
Diffusion Classifiers Understand Compositionality,
but Conditions Apply

Yujin Jeong∗
TU Darmstadt & hessian.AI

yujin.jeong@tu-darmstadt.de

Arnas Uselis∗
University of Tübingen

arnas.uselis@uni-tuebingen.de

Seong Joon Oh
University of Tübingen

Anna Rohrbach
TU Darmstadt & hessian.AI

Abstract

Understanding visual scenes is fundamental to human intelligence. While discrim-
inative models have significantly advanced computer vision, they often struggle
with compositional understanding. In contrast, recent generative text-to-image
diffusion models excel at synthesizing complex scenes, suggesting inherent com-
positional capabilities. Building on this, zero-shot diffusion classifiers have been
proposed to repurpose diffusion models for discriminative tasks. While prior work
offered promising results in discriminative compositional scenarios, these results
remain preliminary due to a small number of benchmarks and a relatively shallow
analysis of conditions under which the models succeed. To address this, we present
a comprehensive study of the discriminative capabilities of diffusion classifiers on
a wide range of compositional tasks. Specifically, our study covers three diffusion
models (SD 1.5, 2.0, and, for the first time, 3-m) spanning 10 datasets and over
30 tasks. Further, we shed light on the role that target dataset domains play in
respective performance; to isolate the domain effects, we introduce a new diag-
nostic benchmark SELF-BENCH comprised of images created by diffusion models
themselves. Finally, we explore the importance of timestep weighting and uncover
a relationship between domain gap and timestep sensitivity, particularly for SD3-
m. To sum up, diffusion classifiers understand compositionality, but conditions
apply! Code and dataset are available at https://github.com/eugene6923/
Diffusion-Classifiers-Compositionality.

Generation

Discrimination?

Finding I Finding II Finding III

Stable Diffusion

Generative models understand
what they can create (Self-Bench)

A box... to
the left of
a chair?

Stable Diffusion

Diffusion models don't outperform
CLIP on compositional task

A box to the
right of a chair

Timestep reweighting can help
address the domain gap

Stable Diffusion

A box to
the right of
a chair

A blue cube
and a yellow
sphere

timestepw
e
ig
h
t

A box to
the right of
a chair!

A box to the
right of a chair

w
e
ig
h
t

timestep

Discrimination

Figure 1: Overview of our findings. Finding I: Diffusion models can perform compositional discrimination
reasonably on real images, but underperform CLIP, especially on counting tasks (§5.2). Finding II: Diffusion
models can understand (through classification) the images they can generate (§5.3). Finding III: Timestep
reweighting improves discrimination by reducing the domain gap between generated and real data (§5.4).

∗Equal contribution

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.

https://github.com/eugene6923/Diffusion-Classifiers-Compositionality
https://github.com/eugene6923/Diffusion-Classifiers-Compositionality

1 Introduction

Models like Stable Diffusion [8, 41] have been trained on billions of image-text pairs and can generate
highly detailed and coherent images that match textual descriptions. Their ever-increasing ability to
generate complex compositional scenes [17, 11] suggests they have developed a strong understanding
of image-text relationships and can effectively align visual and textual concepts. Diffusion models
are trained with pixel-wise supervision, so they may be less prone to learn shortcuts, compared to
discriminatively-trained models like CLIP [38], which often are insensitive to word order [63, 16, 7],
struggle with spatial relationships, counting [50, 34], and compositions [49, 27, 52, 53]. It is thus
natural to ask: can we transfer the compositional capabilities of generative models to discriminative
compositional tasks?

There is growing interest in leveraging the strong generative capabilities of diffusion models for
broader discriminative tasks such as classification, shape-texture bias, and depth estimation. Two
main approaches have emerged: one line of work treats diffusion models as feature extractors, training
task-specific classifiers in a supervised manner [64, 46]. The other approach, known as Diffusion
Classifiers, repurposes diffusion models for zero-shot classification using their original training
objective [29, 28, 6, 13, 20]. Notably, the latter has outperformed CLIP on compositional benchmarks
like CLEVR [23] and Winoground [49], which require reasoning over multiple objects and attributes.
However, existing studies are limited in scope, often relying on a small number of benchmarks and
lacking a systematic analysis.

A recent work, the Generative AI Paradox [58], explores a key open question: whether strong
generation implies strong discrimination. It shows that even if the model can generate, it may not
understand, highlighting the disconnect between generative and discriminative capabilities. However,
this analysis involves separate models for generation (e.g., Midjourney [19]) and discrimination (e.g.,
CLIP [38], OpenCLIP [18]) in image classification scenarios, making it difficult to directly assess
the relationship between the two. In contrast, diffusion classifiers offer a direct way of probing the
generative-discriminative connection by using the same model for both generation and discrimination.

To this end, we formulate three hypotheses to understand when and why Diffusion Classifiers succeed
or fail, focusing on: i) diverse, large-scale compositional settings, ii) visual domain gap, and iii) the
effect of different timesteps on classification. Our corresponding findings are illustrated in Figure 1.

Hypothesis 1: Diffusion models’ discriminative compositional abilities are better than CLIP’s.
This is inspired by the findings in prior works. We conduct an extensive evaluation with three
diffusion models, including a new SD3-m [8] model, on ten compositional benchmarks (covering 33
subset tasks — a scale not previously explored in this context) spanning four broad task categories
(Object, Attribute, Position, and Counting). We find that diffusion models often outperform CLIP-
based discriminative models, particularly in reasoning over spatial relations. However, they also
exhibit notable weaknesses, e.g., in counting tasks. Interestingly, SD3-m, despite superior generative
compositionality, achieves lower discriminative accuracy (39%) compared to earlier versions (43%)
in our analysis. We shed light on this in the following.

Hypothesis 2: Diffusion models understand (through classification) what they generate. To
explore the relationship between diffusion models’ generative and discriminative abilities, we in-
troduce SELF-BENCH, a diagnostic benchmark consisting of model-generated images. The idea is
to isolate the image domain and assess the models’ ability to understand images most “familiar” to
the model. We find that diffusion classifiers perform well “in-domain” (i.e., when evaluated on data
generated by the same model). However, their “cross-domain” performance (i.e., on data generated
by a different diffusion model) drops significantly, especially for SD3-m. This highlights the domain
gap (e.g., data distribution) as one of the critical factors. In in-domain scenarios, we observe a
positive correlation between generative and discriminative compositional performance, suggesting
that stronger generative models can transfer their compositional knowledge to discrimination—but
only when they can generate the target domain.

Hypothesis 3: The domain gap can be mitigated by timestep weighting. Lastly, we investigate
how diffusion timesteps impact discriminative performance by optimizing timestep weights for
downstream tasks. Prior work has explored how diffusion models generate images through a structured
progression across timesteps [30, 55, 26, 65, 56]. However, in diffusion classifiers, either uniform
timesteps or fixed timestep weightings are typically used across all datasets and models—an area
that remains underexplored. In contrast, we find that SD3-m is particularly sensitive to timestep

2

selection. Our results show that even low-shot timestep tuning (using just 5% of the target dataset can
significantly mitigate the performance drop of SD3-m on real-world compositional benchmarks). We
hypothesize that SD3-m’s timestep sensitivity is closely linked to its susceptibility to the domain gap.
To further examine this relationship, we incorporate CLIP-based image encoders to quantify visual
similarity between domains, and analyze how it correlates with optimal timestep weighting. We find
that timestep weighting is especially effective in scenarios with large domain gaps.

2 Related work
Diffusion models. Generative models have demonstrated impressive performance in producing
realistic images [39, 60, 5, 61], videos [4, 66, 21], and audio [9, 32, 22]. In particular, text-to-image
diffusion models [15] iteratively refine images conditioning on text prompts by adding and removing
noise, achieving remarkable quality. A widely used open-source example is Stable Diffusion (SD)
[41]. Earlier SD versions [41] are based on a UNet [42] backbone, incorporating ResNet blocks [12]
and attention mechanisms [54]. With the rise of transformer-based designs [54], the latest Stable
Diffusion 3 series [8] adopts this architecture, further boosting performance. It also introduces new
noise sampling strategies for training Rectified Flow models [33, 1, 31]. Our analysis focuses on
Stable Diffusion versions 1.5, 2.0, and 3-m, examining their architectural evolution and performance
across scales.

Compositionality in text-to-image models. Text-to-image generation models, such as diffusion
models, are hypothesized to have the capability to generate combinations of objects that were not
present in the training data [49, 35]. Later versions of diffusion models, such as Stable Diffusion 3,
exhibit improved generative capabilities and can produce scenes with greater compositional complex-
ity [8, 59]. Recent benchmarks, such as CompBench [17] and GenEval [11], confirm this trend. In
this work, we explore diffusion models to gain a deeper understanding of compositionality across
various tasks, using existing compositional discriminative benchmarks and our newly introduced
SELF-BENCH, which consists of images generated by the diffusion models themselves.

Diffusion classifiers. Recent studies have explored zero-shot classification using diffusion models’
denoising process directly [29, 6, 28]. Li et al. [29] introduce the Diffusion Classifier with an
adaptive evaluation strategy, demonstrating superiority over CLIP RN-50 [38]. Clark et al. [6]
propose a universal timestep weighting function, showing effectiveness on attribute binding tasks
(e.g., CLEVR [23]). Diffusion-ITM [28] adapts diffusion models for image-text matching, enabling
both text-to-image and image-to-text retrieval, and introduces GDBench—a benchmark with seven
complex vision-and-language tasks—where it outperforms CLIP baselines. These methods share a
common foundation but differ in weighting and sampling strategies. Beyond zero-shot classification,
few-shot approaches [62] leveraging diffusion models have also been proposed. Discffusion [13]
enhances discrimination using cross-attention maps and LSE Pooling [3], focusing on few-shot
learning but applicable to zero-shot settings as well. More recently, Gaussian Diffusion Classifier [37]
was proposed as a one-shot or zero-shot method, using features from DINOv2 to improve efficiency.
In this work, we primarily study the vanilla zero-shot Diffusion Classifier [29] to better understand
its discriminative capabilities.

3 Methodology
In this section, we first discuss the prerequisites for diffusion classifiers. We then detail our approach
to turning Stable Diffusion 3-m [8] into a classifier; we are the first to explore this, to the best of
our knowledge. Last, we describe our approach to learning the optimal weighting function for the
diffusion classifiers on given test data.

Given a dataset DN = {(x1, c1), . . . , (xn, cN)} of n images, where each image xi ∈ RH×W×3

is labeled with a class ci ∈ {1, . . . ,K}, we aim to learn a classifier that can effectively handle
compositional classification tasks. In practice, we work with latent representations z ∈ Rd by
encoding the images using a pretrained autoencoder model.

3.1 Preliminaries: diffusion classifiers

Diffusion models [48, 15] are generative models that learn to gradually denoise by reversing a forward
diffusion process. For an image-text pair (x, c), where x is first encoded into a latent representation z

3

using a pretrained autoencoder, the core training objective for diffusion models is

L(z, c) = Et,ϵ

[
wt

∥∥∥ϵ− ϵΘ(zt, t, c)
∥∥∥2], (1)

where wt are timestep weights, ϵΘ is a neural network that predicts the noise ϵ added to the latent
z at timestep t ∈ T , and c is a conditioning text prompt. Unless stated otherwise we draw t ∼
Uniform([0, 1]). This loss is related to the ELBO of the conditional likelihood p(z|y), where y is the
class label, which allows us to use diffusion models for classification, as shown in [29, 28, 6]:

ỹ = argmax
yk

p(y = yk | z) = argmax
yk

log p(z | y = yk),

where the likelihood is estimated using diffusion models through ELBO, approximated by Eq. (1),
with conditioning c representing specific class label yk. In practice, we approximate the expectation in
Eq. (1) via Monte Carlo sampling using Ts timesteps by considering fixed timesteps and noises. That
is, we assume a fixed set S = {(tj , ϵj)}Ts

j=1, tj := j/Ts with which we compute the expectation.

Learning the weighting function. In diffusion models, different timesteps capture varying levels
of information [30, 55]. This hierarchical information processing is crucial for compositional tasks,
where both global structure (e.g., object relationships) and local details (e.g., attributes) matter.

Recently, [6] has explored universal timestep weighting in discriminative (yet non-compositional)
settings. While we adopt several components from their approach, our setting and low-shot smoothing
strategy differ. They rely on computationally expensive, high-variance classification estimates. For
instance, they assume 100 trials for a single image-text pair. In contrast, we use fixed timesteps and
noise to reduce variance in prediction [29] when computing the reconstruction target in Equation (1).
We provide details in A.2.

The weighting function wt can be parameterized in two ways: (a) a piecewise constant function
wt = v⌊t×Ts⌋, t ∈ S0, where we learn individual weights v0, . . . , vTs−1, and S0 denotes the set of
timesteps; (b) alternatively, to enforce smoothness, as a p-degree polynomial wt =

∑p
i=0 ait

i, t ∈
S0; (a) is generally used for achieving the upper-bound performance. However, in the low-shot
learning setting (5% of the full training set), we use (b) to prevent overfitting.

3.2 SD3-m as a classifier

SD3-m is a rectified flow model [33, 1] trained with a conditional flow matching (CFM) loss [31],
which differs from the standard diffusion objectives used in SD1.5 and SD2.0. As a result, we cannot
directly apply the same classifier objective used in earlier versions. By reparameterizing the CFM
objective as a noise-prediction loss (see, e.g., [8]), we can obtain

LRF(x0) = Et,ϵ[wt ∥ϵΘ(zt, t, c)− ϵ∥2] (2)

Using this formulation, we can use SD3 as classifiers, despite its different underlying architecture. The
only difference lies in the weighting function wt, which for SD3 follows a logit-normal distribution
rather than the uniform weighting used in SD1.5/2.0. However, we empirically find that uniform
weighting performs better for classification. Details are given in Section A.

4 Self-Bench: a diagnostic benchmark

As shown in Figure 2 (left), existing benchmarks are diverse in terms of domains. However, we
empirically observe that the generation results of diffusion models are not as diverse, having a
preferred “native” style. For example, in SD3-m, objects are usually well-centered/focused and have
a glossy aesthetic touch; images are in high resolution (see Figure 2, right). Additional examples in
Figure D.3 (Supplemental) further support that SD3-m consistently produces images with a similar
style.

This raises the question: can diffusion classifiers understand images from different domains in
discriminative scenarios? (Note that we use the word “domain” in a fairly relaxed sense.) Moreover,
what is the best possible performance on in-domain data? This relates to our Hypothesis 2, that the
domain plays a critical role in discriminative performance.

To answer these questions, we try to isolate the domain effect and compare the performance across
in-domain and out-of-domain scenarios. Here, we posit that if a diffusion model can generate images

4

Figure 2: Examples of standard benchmarks vs. SELF-BENCH. Each benchmark is categorized into four
broad task groups: Object, Attribute, Position, and Counting. Each group consists of one or more tasks, and we
present one example per task for illustration. We indicate positive / negative captions, where the task involves
matching the positive caption with its corresponding image. Notably, standard benchmarks and SELF-BENCH
feature domain distinctions, incorporating the factors like style, resolution, and object scale.

of a certain type, it can also discriminate them. Therefore, we define in-domain as the data that
diffusion models can generate. Namely, we propose SELF-BENCH, a benchmark for evaluating
diffusion classifiers on diffusion models’ own generated data.

Diffusion models

VAE

"A parking meter left of a teddy bear"

"A parking meter left of a teddy bear"

"A parking meter right of a teddy bear"

"A parking meter above a teddy bear"

"A parking meter below a teddy bear"

ε ~N(0,I)

wt ||ε - εθ(zt,t,c)||2

ε ~N(0,I)

{

x0

xT

C

C1
C2
C3
C4

Classification error

sample
t ~[1, T]

text
encoder

text
encoder

generation
discrimination

+

position

position

counting colorscolor attributesingle object two objects

Figure 3: Diagnosing with SELF-BENCH. (i) Using
Geneval’s prompts from six categories, generate images. (ii)
For each generated image, create discriminative tasks within
its type from the prompts used in the generation process. (iii)
Given the generated images (filtered by humans) and the dis-
criminative tasks, benchmark the diffusion classifier.

Diagnosing with SELF-BENCH. We con-
struct and evaluate the benchmark as fol-
lows (see Figure 3):
1. Prompt collection. We use text prompts
from GenEval [11], a benchmark for com-
positional generation. GenEval includes 80
object classes and six task types: Color,
Color Attribution, Counting, Single Ob-
ject2, Two Objects, and Position.
2. Image generation. For each prompt, we
generate four images using SD1.5, SD2.0,
and SD3-m (with guidance scale 9.0). We
manually filter out failed generations.
3. Discriminative prompt construction.
For each image, we keep the original gen-
eration prompt as the positive and create
negative prompts. For example, for the Po-
sition task, if the original prompt is “a park-
ing meter left of a teddy bear,” we construct
three additional negative prompts using
other predefined spatial relations (“right of,”
“above,” and “below”).
4. Evaluation. We evaluate how well diffusion classifiers can match generated images with the
correct prompts among distractors.

Table 1: SELF-BENCH Statistics: For each task, we show the
number of images in Full (F) and Correct (C) sets.
Task Single Obj. Two Obj. Colors Color Attrib. Position Counting

Filter F C F C F C F C F C F C

SD1.5 320 271 396 105 376 219 400 18 400 6 320 98
SD2.0 320 271 396 129 376 263 400 36 400 19 320 111
SD3-m 320 314 396 306 376 314 400 252 400 113 320 230

Total 960 856 1188 540 1128 796 1200 306 1200 138 960 439

Filtering. The generation process may
produce failures, such as ambiguous
(e.g., with over half of an object miss-
ing or mixed colors) or incorrect images.
Thus, we define two sets: Full, contain-
ing all generated images, and Correct,
the filtered high-quality subset. Three
human annotators evaluate each image,

2Although Single Object is not traditionally considered compositional, we follow GenEval’s definition, which
includes it as part of a complexity spectrum.

5

and only samples approved by all are deemed Correct. Table 1 reports the number of images in both
sets. The ratio of Correct images varies notably across models and tasks.

In-domain and cross-domain settings in SELF-BENCH. We define in-domain as the setting where
we evaluate a diffusion classifier on images the same diffusion model generated. Conversely, cross-
domain refers to images produced by other models from the diffusion family. We define generation
accuracy as #Correct/#Full, where # denotes the number of images in each set. We primarily use
the Correct dataset in further analysis.

5 Experiments
As mentioned in the Introduction, we aim to investigate three hypotheses. In Section 5.1, we describe
the general experimental setup. Section 5.2 (Hypothesis 1) presents a comprehensive evaluation
across ten compositional benchmarks covering 33 tasks using three diffusion models, including
the new Stable Diffusion 3-m. Section 5.3 (Hypothesis 2) uses our SELF-BENCH benchmark to
explore the relationship between generative and discriminative abilities and the role of image domain.
Section 5.4 (Hypothesis 3) examines how diffusion timesteps influence discriminative performance.

5.1 Experimental setting

Evaluation settings. We consider two approaches to turn generative diffusion models into dis-
criminative models: (i) Diffusion Classifier [29] and (ii) Discffusion [13] (see Section A.3 of the
Supplemental). However, as shown in Figure A.1 of the Supplemental, Discffusion performs signifi-
cantly worse than Diffusion Classifiers on SD1.5 and comparably on SD 2.0 and SD3-m. Therefore,
we primarily focus on Diffusion Classifiers [29] in our analysis.

Stable Diffusion baselines. For the evaluation of diffusion classifiers, we use three versions of Stable
Diffusion models: SD1.5, SD2.0 [41], and SD3-m [8]; each new version increases the number of
parameters. We selected the baselines based on specific criteria, which are detailed in Section C.1 of
the Supplemental. Although we also considered distilled variants of diffusion models (e.g., SDXL-
Turbo [45]), we excluded them from our main evaluation due to their architectural and generative
differences. Additional analysis is provided in Section E.2 of the Supplemental. For SD1.5 and SD2.0,
we use the Euler Discrete scheduler [25] and uniformly sample the timesteps. For SD3-m, we use
the Flow Matching EulerDiscrete scheduler [8] for flow matching diffusions, which was designed
specifically for the SD3 series. We sample 30 timesteps from each model uniformly, following [13].
(The effect of different numbers of timesteps is discussed in Table B.2 in the Supplemental.)

CLIP baselines. We use vanilla CLIP models as key baselines for comparison on discriminative tasks.
We use five different versions of CLIP models: RN50x64, ViT-B/32, ViT/L14, ViT/H14, and ViT/g14.
We follow OpenAI’s implementation for the first three: RN50x64, ViT/B32, and ViT/L14 [38]. On
the other hand, we follow OpenCLIP’s implementation for ViT-H/14 and ViT-g/14 [18]. Where
appropriate, we also report SigLIP and SigLIP2 for completeness, but their behavior closely mirrors
that of CLIP.

Metrics. The benchmarks vary in structure. Some present paired image-text inputs (i.e., two images
and two prompts), while others use a single image with multiple candidate prompts. Across all setups,
we primarily evaluate using image-to-text retrieval accuracy, which measures whether the model
assigns the highest score to the correct prompt given an image. For paired settings, we compute
retrieval accuracy based on whether the matching image-prompt pairs are correctly ranked relative to
distractors. Further details on task-specific evaluation protocols are provided in Section C.2.

5.2 Scaling evaluation to ten benchmarks

Krojer et al. [28] highlight a counterintuitive finding: more capable generative models may perform
worse on discriminative tasks. However, their analysis does not include compositional benchmarks.
To address this gap, our evaluation includes Stable Diffusion 3 [8], which is very capable in terms
of compositional generation. We hypothesize that diffusion models with stronger compositional
generation capabilities are more effective on compositional discriminative tasks.

Existing works have explored a limited set of compositional benchmarks (e.g., Winoground [49],
ARO [63], CLEVR [23]), demonstrating the strengths of diffusion models compared to CLIP. How-
ever, compositional tasks span a broad range of challenges, and it remains unclear whether these

6

findings generalize across diverse compositional scenarios. To address this, we expand our evaluation
to ten complex compositional benchmarks.

Benchmarks. Our analysis incorporates ten benchmarks: Vismin [2], EQBench [57], MMVP [50],
CLEVR [23], Whatsup [24], Spec [36], ARO [63], Sugarcrepe [16], COLA [40], and
Winoground [49]. Each benchmark contains different tasks. For example, Vismin includes tasks
related to Object, Attribute, Position, and Counting, whereas COLA is focused on Attribute tasks.
The left block in Figure 2 presents examples of these benchmarks. Further details on how the tasks
are classified within our compositional task categories are provided in Table C.1 in the Supplemental.
In total, we analyze 33 tasks in our main study.

Attribute Counting Object Position

A
cc

u
ra

cy
 (

%
)

66
56

74

32

62

29

66

33

67

22

69

34

58

16

50 42

SD 1.5Best CLIP SD 2.0 SD 3-m

Figure 4: Evaluating compositional generalization across
different categories. The bars represent average classification
accuracies across all tasks within each category. Notably, SD3-
m does not generally outperform other Stable Diffusion models
in most benchmarks, and CLIP usually outperforms diffusion
models.

Results. Figure 4 shows the average
performance of diffusion classifiers on
the compositional benchmarks (see Fig-
ure E.1 in the Supplemental for the com-
plete results).3 For the Position task,
SD3-m performs the best compared to
other diffusion models and CLIP mod-
els. However, in other tasks, CLIP mod-
els usually show better performance
than diffusion classifiers, contrary to the
findings of previous works [29, 6]. Sim-
ilar results hold for SigLIP (see E.7 in Appendix). Surprisingly, among diffusion classifiers, SD3-m
is not the best; often SD1.5 or SD2.0 models show better results. These results motivate us to deepen
our analysis of when and why diffusion classifiers may underperform.

Takeaway hypothesis 1: Diffusion classifiers excel in spatial position tasks, perform on par with
CLIP in “complex” attribute tasks, but underperform in object recognition and counting tasks.
Thus, Hypothesis 1 is only partially supported. Additionally, a more capable diffusion model
(SD3-m) does not necessarily perform better on compositional discriminative tasks than earlier
models (SD1.5, SD2.0).

5.3 Studying domain effects via Self-Bench

Single Object Two Objects Colors Color
Attribution

Position CountingA
cc

u
ra

cy
 (

%
)

98
69

93

56 49
65

100 90 98
83

67 7685

27
58

4 2
31

Single Object Two Objects Colors Position CountingA
cc

u
ra

cy
 (

%
) 100

82
97

70 63
78

100 98 98 88 84 9585

34

70

9 5
35

Single Object Two Objects Colors Position CountingA
cc

u
ra

cy
 (

%
) 100 98 97 91

72
85

100 98 98 95 89 9198
77 84

63

28

72

SD1 SD2 SD3

0.96

0.98

1.00
Single

SD1 SD2 SD3
0.90

0.95

1.00
Two

SD1 SD2 SD3

0.94

0.96

0.98

1.00
Colors

SD1 SD2 SD3

0.85

0.90

0.95

1.00
Color_Attr

SD1 SD2 SD3

0.70

0.80

0.90

1.00
Position

SD1 SD2 SD3

0.80

0.90

1.00
Counting

0.85

0.90

0.95

0.4

0.6

0.6

0.7

0.8

0.2

0.4

0.6

0.1

0.2

0.4

0.6

Full Correct GenerationSD1.5

SD2.0

SD3-m
Color

Attribution

Color
Attribution

A
cc

ru
a
cy

Figure 5: SELF-BENCH In-domain performance. (Top three
plots) Each row represents the classification accuracy of a diffu-
sion classifier from a specific SD model when evaluated on its
own generated data. (Bottom) A positive correlation is observed
between generative and discriminative performance. Left axis:
discrimination; right axis: generation accuracy.

Here, we take a closer look at domain
gap as a possible factor.

In-domain evaluation. First, we exam-
ine how diffusion classifiers behave in-
domain, which may serve as an upper-
bound performance estimate, as domain
effects are isolated. As shown in Figure 5,
they perform better on Correct (blue
bars) than on Full (bright yellow bars)
samples. This indicates that the classi-
fiers do not simply choose prompts used
for generation; rather, they indeed distin-
guish between the correct and incorrect
prompts.

Moreover, we observe that generation ac-
curacy and discrimination accuracy are
positively correlated, contrary to what we
saw in other benchmarks in Section 5.2.
Specifically, we note that generation ac-
curacy (pink bar in Figure 5) increases
from SD1.5 to SD3-m, and the discrimination accuracies in both the Full and Correct categories
also rise nearly in parallel from SD1.5 to SD3-m. The correlation coefficient between generation and

3Tables E.1, E.2, E.3, E.4, E.5, E.6, E.7, E.8, E.9 and E.10 report the quantitative results for all benchmarks
used in our evaluation.

7

Correct discrimination accuracy is 0.77. The results suggest that in-domain generation accuracy
and discrimination accuracy appear to be positively correlated. The comparison with CLIP is in
Figure E.2a of Appendix.

Comparison In-Domain vs. Cross-Domain. Next, we focus on comparing in-domain and cross-
domain performance to judge how well models generalize across different domains.

0
20
40
60

Ac
cu

ra
cy

Dr
op

 (%
p)

Colors

13 10 13

Color attr.

39
29

51

Counting

17
38 31

Position

38 41 47

Single obj.
0 1

16

Two objs.
2 9

53
SD1.5 SD2.0 SD3-m

Figure 6: SELF-BENCH: Cross-domain performance degra-
dation. The bars represent average drop rate between in-domain
and cross-domain evaluation, averaged over different cross-
domain settings. We observe significant accuracy drops when
evaluating models on cross-domain data. SD3-m shows the most
severe degradation, with up to 38% accuracy loss in two-object
tasks and 33-40% drops in color and spatial tasks.

To quantify this, we measure the
accuracy drop in models tested
on other domains vs. their in-
domain SELF-BENCH accuracy,
defined as ∆A(model, domain) =
Ain(model, domain) −
Across(model, domain). The differ-
ences are averaged across both other
domains.

Figure 6 illustrates the average accu-
racy drop when moving from in-domain
to cross-domain evaluation on SELF-
BENCH. We observe accuracy degradation across all tasks, with SD3-m showing the most drop.
While part of the performance gap may be due to task-specific weaknesses in each model, we assume
the domain gaps, such as different data distribution, also play a key role in this degradation. Full
results can be found in Figure E.7 in the Appendix.

Takeaway hypothesis 2: Diffusion classifiers perform well in-domain, but their accuracy drops
significantly in cross-domain settings, highlighting the strong influence of domain shifts.

5.4 Timestep weighting effects

Previous works have shown that diffusion models generate images from coarse to fine details over
timesteps [30, 55]. However, in classification settings, it is still unclear how different noise levels (i.e.,
timesteps) affect performance across tasks (e.g., object recognition vs. attribute binding) or different
domains (e.g., image style). Diffusion classifiers typically use uniform timestep weighting [29, 28] or
a fixed timestep weighting scheme (e.g., wt = exp(−7t)) [6, 20] across all models (e.g., Imagen [44]
and SD). In generation, however, recent works have shown that non-uniform timestep sampling can
substantially affect sample quality and training dynamics [26, 65, 56].

We hypothesize that neither strategy is universally optimal (see ablation studies of uniform weighting
and fixed timestep weighting in Sec. B.3 in the Supplemental) and that timestep weighting should be
adapted to the model and task differently. Here, we investigate how different timesteps contribute
to classification decisions. (Figure 10 in the Supplemental provides an intuitive explanation of why
timesteps matter from a generative perspective.)

0.00 0.25 0.50 0.75 1.00
Timestep

0.0

0.5

Ac
cu

ra
cy

Single object

0.00 0.25 0.50 0.75 1.00
Timestep

Two objects

0.00 0.25 0.50 0.75 1.00
Timestep

Counting

SD2 model, SD3 generations SD3 model, SD2 generations

Figure 7: SELF-BENCH: Single-timestep reconstruction er-
ror and classification accuracy. While SD2.0 maintains good
performance on SD3-m’s generations, SD3-m exhibits near-zero
accuracy for the majority of initial timesteps on SD2.0’s genera-
tions, particularly for object recognition tasks.

Important timesteps vary by task and
model, and SD3 is especially sensi-
tive. Figure 7 illustrates the timestep-
wise classification accuracy. In this set-
ting, the SD2 and SD3-m models are
evaluated on some cross-domain SELF-
BENCH tasks. Interestingly, while all
timesteps yield non-zero accuracy for
SD2, more than 50% of timesteps re-
sult in zero accuracy for SD3-m when
evaluated on SD2.0 generations. This
highlights that SD3-m is significantly more sensitive to timestep choice than SD2.0. A key observa-
tion is that different timesteps contribute unequally to classification performance, depending on the
model and task.

Reweighted SD3 performs best in real-world benchmarks. Since we know the optimal timestep is
different based on the model and the task, we assess the applicability of our approach to real-world

8

Ac
cu

ra
cy

 (%
) Whatsup A

27
28

31
27

42

30

Whatsup B

32
32

29
29

50

46

COCO QA

47

42

48

43

63

59

VG QA

49

44

47
46

58

53

CLEVR spatial

48
51

50

48

79

63

Sugar obj.
86

85

86

86

80

76

Sugar att.

73

71

73

74

71

70

CLEVR bind.

79

70

92

84

98

63

SPEC count.

22
20

25
25

25
20

0 0.33 0.67 1
Timestep

W
ei

gh
t

Whatsup A

0 0.33 0.67 1
Timestep

Sugar obj.

0 0.33 0.67 1
Timestep

CLEVR spatial

0 0.33 0.67 1
Timestep

CLEVR bind.

SD1.5 SD2.0 SD3-m Reweighted

Figure 8: Low-shot timestep reweighting is effective in real-world benchmarks. Left: Accuracy gains on
diverse compositional tasks achieved by reweighting diffusion timesteps for Stable Diffusion variants (SD1.5,
SD2.0, SD3-m). Reweighted models consistently outperform the baseline; the gains are most pronounced for
the SD3-m model. The numbers above the bars indicate the scores after reweighting, while the numbers inside
the bars show the original scores. Positive deltas are highlighted using the reweighted color. Right: Learned
timestep weighting schemes indicating task-dependent emphasis on specific diffusion steps (early, middle, or
late), demonstrating the importance of tailoring timestep selection to the task structure.

scenarios; we also follow Sec. 3.1, but assume only 5% of the data is used for training and 5%
for validation, and we report test results. Evaluating our low-shot learning approach on standard
benchmarks (Figure 8, left), we find that reweighted SD3-m consistently outperforms both baseline
models and their reweighted variants. The improvements are substantial across diverse tasks: 98% on
CLEVR binding (vs. 63% baseline), and 42% on WhatsupA spatial task (vs. 30% baseline). Learned
weight curves (Figure 8) exhibit diverse patterns that vary depending on the model and task, further
underscoring the need for task-specific timestep optimization. Additionally, we find that SD1.5 and
SD2.0 do not significantly benefit from timestep weighting. We hypothesize that SD1.5 and SD2.0
perform near-optimally with uniform weighting, while SD3-m may suppress certain timesteps due to
training on a smaller, more filtered, and human-aligned dataset than LAION-5B [47].

CLIP Distance (Domain Gap)

 A
cc

ur
ac

y
(%

)

SD 1.5
SD 2.0
SD 3-m
SD 1.5 Trend
SD 2.0 Trend
SD 3-m Trend

Figure 9: Timestep Weight-
ing and Domain Gap. CLIP
distances between real-world
datasets and SELF-BENCH
generations, and corresponding
accuracy gains from timestep
weighting. Larger domain gaps
correlate with greater improve-
ments, but only for SD3.

Timestep weighting helps mitigate the domain gap. In Sec. 5.2,
we show that SD3-m underperforms SD1.5 and SD2.0 on real-world
datasets, and in Sec. 5.3, SD3-m exhibits the largest drop in the cross-
domain setting. Since timestep weighting significantly improves
SD3-m on real-world tasks, this raises an important question: Does
timestep weighting partially help mitigate the domain gap?

To study this further, we conduct an experiment to approximate the
effect of domain differences. We generate images using the original
prompts from real-world compositional benchmarks. This yields
two image sets for each task: (i) the original real-world dataset,
and (ii) a synthetic variant generated using the same prompts. Both
sets target the same task but differ in visual domain. Using a CLIP
image encoder (ViT-B/32) [38], we aim to capture the domain gap4

between the two, by computing the L2 distance between average
embeddings with randomly sampled 50 images. The datapoints in
Figure 9 are based on the same real-world benchmarks used in
Figure 8. As shown, for SD3, larger CLIP embedding distances (i.e.,
greater domain gap) are associated with greater reliance on timestep weighting. This suggests a
positive correlation between domain gap and the effectiveness of timestep weighting for SD3. In
contrast, SD1 and SD2 do not exhibit such a trend. We hypothesize that, as shown in Figure 7, most
timesteps in SD2 (also in SD1) are already effective, resulting in limited benefit from reweighting
and thus obscuring any correlation with the domain gap. Details are in Section E.6 of the Appendix.

Qualitative illustration. To build intuition for how timestep selection impacts classification, we
visualise generations from the SD3-m model in Figure 10, starting from a Self-Bench image generated
by SD2.0 (“a parking meter and a teddy bear”). For each timestep t, we corrupt the original image
with Gaussian noise corresponding to t, and then generate an image by running the diffusion model
for 20 denoising steps from t down to 0, conditioning on either a correct or incorrect prompt. We set
the classifier-free guidance coefficient to 0.0 (i.e., using only the conditional prompt) to match the
discriminative setting used in classification with diffusion.

At very early timesteps (e.g., t = 0.1), the generation remains nearly identical regardless of the
prompt, suggesting that the model ignores the conditioning - we believe such timesteps are non-
discriminative. At very late timesteps (e.g., t = 0.96), the model strongly reacts to the prompt but
also overwrites the original image, shifting it out of domain - again rendering the timestep non-

4Indeed CLIP may capture both stylistic as well as semantic shifts, broadly referred to as "domain."

9

t=0.73 t=0.76t=0.1 t=0.96t=0.93t=0.86t=0.56

Non-discriminative Discriminative Non-discriminative

A person and a teddy bear

A parking meter and a teddy bear

Figure 10: Intuition for timestep utility. We visualize SD3-m generations starting from different
noise levels applied to a Self-Bench image. (Top) Conditioning on an incorrect caption. (Bottom)
Conditioning on the correct one. Only for intermediate timesteps (e.g., t ∈ [0.73, 0.93]) does the
model apply meaningful edits without overwriting the original image. See main text for explanation.

discriminative. Only at intermediate timesteps (e.g., t ∈ [0.73, 0.93] in this case) do we see the model
make meaningful edits that reflect the caption while retaining the original structure. We interpret
these as discriminative timesteps - where the prompt meaningfully affects the output without erasing
the original content.

This figure complements our quantitative findings (see Figure 7), offering a visual explanation for why
certain timesteps are more informative for classification. In particular, the low accuracy of SD3-m at
early timesteps mirrors what we observe qualitatively: early generations fail to reflect the prompt and
remain unchanged, making them unsuitable for discrimination.

Takeaway hypothesis 3: Finding optimal timestep weights for a given downstream task in a
low-shot setting is an effective way to improve the performance of diffusion classifiers. It helps
mitigate the domain gap between diffusion models’ generations and real-world test datasets.

6 Conclusion

Our work analyzed diffusion classifiers through the lens of compositionality. First, we conducted
a comprehensive evaluation across diverse compositional tasks, showing that diffusion classifiers
demonstrate compositional understanding in some cases (e.g., Position but not Counting), and revealed
a divergence between generative and discriminative abilities. Next, we introduced SELF-BENCH,
a diagnostic benchmark of self-generated images, showing that domain shifts significantly affect
performance. Finally, we proposed a simple low-shot strategy for mitigating the domain gap.

Despite progress in image generation, our study shows that the zero-shot discriminative ability of
diffusion models still falls short of strong discriminative baselines like CLIP, which often remain
better on compositional evaluations. We identify domain shift and timestep sensitivity as the decisive
factors behind this gap, and we delineate when diffusion classifiers help and when they do not. In
response, SELF-BENCH and low-shot timestep reweighting provide practical tools for diagnosing and
narrowing the gap through domain-aware evaluation and lightweight adaptation. In short, diffusion
classifiers can exhibit compositional understanding, but only under specific, well-aligned conditions.

Acknowledgements

For compute, Y. Jeong and A. Rohrbach gratefully acknowledge support from the hessian.AI Service
Center (funded by the Federal Ministry of Education and Research, BMBF, grant no. 01IS22091) and
the hessian.AI Innovation Lab (funded by the Hessian Ministry for Digital Strategy and Innovation,
grant no. S-DIW04/0013/003). The research was also supported by the Tübingen AI Center. A. Uselis
thanks the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for support.

10

References
[1] Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic

interpolants. In International Conference on Learning Representations, 2023.

[2] Rabiul Awal, Saba Ahmadi, Le Zhang, and Aishwarya Agrawal. Vismin: Visual minimal-change
understanding. In Advances in Neural Information Processing Systems, 2024.

[3] Pierre Blanchard, Desmond J Higham, and Nicholas J Higham. Accurately computing the
log-sum-exp and softmax functions. IMA Journal of Numerical Analysis, 41(4):2311–2330,
2021.

[4] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Do-
minik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion:
Scaling latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

[5] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang,
James Kwok, Ping Luo, Huchuan Lu, et al. Pixart-alpha: Fast training of diffusion transformer
for photorealistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.

[6] Kevin Clark and Priyank Jaini. Text-to-image diffusion models are zero shot classifiers.
Advances in Neural Information Processing Systems, 36:58921–58937, 2023.

[7] Sri Harsha Dumpala, Aman Jaiswal, Chandramouli Shama Sastry, Evangelos Milios, Sageev
Oore, and Hassan Sajjad. Sugarcrepe++ dataset: Vision-language model sensitivity to semantic
and lexical alterations. Advances in Neural Information Processing Systems, 37:17972–18018,
2024.

[8] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini,
Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow trans-
formers for high-resolution image synthesis. In Forty-first international conference on machine
learning, 2024.

[9] Zach Evans, CJ Carr, Josiah Taylor, Scott H Hawley, and Jordi Pons. Fast timing-conditioned
latent audio diffusion. In Forty-first International Conference on Machine Learning, 2024.

[10] Felix Friedrich, Thiemo Ganesha Welsch, Manuel Brack, Patrick Schramowski, and Kristian
Kersting. Beyond overcorrection: Evaluating diversity in t2i models with divbench. arXiv
preprint arXiv:2507.03015, 2025.

[11] Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused
framework for evaluating text-to-image alignment. Advances in Neural Information Processing
Systems, 36:52132–52152, 2023.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[13] Xuehai He, Weixi Feng, Tsu-Jui Fu, Varun Jampani, Arjun Akula, Pradyumna Narayana, Sugato
Basu, William Yang Wang, and Xin Eric Wang. Discffusion: Discriminative diffusion models
as few-shot vision and language learners. Transactions on Machine Learning Research, 2024.

[14] Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance, July 2022.

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[16] Cheng-Yu Hsieh, Jieyu Zhang, Zixian Ma, Aniruddha Kembhavi, and Ranjay Krishna. Sugar-
crepe: Fixing hackable benchmarks for vision-language compositionality. Advances in neural
information processing systems, 36:31096–31116, 2023.

[17] Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A com-
prehensive benchmark for open-world compositional text-to-image generation. Advances in
Neural Information Processing Systems, 36:78723–78747, 2023.

11

[18] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan
Taori, Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi,
Ali Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL https://doi.org/10.5281/
zenodo.5143773.

[19] Midjourney Inc. Midjourney. https://midjourney.com, 2023. Accessed before: 2023-09-
28.

[20] Priyank Jaini, Kevin Clark, and Robert Geirhos. Intriguing properties of generative classifiers.
arXiv preprint arXiv:2309.16779, 2023.

[21] Yujin Jeong, Wonjeong Ryoo, Seunghyun Lee, Dabin Seo, Wonmin Byeon, Sangpil Kim,
and Jinkyu Kim. The power of sound (tpos): Audio reactive video generation with stable
diffusion. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 7822–7832, 2023.

[22] Yujin Jeong, Yunji Kim, Sanghyuk Chun, and Jiyoung Lee. Read, watch and scream! sound gen-
eration from text and video. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pages 17590–17598, 2025.

[23] Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick,
and Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2901–2910, 2017.

[24] Amita Kamath, Jack Hessel, and Kai-Wei Chang. What’s" up" with vision-language models?
investigating their struggle with spatial reasoning. arXiv preprint arXiv:2310.19785, 2023.

[25] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. Advances in neural information processing systems, 35:
26565–26577, 2022.

[26] Myunsoo Kim, Donghyeon Ki, Seong-Woong Shim, and Byung-Jun Lee. Adaptive non-uniform
timestep sampling for diffusion model training, 2024. URL https://arxiv.org/abs/2411.
09998.

[27] Darina Koishigarina, Arnas Uselis, and Seong Joon Oh. Clip behaves like a bag-of-words model
cross-modally but not uni-modally. arXiv preprint arXiv:2502.03566, 2025.

[28] Benno Krojer, Elinor Poole-Dayan, Vikram Voleti, Christopher Pal, and Siva Reddy. Are
diffusion models vision-and-language reasoners? In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

[29] Alexander C Li, Mihir Prabhudesai, Shivam Duggal, Ellis Brown, and Deepak Pathak. Your
diffusion model is secretly a zero-shot classifier. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2206–2217, 2023.

[30] Xiao Li, Zekai Zhang, Xiang Li, Siyi Chen, Zhihui Zhu, Peng Wang, and Qing Qu. Understand-
ing diffusion-based representation learning via low-dimensional modeling. In NeurIPS 2024
Workshop on Mathematics of Modern Machine Learning.

[31] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. In International Conference on Learning Representations,
2023.

[32] Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
Mark D Plumbley. Audioldm: Text-to-audio generation with latent diffusion models. arXiv
preprint arXiv:2301.12503, 2023.

[33] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. In International Conference on Learning Representations,
2023.

12

https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773
https://midjourney.com
https://arxiv.org/abs/2411.09998
https://arxiv.org/abs/2411.09998

[34] Roni Paiss, Ariel Ephrat, Omer Tov, Shiran Zada, Inbar Mosseri, Michal Irani, and Tali Dekel.
Teaching clip to count to ten. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3170–3180, 2023.

[35] Core Francisco Park, Maya Okawa, Andrew Lee, Ekdeep S Lubana, and Hidenori Tanaka.
Emergence of hidden capabilities: Exploring learning dynamics in concept space. Advances in
Neural Information Processing Systems, 37:84698–84729, 2024.

[36] Wujian Peng, Sicheng Xie, Zuyao You, Shiyi Lan, and Zuxuan Wu. Synthesize diagnose
and optimize: Towards fine-grained vision-language understanding. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13279–13288,
2024.

[37] Zipeng Qi, Buhua Liu, Shiyan Zhang, Bao Li, Zhiqiang Xu, Haoyi Xiong, and Zeke
Xie. A simple and efficient baseline for zero-shot generative classification. arXiv preprint
arXiv:2412.12594, 2024.

[38] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763, 2021.

[39] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3,
2022.

[40] Arijit Ray, Filip Radenovic, Abhimanyu Dubey, Bryan Plummer, Ranjay Krishna, and Kate
Saenko. Cola: A benchmark for compositional text-to-image retrieval. Advances in Neural
Information Processing Systems, 36:46433–46445, 2023.

[41] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 10684–10695, June
2022.

[42] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9,
2015, proceedings, part III 18, pages 234–241, 2015.

[43] Alexander Rubinstein and Arnas Uselis. Stai-tuned experiment scheduler: Structured experiment
management with google sheets, weights & biases, and hpc integration. https://github.
com/arubique/stnd, 2025.

[44] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton,
Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al.
Photorealistic text-to-image diffusion models with deep language understanding. Advances in
neural information processing systems, 35:36479–36494, 2022.

[45] Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. In European Conference on Computer Vision, pages 87–103. Springer, 2024.

[46] Saurabh Saxena, Charles Herrmann, Junhwa Hur, Abhishek Kar, Mohammad Norouzi, Deqing
Sun, and David J Fleet. The surprising effectiveness of diffusion models for optical flow
and monocular depth estimation. Advances in Neural Information Processing Systems, 36:
39443–39469, 2023.

[47] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-
5b: An open large-scale dataset for training next generation image-text models. Advances in
neural information processing systems, 35:25278–25294, 2022.

13

https://github.com/arubique/stnd
https://github.com/arubique/stnd

[48] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International conference on machine
learning, pages 2256–2265, 2015.

[49] Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet Singh, Adina Williams, Douwe Kiela,
and Candace Ross. Winoground: Probing vision and language models for visio-linguistic
compositionality. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5238–5248, 2022.

[50] Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
shut? exploring the visual shortcomings of multimodal llms. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9568–9578, 2024.

[51] Arnas Uselis and Seong Joon Oh. Intermediate layer classifiers for ood generalization, 2025.
URL https://arxiv.org/abs/2504.05461.

[52] Arnas Uselis, Andrea Dittadi, and Seong Joon Oh. Beyond decodability: Linear feature spaces
enable visual compositional generalization. In Workshop on Spurious Correlation and Shortcut
Learning: Foundations and Solutions.

[53] Arnas Uselis, Andrea Dittadi, and Seong Joon Oh. Does data scaling lead to visual compositional
generalization? arXiv preprint arXiv:2507.07102, 2025.

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[55] Binxu Wang and John J Vastola. Diffusion models generate images like painters: an analytical
theory of outline first, details later. arXiv preprint arXiv:2303.02490, 2023.

[56] Kai Wang, Mingjia Shi, Yukun Zhou, Zekai Li, Zhihang Yuan, Yuzhang Shang, Xiaojiang Peng,
Hanwang Zhang, and Yang You. A closer look at time steps is worthy of triple speed-up for
diffusion model training, 2025. URL https://arxiv.org/abs/2405.17403.

[57] Tan Wang, Kevin Lin, Linjie Li, Chung-Ching Lin, Zhengyuan Yang, Hanwang Zhang, Zicheng
Liu, and Lijuan Wang. Equivariant similarity for vision-language foundation models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 11998–
12008, 2023.

[58] Peter West, Ximing Lu, Nouha Dziri, Faeze Brahman, Linjie Li, Jena D Hwang, Liwei Jiang,
Jillian Fisher, Abhilasha Ravichander, Khyathi Chandu, et al. The generative ai paradox:" what
it can create, it may not understand". arXiv preprint arXiv:2311.00059, 2023.

[59] Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Chaofan
Li, Shuting Wang, Tiejun Huang, and Zheng Liu. Omnigen: Unified image generation. arXiv
preprint arXiv:2409.11340, 2024.

[60] Chenglin Yang, Celong Liu, Xueqing Deng, Dongwon Kim, Xing Mei, Xiaohui Shen, and
Liang-Chieh Chen. 1.58-bit flux. arXiv preprint arXiv:2412.18653, 2024.

[61] Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin,
and Saining Xie. Representation alignment for generation: Training diffusion transformers is
easier than you think. arXiv preprint arXiv:2410.06940, 2024.

[62] Zhongqi Yue, Pan Zhou, Richang Hong, Hanwang Zhang, and Qianru Sun. Few-shot learner
parameterization by diffusion time-steps. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 23263–23272, 2024.

[63] Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When
and why vision-language models behave like bags-of-words, and what to do about it? In
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=KRLUvxh8uaX.

14

https://arxiv.org/abs/2504.05461
https://arxiv.org/abs/2405.17403
https://openreview.net/forum?id=KRLUvxh8uaX
https://openreview.net/forum?id=KRLUvxh8uaX

[64] Wenliang Zhao, Yongming Rao, Zuyan Liu, Benlin Liu, Jie Zhou, and Jiwen Lu. Unleashing text-
to-image diffusion models for visual perception. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5729–5739, 2023.

[65] Tianyi Zheng, Peng-Tao Jiang, Ben Wan, Hao Zhang, Jinwei Chen, Jia Wang, and Bo Li.
Beta-tuned timestep diffusion model. In ECCV (3), pages 114–130, 2024. URL https:
//doi.org/10.1007/978-3-031-72646-0_7.

[66] Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all.
arXiv preprint arXiv:2412.20404, 2024.

15

https://doi.org/10.1007/978-3-031-72646-0_7
https://doi.org/10.1007/978-3-031-72646-0_7

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes. We have made in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we have discussed in Section ??.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

16

Justification: We do not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, performance may vary depending on the seed and batch size, but we
disclose the specific seed and batch size used in our experiments in the released code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

17

Answer: [Yes]
Justification: Yes, we’ve included a README file with instructions to help users follow the
setup.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have illustrated in Section C.2 of the Supplemental.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We have not reported error bars or statistical significance. However, in the
code, we set the seed so that users can replicate.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We have provided compute resources and time of execution on average in
Section C.2 of the Supplemental.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed potential positive societal impacts in Section ??.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

19

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We use image generators to create synthetic datasets and have released the gen-
erated images. We also provide code for using the dataset and evaluating models. However,
we believe that neither the released images nor the code poses a significant risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited all the papers properly in the paper, and mentioned in the code
where we have built on.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

20

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We introduce the SELF-BENCH dataset, which is publicly released along with
documentation. The documentation includes information on how the content was obtained
(e.g., using image generators and text prompts from prior datasets) and how it was filtered
by human annotators.
We have also released the code accompanied by documentation, in which we acknowledge
the prior work our code builds upon. While training code is not included, we provide
inference scripts and utilities for using the released dataset.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: The dataset was manually filtered with the help of a few human annotators;
detailed instructions, including screenshots, are provided in Section D of the Supplemental.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: Our work involved a filtering step conducted by human annotators that posed
no risk; we conducted no research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

21

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We have used LLM for writing, editing or formating. But the core method
development in this research does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

Appendix
This supplemental material includes extended preliminaries in Section A.1 and Section A.2 and a
discussion of design choices and performances for diffusion classifiers in Section A.3 and Section A.4.
Ablation studies are presented in Section B. Section C outlines the experimental settings, implemen-
tation details, and the full construction of SELF-BENCH. Style alignment experiments are described
in Section E.3. We analyze distilled models in Section E.2, and revisit timestep weighting strategies
from prior work in Section B.3. Section E.5 illustrates timestep weighting applied to SELF-BENCH,
Section B.4 presents zero-shot classification experiments using only later timesteps, and Section E.6
examines CLIP distance between real-world datasets. Finally, Section E includes additional results
for all compositional benchmarks.

Contents

A Diffusion classifiers: details and discussion 24

A.1 Deriving diffusion classifiers under a unified loss framework 24

A.2 Details on timestep weighting . 25

A.3 Design choices for diffusion classifiers . 25

A.4 Discussion of misalignment between discriminative and generative performance . . 27

B Ablation Studies 28

B.1 Image resolution . 28

B.2 Varying number of timesteps . 28

B.3 On universality of timestep weighting . 29

B.4 Biased timestep sampling . 30

C Details of Experiments settings 31

C.1 Choice of Baselines . 31

C.2 Implementation Details . 31

D Details of SELF-BENCH 33

D.1 Design and filtering . 33

D.2 Qualitative examples . 35

E Additional results 38

E.1 Full results in compositional benchmarks . 38

E.2 Results on a distilled SD3.5 and FLUX model . 46

E.3 Style alignment . 47

E.4 Additional qualitative results . 48

E.5 Upperbounding Self-Bench performance with timestep weighting 48

E.6 CLIP scores and domain gaps . 49

E.7 SigLIP results . 49

23

A Diffusion classifiers: details and discussion

A.1 Deriving diffusion classifiers under a unified loss framework

Unified Loss Formulation. For a given data sample x0, usually an encoded image from an autoen-
coder, we define the loss as a weighted noise (or vector field) prediction error:

L(x0) = Et,ϵ

[
wt

∥∥∥ϵ− ϵΘ(zt, t, c)
∥∥∥2], (A.1)

where ϵ ∼ N (0, I) is a noise sample, c is the conditioning variable (e.g. a text prompt), and the noisy
sample zt and the weight wt depend on the chosen forward process.

Diffusion models (SD1.5, SD2.0): The forward process is given by

zt =
√
ᾱt x0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I),

with αt = 1− βt and ᾱt =

t∏
s=1

αs.

The noise prediction network ϵΘ(zt, t, c) is trained to predict the noise at each discrete timestep (i.e.
performing next-step denoising) by minimizing

Ldiff(x0) = Et,ϵ

[
wt

∥∥∥ϵ− ϵΘ(zt, t, c)
∥∥∥2].

In practice, SD1.5 and SD2.0 typically use uniform weighting (i.e. wt := 1).

Rectified Flows (RFs) (SD3): Rectified Flows [33, 1, 31] define the forward process via a straight-line
interpolation between the data and a standard normal:

zt = (1− t)x0 + t ϵ, t ∈ [0, 1], ϵ ∼ N (0, I), (A.2)

and the network directly parameterizes a continuous velocity field vΘ(z, t). The original conditional
flow matching (CFM) objective [31] is defined as

LCFM = Et, pt(z|ϵ), p(ϵ)

[∥∥∥vΘ(z, t)− ut(z | ϵ)
∥∥∥2], (A.3)

where ut(z | ϵ) is the target vector field along the linear path in (A.2). By reparameterizing the CFM
objective as a noise-prediction loss (see, e.g., [8]), we obtain

LRF(x0) = Et,ϵ

[
wt

∥∥∥ϵΘ(zt, t, c)− ϵ
∥∥∥2], (A.4)

with a time-dependent weight wt.

For the linear interpolation in (A.2), choosing wRF
t = t

1−t recovers the original CFM objective.
While wRF

t is the default weighting for RFs, SD3 [8] uses logit-normal weighting. Moreover, SD3
operates in continuous time, so the loss L(x0) is defined continuously with respect to x0.

Using this formulation we can interpret SD3 under the diffusion loss objective, despite its different
underlying architecture. Therefore, we can use it as a classifier in the similar way to earlier diffusion
models. The only difference lies in the weighting function wt, which for SD3 follows a logit-normal
distribution rather than the uniform weighting used in SD1.5/2.0.

Thus, both Diffusion and RFs ultimately train the network to match a target signal via the unified loss
in (A.5). In diffusion the network directly predicts the noise at each discrete timestep, whereas in RFs
the network predicts a continuous velocity field whose reparameterized form is trained to match the
noise—with conditioning on c in both cases.

Given the unified loss in Equation (A.5),

L(zt, c)(x0) = Et,ϵ

[
wt

∥∥∥ϵ− ϵΘ(zt, t, c)
∥∥∥2], (A.5)

24

Diffusion Classifiers. [29] define a diffusion classifier as a network that minimizes this loss with
respect to the data sample x0 and a given conditioning variable c. Since computing pθ(x | c) is
intractable for diffusion models, the ELBO is used in place of log pθ(x | c). In particular, assuming
that

log pθ(x | c) ∝ −Et,ϵ

[
wt ∥ϵ− ϵθ(zt, t, c)∥2

]
,

so that, with a uniform prior over labels (i.e. p(ci) = 1
N), Bayes’ rule implies

pθ(ci | x) ∝ exp
{
−Et,ϵ

[
wt ∥ϵ− ϵθ(zt, t, ci)∥2

]}
. (A.6)

In practice, we approximate the expectation in Eq. (A.6) via Monte Carlo sampling. For each class
label ci, we sample a fixed set

S = {(tj , ϵj)}Nj=1,

with tj drawn from the prescribed distribution and ϵj ∼ N (0, I). We then compute the empirical
weighted error

Ê(ci) =
1

N

N∑
j=1

wtj

∥∥∥ϵj − ϵθ
(
ztj , tj , ci

)∥∥∥2. (A.7)

Substituting these estimates into Eq. (A.6) yields the approximate posterior

pθ(ci | x) ≈
exp{−Ê(ci)}∑
k exp{−Ê(ck)}

. (A.8)

The predicted label is then given by

ĉ = argmax
ci

pθ(ci | x). (A.9)

Using the same sample set S across all classes reduces the variance in the estimated differences in
weighted prediction error. This approach extracts a classifier directly from a pretrained conditional
diffusion model without any additional training.

A.2 Details on timestep weighting

For a given latent representation z and class yk ∈ {1, . . . ,K}, we compute the loss using the fixed
set

S = {(tj , ϵj)}Ts
j=1 : ej(z, yk) =

∥∥ϵj − ϵΘ(z, tj ,ϕ(yk))
∥∥2,

where ϕ(yk) is the text embedding of class yk. The class probabilities are computed using a weighted
sum over the fixed timesteps:

p(y = yk | z) =
exp

(
−
∑Ts

j=1 wtjej(z, yk)
)

∑K
l=1 exp

(
−
∑Ts

j=1 wtjej(z, yl)
) .

A.3 Design choices for diffusion classifiers

We found that using diffusion classifiers is tricky in practise. There are a few design choices that
differ across experimental setups in previous works [20, 29, 28, 6]. In this subsection we provide a
fuller picture of the design choices that matter for diffusion classifiers.

We distinguish between five main factors that potentially differ in previous works and can affect the
performance of diffusion classifiers:

1 Loss weighting. Previous works either used uniform weighting (i.e. wt := 1) [29, 28] or used a
time-dependent weighting scheme found empirically on the training set using CIFAR-100 [6, 20],
using wt := exp (−7t̃) (for normalized t̃ ∈ [0, 1]). These schedules are usually motivated by the
generative training objective, which views each timestep t as corresponding to a different noise level
— effectively treating t as a proxy for input corruption. However, from a discriminative perspective,

25

different timesteps correspond to distinct representations within the model, akin to how different
layers of a neural network encode features of varying abstraction. In standard supervised models, it
has been shown that lower-level features (often found in earlier layers) can be more robust under
distribution shifts [51]. Drawing this analogy, early timesteps in diffusion models may similarly
preserve more local or low-level features that are useful for generalization.

Single Two Colors Color Attr Position CountingA
cc

u
ra

cy
 (

%
) 100 98 98 88 84 95100 98 97

83 89 89

Single Two Colors Color Attr Position CountingA
cc

u
ra

cy
 (

%
) 100 98 98 95 89 91100 99 98 95 91 92

Single Two Colors Color Attr Position CountingA
cc

u
ra

cy
 (

%
) 100 90 98

83
67 7686

59
77

50
33

46

SD1.5

SD2.0

SD3-m

DiscffusionZero-shot

Figure A.1: Comparison between Zero-shot classifier and Discffusion on SELF-BENCH in-domain. Zero-
shot Classifier and Discffusion do not show much performance difference, or Discffusion performs worse.

2 Classifier-free guidance. Classifier-free guidance [14] (CFG) is a de-facto standard in diffusion
models for improving the quality of generated images at a cost of lesser variance in generated images.
When generating images using CFG using, e.g. DDIM [25] for SD1.5, SD2.0, or Euler sampler for
SD3 [8],

All previous works have either not used classifier-free guidance [6, 28] or used it in a limited setting
[29] with a conclusion that it does not lead to better classification performances. We largely found
the same conclusion to hold.

3 Model quantization. Previous works usually do not mention quantization of the model. In practice,
all the codebases associated with diffusion classifiers use quantized models, using 16-bit floating-point
precision. While the classification accuracy did not vary significantly when switching from float16
to float32 implementation. However, an important impact of the model quantization was measuring
errors, and casting the reconstruction distances up to float32 to avoid identical values with varying
conditionals.

4 Variations of empirical weighted error objective. Diffusion models are usually trained using a
form of the weighted error objective (Equation (A.7)), using L2 loss (i.e., squared L2 norm). Most of
the previous works use this form of the loss. However, even though [20] has claimed that deviating
from the L2 loss will not work, often times this is not the case, and [29] has shown that using the L1
loss can improve performance in non-compositional settings.

5 Sampling strategy. Previous works mostly have found that using a uniform timestep distribution
is the best option, i.e. πN = Uniform([0, 1]). This choice is usually motivated by sticking to the
training objective of the model. As we show in Section 3.1, SD3 was trained using timesteps sampled
from logit-normal distribution.

6 Alternative methods for diffusion classifiers. Discffusion [13] uses attention scores from the
cross-attention layers of diffusion models, aggregated via LogSumExp (LSE) pooling [3]. Since SD3
replaces traditional cross-attention layers with self-attention layers that incorporate text conditioning,
we instead extract attention scores from these self-attention layers. In Figure A.1, we compare the
Zero-shot Classifier [29] and Discffusion [13]. In the SELF-BENCH in-domain setting, which can

26

be seen as the fairest setting to evaluate the optimal performance of each method, the performance
of Discffusion is worse than the Zero-shot Classifier. This result contradicts Discffusion’s claim of
achieving better accuracy in some benchmarks.

Overall, the prevailing notion in the previous works is that good classifiers can be derived by adhering
to the generative training objective of the models.

A.4 Discussion of misalignment between discriminative and generative performance

We hypothesize that the misalignment between discriminative and generative performance often
arises from internal domain-specific biases or spurious correlations acquired during training.

For example, suppose the model frequently sees or generates “small objects” against a blue back-
ground. In that case, it becomes easy for the model to generate such scenes. However, during
classification, if it encounters a large object with the same blue background, it may still assign a high
probability to the “small object” class. This is because it has strongly associated “small object” with
“blue background” in its generative space. In other words, the model’s discriminative predictions
p(y|x) may appear accurate in cases that align with its generative bias but fail when the context shifts.
This illustrates that a model’s ability to generate realistic samples does not necessarily imply robust
or disentangled discriminative representations.

Concretely, we hypothesize that SD3-m focuses on a narrower, high-quality generative domain
(akin to sharp spikes in the distribution), which may lead to lower diversity. In contrast, SD2.0,
despite lower visual fidelity, may cover a broader range of variations, leading to better discriminative
performance on diverse inputs.

To support this hypothesis, we conduct a diversity analysis using SELF-BENCH. For each text prompt,
we sample four images from both SD2.0 and SD3-m. We then compute CLIP-B/32 embeddings
and analyze: i) mean pairwise cosine similarity among the 4 images (lower indicates higher visual
diversity) and ii) mean variance across embedding dimensions (higher indicates more diverse feature
space coverage).

Table A.1: Diversity comparison between SD2.0 and SD3-m using CLIP embeddings (per prompt, n = 4
images).

Metric SD2.0 SD3-m

Mean cosine similarity ↓ 0.845± 0.062 0.895± 0.051
Mean embedding-dim variance (×10−3) ↑ 0.227± 0.190 0.154± 0.250

These results support our hypothesis: SD2.0 produces more diverse samples in terms of both visual
similarity and embedding-space variance.

We emphasize that this remains a hypothesis rather than a complete explanation. A more rigorous
characterization of the generative–discriminative alignment is left to future work. Nevertheless, recent
finding [10] appears consistent with our observations, showing that SD2.0 (and SD1.5) tend to
generate more diverse samples than SD3-m.

27

B Ablation Studies

We performed two ablations: (1) varying the resolution for SD3 on the self-bench, and (2) using 30
vs. 100 timesteps for all self-bench experiments, and (3) using a different timestep weighting scheme.

B.1 Image resolution

As shown in Table B.1 higher resolution generally leads to better performance for SD3-m model.

Table B.1: Geneval ablation using SD3, comparing impact of input resolution. Larger images are
always better. Used 100 time samples (Ts = 100).

Task GenEval Version Resize Acc No-Resize Acc Diff (Resize - No)
geneval_color_attr 1.5 33.33% 55.56% -22.22%
geneval_color_attr 2 69.44% 59.72% 9.72%
geneval_color_attr 3-m 97.22% 98.09% -0.87%

geneval_colors 1.5 87.67% 94.75% -7.08%
geneval_colors 2 91.25% 94.30% -3.04%
geneval_colors 3-m 98.41% 99.68% -1.27%

geneval_counting 1.5 43.88% 61.22% -17.35%
geneval_counting 2 62.16% 68.47% -6.31%
geneval_counting 3-m 58.26% 96.30% -38.04%

geneval_position 1.5 66.67% 66.67% 0.00%
geneval_position 2 52.63% 44.74% 7.89%
geneval_position 3-m 70.80% 93.81% -23.01%

geneval_single 1.5 90.04% 91.81% -1.77%
geneval_single 2 93.36% 94.41% -1.05%
geneval_single 3-m 98.41% 100.00% -1.59%

geneval_two 1.5 62.86% 69.52% -6.67%
geneval_two 2 72.09% 78.29% -6.20%
geneval_two 3-m 91.50% 98.11% -6.61%

B.2 Varying number of timesteps

Increasing to 100 timesteps results in improved performance, although this gain is most notable for
SD3 (sampled with uniform weights) [8] in Table B.2.

Additionally, we attempted to match the timestep weighting scheme used in the original SD3-m model
by employing logit-normal weighting. However, this approach yielded exceptionally poor results: in
SELF-BENCH Cross-domain experiments, the model did not exceed 11% accuracy, regardless of the
generative model or task.

28

Table B.2: Comparison of 30 vs 100 Timesteps Performance
Task GenEval Ver. Model Ver. 30 Steps 100 Steps Diff

Color Attr 1.5 1.5 84.00% 88.00% 4.00%
Color Attr 1.5 2 55.56% 55.56% 0.00%
Color Attr 1.5 3-m (no-resize) 55.56% 55.56% 0.00%
Color Attr 2 1.5 50.00% 55.56% 5.56%
Color Attr 2 2 83.33% 88.89% 5.56%
Color Attr 2 3-m (no-resize) 50.00% 59.72% 9.72%
Color Attr 3-m 1.5 55.16% 64.29% 9.13%
Color Attr 3-m 2 60.71% 68.65% 7.94%
Color Attr 3-m 3-m (no-resize) 93.25% 98.09% 4.84%

Colors 1.5 1.5 96.80% 99.09% 2.28%
Colors 1.5 2 89.50% 94.75% 5.25%
Colors 1.5 3-m (no-resize) 85.84% 94.75% 8.90%
Colors 2 1.5 87.07% 91.25% 4.18%
Colors 2 2 98.86% 99.62% 0.76%
Colors 2 3-m (no-resize) 88.97% 94.30% 5.32%
Colors 3-m 1.5 80.57% 84.87% 4.30%
Colors 3-m 2 90.13% 92.99% 2.87%
Colors 3-m 3-m (no-resize) 98.73% 99.68% 0.96%

Counting 1.5 1.5 75.51% 79.59% 4.08%
Counting 1.5 2 57.14% 62.76% 5.61%
Counting 1.5 3-m (no-resize) 47.96% 61.22% 13.27%
Counting 2 1.5 59.46% 68.47% 9.01%
Counting 2 2 92.79% 95.95% 3.15%
Counting 2 3-m (no-resize) 56.76% 68.47% 11.71%

Position 1.5 1.5 66.67% 83.33% 16.67%
Position 1.5 2 50.00% 41.67% -8.33%
Position 1.5 3-m (no-resize) 33.33% 66.67% 33.33%
Position 2 1.5 31.58% 26.32% -5.26%
Position 2 2 73.68% 84.21% 10.53%
Position 2 3-m (no-resize) 36.84% 44.74% 7.89%
Position 3-m 1.5 30.97% 30.97% 0.00%
Position 3-m 2 46.90% 45.58% -1.33%
Position 3-m 3-m (no-resize) 82.30% 93.81% 11.50%

Single 1.5 1.5 100.00% 99.63% -0.37%
Single 1.5 2 98.89% 99.08% 0.18%
Single 1.5 3-m (no-resize) 83.39% 91.81% 8.42%
Single 2 1.5 98.89% 98.89% 0.00%
Single 2 2 100.00% 100.00% 0.00%
Single 2 3-m (no-resize) 89.67% 94.41% 4.74%
Single 3-m 1.5 99.68% 100.00% 0.32%
Single 3-m 2 99.36% 99.84% 0.48%
Single 3-m 3-m (no-resize) 100.00% 100.00% 0.00%

Two 1.5 1.5 91.43% 95.24% 3.81%
Two 1.5 2 85.71% 90.00% 4.29%
Two 1.5 3-m (no-resize) 52.38% 69.52% 17.14%
Two 2 1.5 89.15% 92.25% 3.10%
Two 2 2 97.67% 99.61% 1.94%
Two 2 3-m (no-resize) 56.59% 78.29% 21.71%
Two 3-m 1.5 87.91% 91.83% 3.92%
Two 3-m 2 92.81% 93.63% 0.82%
Two 3-m 3-m (no-resize) 96.41% 98.11% 1.71%

B.3 On universality of timestep weighting

Previous work has shown that learning a task-specific timestep weighting function, while beneficial,
typically results in only modest gains, on average around 1% improvement in performance. These
results have mostly been reported on classification tasks involving single, non-compositional queries.

29

Here, we test whether such universal weighting functions, as proposed in earlier work, can also be
effective in our setting. To do so, we evaluate all models on our proposed datasets using an exponential
timestep weighting function defined as exp(−7t), where t is the normalized timestep ranging from 0
to 1.

We present the results in Table B.3. Overall, we find that uniform and exponentially weighted models
perform quite similarly for 1.52 diffusion models, although the gap is often quite large between the
two. While for SD-3m model, uniform weighting is almost always better.

Table B.3: Mean accuracies by version and task. Bold indicates the larger of the uniform or
exponentially–weighted scores.
Version Task Uniform Exp. Weighted

1.5

COCO QA 0.44 0.48
VG QA 0.44 0.49
CLEVR Binding–Color 0.67 0.70
CLEVR Spatial 0.50 0.48
Spec Count 0.20 0.12
Sugar Attributes 0.70 0.61
Sugar Objects 0.85 0.78
WhatsUp A 0.27 0.27
WhatsUp B 0.26 0.28

2

COCO QA 0.42 0.47
VG QA 0.48 0.49
CLEVR Binding–Color 0.82 0.74
CLEVR Spatial 0.49 0.50
Spec Count 0.23 0.12
Sugar Attributes 0.76 0.64
Sugar Objects 0.85 0.81
WhatsUp A 0.26 0.30
WhatsUp B 0.26 0.23

3-m

COCO QA 0.56 0.55
VG QA 0.54 0.52
CLEVR Binding–Color 0.60 0.75
CLEVR Spatial 0.62 0.51
Spec Count 0.19 0.11
Sugar Attributes 0.72 0.61
Sugar Objects 0.74 0.71
WhatsUp A 0.28 0.27
WhatsUp B 0.40 0.29

B.4 Biased timestep sampling

We explore whether further gains could be achieved with SD3 based on our prior analysis. Motivated
by findings from timestep weighting, we tested a simplified variant where only mid-to-late timesteps
were used for discrimination. We find that these strategies did not yield meaningful improvements.
The results are presented in Table B.4.

Table B.4: Results using later timesteps (sampling from t ∼ [0.5, 1] for classification.
Method/Dataset SELF-BENCH2.0 Single SELF-BENCH2.0 Counting WhatsUpA CLEVR Binding

SD3-m 0.87 0.57 0.30 0.63
SD3-m (supervised) 0.91 0.72 0.42 0.98

Later Timesteps 0.90 0.66 0.31 0.59

30

C Details of Experiments settings

C.1 Choice of Baselines

We select these versions for the following reasons: i) SD1.5 was previously used in diffusion classifier
evaluations [28], ii) SD2.0 demonstrated better performance compared to SD2.1 [62] in discriminative
tasks, and iii) SD3-m is one of the state-of-the-art generative models, and we use its medium variant
since it offers effective performance while being more lightweight than the full SD3 model. It has
not been studied in the context of diffusion classifiers. We have also considered distilled models
as baselines (i.e., FLUX [60] and SDXL-Turbo [45]). However, we did not include them since it is
difficult to determine their performance under no classifier-free guidance (CFG-free) settings. Some
analysis is provided in Section E.2.

C.2 Implementation Details

Evaluations. For evaluation, we use a single A100 GPU for all tasks with a batch size of 4. The
evaluation time depends on the SD model, the number of negative prompts, and the dataset size. While
SD1.5 and SD2.0 require similar amounts of time, SD3-m takes significantly longer. Specifically,
for a dataset with 230 images and 4 prompts per image (one positive and three negative), evaluation
takes approximately 15 minutes for SD 1.5 and 30 minutes for SD 3-m. We also used stuned library
for running the experiments [43].

Training details on timestep weighting. We train on 100 timesteps using the Adam optimizer. For
the low-shot setting, we fit a third-degree polynomial, while for the Self-bench experiments, we use
the full timestep vector. We use no regularization, set the learning rate to ℓ = 0.05, and train for
5,000 epochs. The entire optimization procedure is performed on frozen scores, allowing us to infer
weights in under a minute for datasets with fewer than 1,000 samples.

Benchmarks. Table C.1 presents the benchmarks used in our study, categorized into Attribute, Object,
Position, Counting, Complex Relation, Action, Size, and others. The benchmarks include Vismin [2],
EQBench [57], MMVP [50], CLEVR [23], Whatsup [24], Spec [36], ARO [63], Sugarcrepe [16],
COLA [40], and Winoground [49].

Table C.1: Categorization of compositional benchmarks. For EQBench and Vismin, an official subset is
used.

Category Datasets

Attribute

Aro (Attribute) [63]
SugarCrepe (Attribute) [16]
Vismin (Attribute) [2]
EQBench (EQ-Kubric Attribute, EQ-SD) [57]
MMVP (Color) [50]
CLEVR (pair binding color, recognition color, recognition shape, binding color shape, binding shape color) [23]
COLA (Multi Object) [40]

Object
Winoground (Object) [49]
SugarCrepe (Object) [16]
Vismin (Object) [2]

Position (Spatial Relation)

WhatsUp (WhatsUp A, WhatsUp B, COCO-spatial one, COCO-spatial two, GQA-spatial one, GQA-spatial two) [24]
SPEC (Absolute Spatial, Relative Spatial) [36]
EQBench (Location) [57]
Vismin (Relation) [2]
MMVP (Spatial, Orientation, Perspective) [50]
CLEVR (spatial) [23]

Counting SPEC (Count) [36], EQBench (EQ-Kubric Counting) [57], Vismin (Counting) [2]

Complex Relation Aro (Relation, COCO order, Flickr order) [63]
SugarCrepe (Relation) [16]
Winoground (Relation, Both) [49]
MMVP (State, Structural Character) [50]

Action EQBench (YouCook2, GEBC, AG) [57]

Size SPEC (Absolute Size, Relative Size) [36]
CLEVR (Size) [23]

ETC MMVP (Text) [50]

31

Task formulations vary across benchmarks. For example, Winoground consists of two images paired
with two captions, each describing two objects. The negative caption is created by swapping the
objects in the text. In contrast, Vismin (Object) includes prompts that modify the object by replacing
it with another randomly selected object that is not present in the image. The captions in Vismin can
describe either a single object or multiple objects.

We use a subset of EQBench and Vismin in our evaluation. Additionally, we include COLA only for
multi-object tasks due to the difficulty of selecting negative prompts. However, we found that the
name COLA (Multi Object) does not align well with the task’s focus, as it primarily deals with object
attributes in the prompts. Therefore, we classify COLA under the Attribute category.

As mentioned earlier, some benchmarks consist of a single image paired with multiple text prompts,
while others feature two images with two matching captions. The latter category includes Winoground,
COLA, Vismin, EQBench, and MMVP, whereas all other benchmarks belong to the former category.

Categories To enable a structured analysis, we group the tasks into four categories: Object, Attribute,
Position, and Counting. Each category is designed to target a specific aspect of compositional
understanding through carefully crafted text prompts.

• Object: Evaluates object recognition (often in context) within a given context by introducing
modifications such as swapping, replacing, or removing objects to assess the model’s ability
to distinguish between different entities.

• Attribute: Focuses on descriptive properties (e.g., adjectives) associated with objects, such
as variations in color or shape, to determine the model’s sensitivity to attribute-object
relationships.

• Position: Examines spatial relationships between objects or the perspective of a single object
(e.g., "a dog on the left side of the image").

• Counting: Assesses numerical reasoning by prompting the model to count specific objects
in an image.

Image-Text matching scores. As mentioned above, the task can be divided into two parts. First,
there is one image with multiple texts. Second, there are two images and two texts in one pair. For
the first setting, we simply pick the best prompt with Equation A.9. However, for the second task,
following previous approaches [29] to get the text score, if we have a pair of <image1, text1,
image2, text2>, we use the following equation:

I

[score(text1, image1) > score(text2, image1)
AND

score(text2, image2) > score(text1, image2)

]
(C.1)

where score follows Equation A.9.

32

D Details of SELF-BENCH

D.1 Design and filtering

Creating discrimination tasks. We use generation prompts from Geneval [11]. The prompt template
"a photo of" is used in the experiment for both generation and discrimination.

These are the possible choices for each discrimination task.

• Colors: "red", "orange", "yellow", "green", "blue", "purple", "pink", "brown", "black",
"white"

• Positions: "left of", "right of", "above", "below"
• Counting: "one", "two", "three", "four"
• Single Object: "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck",

"boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat",
"dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "um-
brella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite",
"baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine
glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange",
"broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant",
"bed", "dining table", "toilet", "tv", "laptop", "computer mouse", "tv remote", "computer
keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book",
"clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"

For Two Objects and Color Attribution, the possible choices are the same as those in Single Object
and Colors, respectively. Since both Two Objects and Color Attribution involve two objects, the latter
additionally requires binding two color choices to the respective objects (e.g., "a red dog and a yellow
cat"). As a result, the Color Attribution category can have up to 100 different prompt combinations.

For the Two Objects category, the number of possible prompts is large (6,400). To manage this, we
consider only 101 prompts: one containing both true objects and 100 cases where one true object is
paired with a randomly selected object.

Crowdsourcing with manual filtering. We recruited three annotators and provided them with
detailed instructions for the filtering process. The task took approximately 2–3 hours, and no compen-
sation was provided. Each annotator was instructed to filter images based on category-specific criteria,
following the Geneval framework [11]. For example, the Two Objects category requires generating
two objects mentioned in the original prompt clearly. Additionally, Single Object category requires
the presence of the mentioned object, and the number of the objects does not matter; it simply checks
if the mentioned object is in the image. It does not matter if non-mentioned object is also in the same
image.

Figure D.1 displays an example of the filtering interface where the annotator can label the images.
Since there are ambiguous examples, such as an image with only half of an object, we provided three
options: "Good", "Ambiguous", and "Wrong". If any one of the three annotators labels the example
as ambiguous or wrong, the image is filtered out later. Examples of filtered images are provided in
Figure D.2.

33

Figure D.1: Example of a filtering userspace. The annotator should select one among three options. Before
they annotate, they get the instructions for each category.

SD 1.5

SD 2.0

SD 3-m

a horse and
a computer
mouse

a giraffe and
a baseball
bat

four
computer
keyboards

a car and a
computer
mouse

a fork a person and
an apple

a white orange a red zebra a carrot left
of an orange

a purple dog
and black
dining table

three carots

three buses yellow brocolli

a skateboard
above a
person

a white
banana and
a black
elephant

a white pizza
and a green
umbrella

four frisbees a green
hotdog

Figure D.2: Images filtered out by annotators. Annotators removed images that did not meet the criteria
specified in the category instructions.

34

D.2 Qualitative examples

Figure D.3 illustrates the domain differences between existing compositional benchmarks and SD3-m
generated results, using prompts from SELF-BENCH, SPEC [36], and WhatsUP [24]. Figure D.4
presents additional examples from SELF-BENCH. Figure D.5 highlights failure cases of the Diffusion
Classifier, even in in-domain scenarios.

SD 3-m SPEC Count

SPEC Count

generated imagesgenerated images

real images real images

generated images
WhatsUP A

WhatsUP A

Figure D.3: Domain differences between existing compositional benchmarks and SD3-m generated
results. (top) Examples from existing compositional benchmarks: SPEC [36] and WhatsUP A [24]. (bottom left)
SELF-BENCH examples. (bottom middle) Generated images using prompts from SPEC count tasks. (bottom
right) Generated images using prompts from WhatsUPA tasks.

35

a yellow elephanta couch and a
wine glass

a book and a laptop a purple hair dryer

a clock

a bench a hair drier and
a bear

a green motorcycle a blue laptop and
a brown bear

a bench left of a
bear

a frisbee below a
horse

four bowls

two frisbees

a green couch and
orange umbrella

a blue clock and
a white cup

a frisbee above
a truck

three people

Single Object Color AttributeColorsTwo objects Position Counting

a refriegirator

(a) SD 1.5

a blue umbrella a dining table
and a bear

a frisbee and a
couch

a brown chair

a cow

a bench a bench and a
sport ball

a blue fire hydrant a blue laptop and
a brown bear

a laptop left of a
cow

a tie above a sink three sports balls

two clocks

a pink oven and
a purple bed

a white handbag
and a purple bed

a couch below a
potted plant

two bears

Single Object Color AttributeColorsTwo objects Position Counting

a fork

(b) SD 2.0

a pink parking
meter

a tennis racket
and a wine glass

a chair and a laptop a purple hair dryer

a carrot

a bench a toilet and a
computer mouse

a blue cow a purple computer
keyboard and a
red chair

an apple above a
tv

a cow right of a
laptop

three skis

three handbags

a white handbag
and a purple bed

a yellow bicyle and
a red motorcycle

a cat below a
backpack

three books

Single Object Color AttributeColorsTwo objects Position Counting

a bicycle

(c) SD 3-m

Figure D.4: More examples from SELF-BENCH. Representative samples illustrating the range of
tasks and model outputs used in our benchmark.

36

GT: a black car and a green parking meter
Prediction: a green car and a black
parking meter

GT: three birds
Prediction: four birds

GT: a frisbee below a horse
Prediction: a frisbee above a
horse

(a) SD 1.5

GT: A microwave and a bench
Prediction: A microwave and a cup

GT: a laptop left of a cow
Prediction: a laptop right of a cow

GT: a green skateboard
Prediction: a yellow skateboard

(b) SD 2.0

GT: four microwaves
Prediction: three microwaves

GT: a laptop below a sports ball
Prediction: a laptop above a
sports ball

GT:a person and a stop sign
Prediction: a skateboard and a
stop sign

(c) SD 3-m

Figure D.5: SELF-BENCH in-Domain prediction failure cases. Examples where the model fails
despite being evaluated in an in-domain setting.

37

E Additional results

E.1 Full results in compositional benchmarks

Table E.1, E.2, E.3, E.4, E.5, E.6, E.7, E.8, E.9 and E.10 report quantitative results for
Winoground [49], COLA [40], EQBench [57], VisMin [2], MMVP [50], ARO [63], CLEVR [23],
SugarCrepe [16], WhatsUP [24], and SPEC [36], respectively. Figure E.1 provides an overview of
results across all prior benchmarks considered in our study.

SELF-BENCH. Table E.11 summarizes performance on SELF-BENCH. Given its high accuracy, one
might suspect data bias in SELF-BENCH or selection bias in the model. To address this, we report
both macro and micro accuracy in Figure E.2, which also provides a comprehensive overview of
performance on SELF-BENCH. Figure E.3 shows performance degradation in cross-domain settings.
Table E.12, Table E.13, and Table E.14 present fine-grained performance across color, position, and
counting tasks, respectively.

Compositional Benchmarks vs SELF-BENCH. Figure E.4 compares results from existing composi-
tional benchmarks with those from SELF-BENCH, revealing a clear domain shift across all tasks (see
gray background).

38

openAI RN50x64 openAI ViT-B/32 1.5openAI ViT-L/14 openCLIP ViT-H/14 openCLIP ViT-g/14
DiffusionCLIP

2.0 3-m

(a) Spatial

openAI RN50x64 openAI ViT-B/32 1.5openAI ViT-L/14 openCLIP ViT-H/14 openCLIP ViT-g/14
DiffusionCLIP

2.0 3-m

(b) Attribute

openAI
RN50x64

openAI
ViT-B/32 1.5openAI

ViT-L/14
openCLIP
ViT-H/14

openCLIP
ViT-g/14

DiffusionCLIP

2.0 3-m

(c) Counting

openAI
RN50x64

openAI
ViT-B/32 1.5openAI

ViT-L/14
openCLIP
ViT-H/14

openCLIP
ViT-g/14

DiffusionCLIP

2.0 3-m

(d) Object

openAI RN50x64 openAI ViT-B/32 1.5openAI ViT-L/14 openCLIP ViT-H/14 openCLIP ViT-g/14
DiffusionCLIP

2.0 3-m

(e) Complex (Attributes, Relation)

openAI RN50x64 openAI ViT-B/32 1.5openAI ViT-L/14 openCLIP ViT-H/14 openCLIP ViT-g/14
DiffusionCLIP

2.0 3-m

(f) size (g) action (h) presence

Figure E.1: Overview of performance on compositional benchmarks beyond the four main categories.
Summarizes model accuracy on additional compositional tasks, highlighting generalization beyond the core
evaluation categories. The red dotted horizontal line represents the random chance level.

39

Table E.1: Image-to-text retrieval results on Winoground [49].
Version Timesteps Resolution Method All Both Object Relation

CLIP RN50x64

-

224

cosine-sim

0.27 0.46 0.32 0.21
CLIP ViT-B/32 224 0.31 0.81 0.36 0.22
CLIP ViT-L/14 224 0.28 0.58 0.28 0.25
openCLIP ViT-H/14 224 0.34 0.58 0.40 0.27
openCLIP ViT-G/14 224 0.32 0.54 0.36 0.27

SD 1.5 30 512 zero-shot 0.32 0.54 0.33 0.33
discffusion 0.20 0.35 0.27 0.18

SD 2.0 30 512 zero-shot 0.36 0.54 0.39 0.30
discffusion 0.3 0.54 0.33 0.25

SD 3-m 30 1024 zero-shot 0.34 0.42 0.33 0.33
discffusion 0.34 0.46 0.34 0.34

Table E.2: Image-to-Text retrieval accuracy on COLA [40].
Version Timesteps Resolution Method Cola multi

CLIP RN50x64

-

224

cosine-sim

0.35
CLIP ViT-B/32 224 0.34
CLIP ViT-L/14 224 0.38
openCLIP ViT-H/14 224 0.44
openCLIP ViT-G/14 224 0.43

SD 1.5 30 512 zero-shot 0.47
discffusion 0.33

SD 2.0 30 512 zero-shot 0.50
discffusion 0.44

SD 3-m 30 1024 zero-shot 0.43
discffusion 0.43

Table E.3: Image-to-text retrieval accuracy on EQbench [57].

Version Timesteps Resolution Method EQ-YouCook2 EQ-GEBC EQ-AG EQ-Kubric EQ-SDAttribute Counting Location

CLIP RN50x64

-

224

cosine-sim

0.6 0.1 0.15 0.25 0.25 0.0 0.9
CLIP ViT-B/32 224 0.55 0.25 0.1 0.4 0.3 0.0 0.85
CLIP ViT-L/14 224 0.4 0.15 0.15 0.35 0.35 0.0 0.85
openCLIP ViT-H/14 224 0.7 0.2 0.2 0.4 0.4 0.0 0.95
openCLIP ViT-G/14 224 0.8 0.25 0.25 0.4 0.5 0.0 0.9

SD 1.5 30 512 zero-shot 0.5 0.1 0.3 0.4 0.25 0.15 0.9
discffusion 0.5 0.1 0.1 0.2 0.1 0.0 0.8

SD 2.0 30 512 zero-shot 0.55 0.15 0.15 0.4 0.15 0.15 0.9
discffusion 0.55 0.2 0.1 0.4 0.15 0.05 0.75

SD 3-m 30 1024 zero-shot 0.4 0.1 0.05 0.3 0.05 0.05 0.6
discffusion 0.35 0.1 0.0 0.3 0.05 0.05 0.55

Table E.4: Image-to-text retrieval accuracy on Vismin[2].
Version Timesteps Resolution Method Relation Attribute Object Counting

CLIP RN50x64

-

224

cosine-sim

0.09 0.79 0.89 0.37
CLIP ViT-B/32 224 0.09 0.72 0.80 0.31
CLIP ViT-L/14 224 0.09 0.74 0.87 0.37
openCLIP ViT-H/14 224 0.09 0.82 0.91 0.65
openCLIP ViT-G/14 224 0.08 0.85 0.90 0.65

SD 1.5 30 512 zero-shot 0.19 0.73 0.79 0.36
discffusion 0.07 0.58 0.66 0.13

SD 2.0 30 512 zero-shot 0.13 0.70 0.80 0.39
discffusion 0.09 0.71 0.79 0.31

SD 3-m 30 1024 zero-shot 0.44 0.57 0.46 0.26
discffusion 0.44 0.57 0.48 0.26

40

Table E.5: Image-to-Text retrieval accuracy on MMVP-VLM [50].
Version Timesteps Resolution Method Camera Perspective Color Orientation Presence Quantity Spatial State Structural Character Text

CLIP RN50x64

-

224

cosine-sim

0.27 0.67 0.2 0.27 0.07 0.07 0.27 0.07 0.4
CLIP ViT-B/32 224 0.2 0.53 0.07 0.07 0.13 0.07 0.27 0.4 0.33
CLIP ViT-L/14 224 0.13 0.33 0.0 0.07 0.0 0.2 0.33 0.27 0.27
openCLIP ViT-H/14 224 0.4 0.6 0.27 0.27 0.4 0.2 0.27 0.53 0.13
openCLIP ViT-G/14 224 0.27 0.8 0.33 0.13 0.6 0.2 0.6 0.6 0.27

SD 1.5 30 512 zero-shot 0.53 0.47 0.07 0.2 0.33 0.27 0.4 0.47 0.33
discffusion 0.4 0.4 0.0 0.13 0.2 0.13 0.2 0.13 0.07

SD 2.0 30 512 zero-shot 0.6 0.73 0.13 0.2 0.13 0.33 0.47 0.27 0.27
discffusion 0.47 0.67 0.27 0.07 0.07 0.13 0.4 0.2 0.2

SD 3-m 30 1024 zero-shot 0.47 0.67 0.33 0.0 0.13 0.47 0.53 0.27 0.0
discffusion 0.33 0.73 0.2 0.2 0.13 0.4 0.33 0.27 0.2

Table E.6: Image-to-Text retrieval accuracy on ARO [63].
Version Timesteps Resolution Method VG relation VG Attribution Flickr30k order COCO order

CLIP RN50x64

-

224

cosine-sim

0.51 0.62 0.59 0.52
CLIP ViT-B/32 224 0.51 0.61 0.59 0.48
CLIP ViT-L/14 224 0.53 0.61 0.56 0.47
openCLIP ViT-H/14 224 0.50 0.63 0.40 0.33
openCLIP ViT-G/14 224 0.51 0.64 0.38 0.33

SD 1.5 30 512 zero-shot 0.52 0.62 0.32 0.23
discffusion 0.62 0.67 0.85 0.72

SD 2.0 30 512 zero-shot 0.50 0.63 0.34 0.25
discffusion 0.58 0.73 0.77 0.58

SD 3-m 30 1024 zero-shot 0.48 0.56 0.18 0.16
discffusion 0.49 0.57 0.20 0.17

Table E.7: Image-to-text retrieval accuracy on CLEVR [23].
Version Timesteps Resolution Method All pair binding size pair binding color recognition color recognition shape spatial binding color shape binding shape color

CLIP RN50x64

-

224

cosine-sim

0.60 0.35 0.53 0.96 0.79 0.51 0.53 0.51
CLIP ViT-B/32 224 0.64 0.50 0.53 0.94 0.94 0.54 0.50 0.51
CLIP ViT-L/14 224 0.64 0.70 0.50 0.95 0.86 0.51 0.49 0.49
openCLIP ViT-H/14 224 0.67 0.66 0.52 0.98 1.0 0.52 0.50 0.50
openCLIP ViT-G/14 224 0.65 0.60 0.49 0.99 1.0 0.50 0.49 0.49

SD 1.5 30 512 zero-shot 0.66 0.67 0.63 0.84 0.84 0.49 0.55 0.57
discffusion 0.73 0.81 0.64 0.86 0.88 0.70 0.55 0.59

SD 2.0 30 512 zero-shot 0.69 0.61 0.81 0.85 0.88 0.51 0.57 0.59
discffusion 0.73 0.66 0.86 0.89 0.89 0.63 0.59 0.61

SD 3-m 30 1024 zero-shot 0.56 0.52 0.57 0.63 0.59 0.59 0.51 0.51
discffusion 0.56 0.53 0.58 0.64 0.59 0.59 0.51 0.51

Table E.8: Image-to-Text retrieval accuracy on SugarCrepe [16].
Version Timesteps Resolution Method attribute object relation

CLIP RN50x64

-

224

cosine-sim

0.69 0.88 0.71
CLIP ViT-B/32 224 0.66 0.84 0.69
CLIP ViT-L/14 224 0.66 0.86 0.65
openCLIP ViT-H/14 224 0.75 0.92 0.72
openCLIP ViT-G/14 224 0.73 0.92 0.73

SD 1.5 30 512 zero-shot 0.70 0.85 0.66
discffusion 0.80 0.67 0.59

SD 2.0 30 512 zero-shot 0.75 0.87 0.68
discffusion 0.86 0.87 0.76

SD 3-m 30 1024 zero-shot 0.67 0.72 0.58
discffusion 0.68 0.72 0.60

Table E.9: Image-to-Text retrieval accuracy on WhatsUP [24].
Version Timesteps Resolution Method WhatsUp A WhatsUp B COCO-spatial (one) COCO-spatial (two) GQA-spatial (one) GQA-spatial (two)

CLIP RN50x64

-

224

cosine-sim

0.34 0.24 0.45 0.50 0.46 0.53
CLIP ViT-B/32 224 0.31 0.31 0.44 0.51 0.47 0.48
CLIP ViT-L/14 224 0.27 0.26 0.49 0.50 0.46 0.48
openCLIP ViT-H/14 224 0.26 0.27 0.45 0.53 0.46 0.55
openCLIP ViT-G/14 224 0.30 0.26 0.48 0.45 0.48 0.47

SD 1.5 30 512 zero-shot 0.28 0.27 0.48 0.52 0.49 0.47
discffusion 0.23 0.32 0.69 0.52 0.55 0.56

SD 2.0 30 512 zero-shot 0.27 0.28 0.42 0.47 0.49 0.53
discffusion 0.25 0.21 0.59 0.58 0.55 0.58

SD 3-m 30 1024 zero-shot 0.28 0.37 0.54 0.55 0.54 0.56
discffusion 0.31 0.37 0.55 0.57 0.54 0.54

41

Table E.10: Image-to-text retrieval accuracy on SPEC [36].
Version Timesteps Resolution Method Absolute Size Absolute Spatial Count Existence Relative Size Relative Spatial

CLIP RN50x64

-

224

cosine-sim

0.35 0.12 0.30 0.57 0.31 0.29
CLIP ViT-B/32 224 0.42 0.13 0.25 0.58 0.34 0.28
CLIP ViT-L/14 224 0.37 0.12 0.29 0.58 0.32 0.29
openCLIP ViT-H/14 224 0.41 0.13 0.42 0.57 0.33 0.28
openCLIP ViT-G/14 224 0.37 0.14 0.47 0.55 0.32 0.30

SD 1.5 30 512 zero-shot 0.39 0.15 0.20 0.56 0.34 0.30
discffusion 0.33 0.11 0.12 0.52 0.33 0.26

SD 2.0 30 512 zero-shot 0.43 0.12 0.23 0.55 0.33 0.29
discffusion 0.33 0.11 0.12 0.52 0.33 0.26

SD 3-m 30 1024 zero-shot 0.37 0.24 0.18 0.52 0.34 0.43
discffusion 0.33 0.14 0.14 0.51 0.33 0.32

openAI RN50x64 openAI ViT-B/32 1.5gen accuracyopenAI ViT-L/14 openCLIP ViT-H/14 openCLIP ViT-g/14
DiffusionCLIP

2.0 3-m

A
cc

ur
ac

y

<Single Object> <Two Object> <Colors> <Color Attribution> <Counting><Position>

Data size:(271) (271) (314) (105) (129) (306) (219) (263) (314) (18) (36) (252) (6) (19) (113) (98) (111) (230)

(a) Average per sample on SELF-BENCH.

openAI RN50x64 openAI ViT-B/32 1.5gen accuracyopenAI ViT-L/14 openCLIP ViT-H/14 openCLIP ViT-g/14
DiffusionCLIP

2.0 3-m

A
cc

ur
ac

y

<Single Object> <Two Object> <Colors> <Color Attribution> <Counting><Position>

Data size:(271) (271) (314) (105) (129) (306) (219) (263) (314) (18) (36) (252) (6) (19) (113) (98) (111) (230)

(b) Macro average on SELF-BENCH.

Figure E.2: Micro accuracy (Top) and Macro accuracy (Bottom) on SELF-BENCH. We evaluate
CLIP and SD models in our SELF-BENCH. The X-axis represents the model used for generating the
dataset, with the number of images for each dataset indicated below. The results clearly show that
models perform well only when evaluated in-domain, not cross-domain. The red dotted horizontal
line represents the random chance level.

Ac
cu

ra
cy

Dr
op

 (%
)

Colors

8%
15%

Color attr.

36%

60%
Counting

43% 40%

Spatial

34% 30%

Single obj.

2%
17%

Two objs.

13%

55%

SD1.5 generations

SD2.0 SD3-m

Ac
cu

ra
cy

Dr
op

 (%
)

Colors

10% 11%

Color attr.

47% 43%

Counting

17% 23%

Spatial

40%

64%
Single obj.

0%
15%

Two objs.

1%

52%

SD2.0 generations

SD1.5 SD3-m

Ac
cu

ra
cy

Dr
op

 (%
)

Colors

16% 12%

Color attr.

32%
23%

Counting

16%
32%

Spatial

36%
48%

Single obj.

-0% 1%

Two objs.

2% 6%

SD3-m generations

SD1.5 SD2.0

Figure E.3: SELF-BENCH cross-domain drop rate. WE show the performance drop when evaluating models
in cross-domain settings.

42

Table E.11: Complete image-to-text retrieval accuracy results on SELF-BENCH across all tasks. Bold entries
indicate in-domain evaluations for the model.

Version Timesteps Resolution Method Single Object Two Objects Colors Color Attribution Position Counting
Full Correct Full Correct Full Correct Full Correct Full Correct Full Correct

CLIP RN50x64 - 224

cosine-sim

0.97 0.99 0.46 0.85 0.86 0.94 0.28 0.28 0.33 0.17 0.47 0.67
CLIP ViT-B/32 - 224 0.96 0.99 0.46 0.87 0.87 0.94 0.25 0.22 0.24 0.67 0.52 0.63
CLIP ViT-L/14 - 224 0.97 0.99 0.54 0.95 0.87 0.94 0.29 0.17 0.31 0.5 0.49 0.63
openCLIP ViT-H/14 - 224 0.97 1.0 0.52 0.95 0.89 0.97 0.31 0.5 0.30 0.33 0.48 0.85
openCLIP ViT-G/14 - 224 0.97 0.99 0.51 0.94 0.87 0.97 0.35 0.28 0.34 0.67 0.49 0.87

SD 1.5 (in-domain) 30 512
of samples 320 271 396 105 376 219 400 18 400 6 320 98

zero-shot 0.98 1.0 0.69 0.90 0.93 0.98 0.56 0.83 0.49 0.67 0.65 0.76
discffusion 0.88 0.86 0.36 0.59 0.75 0.77 0.26 0.5 0.36 0.33 0.5 0.46

SD 2.0 (cross-domain) 30 512 zero-shot 0.96 0.99 0.48 0.85 0.82 0.91 0.26 0.5 0.36 0.67 0.46 0.49
discffusion 0.96 0.98 0.47 0.83 0.80 0.91 0.24 0.56 0.35 0.33 0.40 0.59

SD 3-m (cross-domain) 30
512 zero-shot 0.82 0.86 0.26 0.50 0.68 0.75 0.16 0.44 0.31 0.83 0.39 0.44

discffusion 0.82 0.87 0.24 0.50 0.68 0.74 0.17 0.44 0.31 0.83 0.40 0.46

1024 zero-shot 0.78 0.81 0.29 0.57 0.88 0.88 0.26 0.56 0.29 0.33 0.37 0.53
discffusion 0.80 0.83 0.29 0.57 0.82 0.88 0.26 0.56 0.29 0.33 0.37 0.52

CLIP RN50x64 - 224

cosine-sim

0.99 1.0 0.61 0.91 0.93 0.95 0.30 0.47 0.30 0.26 0.50 0.77
CLIP ViT-B/32 - 224 1.0 1.0 0.54 0.85 0.92 0.94 0.35 0.47 0.22 0.16 0.50 0.60
CLIP ViT-L/14 - 224 0.99 1.0 0.64 0.93 0.91 0.93 0.28 0.44 0.26 0.26 0.52 0.69
openCLIP ViT-H/14 - 224 1.0 1.0 0.69 0.99 0.94 0.97 0.44 0.53 0.44 0.37 0.53 0.93
openCLIP ViT-G/14 - 224 1.0 1.0 0.65 0.98 0.94 0.98 0.45 0.69 0.38 0.42 0.53 0.95

SD 2.0 (in-domain) 30 512
of samples 320 271 396 129 376 263 400 36 400 19 320 111

zero-shot 1.0 1.0 0.82 0.98 0.97 0.98 0.70 0.88 0.63 0.84 0.78 0.95
discffusion 0.99 1.0 0.78 0.98 0.92 0.97 0.56 0.83 0.61 0.89 0.64 0.89

SD 1.5 (cross-domain) 30 512 zero-shot 0.99 0.99 0.61 0.90 0.85 0.89 0.37 0.42 0.28 0.26 0.49 0.59
discffusion 0.79 0.76 0.28 0.62 0.62 0.60 0.18 0.28 0.21 0.32 0.45 0.31

SD 3-m (cross-domain) 30
512 zero-shot 0.89 0.91 0.35 0.57 0.78 0.80 0.19 0.39 0.33 0.63 0.46 0.51

discffusion 0.89 0.91 0.34 0.56 0.80 0.81 0.20 0.42 0.32 0.63 0.48 0.51

1024 zero-shot 0.86 0.87 0.40 0.63 0.87 0.90 0.28 0.53 0.30 0.42 0.45 0.57
discffusion 0.87 0.88 0.41 0.66 0.87 0.90 0.27 0.58 0.31 0.47 0.44 0.57

CLIP RN50x64 - 224

cosine-sim

0.99 0.99 0.90 0.91 0.89 0.92 0.38 0.40 0.26 0.27 0.66 0.7
CLIP ViT-B/32 - 224 1.0 1.0 0.86 0.89 0.88 0.91 0.43 0.43 0.28 0.31 0.61 0.65
CLIP ViT-L/14 - 224 0.99 0.99 0.95 0.98 0.89 0.91 0.34 0.36 0.32 0.30 0.68 0.75
openCLIP ViT-H/14 - 224 1.0 1.0 0.95 0.97 0.91 0.96 0.47 0.49 0.36 0.33 0.84 0.97
openCLIP ViT-G/14 - 224 1.0 1.0 0.95 0.98 0.91 0.95 0.51 0.55 0.37 0.35 0.84 0.96

SD 3-m (in-domain) 30 1024
of samples 320 314 396 306 376 314 400 252 400 113 320 230

zero-shot 1.0 1.0 0.98 0.98 0.97 0.98 0.91 0.95 0.72 0.89 0.85 0.91
discffusion 1.0 1.0 0.98 0.99 0.98 0.98 0.91 0.95 0.72 0.91 0.86 0.92

SD 1.5 (cross-domain) 30 512 zero-shot 1.0 1.0 0.87 0.88 0.78 0.82 0.53 0.58 0.32 0.30 0.57 0.60
discffusion 0.85 0.84 0.75 0.54 0.60 0.61 0.27 0.25 0.25 0.28 0.47 0.55

SD 2.0 (cross-domain) 30 512 zero-shot 0.99 0.99 0.91 0.92 0.82 0.87 0.56 0.63 0.33 0.34 0.57 0.61
discffusion 0.98 0.98 0.88 0.90 0.82 0.85 0.52 0.57 0.38 0.38 0.56 0.65

Table E.12: Fine-grained accuracy on SELF-BENCH Colors.
Version Timesteps Resolution Method Red Orange Yellow Green Blue Purple Pink Brown Black White Macro Average

Full Correct Full Correct Full Correct Full Correct Full Correct Full Correct Full Correct Full Correct Full Correct Full Correct Full Correct

CLIP RN50x64 - 224

cosine-sim

0.98 1.00 0.82 0.67 0.77 1.00 1.00 1.00 0.85 1.00 0.90 1.00 0.83 0.93 0.82 0.92 0.84 0.91 0.62 0.74 0.84 0.92
CLIP ViT-B/32 - 224 0.92 1.00 0.82 0.56 0.82 0.96 0.98 1.00 0.88 1.00 0.88 0.95 0.79 0.87 0.82 0.85 0.93 0.94 0.75 0.89 0.86 0.90
CLIP ViT-L/14 - 224 0.94 0.97 0.82 0.56 0.68 0.92 1.00 1.00 0.82 0.95 0.93 1.00 0.88 1.00 0.89 1.00 0.91 0.88 0.81 0.89 0.87 0.92
openCLIP ViT-H/14 - 224 1.00 1.00 0.93 0.89 0.70 0.96 0.98 1.00 0.88 1.00 0.90 0.95 0.88 1.00 0.86 1.00 0.86 0.88 0.88 1.00 0.89 0.97
openCLIP ViT-G/14 - 224 0.96 1.00 0.96 1.00 0.70 0.96 0.98 1.00 0.85 1.00 0.90 1.00 0.92 1.00 0.86 1.00 0.82 0.88 0.78 0.95 0.87 0.98

SD 1.5 30 512
of samples 52 31 28 9 44 26 44 29 40 22 40 22 24 15 28 13 44 33 32 19 - -

zero-shot 0.98 1.0 0.96 0.89 0.93 1.0 0.98 1.0 0.95 0.95 0.98 1.0 0.88 1.0 0.68 0.92 0.95 0.97 0.91 1.0 0.92 0.97
discffusion 0.92 0.94 0.89 0.78 0.95 1.0 0.80 0.59 0.80 0.91 0.88 0.91 0.75 0.87 0.21 0.46 0.52 0.52 0.53 0.74 0.72 0.77

SD 2.0 30 512 zero-shot 0.81 0.94 0.93 0.89 0.68 0.88 0.95 0.97 0.78 0.86 0.83 0.86 0.88 1.0 0.64 0.77 0.86 0.88 0.81 1.0 0.82 0.91
discffusion 0.81 0.97 0.71 1.0 0.64 0.88 0.95 0.97 0.75 0.86 0.80 0.82 0.88 0.93 0.71 0.92 0.86 0.82 0.88 1.0 0.8 0.92

SD 3-m 30 1024 zero-shot 0.71 0.74 0.79 0.67 0.82 1.0 0.95 1.0 0.85 0.95 0.9 1.0 0.88 1.0 0.79 0.85 0.59 0.61 0.91 1.0 0.82 0.88
discffusion 0.71 0.74 0.75 0.67 0.84 1.0 0.98 1.0 0.85 0.95 0.90 1.0 0.88 1.0 0.82 0.85 0.64 0.64 0.91 1.0 0.83 0.89

CLIP RN50x64 - 224

cosine-sim

0.96 0.94 0.86 0.78 0.91 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.82 0.94 0.80 0.84 0.88 0.96 0.92 0.94
CLIP ViT-B/32 - 224 0.90 0.89 0.86 0.78 0.91 0.97 1.00 1.00 0.97 1.00 0.97 1.00 1.00 1.00 0.75 0.81 0.93 0.91 0.84 1.00 0.91 0.94
CLIP ViT-L/14 - 224 0.87 0.86 0.86 0.78 0.80 0.94 1.00 1.00 0.95 0.97 1.00 1.00 1.00 1.00 0.79 0.88 0.86 0.88 0.97 1.00 0.91 0.93
openCLIP ViT-H/14 - 224 0.92 0.89 0.93 0.89 0.84 0.97 1.00 1.00 0.95 0.97 0.97 1.00 1.00 1.00 0.89 0.94 0.98 1.00 0.97 1.00 0.95 0.97
openCLIP ViT-G/14 - 224 0.96 0.94 0.96 0.94 0.82 0.97 1.00 1.00 0.97 1.00 0.97 1.00 1.00 1.00 0.86 0.94 0.93 0.97 0.94 1.00 0.94 0.98

SD 2.0 30 512
of samples 52 35 28 18 44 35 44 36 40 34 40 22 24 12 28 16 44 32 32 23 - -

zero-shot 0.94 0.97 1.0 1.0 0.93 1.0 0.95 0.94 0.98 1.0 0.98 1.0 1.0 1.0 0.89 0.94 1.0 1.0 1.0 1.0 0.97 0.99
discffusion 0.92 0.94 0.96 1.0 0.80 0.94 0.95 0.92 0.93 1.0 0.95 1.0 1.0 0.92 0.82 1.0 0.98 0.97 0.94 1.0 0.93 0.97

SD 1.5 30 512 zero-shot 0.67 0.69 0.96 0.94 0.84 0.94 0.95 0.94 0.85 0.88 0.90 0.95 0.92 0.92 0.71 0.88 0.84 0.88 0.88 0.96 0.85 0.90
discffusion 0.81 0.77 0.68 0.56 0.89 0.97 0.52 0.39 0.83 0.82 0.48 0.36 0.79 0.92 0.21 0.44 0.41 0.28 0.50 0.39 0.61 0.59

SD 3-m 30 1024 zero-shot 0.73 0.74 0.96 0.89 0.84 0.86 1.0 1.0 0.98 1.0 0.95 1.0 0.96 0.92 0.82 0.88 0.74 0.78 0.88 1.0 0.89 0.91
discffusion 0.73 0.74 0.93 0.89 0.84 0.89 1.00 1.0 0.98 1.0 0.95 1.0 0.96 0.92 0.79 0.81 0.70 0.78 0.88 1.0 0.88 0.90

CLIP RN50x64 - 224

cosine-sim

0.73 0.85 0.96 0.96 0.91 0.89 0.98 1.00 1.00 1.00 0.97 0.97 1.00 1.00 0.68 0.77 0.91 0.92 0.75 0.79 0.89 0.91
CLIP ViT-B/32 - 224 0.81 0.87 0.82 0.81 0.91 0.89 0.91 1.00 1.00 1.00 1.00 1.00 0.96 0.94 0.64 0.73 0.86 0.89 0.88 0.88 0.88 0.90
CLIP ViT-L/14 - 224 0.94 0.92 0.93 0.92 0.84 0.84 0.91 1.00 1.00 1.00 0.93 0.92 1.00 1.00 0.68 0.77 0.89 0.89 0.78 0.79 0.89 0.91
openCLIP ViT-H/14 - 224 0.81 0.95 1.00 1.00 0.89 0.89 0.95 1.00 1.00 1.00 0.93 0.92 1.00 1.00 0.71 0.82 0.98 1.00 0.91 1.00 0.92 0.96
openCLIP ViT-G/14 - 224 0.83 0.95 0.93 0.92 0.84 0.84 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.68 0.77 1.00 1.00 0.91 1.00 0.91 0.95

SD 3-m 30 1024
of samples 52 39 28 26 44 38 44 34 40 39 40 36 24 18 28 22 44 38 32 24 - -

zero-shot 0.92 0.92 0.96 0.96 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.96 1.0 0.98 0.93 0.91 1.0 0.97 0.98
discffusion 0.94 0.92 0.96 0.96 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.96 1.0 0.98 0.97 0.91 1.0 0.97 0.98

SD 1.5 30 512 zero-shot 0.65 0.77 0.82 0.81 0.80 0.84 0.82 0.88 0.83 0.82 0.98 0.97 0.96 1.0 0.68 0.77 0.64 0.68 0.75 0.71 0.79 0.83
discffusion 0.75 0.87 0.57 0.46 0.93 1.0 0.59 0.56 0.83 0.72 0.70 0.58 0.67 0.78 0.18 0.23 0.25 0.34 0.34 0.33 0.58 0.59

SD 2.0 30 512 zero-shot 0.69 0.79 0.89 0.88 0.75 0.82 0.86 0.88 0.90 0.90 0.90 0.89 0.92 0.94 0.68 0.77 0.89 0.95 0.78 0.83 0.83 0.86
discffusion 0.73 0.85 0.82 0.81 0.70 0.76 0.82 0.85 0.93 0.90 0.98 0.86 0.92 0.89 0.68 0.82 0.86 0.89 0.84 0.88 0.83 0.85

43

Table E.13: Fine-grained accuracy on SELF-BENCH Position.
Version Timesteps Resolution Method left of right of above below Macro Average

Full Correct Full Correct Full Correct Full Correct Full Correct

CLIP RN50x64 - 224

cosine-sim

0.33 0.00 0.37 0.00 0.38 0.50 0.25 0.00 0.33 0.12
CLIP ViT-B/32 - 224 0.14 0.00 0.19 0.00 0.40 0.50 0.20 1.00 0.23 0.38
CLIP ViT-L/14 - 224 0.28 0.00 0.43 0.00 0.29 0.50 0.23 0.67 0.31 0.29
openCLIP ViT-H/14 - 224 0.38 0.00 0.43 0.00 0.19 0.50 0.21 0.33 0.30 0.21
openCLIP ViT-G/14 - 224 0.41 0.00 0.41 0.00 0.27 0.50 0.29 1.00 0.34 0.38

SD 1.5 30 512
of samples 76 1 108 0 104 2 112 3 - -

zero-shot 0.47 0.00 0.44 0.00 0.46 1.00 0.56 0.67 0.48 0.42
discffusion 0.42 0.0 0.25 0.0 0.42 1.0 0.36 0.0 0.36 0.25

SD 2.0 30 512 zero-shot 0.34 0.00 0.39 0.00 0.46 0.50 0.26 1.00 0.36 0.38
discffusion 0.62 1.0 0.32 0.0 0.38 0.5 0.17 0.0 0.37 0.38

SD 3-m 30 1024 zero-shot 0.28 0.0 0.27 0.0 0.29 0.5 0.32 0.33 0.29 0.21
discffusion 0.29 0.0 0.27 0.0 0.29 0.5 0.32 0.33 0.29 0.21

CLIP RN50x64 - 224

cosine-sim

0.33 0.00 0.29 0.00 0.29 0.50 0.29 0.14 0.30 0.16
CLIP ViT-B/32 - 224 0.14 0.00 0.17 0.00 0.38 0.25 0.17 0.14 0.22 0.10
CLIP ViT-L/14 - 224 0.28 0.00 0.37 0.00 0.18 0.38 0.22 0.29 0.26 0.17
openCLIP ViT-H/14 - 224 0.57 1.00 0.62 0.33 0.25 0.50 0.35 0.14 0.45 0.49
openCLIP ViT-G/14 - 224 0.55 1.00 0.44 0.67 0.26 0.50 0.32 0.14 0.39 0.58

SD 2.0 30 512
of samples 76 1 108 3 104 8 112 7 - -

zero-shot 0.53 0.0 0.73 0.67 0.61 0.88 0.63 1.0 0.62 0.64
discffusion 0.72 1.0 0.52 1.0 0.53 0.88 0.46 0.86 0.56 0.93

SD 1.5 30 512 zero-shot 0.34 0.0 0.30 0.33 0.21 0.38 0.29 0.14 0.28 0.21
discffusion 0.22 0.0 0.10 0.0 0.32 0.50 0.21 0.29 0.21 0.20

SD 3-m 30 1024 zero-shot 0.39 1.0 0.33 0.67 0.25 0.38 0.23 0.29 0.30 0.58
discffusion 0.43 1.0 0.31 0.33 0.24 0.75 0.27 0.57 0.31 0.66

CLIP RN50x64 - 224

cosine-sim

0.13 0.22 0.27 0.47 0.38 0.27 0.23 0.19 0.25 0.29
CLIP ViT-B/32 - 224 0.09 0.06 0.19 0.07 0.65 0.66 0.13 0.11 0.27 0.22
CLIP ViT-L/14 - 224 0.16 0.06 0.51 0.47 0.27 0.41 0.29 0.22 0.31 0.29
openCLIP ViT-H/14 - 224 0.20 0.00 0.56 0.73 0.27 0.32 0.36 0.33 0.35 0.35
openCLIP ViT-G/14 - 224 0.28 0.17 0.56 0.60 0.33 0.36 0.30 0.31 0.37 0.36

SD 3-m 30 1024
of samples 76 18 108 15 104 44 112 36 - -

zero-shot 0.68 0.89 0.66 0.93 0.72 0.86 0.80 0.92 0.72 0.90
discffusion 0.71 0.94 0.66 1.0 0.71 0.86 0.80 0.92 0.72 0.93

SD 1.5 30 512 zero-shot 0.28 0.28 0.30 0.13 0.33 0.36 0.37 0.31 0.32 0.27
discffusion 0.22 0.17 0.20 0.0 0.39 0.61 0.18 0.06 0.25 0.21

SD 2.0 30 512 zero-shot 0.17 0.06 0.29 0.40 0.43 0.43 0.38 0.33 0.32 0.30
discffusion 0.51 0.33 0.27 0.27 0.48 0.50 0.29 0.31 0.39 0.35

44

Table E.14: Fine-grained accuracy on SELF-BENCH Counting.
Version Timesteps Resolution Method one two three four Macro Average

Full Correct Full Correct Full Correct Full Correct Full Correct

CLIP RN50x64 - 224

cosine-sim

0.00 0.00 0.58 0.78 0.32 0.55 0.51 0.56 0.35 0.47
CLIP ViT-B/32 - 224 0.00 0.00 0.56 0.71 0.31 0.50 0.69 0.78 0.39 0.50
CLIP ViT-L/14 - 224 0.00 0.00 0.47 0.71 0.43 0.55 0.58 0.56 0.37 0.45
openCLIP ViT-H/14 - 224 0.00 0.00 0.62 0.86 0.37 0.79 0.48 1.00 0.37 0.66
openCLIP ViT-G/14 - 224 0.00 0.00 0.56 0.86 0.43 0.84 0.50 1.00 0.37 0.68

SD 1.5 30 512
of samples 4 1 104 51 108 37 104 9 - -

zero-shot 0.50 1.0 0.74 0.78 0.49 0.68 0.72 1.0 0.61 0.86
discffusion 0.75 1.0 0.08 0.06 0.86 0.95 0.54 0.67 0.56 0.67

SD 2.0 30 512 zero-shot 0.25 0.0 0.51 0.55 0.31 0.38 0.57 0.67 0.41 0.40
discffusion 0.50 0.0 0.61 0.84 0.20 0.32 0.40 0.33 0.43 0.37

SD 3-m 30 1024 zero-shot 0.5 0.0 0.38 0.53 0.41 0.54 0.33 0.56 0.41 0.41
discffusion 0.50 0.0 0.38 0.51 0.44 0.54 0.30 0.56 0.41 0.40

CLIP RN50x64 - 224

cosine-sim

0.00 0.00 0.69 0.87 0.37 0.58 0.44 0.67 0.38 0.53
CLIP ViT-B/32 - 224 0.00 0.00 0.55 0.64 0.23 0.27 0.75 1.00 0.38 0.48
CLIP ViT-L/14 - 224 0.00 0.00 0.59 0.69 0.44 0.62 0.55 0.87 0.39 0.54
openCLIP ViT-H/14 - 224 0.00 0.00 0.74 0.93 0.34 0.88 0.51 1.00 0.40 0.70
openCLIP ViT-G/14 - 224 0.00 0.00 0.75 0.94 0.31 0.96 0.55 1.00 0.40 0.73

SD 2.0 30 512
of samples 4 3 104 70 108 23 104 15 - -

zero-shot 1.00 0.75 0.94 0.89 0.91 0.64 1.00 0.83 0.96 0.78
discffusion 0.75 0.67 0.88 1.00 0.37 0.61 0.66 0.87 0.67 0.79

SD 1.5 30 512 zero-shot 0.0 0.0 0.57 0.60 0.37 0.48 0.55 0.80 0.37 0.47
discffusion 1.00 0.67 0.05 0.03 0.88 0.91 0.38 0.60 0.58 0.55

SD 3-m 30 1024 zero-shot 0.5 0.67 0.48 0.5 0.43 0.61 0.44 0.8 0.46 0.65
discffusion 0.00 0.0 0.50 0.53 0.33 0.39 0.62 0.73 0.36 0.41

CLIP RN50x64 - 224

cosine-sim

0.00 0.00 0.73 0.82 0.50 0.52 0.75 0.78 0.50 0.53
CLIP ViT-B/32 - 224 0.00 0.00 0.69 0.80 0.36 0.40 0.79 0.80 0.46 0.50
CLIP ViT-L/14 - 224 0.00 0.00 0.67 0.75 0.73 0.79 0.64 0.70 0.51 0.56
openCLIP ViT-H/14 - 224 0.00 0.00 0.88 0.96 0.82 0.95 0.83 0.98 0.63 0.73
openCLIP ViT-G/14 - 224 0.00 0.00 0.89 0.98 0.79 0.94 0.85 0.97 0.63 0.72

SD 3-m 30 1024
of samples 4 3 104 84 108 83 104 60 - -

zero-shot 0.75 0.67 0.89 0.92 0.78 0.86 0.88 0.98 0.82 0.86
discffusion 0.75 0.67 0.90 0.94 0.80 0.87 0.88 0.98 0.83 0.86

SD 1.5 30 512 zero-shot 0.75 0.67 0.54 0.62 0.47 0.52 0.68 0.70 0.61 0.63
discffusion 1.00 1.0 0.09 0.13 0.91 0.95 0.38 0.55 0.59 0.66

SD 2.0 30 512 zero-shot 0.50 0.67 0.58 0.64 0.32 0.37 0.83 0.90 0.56 0.65
discffusion 0.75 0.67 0.66 0.79 0.38 0.43 0.63 0.77 0.60 0.67

45

openAI RN50x64 openAI ViT-B/32 1.5gen accuracyopenAI ViT-L/14 openCLIP ViT-H/14 openCLIP ViT-g/14
DiffusionCLIP

2.0 3-m
<Position>

(a) Spatial

openAI RN50x64 openAI ViT-B/32 1.5gen accuracyopenAI ViT-L/14 openCLIP ViT-H/14 openCLIP ViT-g/14
DiffusionCLIP

2.0 3-m
<Colors> <Color Attribution>

(b) Attribute

openAI RN50x64 openAI ViT-B/32 1.5gen accuracyopenAI ViT-L/14 openCLIP ViT-H/14 openCLIP ViT-g/14
DiffusionCLIP

2.0 3-m

<Counting>

(c) Counting

<Single Object> <Two Objects>

(d) Object

Figure E.4: Additional results on compositional benchmarks and SELF-BENCH. The detailed breakdown of
our analysis within four categories: (a) Object, (b) Attribute, (c) Position, and (d) Counting. Results on a white
background correspond to performance across ten existing compositional benchmarks (33 sub-tasks), while
those on a gray background represent results on SELF-BENCH.The red dotted horizontal line represents the
random chance level.

E.2 Results on a distilled SD3.5 and FLUX model

Given that timestep reweighting has a strong positive effect on the performance of the Stable Diffusion
3 model, we further investigate whether distilled versions of these models (capable of generating
images in as few as 4 steps) behave differently from their corresponding base models. Specifically,
we evaluate Stable Diffusion 3 and its distilled counterpart, Stable Diffusion 3.5 Large Turbo, on
Self-Bench at a resolution of 512. While the distilled model supports extremely fast generation, we
ensure a fair comparison by running both models at 30 inference steps.

This experiment tests whether aggressive distillation, while beneficial for generation quality and
efficiency, compromises the discriminative performance of the model—or not. The results suggest
that it does: the distilled model underperforms significantly compared to its base version. We present
the results in Table E.15. Additionally, FLUX [60] has been introduced with impressive generative
quality. We include FLUX in our analysis as an exploratory case, focusing on Position and Counting
tasks in real-world datasets—categories where diffusion models typically perform particularly well
and poorly, respectively. As shown in Table E.16 and Table E.17, we again observe a significant drop
in discriminative performance for the distilled model.

46

Table E.15: SD3 Large turbo (distilled) / SD3-m accuracies on Self-Bench tasks.

Geneval Version Color Attr Position Counting Colors Single Two

1.5 0.17 / 0.15 0.67 / 0.63 0.33 / 0.30 0.53 / 0.72 0.48 / 0.74 0.19 / 0.49
2 0.31 / 0.34 0.47 / 0.48 0.41 / 0.42 0.65 / 0.71 0.51 / 0.78 0.16 / 0.57
3-m 0.49 / 0.72 0.40 / 0.68 0.43 / 0.57 0.83 / 0.84 0.73 / 0.88 0.43 / 0.75

Table E.16: Performance of FLUX in Position.
Method WhatsUP A WhatsUP B COCO one COCO two GQA one GQA two SPEC relative EQbench Vismin MMVP spatial MMVP orientation MMVP perspective CLEVR SPEC absolute

SD1.5 0.28 0.27 0.48 0.52 0.49 0.47 0.30 0.15 0.19 0.27 0.07 0.53 0.49 0.15
SD2.0 0.27 0.28 0.42 0.47 0.49 0.53 0.29 0.15 0.13 0.33 0.13 0.6 0.51 0.12
SD3-m 0.28 0.37 0.54 0.55 0.54 0.56 0.43 0.05 0.44 0.47 0.33 0.47 0.59 0.24

FLUX 0.28 0.29 0.47 0.55 0.52 0.50 0.35 0.0 0.24 0.27 0.2 0.33 0.57 0.17

Table E.17: Performance of FLUX in Counting.

Method Vismin EQbench MMVP SPEC

SD1.5 0.33 0.25 0.33 0.2
SD2.0 0.13 0.15 0.13 0.23
SD3-m 0.13 0.05 0.13 0.18

FLUX 0.17 0.05 0.13 0.15

E.3 Style alignment

In this section, we present additional results on attempts to close the domain gap. We perform style
alignment experiments using the textual inversion technique. The core idea is to adapt the model’s
style representation to better fit the target domain. Specifically, for each dataset, we aim to reduce the
domain gap for the Stable Diffusion 3 Medium model.

Figure E.5: Image generations of SD3-m with style alignment. Top: CLEVR dataset; Bottom: Whatsup-A
dataset.

To achieve this, we learn a style token denoted as S∗ via textual inversion. Given a dataset, we train
S∗ such that it enables accurate reconstruction of the dataset’s images when used in text prompts.

47

The training prompts follow the structure: “a clear photo in the style of S∗”. We performed these
experiments on the original dataset size of 512.

At inference time, when evaluating diffusion classifiers, we include the learned style token in the
prompt by appending the phrase “in the style of S∗”. This style-conditioned prompting is used across
several datasets, including the Whatsup-A and CLEVR-ColorBinding benchmarks.

The generations are shown in Fig. E.5. The results of these experiments are summarised in the table
below. Overall, we find that style alignment through textual inversion may not be an effective way to
mitigate the domain gap.

Table E.18: Diffusion classifier accuracy before and after style alignment via textual inversion.

Dataset Before Alignment (%) After Alignment (%)
WhatsApp-A 26.5 29.3
CLEVR-ColorBinding 59.1 57.1

E.4 Additional qualitative results

We illustrate a qualitative example of SD2.0 and SD3-m generation results from different timesteps
on Whatsup-A dataset in Figure E.6.

...

...

...

...

A bowl to the left of an armchair

t=0.100 t=0.400 t=0.500 t=0.53 t=0.733 t=0.766 t=0.800

A bowl on an armchair

S
D

2.
0

S
D

2.
0

S
D

3-
m

S
D

3-
m

Figure E.6: Image generation results on Whatsup-A using SD2.0 and SD3-m models.

E.5 Upperbounding Self-Bench performance with timestep weighting

Timestep weights benefit all models cross-domain, but SD3 the most. We investigate whether
timestep weighting can mitigate performance issues, particularly for the SD3-m model; we follow
Section 3.1 and report upper-bound performance by fitting timestep weights on all data.

48

A
cc

u
ra

cy
 (

%
) Colors

89

85

89

88

91

86

Color attr.

53

49

63

57

64

42

Counting

66

60

61

56

71

61

Position

48

29

59

43

95

33

Single obj.
99

99

99

99

92

84

Two objs.

89

89

89

89

73

41

SD1.5 SD2.0 SD3-m Reweighted

Figure E.7: SELF-BENCH: Timestep reweighting helps address the cross-domain problem. We show the
performance of each SD model on cross-domain data (e.g., for the SD1.5 model, the bars depict its performance
on SD2.0 and SD3-m generations, averaged). All models benefit from timestep reweighting, with SD3-m
benefiting the most.

Our upper bound analysis in SELF-BENCH reveals that optimizing timestep weights improves
performance across most tasks and models (Figure E.7). The improvements are particularly dramatic
for SD3-m: in spatial tasks, accuracy increases from 33% to 95%, and in the two-objects task from
41% to 73%. While SD1.5 and SD2.0 also benefit from reweighting, showing improvements of 1-10%
across tasks, the gains are more modest compared to SD3-m. This suggests that SD3-m’s lower
baseline performance is not due to fundamental model limitations, but rather suboptimal weighting
of timestep information.

Contrary to previously argued uniform weighting or decaying weighting schemes, we find that
timesteps near the end of the diffusion process (i.e., large t) tend to perform better for classification.
This is in contrast to previous works [6, 20] that have argued for using uniform or exponentially
decaying weights across timesteps.

E.6 CLIP scores and domain gaps

As an extension of Figure 9 in Section 5.4 of the main paper, Table E.19 shows CLIP embedding
distances between real-world datasets and SELF-BENCH generations, and corresponding accuracy
gains from timestep weighting. We can see the positive correlation in SD3 but not in SD1 and SD2.

Table E.19: Timestep Weighting and Domain Gap. CLIP embedding distances between real-world datasets
and SELF-BENCH generations, and corresponding accuracy gains from timestep weighting.
Dataset CLIP Distance (SD 1.5) ∆ Accuracy (SD1.5) CLIP Distance (SD2.0) ∆ Accuracy (SD2.0) CLIP Distance (SD 3-m) ∆ Accuracy (SD3-m)

COCO QA‡ 3.494 5% 3.133 5% 3.576 +4%
VQ QA‡ 3.666 5% 3.584 1% 3.918 +5%
SPEC Count† 2.646 2% 2.598 0% 3.191 +5%
WhatsUp B‡ 4.254 0% 4.016 0% 4.047 +4%
WhatsUp A‡ 4.656 -1% 4.344 4% 4.600 +12%
CLEVR Binding⋆ 5.64 9% 4.348 8% 4.926 +35%
CLEVR Spatial‡ 5.57 -3% 4.63 2% 5.023 +16%

‡ Position † Counting ⋆ Attribute

E.7 SigLIP results

We also report SigLIP and SigLIP2 (ViT-SO400M-14 and ViT-L-16-256) as additional discrimina-
tive baselines in Table E.20. While SigLIP sometimes exceeds CLIP (e.g., SugarCrepe-Attribute),
the conclusion remains the same: classifiers remain best in Position, and CLIP/SigLIP dominate
Object/Counting.

49

Table E.20: SigLIP baselines. We report the best CLIP variant, SigLIP, SigLIP2, and the best
diffusion classifier per task.
Benchmark Best Diffusion Best CLIP SigLIP SigLIP2

Self-Bench (1.5) 0.88 0.79 0.80 0.81
Self-Bench (2.0) 0.94 0.84 0.86 0.89
Self-Bench (3-m) 0.95 0.80 0.79 0.82

COCO QA two 0.55 0.53 0.50 0.49
VQ QA two 0.56 0.55 0.49 0.51
SPEC Count 0.23 0.47 0.40 0.41
WhatsUP A 0.28 0.34 0.28 0.30
WhatsUP B 0.37 0.31 0.28 0.28
CLEVR Colors Bind. 0.81 0.53 0.50 0.51
CLEVR Spatial 0.59 0.54 0.50 0.50
SugarCrepe attrib. 0.75 0.75 0.78 0.77
SugarCrepe object 0.87 0.92 0.91 0.92

50

	Introduction
	Related work
	Methodology
	Preliminaries: diffusion classifiers
	SD3-m as a classifier

	Self-Bench: a diagnostic benchmark
	Experiments
	Experimental setting
	Scaling evaluation to ten benchmarks
	Studying domain effects via Self-Bench
	Timestep weighting effects

	Conclusion
	Appendix
	Appendix Contents
	Diffusion classifiers: details and discussion
	Deriving diffusion classifiers under a unified loss framework
	Details on timestep weighting
	Design choices for diffusion classifiers
	Discussion of misalignment between discriminative and generative performance

	Ablation Studies
	Image resolution
	Varying number of timesteps
	On universality of timestep weighting
	Biased timestep sampling

	Details of Experiments settings
	Choice of Baselines
	Implementation Details

	Details of Self-Bench
	Design and filtering
	Qualitative examples

	Additional results
	Full results in compositional benchmarks
	Results on a distilled SD3.5 and FLUX model
	Style alignment
	Additional qualitative results
	Upperbounding Self-Bench performance with timestep weighting
	CLIP scores and domain gaps
	SigLIP results

