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Abstract

Biological signals, such as electroencephalograms (EEG), play a crucial role
in numerous clinical applications, exhibiting diverse data formats and quality
profiles. Current deep learning models for biosignals (based on CNN, RNN, and
Transformers) are typically specialized for specific datasets and clinical settings,
limiting their broader applicability. This paper explores the development of a
flexible biosignal encoder architecture that can enable pre-training on multiple
datasets and fine-tuned on downstream biosignal tasks with different formats.

To overcome the unique challenges associated with biosignals of various formats,
such as mismatched channels, variable sample lengths, and prevalent missing val-
ues, we propose Biosignal Transformer (BIOT). The proposed BIOT model can
enable cross-data learning with mismatched channels, variable lengths, and missing
values by tokenizing different biosignals into unified "sentences" structure. Specifi-
cally, we tokenize each channel separately into fixed-length segments containing
local signal features and then re-arrange the segments to form a long "sentence".
Channel embeddings and relative position embeddings are added to each segment
(viewed as "token") to preserve spatio-temporal features.

The BIOT model is versatile and applicable to various biosignal learning settings
across different datasets, including joint pre-training for larger models. Compre-
hensive evaluations on EEG, electrocardiogram (ECG), and human activity sensory
signals demonstrate that BIOT outperforms robust baselines in common settings
and facilitates learning across multiple datasets with different formats. Using
CHB-MIT seizure detection task as an example, our vanilla BIOT model shows 3%
improvement over baselines in balanced accuracy, and the pre-trained BIOT models
(optimized from other data sources) can further bring up to 4% improvements. Our
repository is public at https://github.com/ycq091044/BIOT.

1 Introduction

Biosignals, such as EEG and ECG, are multi-channel time series recorded at high sampling rates (e.g.,
256Hz) in various healthcare domains, including sleep medicine, neurological and cardiovascular
disease detection, and activity monitoring. Deep learning (DL) models have demonstrated impressive
success in automating biosignal analysis across diverse applications (Yang et al.,[2021)), encompassing
sleep stage classification (Biswal et al., 2018; Yang et al.|[2021} |Phan and Mikkelsen, [2022)), emotion
analysis via EEG (Zhang et al.| |2020; |Suhaimi et al., [2020), action and motor imagery recognition
(Venkatachalam et al.,2020), acute stress detection through electrodermal activity (Greco et al., 2021)),
EEG-based seizure epilepsy classification (Yang et al., 2023} Jing et al., 2023)), and ECG-driven
cardiac arrhythmia detection (Isin and Ozdalili, 2017} |Parvaneh et al.,|2019).

Various deep learning methods have been developed for biosignal learning. Some works use 1D
convolutional neural networks (CNN) on raw signals (Jing et al.,|2023; |Nagabushanam et al., [2020;
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Dar et al., |2020), while others preprocess the data with short-time Fourier transform (STFT) and
employ 2D CNN models on the resulting spectrogram (Yang et al., |2022; |Kim et al., [2020; |Cui et al.,
2020). Researchers also segment the signal and use a CNN segment encoder with a downstream
sequence model (Zhang et al., 2019; Biswal et al.l 2018; Jing et al.| |2020; |Almutairi et al.|[2021), such
as Transformer or recurrent neural networks (RNN), to capture temporal dynamics. Other approaches
involve ensemble learning, feature fusion from multiple encoders (Li et al.}[2022), and multi-level
transformers to encode spatial and temporal features across and within different channels (Lawhern
et al.l 2018;/Song et al.,[2021}; Liu et al., 2021).

These models (Jing et al.| [2023}|Yang et al.,|2021} [Biswal et al., 2018; [Kostas et al.,[2021; |Du et al.}
2022 [Zhang et al.| |2022)) predominantly focus on biosignal samples with fixed formats for specific
tasks, while real-world data may exhibit mismatched channels, variable lengths, and missing values.
In this paper, our objective is to devise a flexible training strategy that can handle diverse biosignal
datasets with varying channels, lengths, and levels of missingness. For example, is it possible to
transfer knowledge from abnormal EEG detection (a binary classification task with samples having
64 channels, 5-second duration, recorded at 256Hz) to improve another EEG task, such as seizure
type classification (a multi-class task with 16 channels and a 10-second duration at 200Hz)? In reality,
such data mismatches often arise from varying devices, system errors, and recording limitations.
Additionally, it is also important to explore the potential of utilizing various unlabeled data sources.

To apply existing deep learning models to such settings of different biosignals, significant data
processing is required to align the formats across multiple datasets. This may involve truncating
or padding signals for consistent lengths (Zhang et al., [2022), and imputing missing channels or
segments (Bahador et al.|[2021)). Such practices, however, may introduce unnecessary noise and shift
data distributions, leading to poor generalization performance. Developing a flexible and unified
model that accommodates biosignals with diverse formats can be advantageous.

In our paper, we develop the biosignal transformer (BIOT, summarized in Figure[T)), which, to the
best of our knowledge, is the first multi-channel time series learning model that can handle biosignals
of various formats. Our motivation stems from the vision transformer (ViT) (Dosovitskiy et al.}[2020)
and the audio spectrogram transformer (AST) (Gong et al.,[2021)). The ViT splits the image into a
"sentence" of patches for image representation while the AST splits the audio spectrogram into a
"sentence" for 1D audio representation. We are inspired by that these "sentence" structures combined
with Transformer (Vaswani et al.| 2017) can handle variable-sized inputs.

However, it is non-trivial to transform diverse biosignals of various formats into unified "sentence"
structures. This paper proposes BIOT to solve the challenge by a novel biosignal tokenization
module that segments each channel separately into tokens and then flattens the tokens to form
consistent biosignal "sentences” (illustrated in Figure[2). With the design, our BIOT can enable the
knowledge transfer cross different data in the wild and allow joint (pre-)training on multiple biosignal
data sources seamlessly. Our contributions are listed below.

* Biosignal transformer (BIOT). This paper proposes a generic biosignal learning model BIOT by
tokenizing biosignals of various formats into unified “sentences.”

» Knowledge transfer across different data. Our BIOT can enable joint (pre-)training and knowl-
edge transfer across different biosignal datasets in the wild, which could inspire the research of
large foundation models for biosignals.

* Strong empirical performance. We evaluate our BIOT on several unsupervised and supervised
EEG, ECG, and human sensory datasets. Results show that BIOT outperforms baseline models and
can utilize the models pre-trained on similar data of other formats to benefit the current task.

2 BIOT: Biosignal Transformer

As shown in Figure |1} our BIOT encoder cascades two modules: (i) the biosignal tokenization
module that tokenizes an arbitrary biosignal (variable lengths, different channels, and missing values)
into a "sentence" structure. This design can potentially enable previous language modeling techniques
(Devlin et al. 2018 Liu et al.l 2019; OpenAll 2023) to empower the current biosignal models;
(ii) a linear transformer module that captures complex token interactions within the "sentence"
while maintaining linear complexity. After that, we also discuss the application of BIOT in different
real-world settings. For all the notations used in the paper, we summarize them in Appendix [A]
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Figure 1: Biosignal Transformer (BIOT). (Upper) Given a new data sample, we initially perform
data preprocessing (resampling, normalization, tokenization, and flattening) to create a biosignal
"sentence” using the biosignal tokenization module. We then learn the complex interactions within
the "sentence" through the linear transformer module. (Lower) BIOT encoder is versatile, enabling
supervised learning on complete data, data with missing values, and pre-training and fine-tuning
across diverse data formats and tasks.

2.1

Motivation. The goal of this paper is to model heterogeneous biosignals (e.g., EEG samples with
different channels for different tasks) with a unified model. For example, common EEG samples
(Lopez et al.| 20135)), such as those for seizure detection, are recorded at 256Hz in the international
10-20 system[]for 10-second long (Klem et al.,|1999). With standard 16 montage editing, the sample
is essentially a multi-channel time-series, represented as a matrix of size (16, 2560). However, format
mismatch may prevent the applications on other similar data, such as different sampling rate (e.g.,
200Hz vs 256Hz) (Jing et al.| 2023)), mismatched channels (i.e., different datasets have their own
novel channels), variable recording duration (i.e., 30s per sample vs. 10s) (Zhang et al., [2022),
missing segments (i.e., part of the recording is damaged due to device error). Thus, existing models
may fail to utilize the mismatched data from different datasets.

Module 1: Biosignal Tokenization

Our BIOT solves the above challenges of mismatches by the following steps. We assume one biosignal
sample as S € R/*7. Here, I as the channels and J = duration(s) x rate(H z) as the length.

* Resampling. We first resample all data to the same rate, denoted by r € R* (such as 200Hz),
by linear interpolation. The common rate r could be selected following clinical knowledge of a
certain biosignal. For example, the highest frequency of interest in both EEG and ECG signals is
commonly around 100 Hz, and thus 200 Hz or 250 Hz can be suitable for typical EEG or ECG
applications, according to Nyquist-Shannon sampling theorem (Nyquist, [1928; Shannon) (1949).

* Normalization: To alleviate the unit difference and amplitude mismatch across different channels
and datasets, we use the 95-percentile of the absolute amplitude to normalize each channel.
q - . S[i]
Formally, each channel S[i] is normalized by porcentle (ST S 172 ST 05%) -

"https://en.wikipedia.org/wiki/10-20_system_(EEG)
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Figure 2: Biosignal Tokenization (no segment overlap in the examples). Sample 1 has four channels
(Fpl, Fp2, Ol, and O2) for 5 seconds. We tokenize each channel into segments/tokens and then
parameterize these 20 segments with three embeddings. On the right, we use different colors to
represent the channels (blue-Fpl, brown-Fp2, green-O1, and -02). Sample 2 has mismatched
channels (no 02), variable lengths (Fp1 and Fp2 are shorter and flipped), and missing values (in O1).
Using our method, we can still tokenize Sample 2 in a comparable "sentence". On both samples, the
indicates the spatial- or temporal-relevant tokens w.r.t. the highlighted token.

» Tokenization: For handling length variation, we tokenize the recording of each channel into
segments/tokens of length t € R™, and neighboring tokens can have overlaps of length p € R
(p < t,e.g.,t =rand p = 0.5r corresponds to 1s and 0.5s). Thus, the k-th token (k = 1,2, .., K)
in the i-th channel can be represented by slicing S[i, (t — p)(k — 1) : (t — p)(k — 1) + t]. The
number of tokens K per channel is limited by the inequality: (¢ — p)(K — 1) + ¢ < J. Here, the
overlap p is essential to maintain the temporal information for shorter signals. For example, if
the length of a signal is 3 seconds (i.e., J = 3r), the set t = r, p = 0 only generates 3 tokens per
channel, while the set ¢t = r, p = 0.5r gives 5 tokens per channel (see Appendix[C.3). In cases of
missing values, we drop the corresponding tokens directly (as shown in Sample 2). Note that, our
tokenization applies to each channel, separately, which is different from previous works (Almutairi
et al.l 2021} Du et al., |2022) that split all channels together (which cannot work on Sample 2).

* Flattening: We finally flatten tokens from all channels into a consistent "sentence".

The above steps are non-parametric. To study the effect of sampling rate r, token length ¢, and overlap
p, we provide ablation studies and insights in Appendix [C.3] In the following, we design the token
embedding for the biosignal "sentence", which combines information from three aspects.

* Segment embedding. We leverage fast Fourier transform (FFT) to extract an energy vector for
each token where every dimension indicates the energy of a specific frequency. A fully connected
network (FCN) is then applied on the energy vector to transform it into the segment embedding.
Directly modeling the raw time-series to learn a segment embedding can be another option.

* Channel embedding (spatial). We learn an embedding table for all different channels and add the
corresponding channel embedding to the token. Each color represents one channel in Figure [2]

* Positional embedding (temporal). In biosignals, the token order within the channel captures
temporal information. We thus add relative positional embedding to the token embedding by using
the sinusoidal/cosine functions (Vaswani et al.,|2017)), which does not need learnable parameters.

The above three embeddings are summed to create the token embedding, which can effectively
capture the segment features as well as the spatio-temporal features. Finally, we denote the tokenzied
"sentence" as X € RV*!1 where N is the number of tokens and [; is the embedding dimension.

2.2 Module 2: Linear Transformer

Transformer with linear complexity for long biosignal ''sentence'. Next, we want to leverage
the Transformer model (Vaswani et al.,2017) for modeling the "biosignal sentence". However, our
transformation may lead to long "sentences" due to multiple channels. For example, the "sentence"



of a 64-channel EEG signal for 20 seconds (without overlaps) may have 64 x 20 = 1280 tokens,
and longer with the overlaps. Given that the original Transformer model is known to have quadratic
complexity in both time and space, we adopt the linear attention mechanism (Wang et al., [2020;
Katharopoulos et al., [2020) for biosignal learning applications.

Formally, let us assume WX WV W& ¢ RI*!2 be the key, value, and query matrices. Our
self-attention module uses a rank-d approximation for the softmax attention (/N x N) by reduced-rank
parameter matrices ET € RV*? F ¢ RN (where d < N). The output H € RV*!2 i,

H = Attention(XW¢ EXWX FXWV) (D)
Q K\T
= softmax ((XW J(EXWT) )~FXWV. 2)
Vi —
Xm2
N xd

Main components of this module include one linear self-attention layer and one fully connected
network. To enable stable training, we add layer normalization (Ba et al., 2016) before each
component, residual connection (He et al.,|2016) after each component, and dropout (Srivastava et al.,
2014) right after the self-attention (see Figure|I), which improves the convergence.

BIOT Encoder. An illustration of our proposed BIOT encoder is shown in Figure (1| (upper), which
comprises the biosignal tokenization module and multiple blocks of linear transformer modules.
We obtain the final biosignal "sentence" embedding by a mean pooling step over all tokens. Note that
appending a classification [CLS] token at the beginning of the "sentence" (after Module 1) is also a
common option. However, we find it yields a slightly worse performance in our application, and thus
we use mean pooling in the experiments.

2.3 Biosignal Learning in the Wild

Our proposed BIOT encoder can be applied in various real-world biosignal applications (illustrated in
the lower part of Figure|[T). These applications include (1) standard supervised learning, (2) learning
with missing channels or segments, (3) & (4) pre-training on one or more datasets, and fine-tuning on
other similar datasets with different input formats.

(1) Supervised Learning is the most common setting in the previous literature (Jing et al., 2023}
Biswal et al., |2018]). With the BIOT encoder model, we finally apply an exponential linear unit (ELU)
activation (Clevert et al.,2015) and a linear layer for classification tasks.

(2) Supervised Learning (with missing). Many real biosignal data have mismatched channels,
missing segments, and variable lengths, which prevents the applications of existing models (Jing
et al., |2023} [Song et al.l 2021). Flexible as our model is, BIOT can be applied in this setting using the
same model structure as in (1).

(3) Unsupervised Pre-training. We can jointly pre-train a general-purpose BIOT encoder on multiple
large unlabeled datasets. In the experiments, we pre-train an unsupervised encoder using 5 million
resting EEG samples (16 channels, 10s, 200Hz) and 5 million sleep EEG samples (2 channels, 30s,
125Hz), which is later utilized to improve various downstream tasks.

For the unsupervised pre-training, we take the following steps (a diagram is shown in Figure [T).
* Assume S is the original biosignal. We first randomly dropout part of its channels and dropout part
of the tokens from the remaining channels, resulting in a perturbed signal S.

* We then obtain the embeddings of S and S by the same BIOT encoder. To form the objective, we
want to use the perturbed signal to predict the embedding of the original signal. Thus, an additioanl
predictor (i.e., two-layer neural network) is appended for the perturbed signal following (Grill et al.|
2020). We use Z and Z to denote the real embedding of S and predicted embedding from S.

Z = BIOT(S), Z = predictor(BIOT(S)). 3)

* Finally, contrastive loss (He et al.,|2020; (Chen et al., |2020) is used on Z and Z to form the objective.

L = CrossEntropyLoss (softmax ((Z, ZT>/T) ,I) . 4)

Here, T represents the temperature (1" = 0.2 throughout the paper) and I is an identity matrix. In the
implementation, we also apply sample-wise L.2-normalization on Z and Z before matrix product.



(4) Supervised Pre-training aims to pre-train a model by supervised learning on one task and then
generalize and fine-tune the encoder on a new task. The goal here is to transfer knowledge among
different datasets and gain improvements on the new task compared to training from scratch. Our
BIOT model allows the new datasets to have mismatched channels and different lengths.

3 Experiments

This section shows the strong performance of BIOT on several EEG, ECG, and human sensory
datasets. Section compare BIOT with baselines on supervised learning and learning with
missing settings. Section [3.4] [3.5] [3.6]show the that BIOT can be flexibly pre-trained on various
datasets (supervised or unsupervised) to improve a new task with different sample formats.

3.1 Experimental Setups

Biosignal Datasets. We consider the following datasets in the evaluation: (i) SHHS (Zhang et al.,
2018 |Quan et al.l [1997) is a large sleep EEG corpus from patients aged 40 years and older. (ii)
PREST is a large unlabeled proprietary resting EEG dataset; (iii) Cardiology (Alday et al., 2020) is a
collection of five ECG datasets (initially contains six, and we exclude the PTB-XL introduced below).
(iv) The CHB-MIT database (Shoebl [2009) is collected from pediatric patients for epilepsy seizure
detection. (v) IIIC Seizure dataset is from |Ge et al. (2021); Jing et al.| (2023) for detecting one of the
six ictal-interictal-injury-continuum (IIIC) seizure patterns (OTH, ESZ, LPD, GPD, LRDA, GRDA);
(vi) TUH Abnormal EEG Corpus (TUAB) (Lopez et al., 2015) is an EEG dataset that has been
annotated as normal or abnormal; (vii) TUH EEG Events (TUEV) (Harati et al., 2015)) is a corpus of
EEG that contains annotations of segments as one of six sleep or resting event types: spike and sharp
wave (SPSW), generalized periodic epileptiform discharges (GPED), periodic lateralized epileptiform
discharges (PLED), eye movement (EYEM), artifact (ARTF) and background (BCKG); (viii) PTB-
XL (Wagner et al., 2020) is an ECG dataset with 12-lead recordings for diagnosis prediction, and we
used it for arrhythmias phenotyping in this paper; (ix) HAR (Anguita et al.,[2013) is a human action
recognition dataset using smartphone accelerometer and gyroscope data.

Table 1: Dataset Statistics

Datasets | Type (subtype) # Recordings  Rate Channels Duration # Sample Tasks
SHHS EEG (sleep) 5,445 125Hz C3-A2,C4-Al 30seconds 5,093,522  Unsupervised pre-training
PREST EEG (resting) 6,478 200Hz 16 montages 10seconds 5,110,992  Unsupervised pre-training
Cardiology ECG 21,264 500Hz 6or12ECGleads 10 seconds 495,970 Unsupervised pre-training
CHB-MIT EEG (resting) 686 256Hz 16 montages 10 seconds 326,993 Binary (seizure or not)
IIIC Seizure EEG (resting) 2,702 200Hz 16 montages 10 seconds 165,309  Multi-class (6 seizure types)
TUAB EEG (unknown) 2,339 256Hz 16 montages 10 seconds 409,455 Binary (abnormal or not)
TUEV EEQG (sleep and resting) 11,914 256Hz 16 montages 5 seconds 112,491 Multi-class (6 event types)
PTB-XL ECG 21,911 500Hz 12 ECG leads 5 seconds 65,511 Binary (arrhythmias or not)
HAR ‘Wearable sensors 10,299 50Hz 9 coordinates 2.56 seconds 10,299 Multi-class (6 actions)

Dataset Processing. The first three datasets are used entirely for unsupervised pre-training. The next
four datasets are used for supervised learning, and we used the common 16 bipolar montage channels
in the international 10-20 system. For CHB-MIT (containing 23 patients), we first use patient 1 to 19
for training, 20,21 for validation, and 22,23 for test. Then, we flip the validation and test sets and
conduct the experiments again, and we report the average performance on these two settings. For
ITIC seizure, we divide patient groups into training/validation/test sets by 60%:20%:20%. For TUAB
and TUEYV, the training and test separation is provided by the dataset. We further divide the training
patients into training and validation groups by 80%:20%. For PTB-XL, we divide patient groups into
training/validation/test sets by 80%:10%:10%. The train and test set of HAR is provided, and we
further divide the test patients into validation/test by 50%:50%. For all the datasets, after assigning
the patients to either training, validation, or test groups, we will further split the patient’s recording to
samples, and the sample duration accords to the annotation files. The dataset statistics can be found
in Table[I] and we provides more descriptions and processing details in Appendix

Baseline. We consider the following representative models: (i) SPaRCNet (Jing et al.| 2023) is a
1D-CNN based model with dense residual connections, more advanced than the popular ConvNet
(Schirrmeister et al.|, [2017), CSCM (Sakhavi et al., 2018)); (ii) ContraWR’s (Yang et al., 2021)
encoder model first transforms the biosignals into multi-channel spectrogram and then uses 2D-CNN
based ResNet (He et al.,|2016)); (iii) CNN-Transformer (Peh et al.l 2022) is superior to CNN-LSTM
models (Zhang et al.|[2019)); (iv) FFCL (Li et al.,[2022) combines embeddings from CNN and LSTM



encoders for feature fusion; (v) ST-Transformer |Song et al.| (2021) proposes an multi-level EEG
transformer for learning spatial (S) and temporal (T) features simultaneously, empirically better than
EEGNet|Lawhern et al.|(2018)). Our BIOT model trained from scratch is denoted by (vanilla).

Environments and Settings. The experiments are implemented by Python 3.9.12, Torch
1.13.1+cull7, Pytorch-lightning 1.6.4 on a Linux server with 512 GB memory, 128-core CPUs
and eight RTX A6000 GPUs. All the models are optimized on training set and evaluated on the test
set. The best model and hyperparameter combinations are selected based on the validation set. For
Table[2]and Table 3] we obtain five sets of results with different random seeds and report the mean
and standard deviation values. For Figure[3]and Figure ] we report the results under three random
seeds. More experimental and implementation details can refer to Appendix B2}

3.2 Setting (1) - standard supervised learning

This section shows that BIOT is comparable or better than baselines in the supervised learning settings.

* Four EEG Tasks. Both CHB-MIT and TUAB are designed to predict binary output, and we use
binary cross entropy (BCE) for TUAB and the focal loss (Lin et al.| |2017) for CHB-MIT due to
its imbalances (around 0.6% positive ratio in training set). We use balanced accuracy (Balanced
Acc.), area under precision-recall curve (AUC-PR) and AUROC as the metrics. Both ITIC Seizure
and TUEV are multi-class classification tasks with cross entropy loss. We employ Balanced Acc.,
Cohen’s Kappa, and Weighted F1 as the multi-class evaluation. To save space, we only show the
performance on CHB-MIT and ITIC Seizure in Table [2and move the other two to Appendix [C.1}

* ECG and Sensory Tasks. PTB-XL is formulated as a binary classification on detecting arrhythmias
phenotypes. We use the BCE loss and binary evaluation metrics. HAR (classifying actions) uses
the cross entropy loss and is evaluated by multi-class metrics. Results are reported in Table[3] We
provide the running time comparison of all experiments in Appendix [C.4]

Table 2] and 3] show that our model has superior performance over baselines in most tasks, especially
on CHB-MIT, IIIC Seizure, and HAR. The reason might be that the frequency features are more useful
in these three tasks as our BIOT extracts the main features from spectral perspective. SPaRCNet is a
strong model among all the baselines except on the CHB-MIT task. The model might be vulnerable
in the imbalanced classification setting even with the focal loss. The pre-training models at the end of
the tables will be introduced and explained in Section[3.4} [3.6

Table 2: EEG classification tasks (Results of TUAB and TUEV are in Appendix [C.I]

Models ‘ CHB-MIT (seizure detection) ‘ IIIC Seizure (seizure type classification)
| Balanced Acc. AUC-PR AUROC | Balanced Acc. Cohen’s Kappa Weighted F1

SPaRCNet {Jing etal.|2023] 05876 00191  0.1247 00119  0.8143£0.0148 | 0554600161 04679 +0.0228  0.5569 £ 0.0184
ContraWR (Yang et al.|[2021} 06344 £0.0002 02264 +0.0174  0.8097 £0.0114 | 0551900058 04623 +0.0148  0.5486 £ 0.0137
CNN-Transformer (Peh et al.|[2022] | 0.6389 £0.0067 ~ 02479 +0.0227  0.8662£0.0082 | 0547600103 04481 +0.0139  0.5346 £ 0.0127
FFCL (Li et al.|[2023] 06262 £0.0104 02049 +0.0346  0.8271 £0.0051 | 05617 £00117 04704400130  0.5617 £ 0.0171
ST-Transformer (Song et al.|[2021} | 0.5915+0.0195  0.1422£0.0094  0.8237 £0.0491 | 05423 +£0.0056 044924 0.0056  0.5440 = 0.0014
(Vanilla) BIOT 0.6640 = 0.0037  0.2573+0.0088  0.8646 £0.0030 | 0.5762+0.0034 04932+ 0.0046  0.5773 + 0.0031
Pretrained BIOT (PREST) 0.6942+0.0431 03072+ 0.1187  0.8679 +0.0106 | 0.5787 +0.0066  0.4980 + 0.0054  0.5828 + 0.0049
Pretrained BIOT (PREST+SHHS) | 0.6788 £0.0036  0.3090 & 0.0003  0.8752 £ 0.0022 | [0.5800 = 0.0004] [0.5040 & 0.0041] [0.5878 + 0.0015
Pretrained BIOT (6 EEG datasets) | [0.7068 + 0.0457] [0.3277 +0.0460] [0.8761 £0.0284] | 0.5779 £0.0087  0.4949 +£0.0103  0.5737 + 0.0088

1. All models use the same training set of the task, while the pre-trained BIOT models are initially pre-trained on other data sources (see Seclionlﬂ"ﬂ‘
2. Bold for the best model (trained from scratch) and for the best pre-trained models. Running time comparison is in Appendix

Table 3: ECG and human activity sensory classification tasks

Models \ PTB-XL (arrhythmias phenotype prediction) \ HAR (huamn action recognition)
‘ Balanced Acc. AUC-PR AUROC ‘ Balanced Acc. Cohen’s Kappa Weighted F1

SPaRCNet (Jing et al.[2023) 0.8275 £0.0047  0.9040 = 0.0067  0.7550 & 0.0073 | 0.9371 0.0160 0.9236 & 0.0189  0.9365 & 0.0155
ContraWR (Yang et al./2021} 0.7532 £ 0.0561 0.7549 £0.0164  0.5258 £0.1190 | 0.9068 £ 0.0164 0.8879 £ 0.0201  0.9055 £ 0.0182
CNN-Transformer (Peh et al.}2022) | 0.6650 +0.0459  0.7175 £ 0.0558  0.4996 £ 0.0936 | 0.8690 £ 0.0839  0.8273 £ 0.0953 0.8352 £ 0.1166
FFCL (Li et al.|2022) 0.7034 £0.0052  0.7088 £0.0053 ~ 0.5127 £0.0051 | 0.8519 +0.0148 0.8216 +0.0177 0.8508 & 0.0138
ST-Transformer (Song et al.|[2021} 0.7238 £0.0083  0.7775£0.0153  0.6003 & 0.0179 | 0.9336 4 0.0063 0.9213 £ 0.0076  0.9337 & 0.0068
(Vanilla) BIOT 0.8315 £ 0.0008  0.8978 £0.0020  0.7493 £ 0.0167 | 0.9461 & 0.0134  0.9351 £ 0.0160  0.9458 + 0.0136
Pretrained BIOT (Cardiology-6) 0.8350 + 0.0073 0.9128 + 0.0094 0.7671 £ 0.0116 / / /
Pretrained BIOT (Cardiology-12) | [0.8421 £0.0030] [0.9221 £0.0075] ~ 0.7659 = 0.0076 / / /

* Bold for the best model. All models use the same training set of the task. The Pretrained BIOT (Cardiology-6) and Pretrained BIOT (Cardiology-12) are

pre-trained on Cardiology data (see Seclion, and they do not apply to HAR data (due to different biosignal types).
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Figure 3: Supervised learning with missing channels or segments (on TUEV and IIIC Seizure)

3.3 Setting (2) - learning with missing channels and segments

The section simulates the TUEV dataset (16 channels and 5s per sample) and IIIC Seizure (16
channels and 10s per sample) to mimic the setting of supervised learning with missing channels and
segments, which shows the strong performance of BIOT. We consider three missing cases:

* Missing segments: Randomly mask out a segments (each segment spans for 0.5 seconds), a =
0,1,2,3,4,5 with equal probability. The segment masking is applied separately for each channel.
* Missing channels: Randomly mask out b channels, b = 0, 1, 2, 3, 4 with equal probability. We
assume that the masking will not alter the underlying labels (the same assumption for other cases).
» Missing both channels and segments: Combine both masking strategies simultaneously.

To enable the baseline models compatible with the setting, we use all zeros to impute the masked
regions. The comparison is plotted in Figure [3] which shows that (i) all models decrease the
performance with more missings while BIOT and the pre-trained BIOT are less impacted (especially
on Kappa and Weighted F1); (ii) "Missing channels" affects the performance more than "Missing
segments", which makes sense as segment masking still preserves information from all channels.

3.4 Setting (3) - unsupervised pre-training

This section shows that BIOT enables unsupervised pre-training on existing datasets with various
formats. Note that, all the pre-trained models in this paper have a similar scale (~3.3 million
parameters). We defer the study of "scaling effect" of pre-trained BIOT to future work.

* Pre-trained (PREST): This model is pre-trained on 5 million resting EEG samples (PREST) with
2,048 as the batch size. We save the pre-trained model at the 100-th epoch.

* Pre-trained (PREST+SHHS): This model is jointly pre-trained on 5SM PREST and 5M SHHS
EEG samples. Though two datasets have different sample formats, our model is able to use them
together. Also, we use 2048 as the batch size and save model at the 100-th epoch.

* Pre-trained (Cardiology-12) is jointly pre-trained on raw data of five datasets in Cardiology
corpus (details in Appendix [B.T). We use 1024 as batch size and save model at the 100-th epoch.

* Pre-trained (Cardiology-6) is pre-trained similarly as Pre-trained (Cardiology-12), while we only
utilize the first 6 ECG leads. By contast, Pre-trained (Cardiology-12) uses full 12 leads.

We fine-tune the first two pre-trained EEG models on four EEG tasks and append the results to Table[2]
(also in Appendix [C.T)). We fine-tune the last two pre-trained ECG models on PTB-XL datasets in
Table[3] The pre-trained models can be seamlessly applied to various downstream tasks with different
sample formats. Results show that the pre-trained models can improve the performance consistently
after fine-tuning on the training set of downstream tasks in Table 2] and Table[3]



3.5 Setting (4) - supervised pre-training on other tasks

This section shows that BIOT allows knowledge transfer from one task to another similar task with
different sample formats. We pre-train on the training set of CHB-MIT, IIIC Seizure, TUAB and
fine-tunes on TUEV (which has 16 channels and 5s duration). All datasets use 200Hz sampling rate.
We design three sets of configurations for the pre-trained datasets: Format (i) uses the first 8 channels
and 10s duration; Format (ii) uses the full 16 channels but only the first 5s recording; Format (iii)
uses full 16 channels and full 10s recording. During fine-tuning, we then remove the prediction layers
from these pre-trained model and add a new prediction layer to fit the TUEV dataset.
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Figure 4: Fine-tuned on TUEV from different supervised pre-trained models (best number in bold).
Similar supervised fine-tuning analysis on CHB-MIT dataset is shown in Appendix [C.2]

The fine-tuning results on TUEV are shown in Figure 4 where we also add the vanilla BIOT for
reference. We find that (i) the model pre-trained on IIIC Seizure and TUAB are generally beneficial
for the event classification task on TUEV. The reason might be that TUAB and TUEV are both
recorded from Temple University and share some common information, while IIIC seizure and TUEV
are both related to seizure detection and may share some latent patterns. (ii) More pre-training data
leads to better results in the downstream task: though the pre-training configuration (16 channels,
5 seconds) aligns better with the TUEV data formats, the results show that configuration of (16
channels, 10 seconds) encodes longer duration and works consistently better. (iii) Compared to the
TUEYV results in Appendix [C.1] we also find that oftentimes the supervised pre-training (e.g., on IIIC
seizure or TUAB) can be more effective than unsupervised pre-training (e.g., on SHHS and PREST).

3.6 Pre-trained on all EEG datasets

In this section, we show that BIOT can leverage all six EEG resources considered in the paper. We
obtain a Pre-trained (6 EEG datasets) model by loading the Pre-trained (PREST+SHHS) model and
further train it on the training sets of CHB-MIT, IIIC Seizure, TUAB, and TUEV. We add separate
classification layers for four tasks. Essentially, this model is pre-trained on all six EEG datasets. To
use the model, we still fine-tune it on the training set of downstream tasks and append the results to
Table 2] and Appendix [C.I] Apparently, Pre-trained (6 EEG datasets) outperforms the vanilla BIOT
and is better than the unsupervised and the supervised pre-trained BIOT models in most cases.

4 Conclusions and Discussions

This paper proposes a new biosignal transformer model (BIOT) that learns embeddings for biosignals
with various formats. BIOT can enable effective knowledge transfer across different data and allow
joint training on multiple sources. We conduct extensive evaluations on nine biosignal datasets and
show that our BIOT is flexible and effective in various cross-data learning settings. Future efforts can
explore the different types of biosignals and pre-training an all-in-one unified biosignal model. We
hope our work can inspire more follow-up researches of large foundational models for biosignals.
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A Notaion Table

The listed the notations used in the main text in the following Table ]

Table 4: Notations used in BIOT

Symbols | Descriptions

IeNT the number of channels in biosignal, such as 16

JeRT the length of biosignals, such as 10s x 200H z (use a complete sample for ease of notation)
S € R™*/ the mulit-channel biosignal

S[i] € R” the i-th channel of the biosignal.

reR*T the sampling rate, such as 200Hz

teRT the length of the biosignal token, such as 1s x 200H z

peR® the overlap length between two neighboring tokens, such as 0.5s x 200Hz,t > p

keNt the k-th token in the ¢-th channel is denoted by S[i, (t — p)(k — 1) : (t — p)(k — 1) + t] which has length ¢
K e Nt max number of tokens in one channel

N eN* the number of tokens in tokenized biosignal "sentence"

l1 e NT the dimension of the token embedding

X e RV*h the tokenized biosignal "sentence"

I, e Nt the new dimensions of tokens after self-attention module

WHE WY, W? ¢ R1*!2 | the key, value, and query matrices in self-attention module

E,F ¢ RN the low-rank projection matrices

de Nt the reduced rank for self-attention matrices, d < N

H c RV*2 the output of the self-attention module

S e RI*Y the perturbed biosignal sample

Z,7 the real and predicted embeddings of S

T the temperature hyperparameter in the contrastive loss

I the identity matrix in the contrastive loss, has the size of (batch size, batch size)
a€0,1,2,3,4,5] the discrete uniformly distributed variable for the number of masked segments in Section 3.3
be0,1,2,3,4] the discrete uniformly distributed variable for the number of masked channels in Section 3.3

B Details of Datasets and Experimental Settings

B.1 More for Datasets and Processings

We provide more descriptions on each dataset in this section.

For EEG datasets. First, the 16 derivations (in 10-20 international system) are "FP1-F7", "F7-T7",
"T7-P7", "P7-O1", "FP2-F8", "F8-T&", "T8-P8", "P8-02", "FP1-F3", "F3-C3", "C3-P3", "P3-0O1",
"FP2-F4", "F4-C4", "C4-P4", "P4-O2".

 Sleep Heart Health Study (SHHS) (Zhang et al., 2018; |Quan et al., [1997) is a multi-center
cohort study from the National Heart Lung & Blood Institute assembled to study sleep-disordered
breathing, which contains 5,445 recordings. The data is accessible upon request in their website ﬂ
Each recording has 14 Polysomnography (PSG) channels, and the recording frequency is 125.0 Hz.
We use the C3/A2 and C4/A1 EEG channels. The dataset is released with sleep annotations. We
use the existing codes E] and split each recordings into 30-second samples. In this study, we use
SHHS samples for unsupervised pre-training without the original labels.

PREST is a private dataset recorded in hospital sleep lab, primarily for seizure and abnormal EEG
detection purpose (such as spikes). The local IRB waived the requirement for informed consent
for this retrospective analysis of EEG data. We follow the clinician’s instructions and split each
recordings into 10 seconds without labels. In the experiment, we use it for EEG model pre-training.

The CHB-MIT databaseE](Shoeb, 2009) is publicly available, which is collected at the Children’s
Hospital Boston, consists of EEG recordings from pediatric subjects with intractable seizures. The
dataset is under Open Data Commons Attribution License v1.0P|and is used to predict whether the
EEG recordings contain seizure signals. Each recording initially contains 23 bipolar channels and

Zhttps://sleepdata.org/datasets/shhs
3https://github.com/ycq091044/ContraWR/tree/main/preprocess
*https://physionet.org/content/chbmit/1.0.0/
>https://physionet.org/content/chbmit/view-license/1.0.0/
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we select the 16 standard derivations in the experiments. We utilize the existing preprocessingﬁ]
and follow the typical practices to further split each recordings into 10-second non-overlapping
samples by default. Since the dataset is highly imbalanced, we use 5 seconds as overlaps to split
the seizure regions (which could potentially double the positive samples). After processing, the
positive ratio in the training set is around 0.6%.

 IIIC Seizure is requested from |Ge et al.|(2021)); Jing et al.| (2023)), and we follow the license and
usage statements in Jing et al.| (2023)). The samples follow 16 derivations and span 10-second
signals at 200Hz. This dataset is used for predicting one of the six classes: lateralized periodic
discharges (LPD), generalized periodic discharges (GPD), lateralized rhythmic delta activity
(LRDA), generalized rhythmic delta activity (GRDA), Seizure types, and Other.

* TUH Abnormal EEG Corpus (TUAB) (Lopez et al., 2015) and TUH EEG Events (TUEV) (Harati
et al., 2015) is accessible upon request at Temple University Electroencephalography (EEG)
Resources|’} We process both datasets to follow the 16 EEG derivations.

For ECG datasets. We use the Cardiology collection to pre-train the ECG models and apply it on
downstream supervisd PTB-XL task.

* The Cardiology collection (Alday et al., |2020) is publicly available at physionetﬂ which was
used in the PhysioNet/Computing in Cardiology Challenge 2020. This collection is under Creative
Commons Attribution 4.0 International Public License|’| In this study, we use five sets from the
training portion of the collection (It has in total six sets. Another one overlaps with the PTB-XL
dataset, and thus we drop it for pre-training), which contains recordings from CPSC2018 (6,877
recordings), CPSC2018Extra (China 12-Lead ECG Challenge Database — unused CPSC 2018
data, 3,453 recordings), St Petersburg Incart (12-lead Arrhythmia Database, 74 recordings), PTB
(Diagnostic ECG Database, 516 recordings), Georgia (12-Lead ECG Challenge Database, 10,344
recordings). For preprocessing, we extract 10-second samples from each recording with 0.5s as the
overlapping window (for obtaining more unsupervised trianing corpus). All the samples are merged
together as an unsupervised pre-training ECG corpus of nearly 0.5 million samples. We pre-train a
Pre-trained BIOT (Cardiology-12) on all the channels and a Pre-trained BIOT (Cardiology-6) on the
first 6-channels of all samples. The sample sizes are different from the below PTB-XL dataset.

* Physikalisch-Technische Bundesanstalt (PTB-XL) FE] (Wagner et al.,[2020) is a publicly available
large dataset of 12-lead ECGs from 18885 patients. It is under the Creative Commons Attribution
4.0 International Public License[ﬂ The raw waveform data was annotated by up to two cardiologists,
who assigned potentially multiple ECG statements to each record up to 27 diagnoses: 1:1st
degree AV block, 2:Atrial fibrillation, 3:Atrial flutter, 4:Bradycardia, 5:Complete right bundle
branch block, 6:Incomplete right bundle branch block, 7:Left anterior fascicular block, 8:Left
axis deviation, 9:Left bundle branch block, 10:Low QRS voltages, 11:Nonspecific intraventricular
conduction disorder, 12:Pacing rhythm, 13:Premature atrial contraction, 14:Premature ventricular
contractions, 15:Prolonged PR interval, 16:Prolonged QT interval, 17:Q wave abnormal, 18:Right
axis deviation, 19:Right bundle branch block, 20:Sinus arrhythmia, 21:Sinus bradycardia, 22:Sinus
rhythm, 23:Sinus tachycardia, 24:Supraventricular premature beats, 25:T wave abnormal, 26:T
wave inversion, 27:Ventricular premature beats. We following clinical knowledges and further
groups them into six broader categories: Arrhythmias, Bundle branch blocks and fascicular blocks,
Axis deviations, Conduction delays, Wave abnormalities, Miscellaneous. Each recordings can
be associated to multiple categories. In this paper, we conduct the "Arrhythmias" phenotyping
prediction task. If the recordings have at least one diagnosis belonging to the Arrhythmias group,
then we label them as positive, otherwise as negative.

For human activity sensory data. Human activity recognition (HAR) dataset[lz] (Anguita et al.,
2013)) is publicly available at UCI machine learning repository. The data is collected from smartphone
accelerometer and gyroscope data with 3D coordinates to detect six actions: walking, walking

®https://github.com/bernia/chb-mit-scalp
https://isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml
8https://physionet.org/content/challenge-2020/1.0.2/
“https://physionet.org/content/challenge-2020/view-license/1.0.2/
https://physionet.org/content/ptb-x1/1.0.1/
https://physionet.org/content/ptb-x1/view-license/1.0.1/
"https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
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upstairs, walking downstairs, sitting, standing, laying. The samples are already splitted and provided
in the original datasets.

B.2 More for Experimental Settings

For model implementation, the SPaRCNet code is requested from the authors (Jing et al., [2023)),
the ContraWR code is downloaded and modified upon the github []EL CNN-Transformer is easily
implemented following the Fig. 3 of the original paper (Peh et al.l [2022), FFCL (Li et al., [2022)
combines a CNN model and a LSTM model for learning separete representations and then merges
them before the final prediction layer, the implementation of ST-Transformer refer to this repo [ﬂ
The linear-complexity attention module is referred to this repo|'°|in our BIOT implementation.

For all EEG tasks, we resample the datasets into 200Hz. The ECG tasks use 500Hz, and the HAR
tasks use SOHz by default. For each specific tasks, we have to adjust the baseline model architectures
(e.g, number of layers, input channel sizes, etc) accordingly since the input data have various formats.
While for our BIOT, we only adjust the fft size based on their sampling rate (200Hz for EEG, 1000Hz
for ECG, 100Hz for HAR) and use 0.5s, 0.2s, and 0.1s as the hop length (i.e., overlaps) in three signal
types. These model configurations are chosen by testing several combinations based on the validation
performance and we select the best one. For our BIOT model, we use 8 as the number of head, 4
as the number of transformer layers, and 7' = 2 as the temperature in unsupervised pre-training by
default. We use the Adam optimizer with learning rate 1 x 1072 and 1 x 107> as the coefficient for
L2 regularization by default. We use the pytorch lightning framework (with 100 as the max epoch)
to handle the training, validation, and test pipeline by setting AUROC as the monitoring metirc for
binary classification and Coken’s Kappa as the monitoring metric for multi-class classification in the
validation. More details can refer to our Supplementary codes. Below, we provide the definition of
each metric used in the paper.

Balanced Accuracy is defined as the average of recall obtained on each class. It is used for both
binary classification and multi-class classification.

AUC-PR is the area under the precision recall (PR) curve for binary classification task.

AUROC is the area under the ROC curve, summarizing the ROC curve into an single number that
describes the performance of a model for multiple thresholds at the same time. It is used for binary
classification.

Coken’s Kappa is a statistic that measures inter-annotator agreement, which is usually used for
imbalanced multi-class classification task. The calculation can refer to sklearn metrics

Weighted F1 is used for multi-class classification in this paper, which is a weighted average of
individual F1-scores from each class, with each score weighted by the number of samples in the
corresponding class.

C Additional Results

This section provides additional experimental results to support claims in the main paper.

C.1 Additional Experiments on TUEV and TUAB

We have provided the supervised learning results on EEG dataset ITIC Seizure and CHB-MIT in the
main text. For completeness, we provide similar comparison results on TUAB and TUEV below
in Table 3][6] which show a similar trend that our BIOT shows better performance against baseline
models, and the pre-trained BIOT models can bring significant improvements on two downstream
tasks, especially on TUEV. For TUEV, we also append the results of all different pre-trained models
(e.g., train from scratch, supervised training, unsupervised training, etc) in the end in Table [6]

Bhttps://github.com/ycq091044/ContraWR
“https://github.com/eeyhsong/EEG-Transformer
Bhttps://github.com/lucidrains/linear-attention-transformer
"®https://scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score.html
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Table 5: Additional Supervised Learning Results on TUAB

TUAB (abnormal detection)

Models
|  Balanced Acc. AUC-PR AUROC

SPaRCNet 0.7896 + 0.0018 0.8414 + 0.0018 0.8676 £ 0.0012
ContraWR 0.7746 + 0.0041 0.8421 +0.0104 0.8456 + 0.0074
CNN-Transformer 0.7777 £+ 0.0022 0.8433 + 0.0039 0.8461 + 0.0013
FFCL 0.7848 + 0.0038 0.8448 + 0.0065 0.8569 + 0.0051
ST-Transformer 0.7966 + 0.0023 0.8521 + 0.0026 0.8707 + 0.0019
(Vanilla) BIOT 0.7925 + 0.0035 0.8707 + 0.0087 0.8691 + 0.0033
Pre-trained BIOT (PREST) 0.7907 + 0.0050 0.8752 £ 0.0051 0.8730 + 0.0021
Pre-trained BIOT (PREST+SHHS) | | 0.8019 + 0.0021 0.8749 + 0.0054 0.8739 + 0.0019
Pre-trained BIOT (6 EEG datasets) | 0.7959 + 0.0057 ‘ 0.8792 + 0.0023 ‘ ‘ 0.8815 + 0.0043

* Bold for the best model (trained from scratch) and for the best pre-trained models.

Table 6: Additional Supervised Learning Results on TUEV (All-in-one-table comparison)

| TUEV (event type classification)

Models
| Balanced Acc. Coken’s Kappa Weighted F1

(Training from scratch in Section

SPaRCNet 0.4161 +£0.0262 0.4233 +0.0181 0.7024 £ 0.0104
ContraWR 0.4384 +0.0349 0.3912 +0.0237  0.6893 + 0.0136
CNN-Transformer 0.4087 £ 0.0161 0.3815 +0.0134  0.6854 + 0.0293
FFCL 0.3979 £ 0.0104 0.3732 +0.0188 0.6783 £ 0.0120
ST-Transformer 0.3984 +0.0228 0.3765 + 0.0306  0.6823 + 0.0190
(Vanilla) BIOT 0.4682 +0.0125 0.4482 +0.0285 0.7085 + 0.0184

(Unsupervised pre-trained models in Section:

Pre-trained BIOT (PREST)
Pre-trained BIOT (PREST+SHHS)

0.5207 £ 0.0285
0.5149 £ 0.0292

0.4932 £ 0.0301
0.4841 £ 0.0309

0.7381 £ 0.0169
0.7322 £ 0.0196

(Supervised pre-trained models in Section:

Pre-trained BIOT (pre-trained on CHB-MIT with 8 channels and 10s)
Pre-trained BIOT (pre-trained on CHB-MIT with 16 channels and 5s)
Pre-trained BIOT (pre-trained on CHB-MIT with 16 channels and 10s)
Pre-trained BIOT (pre-trained on IIIC seizure with 8 channels and 10s)
Pre-trained BIOT (pre-trained on ITIC seizure with 16 channels and 5s)

Pre-trained BIOT (pre-trained on IIIC seizure with 16 channels and 10s)

0.4123 £ 0.0087
0.4218 £0.0117
0.4344 + 0.0065
0.4956 £ 0.0552
0.4894 £+ 0.0189
0.4935 £ 0.0288

0.4285 £ 0.0065
0.4427 £ 0.0093
0.4719 £ 0.0231
0.4719 £ 0.0475
0.4881 £ 0.0045
0.5316 £+ 0.0176

0.6989 £ 0.0015
0.7147 £ 0.0058
0.7280 £ 0.0126
0.7214 £ 0.0220
0.7348 £ 0.0056
0.7555 £0.0111

Pre-trained BIOT (pre-trained on TUAB with 8 channels and 10s) 0.4980 + 0.0384  0.4487 + 0.0535 0.7044 + 0.0365
Pre-trained BIOT (pre-trained on TUAB with 16 channels and 5s) 0.4954 £ 0.0305 0.5053 £ 0.0079 0.7447 £ 0.0049
Pre-trained BIOT (pre-trained on TUAB with 16 channels and 10s) 0.5256 £ 0.0348 0.5187 £0.0160 0.7504 £ 0.0102
(Supervised + unsupervised pre-trained model in Section :

Pre-trained BIOT (6 EEG datasets) \ 0.5281 +0.0225 0.5273 +0.0249  0.7492 + 0.0082

C.2 Additional Experiments on CHB-MIT

This section performs a similar experiment on CHB-MIT, similar to Section[3.2] We pre-train on the
training set of IIIC Seizure (which has 16 channels and 10s duration), TUAB (which has 16 channels
and 10s duration), TUEV (which has 16 channels and 5s duration) and fine-tunes on CHB-MIT
(which has 16 channels and 10s duration). All datasets use 200Hz sampling rate. We design five sets
of configurations for the pre-trained datasets: Format (i) uses the first 8 channels and 10s duration;
Format (ii) uses the full 16 channels but only the first 5s recording; Format (iii) uses full 16 channels
and full 10s recording; Format (iv) uses 8 channels and 5s recording, and Format (v) uses full 16
channels and 2.5s recording. The last two are only for the TUEV dataset. During fine-tuning, we
then remove the prediction layers from these pre-trained model and add a new prediction layer to fit
the CHB-MIT dataset.

The results are reported in Figure [5] which shows that the supervised pre-training on both IIIC
seizure and TUEV can help improve the downstream performance on CHB-MIT task compared to
training from scratch. The reason is that IIIC Seizure is on multiple seizure type classification while
CHB-MIT is on binary "seizure or not" classification, and the context of both tasks are fairly related.
Although TUEV is not entirely on seizure related classification, some classes in TUEV are seizure
subtypes (such as GPED, PLED), and thus its supervisd pre-trained models can also bring benefits
for the CHB-MIT task.
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Figure 5: Fine-tuned on CHB-MIT from different supervised pre-trained models. IIIC Seizure and
TUAV datasets follow Format (i)(ii)(iii), while TUEV follows the Format (iv)(v)(ii).

C.3 Ablation Studies on Hyperparameters

This section provides ablation studies on three hyperparameters in data processing: target sampling
rate 7, token length ¢, and the overlap size p between two neighboring tokens. We use two EEG
datasets as example: IIIC Seizure and TUAB. The default configuration in the main paper is (1)
sampling: » = 200H z, (2) token length: t = 1s x r, (3) overlaps: p = 0.5s x r as reference.

We also show an illustration for tokenization with overlap in Figure[6]

p 1s 1s 1s

e Token 1 Token 2 Token 3
3s (just show one channel) e

|l P
I, e L ot ok g i | — 1s 1s 1s 1s 1s
bl | WA i |~ reeey

— p=05 i i Yo 5s

Token1 Token2 Token3 Token4 Token5

Figure 6: Illustration on tokenization with token length ¢ and overlap p. The example shows one
channel with 3 seconds. The configuration of (¢ = r, p = 0) gives 3 tokens while the configuration
of (t = r,p = 0.5r) gives 5 tokens. Different configurations lead to different lengths.

C.3.1 Ablation Study on Target Sampling Rate r

In this experiment, we fix the coefficient "1" and "0.5" in (2)(3) and conduct ablation study on the
target sampling rate . The original IIIC Seizure data is at 200Hz and the TUAB data is at 256Hz.
For ITIC Seizure, we vary the sampling rate to 26Hz, 50Hz, 100Hz, 150Hz, and 200Hz. For TUAB,
we vary the sampling rate to S0Hz, 100Hz, 150Hz, 200Hz, 250Hz, and 300Hz. We use the tool
scipy.signal.resample. The evaluations are conducted under three different random seeds and the
mean and standard deviation values are reported.

For IIIC Seizure, we can observe that a higher sampling rate could give slightly better performance,
especially on balanced acc. and coken’s kappa. The reason is that higher sampling rate can preserve
more detailed (high-frequency) biosignal information. The results on TUAB shows that the perfor-
mances increase and then decrease slightly during increasing the sampling rate. We guess that with
the increasing of r, initially the performance improves due to obtaining more information. Later,
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higher sampling rate does not bring more benefits but unnecessary frequency bands might incur some
noise. We also conjecture that different tasks might have diverse sensitivity to the the frequency
bands. For example, the task on IIIC seizure is to classify different seizure types, which may need
to capture minor clues from high-frequency waves (such as Gamma waves (50-100Hz)), while the
TUAB dataset is for abnormal detection, and using brain waves under 5S0Hz might be enough for the
task. In sum, the target sampling rate r should be selected based on the predicting targets.
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Figure 7: Ablation Study on Target Sampling Rate r

C.3.2 Ablation Study on Token Lengths ¢

In this experiments, we fix (1)(3) and conduct ablation study on the coefficient in token length ¢. Both
datasets have 10s as the entire sample length and 0.5s as the overlap lengths. For both of the datasets,
we vary the token length coefficient to 0.75s, 1s, 1.5s, 2s, 2.5s, 5s. The evaluations are conducted
under three different random seeds and the mean and standard deviation values are reported.

For each configuration, we also set the fft size to match the token length, which means that 5s token
duration will bring more frequency information. However, we find that by increasing the token lengths,
the model performance starts to decrease. Model performances on IIIC Seizure starts to decrease
after 1s while the performance on TUAB decreases after 2s. The reason could be that (i) longer
token length (i.e., frequency bands) do not provide extra benefits for learning the tasks; (ii) given the
increasing token lengths ¢, the total biosignal "sentence" length, which is {T’; +1= tlfa_ g + 1, will
decrease (here, J = 10r is the channel duration, ¢ is the token length, p = 0.57 is the overlapping
length). For example, with ¢ = 5r as the token lengths, the number of tokens becomes 2 per channel
while the number of tokens per channel is 19 in the default configuration with ¢ = r. The performance
drops is due to transformer models will be less beneficial in shorter "sentence"s.
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C.3.3 Ablation Study on Overlapping Lengths p

In this experiments, we fix (1)(2) and conduct ablation study on the coefficient in the overlap length
p. Both datasets have 10s as the entire sample length and 1s as the token lengths. For both of the
datasets, we vary the overlap length coefficient to 0.875s, 0.75s, 0.5s, 0.25s, Os. The evaluations
are conducted under three different random seeds and the mean and standard deviation values are
reported.

Based on the "sentence" length formula ‘t’f’; +1, smaller overlap length p will decrease the "sentence”
length. On both datasets, we find that larger overlap can brings better results due to that the biosignal
"sentence" becomes longer, and Transformer models can be more beneficial in the cases. Another
reason is that with larger overlaps, neighboring tokens can capture more transitioning information
and help the transformer model to better capture the temporal dynamics.
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Figure 9: Ablation Study on Overlapping Lengths p Between Tokens

C.4 Running Time Comparison

This section compares the running time of all models on all supervised learning tasks (CHB-MIT,
TUAB, IIIC Seizure, TUEV, PTB-XL, HAR). When recording the running time, we duplicated the
environment mentioned in Section 3.2} stopped other programs, and ran all the models one by one on
one GPU. We record the first 10 epochs of all models and report the per epoch mean and standard
deviation of the time cost in Table m In the setting, we use 512 as the batch size for CHB-MIT,
TUAB, TUEV, and PTB-XL, 256 as batch size for IIIC Seizure, and 64 as batch size for HAR.

The results show that our model has a similar running time profile as CNN-Transformer and the
ST-Transformer models. These two baselines and our BIOT are all transformer based models and
have the same number of heads and layers. BIOT uses linear self-attention module which should
be faster than CNN-Transformer and the ST-Transformer, however, our sequence structure are also
generally longer due to the flattening transformation. We also find that the CNN models (SPaRCNet
and ContraWR) are faster than the transformer based models in our experiments.

In all, the running time of all models are in the same magnitude, and the actual running time on
certain applications can vary due to the signal length, number of channels, selected number of CNN or
transformer layers or attention heads. The reported running time comparisons here work as references
using our selected model architectures. We think the running time of BIOT is acceptable given its
decent performance.

Table 7: Running time comparison (seconds per epoch)

Model CHB-MIT TUAB IIIC Seizure TUEV HAR PTB-XL

SPaRCNet 324417 £0.9952  17.4635 +1.0861 24.8728 +2.9339  7.1237 £ 1.8801  1.9485 +0.0926  7.3850 + 0.0599
ContraWR 24.7308 £0.7905  13.4650 & 0.4554 14.9449 4 0.9323  5.3337 £0.2003  2.3235 £ 0.1308  5.1978 £ 0.0366
CNN-Transforemr | 53.3355 + 1.8880 25.8983 4 0.7969  25.7742 £ 1.2990  9.0415 + 0.2501  3.0207 4 0.0463  7.9851 % 0.0400
FFCL 43.6103 £0.7927 21.6868 & 0.5668 23.7682 4 1.0757 7.0863 £ 0.1333  2.6649 £ 0.0973  6.5135 £ 0.0228
ST-Transformer 50.4725 £0.9978  24.5641 £ 0.4770 26.3251 £ 3.2320 7.9027 £ 0.0758 2.7954 4+ 0.0698  11.1495 £ 0.0200
(Vanilla) BIOT 55.5780 £0.4229  25.2788 +0.1200  25.4500 £ 4.0835  8.1812 £0.1228 2.9560 4 0.0563  12.1791 £ 0.0452
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C.5 Discussion on handling long recordings and multiple channels

Currently, the BIOT model already have two designs to handle long recordings and more channels:
(i) the current model uses linear complexity transformer, so that the complexity scales linearly with
sample lengths and channel sizes; (ii) we can remove the token overlaps and enlarge the token sizes
to reduce the token numbers (i.e., "sentence" length). With minor adjustments, the BIOT model can
better handle long recordings and multiple channels. For long recordings, we could segment the
recordings into 10-30s samples and then apply our BIOT on each sample and finally use a top level
LSTM or Transformer to learn sequence embedding. For multiple channels (more than 256 channels),
we can group neighboring channels or symmetric channels and tokenize them together, which could
greatly shrink the final "sentence" length. However, additional adjustments are not needed in this
paper and further discussion is beyond the scope of this paper.
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