (Dance Domain)		General Domain	
	WA-MPJPE ↓	PA-MPJPE ↓	WA-MPJPE ↓	PA-MPJPE ↓
MTVCrafter (CogVideoX-5B)	84.89	22.01	222.50	38.90
MTVCrafter (Wan-2.1-14B)	73.47	20.22	224.50	40.21
Ours Subopt	95.06	30.04	161.22	40.41
Ours w/o Guided Learning	72.60	25.49	127.68	33.80
Ours w/o 3D RoPE	82.59	24.70	122.13	38.71
Ours (Full)	71.65	23.76	103.92	35.70

409
 410
 411 there is a large discrepancy between the video and the human motion condition, the model’s predic-
 412 tion of the camera pose is negatively affected, which is validated in Table 3.
 413

414 We select MTVCrafter (Ding et al., 2025), which uses SMPL (Loper et al., 2023) poses as con-
 415 ditions, as our primary baseline. Although ISA4D (Shao et al., 2025) supports SMPL poses but
 416 cannot be included due to unavailable code. Since MTVCrafter was trained on dance-specific data
 417 with a fixed view, we evaluate fairly on the TikTok test set and additionally on a general human pose
 418 domain. All methods are given the same 4D motion conditions, and motion control is evaluated by
 419 MPJPE computed from GVHMR-reconstructed poses of the generated videos. While our method
 420 generates videos with camera motion and the baseline outputs fixed frontal views, Table 2 shows
 421 our method matches Wan-2.1-14B base MTVCrafter on the dance domain and significantly outper-
 422 forms it on the general domain, benefiting from training on broader pose distributions. Rows 4 and
 423 5 demonstrate the effectiveness of incorporating guidance view and 3D RoPE.

424 **Ablation Studies on Camera Generation.** We conduct ablation studies on Stages I and II to as-
 425 sess the role of our design choices. First, as shown in the first row of Table 3, the misalignment
 426 of human motion between the 4D condition and generated video from Stage I would degrade the
 427 camera pose extraction accuracy of Stage II. Second, removing the motion condition in Stage II
 428 degrades performance (Figure 6): without skeletal references, the model produces smooth but mis-
 429 focused trajectories, yielding erroneous viewpoints. The Reproject Acc metric underscores the need
 430 to condition on human motion to model dynamic subjects in video and guide camera focus during
 431 training. Finally, we train a variant without motion conditioning that estimates only relative camera
 432 poses, requiring post-processing to align camera and human motion coordinates. While this resolves
 433 viewpoint issues, the model lacks motion scale awareness, leading to noticeable inconsistencies.

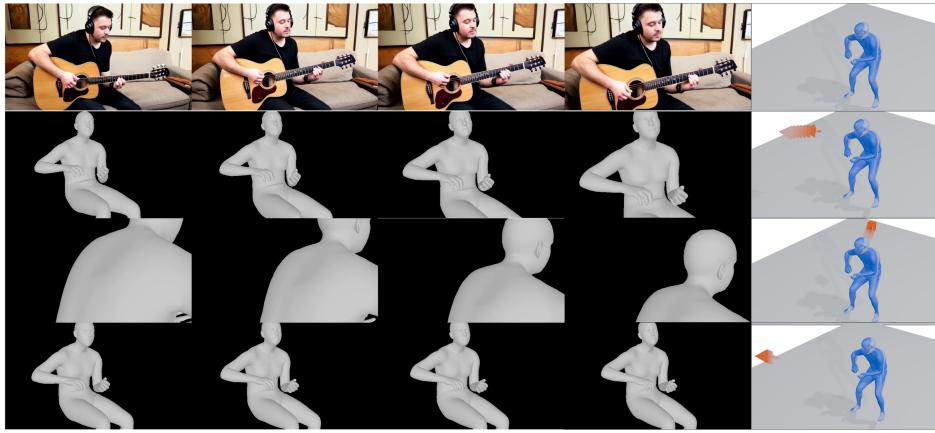


Figure 6: Columns 1–4 show the reprojection of 4D human skeletons by using estimated camera parameters, while Column 5 presents the rendered results in 3D space. *w/o Motion* exhibits viewpoint errors, whereas *Relative Cam* suffers from scale perception issues.

Table 3: Ablations on design choices for camera-trajectory generation. The *Reproject Acc* is computed by reprojecting 4D human poses and comparing against the human region mask in the original video. Variants: *Stage I Subopt* (early-training checkpoint of Stage I), *Stage II w/o Motion* (no motion conditioning in Stage II), and *Stage II Relative Cam* (Stage II predicts relative camera poses).

Method	Rule-based					MLLM-based		Reproject Acc	
	HMR \downarrow	Jerk $_t$ \downarrow	Jerk $_r$ \downarrow	Dist $_t$ \uparrow	Dist $_r$ \uparrow	TCC \uparrow	SD \uparrow	MSE \downarrow	IoU \uparrow
Stage I Subopt	0.021	0.003	0.001	1.222	0.517	1.051	0.681	0.181	0.301
Stage II w/o Motion	0.027	0.006	0.003	1.412	0.907	0.931	0.595	0.255	0.226
Stage II Relative Cam	0.039	0.002	0.001	1.588	0.518	1.413	0.698	0.167	0.325
Ours (Full)	0.018	0.003	0.001	1.415	0.529	1.385	0.711	0.158	0.338

Discussion on Unification of Stage I and II. We attempt to unify Stages I and II into a single model. However, this paradigm faces three challenges: (1) motion control and camera estimation conflict, since the former requires timestep sampling biased toward high-noise regions while the latter benefits from low-noise regions, leading to degraded joint performance; (2) noisy videos diminish pixel motion cues, reducing camera estimation accuracy; and (3) unified training requires real datasets annotated with both skeletal and camera parameters, but accurate camera parameter estimation from real videos remains a major bottleneck. We therefore leave this direction to future work.

Discussion on w/o Video Model. To assess the role of the video model in camera trajectory design for 4D scenes, we train variants that generate trajectories from text and human poses alone: one adapted from DanceCamera3D, and another based on Stage II without the video branch. In both cases, training either fails to converge or collapses to a single trajectory, as shown in Figure 7, leading to limited diversity. This highlights the divergent nature of the task, which is difficult to resolve without additional guidance. By contrast, our two-stage framework, equipped with a pretrained video model, effectively mitigates this issue and consistently produces more diverse and reliable trajectories.

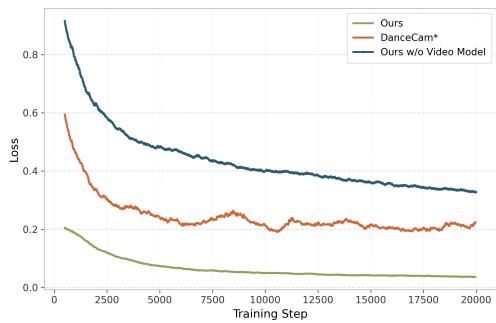


Figure 7: Comparison of training loss curves: Ours, DanceCam* and Ours w/o Video Model.

486
 487 Table 4: Quantitative comparison for 4D human motion control on the AMASS and GTA-Human
 488 datasets.

Method	AMASS		GTA-Human	
	WA-MPJPE ↓	PA-MPJPE ↓	WA-MPJPE ↓	PA-MPJPE ↓
MTVCrafter (CogVideoX-5B)	107.57	49.58	270.75	55.61
MTVCrafter (Wan-2.1-14B)	103.69	45.78	240.72	56.46
Ours	72.19	42.13	145.00	50.23

495
 496 Table 5: Quantitative results of viewpoint planning on the AMASS and GTA-Human test sets.
 497

Method	Rule-based Metrics					MLLM-based Metrics	
	HMR ↓	Jerk _t ↓	Jerk _r ↓	Dist _t ↑	Dist _r ↑	TCC ↑	CSD ↑
<i>AMASS Testset</i>							
E.T.	0.033	0.002	0.015	0.422	0.150	0.900	0.564
DanceCam*	0.031	0.018	0.006	0.503	0.129	0.950	0.556
Ours	0.015	0.003	0.001	1.437	0.577	1.220	0.710
<i>GTA-Human Testset</i>							
E.T.	0.110	0.004	0.063	0.620	0.330	0.880	0.585
DanceCam*	0.048	0.021	0.007	0.810	0.288	0.980	0.614
Ours	0.039	0.004	0.001	1.556	0.675	1.160	0.729

510
 511 **4.4 GENERALIZATION TO REAL-WORLD DATA**
 512

513 The primary motivation of our work is to automate the process of professional camera choreography
 514 for 3D dynamic content within the computer graphics domain. In typical CG production pipelines,
 515 3D human models originate from two primary sources: they are either synthetically generated (e.g.,
 516 by game engines or professional designers) or captured from real-world performances using motion
 517 capture systems. To ensure our framework generalizes effectively across these distinct data types,
 518 we select two representative datasets for evaluation. Specifically, for synthetic content, we use the
 519 **GTA-Human** dataset (Cai et al., 2024), and for real-world captured motion, we employ the **AMASS**
 520 dataset (Mahmood et al., 2019). For our evaluation, we randomly sample 100 instances from the test
 521 split of each dataset. The results for 4D human motion control and viewpoint planning on real test
 522 sets are presented in Table 4 and Table 5, respectively. These comprehensive results confirm that
 523 our method generalizes robustly to diverse, real-world 4D data sources.

524 **5 CONCLUSION AND LIMITATIONS**
 525

526 In this work, we explored adapting pre-trained T2V models for viewpoint planning in 4D scenes.
 527 Our key insight is that pre-trained video models generate realistic dynamic content accompanied
 528 by professional camera movements, revealing their internal knowledge of cinematography in dy-
 529 namic environments. To leverage this prior, we design a two-stage framework: (1) an adaptive
 530 learning branch injects 4D scene representations into the pre-trained T2V model with ground-truth
 531 viewpoints guiding training; (2) a dedicated camera diffusion branch formulates viewpoint extrac-
 532 tion as a hybrid-condition guided denoising process. Experiments show our method significantly
 533 outperforms prior approaches, and ablation studies verify the effectiveness of our core technical
 534 designs. Additionally, AdaViewPlanner has several limitations, including limited support for general
 535 4D scenes and the inheritance of base video model shortcomings (e.g., geometric inconsis-
 536 tencies and challenges with complex motions), which are discussed in detail in Appendix B.

540 **Ethics statement.** We take research ethics very seriously and strictly adhered to the ICLR Code
 541 of Ethics throughout the user study. Before the study began, all participants were provided with a
 542 detailed informed consent form explaining the study procedures, and their explicit consent was ob-
 543 tained. All collected data were anonymized to protect participants' rights and privacy. Participation
 544 in the study was entirely voluntary; participants were informed that they could withdraw at any time
 545 without providing a reason, and that all their data would be deleted upon withdrawal. The study
 546 involved minimal risk, ensuring that no physical, psychological, or social harm was posed to partic-
 547 ipants. In addition, as with any generative model, our method carries the risk of potential misuse.
 548 We emphasize that the system should be applied responsibly and urge caution to avoid malicious or
 549 harmful applications.

550 **Reproducibility statement.** The framework and algorithms of AdaViewPlanner are presented in
 551 Sec. 3 and Appendix A. Details of training settings, training data, and hyperparameters are provided
 552 in Sec. 4.1, while inference details and data processing steps are described in Appendix B. A com-
 553 prehensive introduction of the evaluation metrics is given in Appendix C, with the specifics of the
 554 MLLM-based evaluation further discussed in Appendix D. In addition, the instruction templates
 555 used for evaluation are included in Table 6 and Table 7. Experimental setups and detailed results
 556 can be found in Sec. 4.

558 REFERENCES

560 Jianhong Bai, Menghan Xia, Xiao Fu, Xintao Wang, Lianrui Mu, Jinwen Cao, Zuozhu Liu, Haoji
 561 Hu, Xiang Bai, Pengfei Wan, et al. Recammaster: Camera-controlled generative rendering from
 562 a single video. *arXiv preprint arXiv:2503.11647*, 2025.

563 Amir Bar, Gaoyue Zhou, Danny Tran, Trevor Darrell, and Yann LeCun. Navigation world models.
 564 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 15791–15801,
 565 2025.

566 Zhongang Cai, Mingyuan Zhang, Jiawei Ren, Chen Wei, Daxuan Ren, Zhengyu Lin, Haiyu Zhao,
 567 Lei Yang, Chen Change Loy, and Ziwei Liu. Playing for 3d human recovery. *IEEE Transactions*
 568 *on Pattern Analysis and Machine Intelligence*, 2024.

569 Chenjie Cao, Jingkai Zhou, Shikai Li, Jingyun Liang, Chaohui Yu, Fan Wang, Xiangyang Xue, and
 570 Yanwei Fu. Uni3c: Unifying precisely 3d-enhanced camera and human motion controls for video
 571 generation. *arXiv preprint arXiv:2504.14899*, 2025.

572 Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying
 573 Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models. In
 574 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 575 7310–7320, 2024.

576 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 577 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 578 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 579 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

580 Robin Courant, Nicolas Dufour, Xi Wang, Marc Christie, and Vicky Kalogeiton. Et the excep-
 581 tional trajectories: Text-to-camera-trajectory generation with character awareness. In *European*
 582 *Conference on Computer Vision*, pp. 464–480. Springer, 2024.

583 Yanbo Ding, Xirui Hu, Zhiyi Guo, Chi Zhang, and Yali Wang. Mtvcrafter: 4d motion tokenization
 584 for open-world human image animation. *arXiv preprint arXiv:2505.10238*, 2025.

585 Epic Games. Unreal engine 5. <https://www.unrealengine.com/en-US/unreal-engine-5>, 2022. Accessed: 2025-09-25.

586 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 587 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
 588 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
 589 2024.

594 Xiao Fu, Xian Liu, Xintao Wang, Sida Peng, Menghan Xia, Xiaoyu Shi, Ziyang Yuan, Pengfei Wan,
 595 Di Zhang, and Dahua Lin. 3dtrajmaster: Mastering 3d trajectory for multi-entity motion in video
 596 generation. *arXiv preprint arXiv:2412.07759*, 2024.

597

598 Zujin Guo, Size Wu, Zhongang Cai, Wei Li, and Chen Change Loy. Controllable human-centric
 599 keyframe interpolation with generative prior. *arXiv preprint arXiv:2506.03119*, 2025.

600 Yunzhong Hou, Liang Zheng, and Philip Torr. Learning camera movement control from real-world
 601 drone videos. *arXiv preprint arXiv:2412.09620*, 2024.

602

603 Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character anima-
 604 tion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 605 pp. 8153–8163, 2024.

606

607 Chong Huang, Chuan-En Lin, Zhenyu Yang, Yan Kong, Peng Chen, Xin Yang, and Kwang-
 608 Ting Cheng. Learning to film from professional human motion videos. In *Proceedings of the*
609 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4244–4253, 2019.

610 Hongda Jiang, Bin Wang, Xi Wang, Marc Christie, and Baoquan Chen. Example-driven virtual
 611 cinematography by learning camera behaviors. *ACM Trans. Graph.*, 39(4):45, 2020.

612 Hongda Jiang, Marc Christie, Xi Wang, Libin Liu, Bin Wang, and Baoquan Chen. Camera keyfram-
 613 ing with style and control. *ACM Transactions on Graphics (TOG)*, 40(6):1–13, 2021.

614 Hongda Jiang, Xi Wang, Marc Christie, Libin Liu, and Baoquan Chen. Cinematographic camera
 615 diffusion model. In *Computer Graphics Forum*, volume 43, pp. e15055. Wiley Online Library,
 616 2024.

617 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
618 arXiv:1312.6114, 2013.

619

620 Ruineng Li, Daitao Xing, Huiming Sun, Yuanzhou Ha, Jinglin Shen, and Chiuman Ho. Tokenmo-
 621 tion: Decoupled motion control via token disentanglement for human-centric video generation. In
622 Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 1951–1961, 2025a.

623 Xinyang Li, Zhangyu Lai, Lining Xu, Yansong Qu, Liujuan Cao, Shengchuan Zhang, Bo Dai,
 624 and Rongrong Ji. Director3d: Real-world camera trajectory and 3d scene generation from text.
625 Advances in neural information processing systems, 37:75125–75151, 2024.

626

627 Zhengqi Li, Richard Tucker, Forrester Cole, Qianqian Wang, Linyi Jin, Vickie Ye, Angjoo
 628 Kanazawa, Aleksander Holynski, and Noah Snavely. Megasam: Accurate, fast and robust struc-
 629 ture and motion from casual dynamic videos. In *Proceedings of the Computer Vision and Pattern*
630 Recognition Conference, pp. 10486–10496, 2025b.

631 Jingyun Liang, Jingkai Zhou, Shikai Li, Chenjie Cao, Lei Sun, Yichen Qian, Weihua Chen, and
 632 Fan Wang. Realismotion: Decomposed human motion control and video generation in the world
 633 space. *arXiv preprint arXiv:2508.08588*, 2025.

634

635 Shanchuan Lin, Xin Xia, Yuxi Ren, Ceyuan Yang, Xuefeng Xiao, and Lu Jiang. Diffusion adversar-
 636 ial post-training for one-step video generation. *arXiv preprint arXiv:2501.08316*, 2025.

637

638 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 639 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

640

641 Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. Smpl:
 642 A skinned multi-person linear model. In *Seminal Graphics Papers: Pushing the Boundaries,*
643 Volume 2, pp. 851–866. 2023.

644

645 Zhengyao Lv, Chenyang Si, Junhao Song, Zhenyu Yang, Yu Qiao, Ziwei Liu, and Kwan-Yee K
 Wong. Fastercache: Training-free video diffusion model acceleration with high quality. *arXiv*
646 preprint arXiv:2410.19355, 2024.

647

648 Naureen Mahmood, Nima Ghorbani, Nikolaus F Troje, Gerard Pons-Moll, and Michael J Black.
 649 Amass: Archive of motion capture as surface shapes. In *Proceedings of the IEEE/CVF interna-
 650 tional conference on computer vision*, pp. 5442–5451, 2019.

648 Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed AA Osman, Dimitrios
 649 Tzionas, and Michael J Black. Expressive body capture: 3d hands, face, and body from a single
 650 image. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 651 pp. 10975–10985, 2019.

652 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 653 the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

654 Bohao Peng, Jian Wang, Yuechen Zhang, Wenbo Li, Ming-Chang Yang, and Jiaya Jia. Controlnext:
 655 Powerful and efficient control for image and video generation. *arXiv preprint arXiv:2408.06070*,
 656 2024.

657 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 658 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 659 models from natural language supervision. In *International conference on machine learning*, pp.
 660 8748–8763. PMLR, 2021.

661 Anyi Rao, Xuekun Jiang, Yuwei Guo, Lining Xu, Lei Yang, Libiao Jin, Dahua Lin, and Bo Dai.
 662 Dynamic storyboard generation in an engine-based virtual environment for video production. In
 663 *ACM SIGGRAPH 2023 Posters*, pp. 1–2. 2023.

664 Ruizhi Shao, Youxin Pang, Zerong Zheng, Jingxiang Sun, and Yebin Liu. Human4dit: Free-view
 665 human video generation with 4d diffusion transformer. *arXiv e-prints*, pp. arXiv–2405, 2024.

666 Ruizhi Shao, Yinghao Xu, Yujun Shen, Ceyuan Yang, Yang Zheng, Changan Chen, Yebin Liu, and
 667 Gordon Wetzstein. Interspatial attention for efficient 4d human video generation. *arXiv preprint
 668 arXiv:2505.15800*, 2025.

669 Zehong Shen, Huaijin Pi, Yan Xia, Zhi Cen, Sida Peng, Zechen Hu, Hujun Bao, Ruizhen Hu,
 670 and Xiaowei Zhou. World-grounded human motion recovery via gravity-view coordinates. In
 671 *SIGGRAPH Asia 2024 Conference Papers*, pp. 1–11, 2024.

672 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 673 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

674 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 675 Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative
 676 models. *arXiv preprint arXiv:2503.20314*, 2025.

677 Jianyuan Wang, Christian Rupprecht, and David Novotny. Posediffusion: Solving pose estimation
 678 via diffusion-aided bundle adjustment. In *Proceedings of the IEEE/CVF International Conference
 679 on Computer Vision*, pp. 9773–9783, 2023a.

680 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 681 Novotny. Vggt: Visual geometry grounded transformer. In *Proceedings of the Computer Vision
 682 and Pattern Recognition Conference*, pp. 5294–5306, 2025.

683 Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r: Ge-
 684 ometric 3d vision made easy. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 685 and Pattern Recognition*, pp. 20697–20709, 2024a.

686 Xi Wang, Robin Courant, Jinglei Shi, Eric Marchand, and Marc Christie. Jaws: just a wild shot
 687 for cinematic transfer in neural radiance fields. In *Proceedings of the IEEE/CVF Conference on
 688 Computer Vision and Pattern Recognition*, pp. 16933–16942, 2023b.

689 Zhenzhi Wang, Yixuan Li, Yanhong Zeng, Youqing Fang, Yuwei Guo, Wenran Liu, Jing Tan, Kai
 690 Chen, Tianfan Xue, Bo Dai, et al. Humanvid: Demystifying training data for camera-controllable
 691 human image animation. *Advances in Neural Information Processing Systems*, 37:20111–20131,
 692 2024b.

693 Zixuan Wang, Jia Jia, Shikun Sun, Haozhe Wu, Rong Han, Zhenyu Li, Di Tang, Jiaqing Zhou, and
 694 Jiebo Luo. Dancecamera3d: 3d camera movement synthesis with music and dance. In *Proceed-
 695 ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7892–7901,
 696 2024c.

702 Zixuan Wang, Jiayi Li, Xiaoyu Qin, Shikun Sun, Songtao Zhou, Jia Jia, and Jiebo Luo. Danceca-
703 manimator: Keyframe-based controllable 3d dance camera synthesis. In *Proceedings of the 32nd*
704 *ACM International Conference on Multimedia*, pp. 10200–10209, 2024d.

705

706 Zhongcong Xu, Jianfeng Zhang, Jun Hao Liew, Hanshu Yan, Jia-Wei Liu, Chenxu Zhang, Jiashi
707 Feng, and Mike Zheng Shou. Magicanimate: Temporally consistent human image animation
708 using diffusion model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
709 *Pattern Recognition*, pp. 1481–1490, 2024.

710

711 Zixiao Yu, Xinyi Wu, Haohong Wang, Aggelos K Katsaggelos, and Jian Ren. Automated adaptive
712 cinematography for user interaction in open world. *IEEE Transactions on Multimedia*, 26:6178–
713 6190, 2023.

714

715 Junyi Zhang, Charles Herrmann, Junhwa Hur, Varun Jampani, Trevor Darrell, Forrester Cole, De-
716 qing Sun, and Ming-Hsuan Yang. Monst3r: A simple approach for estimating geometry in the
717 presence of motion. *arXiv preprint arXiv:2410.03825*, 2024.

718

719 Mengchen Zhang, Tong Wu, Jing Tan, Ziwei Liu, Gordon Wetzstein, and Dahua Lin. Gen-
720 dop: Auto-regressive camera trajectory generation as a director of photography. *arXiv preprint*
721 *arXiv:2504.07083*, 2025.

722

723 Shenhao Zhu, Junming Leo Chen, Zuozhuo Dai, Zilong Dong, Yinghui Xu, Xun Cao, Yao Yao,
724 Hao Zhu, and Siyu Zhu. Champ: Controllable and consistent human image animation with 3d
725 parametric guidance. In *European Conference on Computer Vision*, pp. 145–162. Springer, 2024.

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

APPENDIX

Our Appendix consists of 7 sections. Readers can click on each section number to navigate to the corresponding section:

- Section **A** introduces the base text-to-video generation model.
- Section **B** provides more implementation details.
- Section **C** describes the limitation and failure cases.
- Section **D** describes the evaluation metrics, including rule-based, MLLM-based, and user study evaluations.
- Section **E** explains details of the MLLM-based evaluation.
- Section **F** presents computational efficiency analysis.
- Section **G** presents additional analyses and visualization results.
- Section **H** clarifies the use of large language models for editorial assistance in preparing this manuscript.

A INTRODUCTION OF THE BASE TEXT-TO-VIDEO GENERATION MODEL

We adopt a transformer-based latent diffusion framework (Peebles & Xie, 2023) as the foundation of our T2V generation model, shown in Figure 8. A 3D-VAE (Kingma & Welling, 2013) is first used to encode videos from pixel space into a latent representation, on which we build a transformer-based video diffusion model. Prior approaches often rely on UNets or transformers augmented with a separate 1D temporal attention module, but such designs that decouple spatial and temporal modeling typically limit performance. To address this, we replace the 1D temporal attention with 3D self-attention, allowing the model to jointly capture spatiotemporal dependencies and generate coherent, high-quality videos. Furthermore, before each attention and feed-forward network (FFN) block, we map the timestep to a scale and apply RMSNorm to the spatiotemporal tokens.

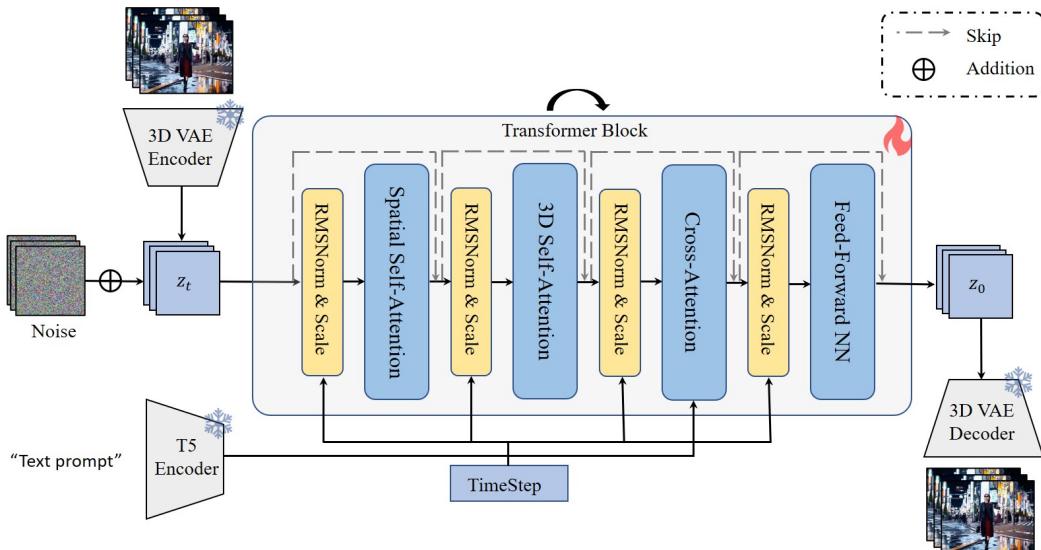


Figure 8: Overview of the base text-to-video generation model.

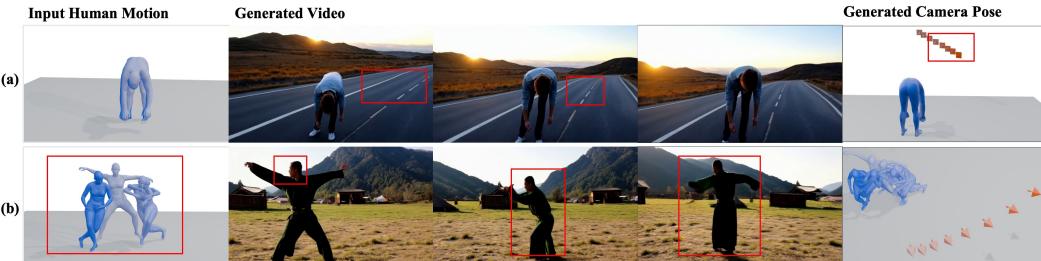
B IMPLEMENTATION DETAILS

During Stage I inference, we use 50 sampling steps with a timestep shift of 15, consistent with training. We inject only normalized 4D human motion without guided camera viewpoints. Since 4D

810 human motion mainly influences mid-to-high noise regions, we drop the motion condition in the last
 811 10 steps to improve visual quality. The Stage I model uses $CFG=5$ for both text and human motion,
 812 as larger values tend to introduce artifacts. For Stage II inference, we also use 50 sampling steps
 813 with a timestep shift of 1, and no CFG is applied.

814 We use the GVHMR algorithm (Shen et al., 2024) to reconstruct 4D human motion data from videos.
 815 Moreover, GVHMR provides reconstructions in both camera and world coordinate systems, en-
 816 abling us to compute the transformation $[R_{c2w} \mid T_{c2w}]$ and align the camera parameters with the
 817 human coordinate system. The focal length is set to the nominal values assumed by GVHMR, so
 818 our Stage II model only needs to estimate the extrinsic parameters. We transform the human data
 819 into a canonical space. Specifically, we define the gravity direction of the first frame as the negative
 820 y -axis, the frontal direction of the human body as the positive z -axis, and normalize the translation
 821 vector of the first frame to 0. In this way, we obtain viewpoint-agnostic 4D human data.

C LIMITATION AND FAILURE CASES



822
 823 Figure 9: Visualization of failure cases. (a) indicates geometric distortions in the generated videos;
 824 (b) shows motion inconsistencies in complex action.

825 We identify that AdaViewPlanner has several limitations, which also highlight promising directions
 826 for future work.

827 First, for conceptual verification in this work, we simplify the 4D scene to a moving 3D human.
 828 This is based on the consideration that the human body is the core dynamic element in many scenes
 829 and can be conveniently represented using well-defined 3D models. While text instructions allow
 830 us to control scene-level content, the current method does not explicitly support more general 4D
 831 scenes or non-human dynamic entities. However, since our approach imposes no strict requirements
 832 on the 4D representation itself, it should be extendable to other non-human objects. In future work,
 833 we plan to adopt more general 4D representations (e.g., 4D Gaussian splatting, mesh deformation
 834 fields, or dynamic point clouds) and advanced 4D encoders to handle explicit 4D scene dynamics.
 835 We believe that as the capabilities of foundation video models continue to improve, our method will
 836 remain scalable.

837 Second, our method also inherits some of the base video model’s shortcomings. For example, when
 838 the video generated by the Stage I model exhibits severe geometric inconsistencies, it leads to a
 839 decrease in the accuracy of the camera parameters predicted by the Stage II model, as shown in
 840 Fig. 9 (a). Additionally, our method can exhibit reduced motion consistency when handling com-
 841 plex human motions (Fig. 9 (b)). The main challenge is that the base video model often struggles
 842 to generate high-quality humans performing complex motions. We believe these issues can be mi-
 843 tigated by introducing geometric priors from 3D foundation models (e.g., VGGT (Wang et al., 2025))
 844 to enhance the geometric consistency of the video model, as well as by using a more powerful base
 845 video model to better handle complex actions.

846 Third, the performance of our two-stage approach is intrinsically dependent on the adopted pre-
 847 trained T2V model, as the major view planning knowledge is adapted from its learned representa-
 848 tions. When the base video model has limited capability in this regard, our method can be signif-
 849 icantly affected. Consequently, different base models may lead to different upper bounds on the
 850 achievable performance. Nevertheless, as video generation models continue to advance, our method
 851 is expected to benefit accordingly and achieve stronger results. We believe that our proof-of-concept
 852 provides non-trivial insights and inspiration for adapting T2V models to cinematic view planning.

864 **D EVALUATION METRICS**
865866
867 Previous works, such as E.T., utilize metrics like Fréchet Camera Distance (FCD) and Text-Camera
868 Consistency Score (CS). These are computed using a dedicated evaluation model, trained in a man-
869 ner similar to CLIP (Radford et al., 2021) with camera and text encoders to learn a shared feature
870 space. However, the performance of such an evaluator is closely tied to the quality and diversity of
871 its training data. Given the current limitations in large-scale, diverse text-camera datasets, an eval-
872 uator trained on such data may exhibit a distributional bias. This can, in turn, affect the objectivity
873 of the FCD and CS scores, particularly when assessing generations that fall outside the training dis-
874 tribution. Additionally, E.T. do not evaluate camera-human motion interaction. We therefore adapt
875 and refine the reference-free metrics from DanceCamera3D for a more objective assessment.
876877 **Rule-based Evaluation Metrics.** Following DanceCamera3D, we first adopt the Human Missing
878 Rate (HMR), which measures whether the human is captured by the camera in each frame. Second,
879 since high-quality trajectories are expected to be smooth and stable, we quantify camera smoothness
880 by computing the jerk (the third derivative of motion) of both translational and rotational compo-
881 nents; higher jerk values indicate greater shakiness. Finally, we refine the shot diversity metric
882 in DanceCamera3D. Their approach evaluates the on-screen scale of the projected human model,
883 which is view-invariant and thus unable to distinguish perspectives such as frontal vs. rear shots. To
884 address this, we employ a geometric strategy: based on the character’s visibility in each frame, we
885 compute the camera’s Euclidean distance and viewing angle relative to the character’s orientation.
886887 **MLLM-based evaluation.** Rule-based methods provide baseline evaluation but fail to capture
888 higher-level aspects such as cinematographic style diversity and text-camera consistency. To address
889 this, we employ advanced multimodal large models (e.g., Gemini 2.5 Pro) with task instructions and
890 orthographic trajectory visualizations (top-down, front, side) to interpret camera motion relative to
891 the character. For camera–text consistency, the model outputs a score from 0 (none) to 2 (perfect)
892 with justification, while for cinematographic style, it evaluates perspective, distance, and motion
893 type, using entropy to quantify diversity. Details are provided in the Appendix D.
894895 **User study.** We invited 12 researchers in computer vision–related fields to participate in our user
896 study. Their ages ranged from 21 to 30. All participants were informed of the purpose of the study
897 and provided consent prior to participation. The study design and procedures were conducted in
898 accordance with ethical standards to ensure the protection of participants’ rights and privacy. Our
899 user study consisted of two test sets: the E.T. test set with 21 samples and our own test set with
900 30 samples. In the questionnaire, we clearly explained the evaluation procedure and criteria to
901 the participants. Specifically, each question presented the textual description of the camera motion
902 along with three randomly ordered results generated by different methods. The evaluation criteria
903 included: (1) consistency between the camera trajectory and the textual instruction, (2) profes-
904 sionalism of the camera motion, and (3) the coherence between the camera motion and the human actions.
905 Each participant was asked to select the option they believed to be the best for each sample. We
906 then aggregated all responses and computed the preference rate for each method on each test set.
907 We provide an example of the user questionnaire in Table 13.
908909 **E DETAILS OF MLLM-BASED EVALUATION**
910911 Since there is currently a lack of automated metrics that can objectively evaluate the quality of tra-
912 jectory generation from a high-level perspective, we propose leveraging advanced MLLMs (e.g.,
913 Gemini 2.5 Pro) to assess text–camera consistency and cinematographic style diversity. We observe
914 that directly providing the model with a 2D video rendered from a 4D space containing both camera
915 trajectories and human poses makes it difficult for the model to fully comprehend the underlying
916 spatial relationships. To address this, we project the trajectories from three different viewpoints—
917 top-down, front, and side—to obtain multi-view representations. We explicitly mark the start and
918 end points of the trajectories, as well as their orientations, so that the model can incorporate this in-
919 formation when reasoning over the three-view inputs. Furthermore, we carefully design instruction
920 templates (Tables 6 and 7) to guide the model toward producing accurate and relevant evaluations.
921 Figure 10 illustrates several examples, with the rightmost column presenting the output results gen-
922 erated by Gemini 2.5 Pro.
923

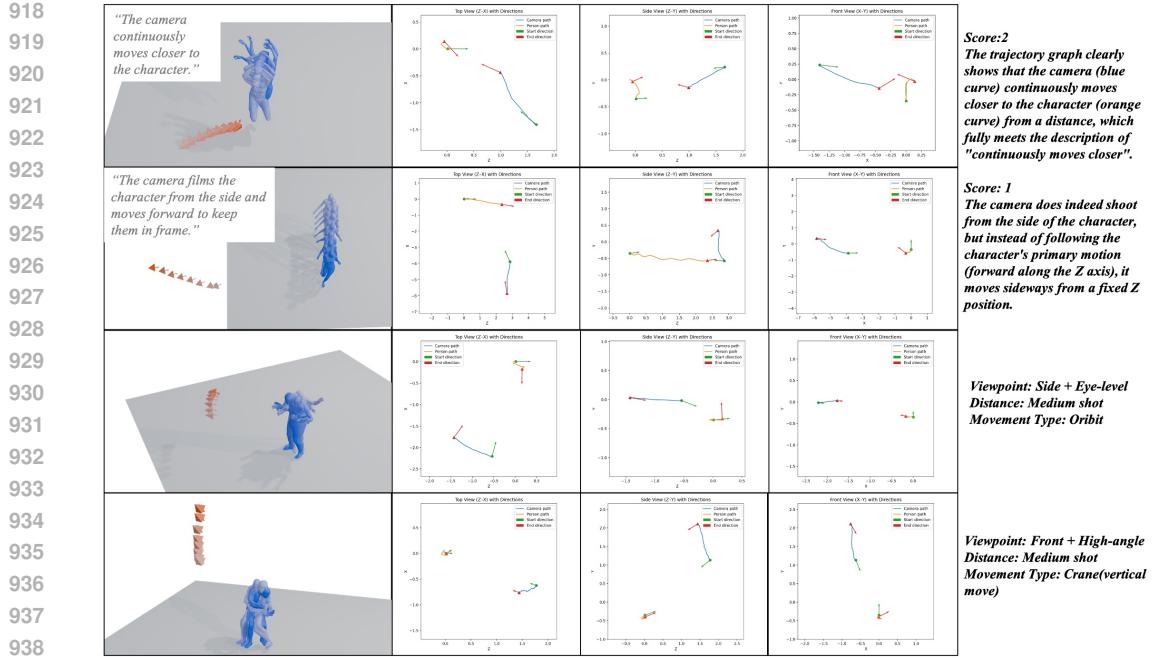


Figure 10: Examples of MLLM-based evaluation. Lines 1–2 assess text–camera consistency, while lines 3–4 evaluate the diversity of cinematographic styles. On the left, the textual input is paired with the corresponding 3D spatial visualization results. In the middle, the three-view projections are displayed, where both the tri-view images and the text serve as input data. On the right, the output generated by Gemini 2.5 Pro is presented.

To validate the reliability of this novel evaluation paradigm, we conducted a stability analysis by repeating the evaluation 10 times on the random 100 samples from Ours-240 test set. The results demonstrate the remarkable stability of our evaluation framework. Specifically, for the TCC metric, the mean evaluation score was 1.414, with a standard deviation (SD) of 0.082 and a coefficient of variation (CV) of 0.058. The CSD metric exhibited even greater stability, with a mean score of 0.646 (SD = 0.013, CV = 0.021). These exceptionally low variance metrics confirm that our MLLM-based evaluation is highly consistent and ensures the reproducibility of our reported results.

F COMPUTATIONAL EFFICIENCY ANALYSIS

We evaluate the computational efficiency of our framework, with detailed results on resource requirements and inference latency presented in Table 8. All experiments were conducted on a single NVIDIA A800 GPU, and the reported figures are an average of ten runs. The generated videos have a resolution of 672×384 , and both the output video and the predicted camera parameters consist of 77 frames.

Table 9 further details the camera prediction performance across various inference step configurations. For the main results reported throughout this paper, we use a 50-step configuration for both stages to ensure optimal quality. Since our framework is based on video diffusion models, existing acceleration techniques (Lin et al., 2025; Lv et al., 2024) developed for diffusion models can be directly integrated to reduce inference latency.

G ADDITIONAL ANALYSES AND VISUALIZATION RESULTS

G.1 COMPARISON WITH 3D CAMERA MOTION ESTIMATION

We highlight three key reasons for the necessity of training a Stage II model. First, existing approaches typically accept only videos or multiple images as input, without incorporating explicit

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Table 6: Instruction Template for Text–Camera Consistency Evaluation

Role

You are a senior expert in virtual cinematography system evaluation, specializing in analyzing camera trajectory diagrams and assessing their alignment with text prompts.

Objective

Your core task is to evaluate the alignment between the **actual camera behavior** and the **camera behavior described in the text prompt**.

Important Constraint: Your evaluation must be based **only** on whether the camera’s behavior (movement, rotation, relative position to the subject) matches the prompt. Do not evaluate whether the subject’s actions match the prompt. Even if the subject’s actions differ, as long as the camera follows the prompt’s requirements in interacting with the subject, a positive evaluation should be given. Only assess the “camera–prompt” consistency.

Input Format

You will receive two core inputs:

1. Triple-view Trajectory Images

A set of static images showing the complete trajectories of both the camera and the subject.

- **Views included:** Top view (Z–X), Front view (X–Y), Side view (Z–Y)

2. Legend interpretation:

- Start orientation: green arrows for initial orientation of camera/subject
- End orientation: red arrows for final orientation of camera/subject
- Subject trajectory: orange curve for subject’s path
- Camera trajectory: blue curve for camera’s path

2. Text Prompt

A description of the expected camera behavior. Examples:

- **Camera types:** push/pull, rotation, orbit, tracking, dolly, etc.
- **Camera–subject relation:** “Camera follows the character”, “Camera orbits around the character”.

Core Evaluation Criteria**1. Camera Movement Type Consistency**

Does the camera’s motion type match the description in the prompt?

*Example: If the prompt says “orbit”, does the camera circle around the subject? If the prompt says “follow”, does the camera track the subject’s movement?

2. Camera–Subject Interaction Consistency

Does the camera maintain the relationship or angle described in the prompt?

*Example: If the prompt says “follow from behind”, does the camera stay behind the subject? If the prompt says “zoom in during jump”, does this happen correctly?

3. Spatial Consistency

Are the camera’s direction, speed, and positioning logically consistent with the prompt?

*Example: If the prompt says “rotate to the left”, does the camera actually rotate left? If the prompt says “focus on the hand”, does the camera’s orientation reflect that?

Key Judgment Principles

1. The camera–subject viewpoint relationship should be inferred from the top view:

- Same orientation = camera behind subject
- Opposite orientation = camera in front
- Approximately perpendicular = camera on the side

2. Distance definition: close-up (< 2 m), medium shot (2–4 m), long shot (> 4 m).

3. Angle definition:

- Eye-level: height difference less than 0.5m
- High-angle: camera more than 1m above subject and facing negative y-axis direction
- Low-angle: camera more than 0.3m below subject and facing positive y-axis direction

Scoring Rubric

- 0 points: Camera behavior completely inconsistent with the prompt

- 1 point: Some aspects match, but others are missing or weakly related

- 2 points: Camera behavior fully matches the prompt in motion type, timing, and intention

Output Format

1. A single integer score: 0, 1, or 2

2. One concise sentence summarizing the reason for the score

human motion conditions, which often leads to scale inconsistencies. Second, conventional camera estimation methods usually recover only relative and normalized trajectories; aligning them with the reference human pose coordinate system requires complex and computationally expensive post-processing. Third, AI-generated videos often exhibit mismatches in geometry and texture, which

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Table 7: Instruction Template for Cinematographic Style Diversity

Role

You are a senior expert in virtual cinematography system evaluation, specializing in analyzing camera trajectory diagrams and identifying the type and characteristics of camera movements.

Objective

Your core task is to analyze the **type of camera movement**. You only need to output the movement categories, without explaining your reasoning process.

Input Format**Triple-view Trajectory Images**

A set of static images showing the complete trajectories of both the camera and the subject.

Views included: Top view (Z–X), Front view (X–Y), Side view (Z–Y)

Legend interpretation:

Start orientation: Green arrows represent the initial orientation of the camera/subject.

End orientation: Red arrows represent the final orientation of the camera/subject.

Subject trajectory: Orange curve represents the subject’s path.

Camera trajectory: Blue curve represents the camera’s path.

Classification Method

Summarize camera movements from three perspectives:

1. **Viewpoint:** front, side, back, low-angle, high-angle, eye-level. The first three and the last three can be combined to form a viewpoint description.

2. **Shot scale:** close-up (< 2 m), medium shot (2–4 m), long shot (> 4 m).

3. **Movement type:** push-in, pull-out, orbit, static, rotation, tracking (horizontal move), crane (vertical move).

4. Viewpoint definitions:

- Eye-level: height difference less than 0.5m.

- High-angle: camera more than 1m above the subject and oriented downward.

- Low-angle: camera more than 0.3m below the subject and oriented upward.

Output Format

Your output must contain only the following three lines, strictly in this format, with each item on its own line. Do not include any other explanations, titles, introductions, conclusions, or punctuation such as semicolons. Do not add extra spaces after the colon.

Format template:

Viewpoint:[viewpoint classification]

Distance:[distance classification]

Movement type:[movement type classification]

Valid output example:

Viewpoint:Front+High-angle

Distance:Close-up

Movement type:Pull-out

Table 8: Inference time and memory usage under different step settings. The reported results are an average of ten runs a single NVIDIA A800 GPU.

Setting	Stage I Time (s) ↓	Stage II Time (s) ↓	Stage I Memory (MB)	Stage II Memory (MB)
50 steps	31.60	16.20	15504	27290
25 steps	15.99	8.41	15504	27290
10 steps	6.39	3.66	15504	27290

significantly degrade the performance of feature-matching-based estimation algorithms (Li et al., 2025b; Zhang et al., 2024). This results in trajectory jitter, fragmented camera paths, and failures in scene reconstruction, as illustrated in Figure. 11.

G.2 EVALUATION ON OPEN-SOURCE T2V MODEL

Here, we present the results obtained using the open-source T2V model, Wan2.2-5B (Wan et al., 2025). Specifically, Table 10 details the performance on 4D human motion control, while Table 11 reports the results for viewpoint planning. The evaluation demonstrates that Ours (Wan-2.2-5B) achieves performance second only to our original setting. In the future, we plan to further enhance

1080

1081

Table 9: Quantitative results under different inference step settings.

Stage I & Stage II Steps	Rule-based Metrics					Reproject Acc	
	HMR \downarrow	Jerk_t \downarrow	Jerk_r \downarrow	Dist_t \uparrow	Dist_r \uparrow	MSE \downarrow	IoU \uparrow
Stage I 50step & Stage II 50step	0.018	0.003	0.001	1.415	0.529	0.158	0.338
Stage I 50step & Stage II 25step	0.019	0.003	0.001	1.416	0.528	0.164	0.340
Stage I 50step & Stage II 10step	0.021	0.004	0.002	1.388	0.517	0.165	0.329
Stage I 25step & Stage II 50step	0.026	0.003	0.001	1.394	0.527	0.188	0.277
Stage I 25step & Stage II 25step	0.026	0.003	0.001	1.387	0.525	0.188	0.279
Stage I 10step & Stage II 50step	0.025	0.003	0.001	1.347	0.536	0.195	0.273
Stage I 10step & Stage II 10step	0.027	0.004	0.002	1.349	0.534	0.194	0.269

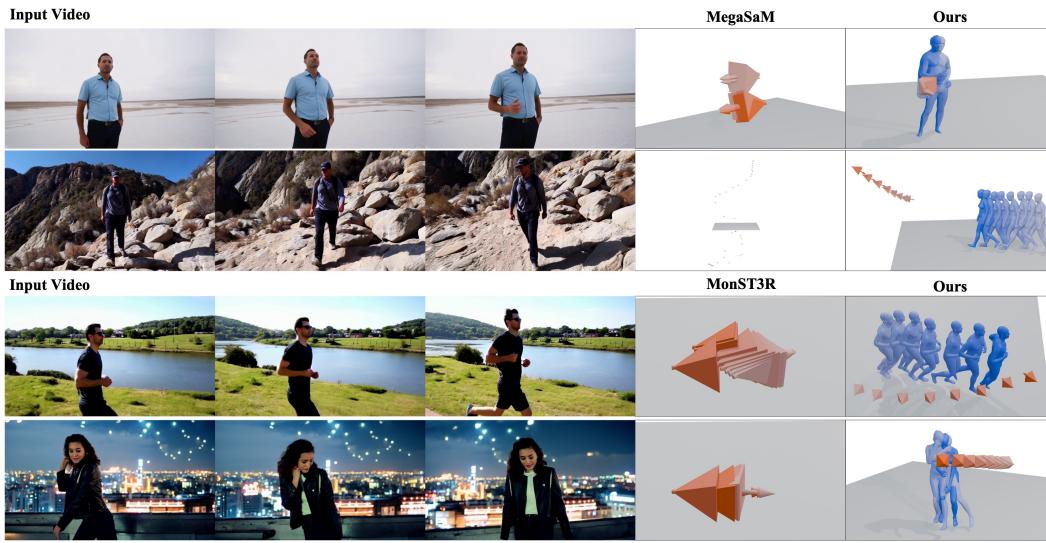


Figure 11: Comparison of camera estimation on AI-generated videos

1111

Table 10: Quantitative comparison for 4D human motion control on TikTok (dance domain) and our curated general domain testsets. Here, *Ours* (Wan-2.2-5B) denotes our results trained on the open-source Wan-2.2-5B model (Wan et al., 2025).

Method	TikTok (Dance Domain)		General Domain	
	WA-MPJPE \downarrow	PA-MPJPE \downarrow	WA-MPJPE \downarrow	PA-MPJPE \downarrow
MTVCrafter (CogVideoX-5B)	84.89	22.01	222.50	38.90
MTVCrafter (Wan-2.1-14B)	73.47	20.22	224.50	40.21
Ours (Internal model)	71.65	23.76	103.92	35.70
Ours (Wan-2.2-5B)	85.42	27.65	137.22	37.85

1122
1123 performance through more in-depth experimental exploration and by leveraging more advanced
1124 open-source video models.
1125

G.3 ABLATIONS ON MOTION FEATURES INJECTING MECHANISM

1128 To investigate the effectiveness of our proposed motion feature injection mechanism, we conduct
1129 ablation studies on three alternative designs, with the results presented in Table 12. The designs
1130 are as follows: 1)MMDiT-style, which utilizes separate branches for video and motion features, and
1131 concatenates their respective tokens for joint spatial attention computation; 2)CrossDiT-style, where
1132 human motion tokens are injected as the key and value matrices into the spatial attention module;
1133 and 3) 3D Motion Attention, which replaces our Spatial Motion Attention module with a full 3D
1134 attention mechanism. Our analysis leads to the following observations.

Figure 12: Additional ablation results on pipeline design.

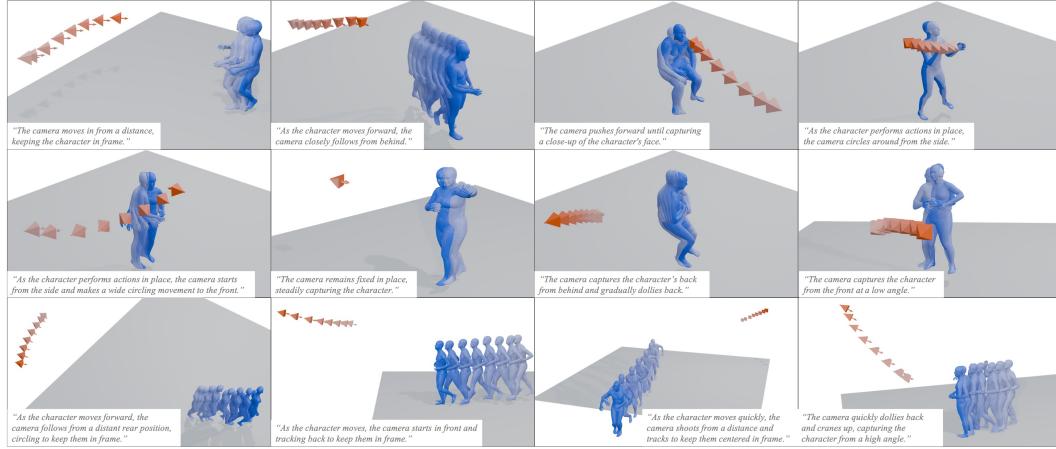


Figure 13: More visualization results of AdaViewPlanner, demonstrating the diversity of the generated trajectories and the model’s ability to follow camera text instructions.

First, the **MMDiT-style** approach achieves comparable performance to our method within the same training duration. However, it introduces larger number of trainable parameters, suggesting that it may require extended training to converge to its optimal state. Second, the **CrossDiT-style** variant exhibits inferior performance. We hypothesize that this is because concatenating motion tokens facilitates a more comprehensive attention computation, thereby enabling the model to better capture the intricacies of 3D human motion. This concatenation-based fusion strategy is also adopted by

1188
 1189 Table 11: Quantitative results on the E.T. testset and our curated testset. Here, *Ours* (Wan-2.2-5B)
 1190 denotes our results trained on the open-source Wan-2.2-5B model (Wan et al., 2025).

Method	Rule-based					MLLM-based	
	HMR \downarrow	Jerk _t \downarrow	Jerk _r \downarrow	Dist _t \uparrow	Dist _r \uparrow	TCC \uparrow	CSD \uparrow
<i>E.T. Testset</i>							
E.T.	0.064	0.001	0.026	0.538	0.540	0.850	0.608
DanceCam*	0.053	0.013	0.003	1.236	0.290	0.975	0.569
Ours (Internal model)	0.044	0.007	0.002	2.826	0.533	1.125	0.686
Ours (Wan-2.2-5B)	0.071	0.004	0.002	1.882	0.494	1.144	0.626
<i>Ours Testset</i>							
E.T.	0.048	0.001	0.029	0.700	0.225	0.790	0.623
DanceCam*	0.024	0.014	0.002	1.535	0.189	0.867	0.593
Ours (Internal model)	0.018	0.003	0.001	1.415	0.529	1.385	0.711
Ours (Wan-2.2-5B)	0.034	0.003	0.001	1.359	0.534	1.349	0.681

1200
 1201 Table 12: Ablations on motion features injecting mechanism.

Method	TikTok (Dance Domain)		General Domain	
	WA-MPJPE \downarrow	PA-MPJPE \downarrow	WA-MPJPE \downarrow	PA-MPJPE \downarrow
MMDiT-style	89.69	27.72	134.12	38.27
CrossDiT-style	127.02	32.07	206.84	41.62
3D Motion Attention	131.88	31.88	192.36	39.66
Ours	71.65	23.76	103.92	35.70

1217 prior works (Fu et al., 2024). Finally, the **3D Motion Attention** design compels the model to
 1218 implicitly learn the correspondence between video tokens and motion tokens across different frames.
 1219 This design significantly increases the learning difficulty. Given that the frame-wise correspondence
 1220 between motion and video is explicitly known in our problem setting, our proposed Spatial Motion
 1221 Attention is a more direct and effective design.

1222
 1223

G.4 MORE VISUALIZATION RESULTS

1224 Figure. 12 presents additional ablation results on pipeline design, validating the rationality of our
 1225 method. Fig. 13 shows the plausibility, diversity, and instruction consistency of the generated trajec-
 1226 tories. Figure. 14 and 15 showcases further complete results, demonstrating the advanced capability
 1227 of our approach in generating cinematic, diverse, and high-quality camera trajectories.

1228
 1229

H USE OF LARGE LANGUAGE MODELS

1230 During the preparation of this manuscript, we made use of advanced language models (e.g., GPT-5,
 1231 OpenAI, 2025) exclusively for editorial assistance. Their involvement was restricted to enhancing
 1232 wording, improving clarity, and harmonizing style across sections. They were not used for generat-
 1233 ing research questions, designing methodologies, interpreting results, or drawing conclusions. All
 1234 core ideas, experimental designs, and technical contributions are solely those of the authors. More-
 1235 over, every sentence edited with model support was carefully reviewed and approved by the human
 1236 co-authors.

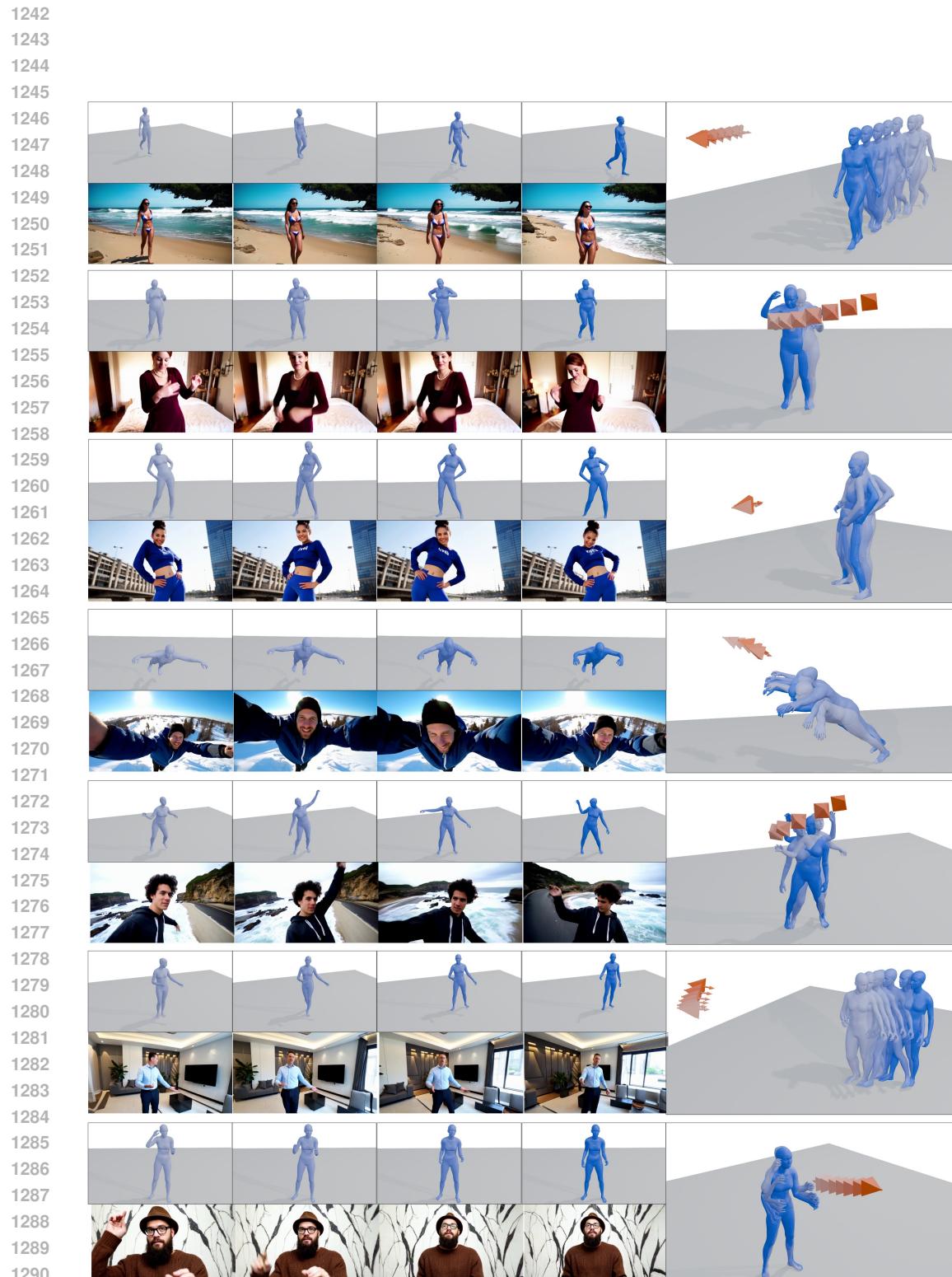


Figure 14: More visualization results

Figure 15: More visualization results

1350
1351
1352

Table 13: User Questionnaire Example

1353
1354
1355
1356
1357
1358
1359**USER STUDY: A COMPARATIVE EVALUATION OF TEXT-DRIVEN CAMERA
TRAJECTORY GENERATION FOR 4D SCENE**1360
1361
1362
1363**1. Introduction and Informed Consent**

Thank you for your interest in our study. This research aims to evaluate the performance of different AI models designed to generate camera trajectories for 4D scenes based on textual descriptions.

Your participation in this study is completely voluntary. You may withdraw at any time, for any reason, without penalty. The survey is expected to take approximately (e.g., 20–25 minutes) to complete.

All responses collected will be fully anonymous. We will not record any personally identifiable information. The aggregated, anonymized data will be used for academic research purposes only and may be published in a scientific paper. This study involves observing and evaluating short video clips and poses no anticipated risks.

By clicking “Proceed” to start the survey, you confirm that:

- You are 18 years of age or older.
- You have read and understood the information above.
- You voluntarily agree to participate in this study.

2. Task Description

In this study, you will be presented with a series of tasks. For each task, the goal is to evaluate an automatically generated camera trajectory based on a continuous 3D human motion and a text prompt describing the desired camera movement.

In each question, you will be presented with:

- **A Text Prompt:** A short sentence describing a specific type of camera movement (e.g., “A close-up shot focusing on the character’s face,” or “A dolly shot moving backward as the character moves”).
- **Three Video Results:** Three short, auto-playing video clips labeled as Video A, Video B, and Video C. These are generated by different methods and their order is randomized for each question.

In the videos:

- The **gray character model** represents the predefined human action.
- The **red wireframe box** represents the camera’s view frustum, visualizing the generated camera trajectory and field of view over time.

Your task: For each question, please watch the three videos and select the one you believe is the **best** result based on the evaluation criteria outlined below.

3. Evaluation Criteria

Please judge the results based on the following three aspects:

- **Consistency with Text Prompt:** How well does the generated camera trajectory match the textual description? Does it accurately perform the requested action (e.g., zoom, pan, follow)?
- **Professionalism & Cinematic Quality:** Does the camera movement appear professional, smooth, and visually appealing, as one might expect in a film?
- **Coordination with Human Action:** Is the camera movement well-coordinated with the character’s actions? Does it effectively frame the character, highlight key moments, and create a coherent and engaging viewing experience?

4. Sample Question Illustration**Question 1 / 51:**

Text Prompt: “An orbit shot around the character, starting from the front while keeping them centered.”

Results: Video A, Video B, Video C.

Question: “Which method produced the best result?”

Options:

- Option 1: Video A is the best.
- Option 2: Video B is the best.
- Option 3: Video C is the best.

1400
1401
1402
1403