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ABSTRACT

Improving the alignment of modalities has proven effective across various down-
stream tasks in multimodal models. Currently, modality alignment follows two
main research directions: aligning all modalities simultaneously or binding the
others by aligning to a core modality. The first ensures direct alignment, but it is
difficult to extend to new modalities. The second is scalable but weak in emer-
gent ability due to needing more direct inter-modality alignment. To address these
problems, we propose the TangentBind. Specifically, we first align all modalities
to a core modality, e.g., image or text. Then, we introduce a generative network
that generates the embeddings of the second modality, e.g., text or image, based
on the core modality embedding. Thirdly, other modalities, such as audio, are
aligned to the core modality and generative embedding, improving emergent abil-
ity while retaining alignment with the core modality. During training, in addition
to infoNCE, the Tangent Term is introduced to align the new modalities with the
generated embeddings. This addresses accuracy issues caused by using generated
vectors as representations for modalities. With VISION and TEXT as the core
modality, our experiments include other modalities such as AUDIO, DEPTH, and
INFRARED. Eventually, our experiments show that the emergent ability of Tan-
gentBind significantly outperforms the original benchmark on 9 datasets.

1 INTRODUCTION

Unifying multimodal representation aims to learn a shared semantic representation space across
various modalities, such as audio, RGB images, text, depth images, and heatmaps(Wang et al.,
2023a; |Girdhar et al., 2023; |Guzhov et al., [2021; ' Wu et al., [2021};2022; |Liu et al., 2023). A unified
multimodal space is essential as a critical foundation for multimodal understanding and generation
(Karpathy et al.| 2014; Mithun et al.| 2018} |Lul |2023). However, the previous multimodal requires
all modes to coexist, which is challenging and labor-intensive(Guzhov et al., 2021; |[Radford et al.,
2021; Moon et al., [2022)).

Due to the limitations of existing datasets, recent approaches only utilize pairs of modalities or a
few visual modalities. Consequently, the resulting embeddings are confined to the modality pairs
used during training and lack alignment for other modalities (Zhu et al., |2024). Recent works have
introduced more flexible alignment strategies to address this issue.(Gao et al., 2024} [Wang et al.,
2024a; |Zhu et al.| 2024} Dhakal et al., [2024; [Wang et al., 2024b; Lyu et al.} 2024). Among them,
ImageBind was the first work in this direction, introducing a core modality alignment framework to
reduce paired data requirements, where only the image as core modality is directly aligned with other
modalities. The concept of emergent alignment pertains to the indirect alignment performance, and
it also facilitates a degree of alignment between modalities that are not directly trained together.
However, when other modalities are indirectly aligned through text, the emergent effect exists only
in limited form, which typically results in suboptimal zero-shot performance.

To address the weak zero-shot performance issue of ImageBind, LanguageBind (Zhu et al.| [2024)
selects text as the core modality and employs generative data to enhance text-related zero-shot ca-
pabilities. However, LanguageBind struggles with retrieval tasks involving non-text modalities due
to the limitations of the binding method. Specifically, text needs more of the fine-grained details
presented in images. Using text as the core modality significantly reduces retrieval performance
across various image-based modalities. Besides, generating large amounts of data requires much
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human work and computational resources. A vital limitation of these binding methods relying on
indirect alignment lies in the potential degradation of emergent or zero-shot performance, especially
for modalities that lack direct alignment(Zhu et al.| 2024).

In this paper, we propose TangentBind. This
method is capable of mapping all modalities
into a unified embedding space and enhanc-
ing the emergent capabilities of models us-
ing an embedding generative network. Fur-
thermore, our method does not require extra \ ;
datasets where all modalities are present simul- 0 SUN W6
taneously, nor does it rely on massive synthetic

LLVIP

data across different modalities. Instead, we Depth

train a generative network to generate the em-

bedding vectors of modalities that have already NYU-D AS-A -
been aligned with the core modality. Based <

. Audi
on the embedding vector of the core modal- e

ity, these generated embeddings can be used
to align with other modalities. Notably, when
the generated embedding is used to align the
generated embedding vector with other modal-
ities, it can affect the alignment with the core
modality. Therefore, we propose the Tan-
gent Term for preventing this problem, and we
demonstrate the effectiveness of the Tangent
Term in section [3.2] Additionally, we demon-
strate that TangentBind can be initialized us-
ing large-scale pre-trained multimodal models,
such as CLIP(Radford et al., 2021), Language-
Bind(Zhu et al., 2024), and ImageBind(Girdhar et al.,2023), and that Tangent Term can massively
increase the emergence capacity used to initialize the model. We utilized Image and Text as the
core modalities, respectively, and ensured the extension of vision and language to audio, depth,
and infrared modalities. The model demonstrated strong emergent capabilities in tasks involving
each modality that was not directly trained. In figure[2] we compare TangentBind with ImageBind
and LanguageBind and show the advantages of TangentBind. TangentBind, with the image as the
core modality, achieved emergent classification top-1 accuracy. Figure[T|demonstrates the powerful
emergent capabilities of TangentBind with image core modality. Our experiment results surpass
ImageBind by 8.5%, 10.3%, and 16.1%, respectively, on ESC, LLVIP, and NYU-D benchmarks.
Similarly, TangentBind, with text as the core modality, also achieved emergent retrieval Recall@1
results of 25.1, 12.8, and 23.9 on image retrieval tasks in VGG-S, LLVIP, and NYU-D benchmarks
surpassing LanguageBind by 15.1, 5.3, and 6.0, respectively. Therefore, TangentBind can compete
with or outperform specialized models trained with direct supervision.

Clotho ESC-50

AudioCaps
TangentBind-ImageCore ImageBind OpenClip CLAP

Figure 1: Zero-shot Language-related task per-
formance. TangentBind with image core modality
was demonstrated as a powerful emergent ability
for indirect alignment modalities.

Our primary contributions are listed as follows:

* We propose TangentBind, a multimodal pre-train method based on latent space genera-
tion. During training, all modalities are aligned with the core modality through contrastive
learning, while the generative model enhances the emergent capabilities of the indirect
alignment modality.

* We propose Tangent Term, a loss function term that enhances the emergent ability of the
model while maintaining core modality alignment.

» Extensive experiments validate the effectiveness of our method, demonstrating significant

performance improvements in the emergent capabilities of bind-type models.

2 RELATED WORK

2.1 MULTIMODAL LEARNING

CLIP(Radford et al.,|2021) is a pioneering multimodal learning method that aligns images and text
for constructing cross-modal representations. Various methods, such as CLIP4Clip(Luo et al.| [2022)
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Figure 2: TangentBind vs. ImageBind and LanguageBind. The image on the left shows ImageBind’s
indirect alignment of the modal by aligning it directly with image. The center image shows Lan-
guageBind augmenting the zero-shot capability of the model by generating data. The right image
demonstrates TangentBind, with image as the core modality, which enhances the emergent zero-shot
capabilities by simply generating embedding.

and Clip2Video(Fang et al., 2021), etc, adapt CLIP to extract semantic vision representations. Re-
cent efforts have comprehensively explored multimodal alignment through pretraining(Yin et al.,
2023 Xu et al., 2023} [Wu et al. 2023). In addition to language and vision modalities, Audio-
CLIP(Guzhov et al.;, 2021) adds audio as an additional modality with the CLIP framework, enabling
zero-shot audio classification. Imagebind(Girdhar et al.,2023)) expands multi-modal alignment pre-
training by aligning all modalities with the vision modality. ImageBind-LLM(Han et al., [2023)
uses the joint embedding space in the pre-trained ImageBind to fine-tune LLaMA efficiently. Neu-
roBind(Yang et al.| [2024) learns a general representation based on pre-trained image embedding
space that unifies multiple types of brain signals. UniBind(Lyu et al.,|2024) adaptively build LLM-
augmented classwise embedding centers and learn to achieve a unified and balanced representa-
tion space. To enhance the performance on language-related tasks, MEDBind(Gao et al., [2024),
LanguageBind(Zhu et al.l [2024) use text data as the core modality to align other modalities. The
methods mentioned above, however, did not investigate strategies to enhance the model’s emergent
capabilities for previously untrained modality pairs.

2.2 CONTRASTIVE LEARNING

Contrastive learning has been remarkably successful in learning representations from multimodal
data pairs (Logeswaran & Leel 2018 [He et al} [2020). The primary motivation behind these work
is maximizing the mutual information between two views (Tian et al., [2020; |Bachman et al.| 2019;
Tamkin et al., [2020). The loss functions, such as NCE (Gutmann & Hyvirinen, 2010), infoNCE
(van den Oord et al., [2018) and MIL-NCE (Miech et al.l 2020), have been proposed for contrastive
learning. However, these loss functions focus on the alignment of two modalities. To extend the
model to multiple modalities, (Guzhov et al.l 2021} |Alayrac et al.| |2020) propose a simple summa-
tion of loss functions for joint learning across various modalities. According to/Wang & Isola (2020),
the loss function of contrastive learning can be split into the alignment and uniformity parts. The
alignment part is responsible for the alignment when using loss function summation for multimodal
alignment. We analyze the direct summation of two loss functions, and then the two alignment parts
will interfere in appendix

3 METHOD

We present TangentBind, a multimodal pretraining approach to align different modalities and en-
hance cross-modal retrieval and emergent classification. Figure [3|shows the process of aligning text
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Figure 3: An example of TangentBind overview with M,, M, and C are text, audio, and image,
respectively. Firstly, we align image with text with infoNCE loss function. Secondly, our work
trains generative network fed by image embedding conditions on text embedding with frozen image
encoder and text encoder parameters. Finally, our method uses infoNCE and tangentbind to align
the audio with the image and the generated text embedding.

with image and then aligning audio with image and generative text embedding, with the image as
the core modality. TangentBind consists of three steps:

1. Align modality M, with the core modality C
2. Train a generative network to produce M, embedding using core modality embedding.
3. Align modality M, with both the C and the generative modality

When using TangentBind to bind N 4 1-th modality, this process only needs to replace M, and M,
with any modality that has been aligned with C and IV 4 1-th modality, and then perform step 2 and
3.

3.1 ALIGNING CORE MODALITY AND GENERATIVE NETWORK

Following ImageBind (Girdhar et all |2023) and LanguageBind (Zhu et al., [2024), TangentBind
trains each encoder separately for respective modality. First, step [I] uses a contrastive learning
method to train M, encoder and C encoder for alignment. Then TangentBind uses aligned modality
M, to train a latent generative model of modality pair (x?,¢;). We train our model to predict the
unnoised z{ directly and use a mean-squared error loss on this prediction:

£ =EpnlGe(@ " t,c) —af|. (1)

3

In formula[T] G is generative net and © is the training coefficient. Finally, they can be normalized
on the hypersphere, and we can get the generated embedding . When aligning other modalities
with C, we also use the Tangent Term to align with the generated M, embedding in the tangent
space.

3.2 ALIGNING CORE MODALITY AND GENERATIVE MODALITY

The alignment performance will be weakened if we directly align with the generated inaccurate
embedding (Oussidi & Elhassouny, 2018)). Therefore, Tangent Term, an improvement of infoNCE,
is proposed to reduce the adverse effects of inaccurate embeddings.

The definition of infoNCE is given by the equation:

[infoNCE _ _% g:log( exp(sim(w?wi)/T) ). )

Mp—C — N .
' : >, exp(sim(z, ¢;)/T)

4
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In equation [2| 2, ¢; is i—th embedding vector of My, C respectively, 7 is temperature and sim(-, -)
is similarity function. According to Wang & Isola (2020), infoNCE can be divided into the align
part and the uniform part as shown in equation [3|and 4| respectively.

£ — _sim(z?, ¢;) /7, 3) conitorm — IOg(Z exp(sim(z{,¢;)/7)).  (4)

J
The align part is responsible for aligning the features, and the uniform part makes the embedding
space more evenly distributed on the hypersphere.

oLMen  fsim(a?t, ¢;)
ot 9ab

? 7

/T &)

C; — —

To achieve higher similarity between 2% and c;, the moving direction of z? and the inner product of
—OL3%E /9, are greater than 0 after updatmg the parameters. We denote C; in equation Bﬂ

Tangent Term (see equation E]) is proposed for keeping the similarity between z? and ¢; increasing
while aligning M, with the generative M, embedding Z¢.

N

tan :_i 1og( eXp(Sim(T ( ) )/) )
Mp—M, N - ZN exp(slm(Tal(CC ) ¢ )/ )

(6)

Tangent Term In equation[6] &7 is generated from ¢; by the generative network in[3.1]and 7%, (-)

is tangent normalize function. It is the crucial function in Tangent Term. Its functionality is map-

ping the embedding to the space tangent to ¢; and scaling it to the unit hypersphere.Thus, T, () is
= =T =. =T

defined as Ty, (z) 2 normalize(([ - ﬁ) ), where (I - ﬁ) project x into the orthogonal

CiC;

complement space of & which means & (I - T ﬁ2> = 0 as shown in FigureH

Y
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P3ce Figure 5: The process of aligning % with ¢;
Or & ~a
7 and &¢ 51multaneously Ha, 0 represent the
angles of c; with £¢, %, respectively. ¢ is
Figure 4: T, maps x to the orthogonal space denoted as the angle between £ and 2% i
of ¢; and normalizes it. the tangent space of ¢;.

Finally, the loss function can be rewritten into the following form:

L= £inf0NCE + )\Elan. (7)
In equation [7, A is the hyperparameter , £ = (L%, o, + L% 0q,)/2 and LPONCE —

(CRE + 3G 2

Figureﬁillustrates the loss functionenables 2% to simultaneously align with both ¢; and £¢ while
using cosine similarity. The black arrow toward ¢; represents the infoNCE objective, bringing

'Tt is worth noting that the higher the similarity, the lower £
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and c; closer together. The other black arrow indicates the Tangent Term, which drives xf toward
27 within the space orthogonal to c;. As this orthogonal space on the sphere corresponds to the
tangent space at ¢; (do Carmo), 2016), we refer to the method as TangentBind.

4 THEORETICAL ANALYSIS

This analysis mainly illustrates the effect of the Tangent Term on the similarity of z¥ and c¢; while
ignoring the effect of Luniform - Since the optimization methods(Kingma & Bal 2014; Ruder, 2016)),
are all gradient-based optimization, our analysis is based on gradients primarily. The update param-

eter A© can be simply written as §( %5 Mmgn + /\ ) where 4 is step size. To clarify the effect of £*"
on L£i&" during gradient descent, we 1ntroduce Theorem 1, and the proof is shown in Appendlx-

Theorem 1. If \ < %, then we have
9T¢, (=)

aﬁalign Y o Lran T 8£align
00 00 00

> 0. ®)

According to Theoremm and Taylor expansion(Rudin, [1976)), when updating the coefficients, we
have
. aﬁalign HLran 8£align
LY + AB) &~ L) — 6 A r
(©+A0) ©) =5 *t*35") 50

which means the similarity between x% and ¢; will not decrease. To be specific, when sim(-, ) is

S £align(®)’ (9)

cosine similarity, substitutin

¢; according to equation we have

B aﬁah gn ( T zi)) 1

leill = 11— || = |l /7 = llei'll/7 = = (10)

" T T )

oL 9T, 1
= = ||z =—. 11
o7 =1 oy 7 = el = an
Thus, cosine similarity means A < 1 can ensure that (agggn )\‘%m) ﬁahgn > 0 due to
e/l 25 1l =1

In the above analysis, we ignore the effect of £""°™. However, during the training process, £""™
may cause similarity to decrease. The detailed analysis for £™ has been studied in previous
work (Liang et al.|,|2022;|Wang & Isolal 2020).

5 EXPERIMENTS AND RESULTS

This section includes an evaluation of the effectiveness of TangentBind in various downstream tasks
such as RGB image, depth image, infrared image, and audio. The effectiveness of the generative
network has also been tested. We also conduct the ablation study to analyze the impact of Tangent
Term and different parameter configurations on the performance of TangentBind. For the dataset
and experimental implementation details, please refer to the Appendix[B]and[C]

5.1 IMPLEMENTATION DETAILS

Only two modalities (image and language) have datasets paired with multiple other modalities, so
we only show the results using TangentBind with Image and Text as the core modality, respectively.
The sim(-, -) notation in TangentBind is cosine similarity. To demonstrate the adaptability of Tan-
gent Term, we use the pre-trained multimodal models ImageBind-Huge(Girdhar et al [2023) and
LanguageBind(Zhu et al.| 2024) respectively for initialization. Since the embedding generated by
the diffusion model is different at each time, we generate M, embeddings 100 times based on each
¢; and calculate the mean of the generated M, embeddings. We use AudioSet(Gemmeke et al.
2017), SUN(Song et al., [2015), and LLVIP(Jia et al., [2021)) to fine-tune models. While fine-tuning
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Table 1: X-Language classification. * donates Emergent Zero-shot. We report the top-1 classifica-
tion accuracy(%) for all datasets except AudioSet (mAP). The SOTA of NYU-D, SUN, AudioSet,
ESC-50, and VGG-S come from (Girdhar et al., [2022)(Girdhar et al., 2022; [Koutini et al., 2021}
Chen et al.l 2022; [Kazakos et al., 2021) respectively. DepthSwin model(Girdhar et al.| 2022) is
finetuned from the ImageSwin model(Liu et al.} 2021)). Our results are highlighted in bold.

Method Infrared Depth Audio
LLVIP | NYU-D SUN | AudioSet ESC-50 VGG-S
OpenCLIP(Cherti et al., [2023) 82.2 454 25.4 - - -
DepthSwin(Girdhar et al., [2022) - 72.5 63.1 - - -
JointCRF(Wang et al.| 2017) - 65.8 63.6 - - -
DFCR(Cao et al.,[2018) - 65.3 56.3 - - -
AudioCLIP(Guzhov et al., [2021]) - - - 28.4 68.6 47.4
CLAP(Elizalde et al.,[2023) - - - 23.1 92.6 46.2
WAV2CLIP(Wu et al.,[2021) - - - 0.71 41.4 10.0
LanguageBind - 87.2 65.1 - 27.7 91.8 28.9
Tan-LanguageCore 85.1 65.8 - 28.1 92.0 29.3
ImageBind* 63.4 54.0 35.1 17.6 66.9 27.8
Tan-ImageCore* 73.7 70.1 40.3 254 68.4 36.3
Absolute SOTA - 79.4 64.9 49.6 97.0 52.5

the encoders of other modalities , we freeze the image and text encoder parameters of ImageBind
and LanguageBind. The temperature of Tangent Term and infoNCE is set to the same to balance
the functionality between them. According to Secd] to ensure the alignment with core modal-
ity, we make A = 1. We use a 6—layer decode-only transformer architecture diffusion model in
Ramesh et al. (2022) with 100 time steps for the generative networkﬂ To demonstrate the en-
hancement of the emergent capability with Tangent Term, we use only generative networks that
produce either image or text for our downstream tasks, which are all text-related or image-related.

Table 2: Zero-shot Audio-Language retrieval. * donates Emergent

5.2 TANGENT Zero-shot. Our results are highlighted in bold.
TERM AUGMENTING
IMAGECORE MODEL Clotho AudioCaps
. Method R@I R@I10 | R@l R@I0
Emergent  Ability As  —AyE[C(Nagrani et all 2022) 30 175 | 87 377
shown in Table[T} we tested A\ 4ioClip(Guzhov et al,2021) | 320 203 | 3.53 3.6
the ~effect of Tangent  \yaAy)Clip(Wu et al; 2021) 078 12.1 | 088 153
Term on ImageCore on o \CR(Wang et all 2023b) 837 367 | 1576  48.1
the emergent classification 7,5y 0eBing 21 440 | 122 532
task on 6 datasets. On Tan-LanguageCore 11.7 41.8 11.8 52.1
the  emergent  zero-shot  —p -0 cps g 60 284 | 93 423
classification ~tasks =~ of ) paeeCore 100 334 | 101 492

Audio, Depth, and In-

frared (VGG-S(Chen et al.,

2020), NYU-D(Nathan Silberman & Fergus, 2012)), and LLVIP(Jia et al., 2021))), TangentBind
top-1 accuracy outperforms ImageBind 8.5%, 16.1%, and 10.3% respectively. In addition, as
shown in Table [2] we also test TangentBind on the Audio-Language emergent retrieval task. The
recall@10 on the Clotho(Drossos et al.| [2019), AudioCaps(Kim et al., |2019) datasets are 5% and
6.9% higher than the ImageBind after the introduction of Tangent Term. The emergent capability
shows significant improvement across all benchmarks, achieving performance levels that closely
approximate those achieved by incorporating text features. These experiment results suggest that
TangentBind effectively aligns multiple modalities within Tangent Space, thereby significantly
enhancing the emergent zero-shot capabilities.

Core Modality Alignment Ability Table [3| presents the performance of TangentBind for zero-
shot retrieval using RGB images. The experimental results demonstrate that the introduction of

2The code can be found in https://github.com/lucidrains/DALLE2-pytorch
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the Tangent Term leads to improvements in Recall@1 for AVE (Tian et al., 2018), VGG-S
2020), LLVIP (Jia et al) [2021)), and NYU-D (Nathan Silberman & Fergus, [2012)) by 0.1,

1.4, 1.1, and 0.5, respectively, compared to ImageBind model. This indicates that incorporating
the Tangent Term does not degrade the alignment of the various modalities with the core modality.

Table 3: Comparison of RGB— X retrieval.* donates Emer-

53 TANGENT gent. Our results are highlighted in bold.
TERM AUGMENTING
LANGUAGECORE MODEL Dataset Method Task R@1
ImageBind 36.9
Emergent Ability As presented in LanguageBind* 10.6
Table 3] we evaluated the impact of AVE Tan-ImageCore RGB—A 37.0
the Tangent Term on LanguageCore Tan-LanguageCore* 15.1
in the emergent RGB-related retrieval Imagebind 28.7
task across four datasets. For the LanguageBind* 10.0
modalities of Audio, Depth, and In- VGG-S Tan-ImageCore RGB—A 30.1
frared, TangentBind demonstrated Tan-LanguageCore* 15.1
superior performance in Recall@1 Imagebind 26.3
on AVE (Tian et al] 2018), VGG- LanguageBind* 7.5
S (Chen et alj 2020), NYU-D  LIVIP | p  imageCore RGBT 50y
(Nathan Silberman & Fergus, 2012), Tan-LanguageCore* 12.8
and LLVIP (Jia et al.| [2021)), with im- Imagebind 347
provements of 4.5, 5.1, 6.0, and 5.3, LanguageBind* 17.9
respectively, surpassing Language- NYU-D Tan-ImageCore RGB—D 35.2
Bind model. The emergent capabil- Tan-LanguageCore* 23.9

ity is significantly enhanced across all
benchmarks. It demonstrates that the
Tangent Term remains effective even when the core modality is altered.

Core Modality Alignment Ability As shown in Table [I] to verify that the alignment between
various modalities and the core text modality is not compromised by the introduction of the Tan-
gent Term, we evaluated its effect on LanguageCore model across six datasets in the zero-shot
classification task. For the modalities of Audio, Depth, and Infrared, TangentBind top-1 accuracy
outperforms LanguageBind on VGG-S 2020), NYU-D (Nathan Silberman & Fergus|
[2012), and ESC-50 (Piczak| [2015), with marginal improvements of 0.4%, 0.7%, and 0.2%, respec-
tively. On LLVIP (Jia et al.,|2021)), there is only a minor top-1 accuracy decrease of 2.1%. To further
assess the impact of the Tangent Term on the core text modality, Table 2] highlights its effect on
the audio-language emergent retrieval task. Following the introduction of the Tangent Term, the
maximum recall value on Clotho (Drossos et al.,[2019) and AudioCaps decreases
by only 2.2. These results demonstrate that the negative impact of the Tangent Term on tasks where
text serves as the core modality is minimal.

5.4 ABLATION STUDY

The effect of generative networks To illustrate the efficacy of the diffusion model, we substituted
it with ResNetq 2015), VAE(Kingma & Welling| [2013)), and C-MCR(Wang et all, 2023b)
in Step 2} In Figure [6] we display the cumulative distribution function (CDF) curves of cosine
similarity between the embeddings generated by these methods and the actual data embeddings for
VGG-S(Chen et al| [2020) and SUN(Song et al| 2015). When the CDF curve approaches 1.0, it
indicates the generated embeddings are similar to the actual data embeddings. As illustrated in
Figure[6} the embeddings produced by the diffusion model closely resemble the actual embeddings.
Notably, the C-MCR method failed on the SUN dataset. Detailed descriptions of each method’s
implementation are provided in Appendix [C] To demonstrate the necessity of Step 2 and the robust
capability of TangentTerm to maintain alignment with the core modality, we introduced Gaussian
noise with a mean of 0 and a variance of le-3 to the core modal embeddings and normalized them as
a disturbance sample. Table [f] shows that the image core model with the diffusion model achieved
top-1 classification accuracy of 36.3%, 73.7%, and 70.1% on emergent text-related classification
tasks across the VGG-S, LLVIP, and NYU-D datasets, respectively, outperforming other methods.
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Figure 6: CDF Curve of Similarity on VGG-S and SUN. The top/bottom row displays curves repre-
senting the cosine similarity between text/image embeddings generated by various methods in Step
2 and the actual text/image embeddings, with image/text as the core modality. The solid, dashed,
dash-dotted, and dotted lines correspond to the diffusion, C-MCR, ResNet, and VAE methods, re-
spectively.

Table 4: Diffusion Model Embedding vs. Other Method Embedding. Top-1 accuracy on X — T'
tasks and Recall@1 on RGB — X tasks. Diff denotes the generation of embeddings using a
diffusion model (Ramesh et al} [2022)) in Step 2. The best results are highlighted in bold. A gray
background indicates that the result is from an Emergent Zero-shot task.

ImageCore+ LanguageCore+
Diff ResNet VAE Noise C-MCR | Diff ResNet VAE Noise C-MCR
A—T [363 30.7 321 237 267 |293 272 283 264 29.1
RGB—A |[30.1 293 28.1 277 283 |151 123 135 &.1 9.5
I-T [73.7 681 643 59.1 61.7 [85.1 83.1 875 862 869
RGB—I (274 265 27.1 261 259 |128 103 9.1 52 8.9
D—T |70.1 672 693 502 584 |658 657 648 641 654
RGB—D|[35.2 350 339 331 344 239 207 224 146 189

Similarly, Table [ reveals that the text core model with the diffusion model reached the highest
Recall@1 scores of 15.1, 12.8, and 23.9 on emergent RGB-related retrieval tasks across the same
datasets. Moreover, it is noteworthy that models using the diffusion model in Step[2Jachieved optimal
performance in all core modality-related tasks, which is white background in Table 4] except for a
slight decline in the I — T task on the LLVIP dataset compared to the best result.

Dataset| Task

VGG-S

LLVIP

NYU-D

Replacing Tangent Term by infoNCE To visualize the ability of Tangent Term to maintain the
core modality alignment, Table[5|presents the core modality alignment results of models with image
and text as the core modalities. In Table [5| £"NCE is used to directly align with the generated
embeddings instead of £%". In detail, the Tangent Term Ctj{i‘[b am, T E‘ﬁﬁ‘la _, M, is replaced by

E‘/‘\‘fl‘f\EE Lt Ei}\‘fl‘f‘f%b in loss function. For consistency, the value of ) is set to 1. As shown in
Table |5} compared to Tangent Term, infoNCE Recall@1 scores on the image-based retrieval tasks
on the VGG-S, AVE, NYU-D, and LLVIP datasets drop by 4.9, 4.7, 6.1, and 5, respectively. This
indicates a direct use of infoNCE can severely disrupt the alignment of core modalities. A similar
pattern is observed when text is the core modality, as Table [5] demonstrates that if infoNCE is used
directly then the top-1 accuracy of text-based classification on the VGG-S, ESC-50, NYU-D, and
LLVIP datasets will drop significantly to 22.2%, 72.3%, 55.7% and 64.1%. These results suggest
that the Tangent Term enhances emergent capabilities and mitigates the negative impact on core

modality alignment compared to direct alignment using infoNCE.
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Figure 7: Experimental results on classification and retrieval tasks after varying hyperparameters
A. The first row of figures from left to right shows the results on the VGG-S, LLVIP, and NYU-D
datasets with images as the core modality. The second row of figures from left to right shows the
results on VGG-S, LLVIP, and NYU-D datasets with text as the core modality, respectively.

Changing Hyperparameter \ Figure[7]presents the top-1 accuracy and Recall@1 values for clas-
sification and retrieval on various datasets as a function of varying A during training. As observed
in Figure[7] the emergent capability of the model with the image core modality on LLVIP improves
with increasing values of A, reaching its peak at A = 1.25. However, when A > 1.25, the emergent
performance gradually declines on such a model. In contrast, the Recall@1 value for image re-
trieval consistently decreases as A increases. This trend aligns with Theorem [I] which indicates that
the Tangent Term negatively impacts core modality alignment when A\ becomes excessively large.

Table 5: Image based retrieval and text based classifica-

tion on VGG-S, AVE, NYU-D, LLVIP and ESC-50. We
6 CONCLUSION replace Tangent Term by infoNCE in image core and text
core modality modal during training, respectively, and com-
pare core modality alignment performance. We report the
Recall@1 score for image based retrieval tasks and top-1
classification accuracy(%) for text based classification tasks.

In this work, we introduce Tan-
gentBind, an emergent enhancement
method for multimodal pretraining.
To improve the integrity of modality,
we train a generative network that in-

directly aligns modality embeddings.  Dataset Task Core infoNCE+
Additionally, to prevent the gener- Tan Term _ infoNCE
ated embeddings from compromis-  vGG.s | ROB—A | Image 30.1 25.2
ing alignment with the core modal- AT Text 29.3 222
ity, we propose the Tangent Term AVE | RGB—A | Image 37.0 323
for aligning the generated modal-

ity embeddings. Extensive experi- Nyy.p | ROB—D | Image 35.2 29.1
ments, including the use of multi- DT Text 65.8 55.7
ple core modalities and ablation stud- LLVIP RGB—I | Image 27.4 224
ies, demonstrate that the Tangent =T Text 85.1 64.1
Term can enhance the. emergent ca-  gg.5() AT Text 92.0 723
pabilities of the multimodal align-

ment model while preserving align-
ment with the core modality.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Jean-Baptiste Alayrac, Adria Recasens, Rosalia Schneider, Relja Arandjelovi¢, Jason Ramapuram,
Jeffrey De Fauw, Lucas Smaira, Sander Dieleman, and Andrew Zisserman. Self-supervised mul-
timodal versatile networks. Advances in neural information processing systems, 33:25-37, 2020.

Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient
descent for deep linear neural networks. ArXiv, abs/1810.02281, 2018. URL https://api.
semanticscholar.org/CorpusID:52922363.

Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximizing
mutual information across views. Advances in neural information processing systems, 32, 2019.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Yuanzhouhan Cao, Zifeng Wu, and Chunhua Shen. Estimating depth from monocular images
as classification using deep fully convolutional residual networks. [EEE Transactions on Cir-
cuits and Systems for Video Technology, 28(11):3174-3182, 2018. doi: 10.1109/TCSVT.2017.
2740321.

Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. Vggsound: A large-scale audio-
visual dataset. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 721-725,2020. URL https://api.semanticscholar.
org/CorpusID:216522760.

Ke Chen, Xingjian Du, Bilei Zhu, Zejun Ma, Taylor Berg-Kirkpatrick, and Shlomo Dubnov. Hts-
at: A hierarchical token-semantic audio transformer for sound classification and detection. In
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 646-650. IEEE, 2022.

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gor-
don, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
contrastive language-image learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2818-2829, 2023.

Aayush Dhakal, Subash Khanal, Srikumar Sastry, Adeel Ahmad, and Nathan Jacobs. Geobind:
Binding text, image, and audio through satellite images. arXiv preprint arXiv:2404.11720, 2024.

M.P. do Carmo. Differential Geometry of Curves and Surfaces: Revised and Updated Second Edi-
tion. Dover Books on Mathematics. Dover Publications, 2016. ISBN 9780486806990. URL
https://books.google.com/books?id=uXF6DQAAQBAJ.

Konstantinos Drossos, Samuel Lipping, and Tuomas Virtanen. Clotho: an audio captioning dataset.
ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 736-740, 2019. URL https://api.semanticscholar.org/
CorpusID:204800739.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Pro-
ceedings of the 36th International Conference on Machine Learning, volume 97 of Proceed-
ings of Machine Learning Research, pp. 1675-1685. PMLR, 09-15 Jun 2019. URL https:
//proceedings.mlr.press/v97/dul9c.htmll

Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail, and Huaming Wang. Clap learning
audio concepts from natural language supervision. In ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1-5. IEEE, 2023.

Han Fang, Pengfei Xiong, Luhui Xu, and Yu Chen. Clip2video: Mastering video-text retrieval via
image clip. ArXiv, abs/2106.11097, 2021. URL https://api.semanticscholar.org/
CorpusID:235490558.

Yuan Gao, Sangwook Kim, David E Austin, and Chris McIntosh. Medbind: Unifying language and
multimodal medical data embeddings. ArXiv, abs/2403.12894, 2024. URL https://api.
semanticscholar.org/CorpusID:268532501.

11


https://api.semanticscholar.org/CorpusID:52922363
https://api.semanticscholar.org/CorpusID:52922363
https://api.semanticscholar.org/CorpusID:216522760
https://api.semanticscholar.org/CorpusID:216522760
https://books.google.com/books?id=uXF6DQAAQBAJ
https://api.semanticscholar.org/CorpusID:204800739
https://api.semanticscholar.org/CorpusID:204800739
https://proceedings.mlr.press/v97/du19c.html
https://proceedings.mlr.press/v97/du19c.html
https://api.semanticscholar.org/CorpusID:235490558
https://api.semanticscholar.org/CorpusID:235490558
https://api.semanticscholar.org/CorpusID:268532501
https://api.semanticscholar.org/CorpusID:268532501

Under review as a conference paper at ICLR 2025

Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing
Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for
audio events. In Proc. IEEE ICASSP 2017, New Orleans, LA, 2017.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net opti-
mization via hessian eigenvalue density. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 2232-2241. PMLR, 09-15 Jun 2019. URL
https://proceedings.mlr.press/v97/ghorbanil9b.htmll

Rohit Girdhar, Mannat Singh, Nikhila Ravi, Laurens Van Der Maaten, Armand Joulin, and Ishan
Misra. Omnivore: A single model for many visual modalities. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 16102-16112, 2022.

Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand
Joulin, and Ishan Misra. Imagebind: One embedding space to bind them all, 2023. URL https:
//arxiv.orqg/abs/2305.05665.

Michael Gutmann and Aapo Hyvirinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 297-304. JMLR Workshop and Conference Proceedings,
2010.

Andrey Guzhov, Federico Raue, Jorn Hees, and Andreas Dengel. Audioclip: Extending clip to
image, text and audio, 2021. URL https://arxiv.org/abs/2106.13043.

Jiaming Han, Renrui Zhang, Wenqgi Shao, Peng Gao, Peng Xu, Han Xiao, Kaipeng Zhang,
Chris Liu, Song Wen, Ziyu Guo, Xudong Lu, Shuai Ren, Yafei Wen, Xiaoxin Chen, Xi-
angyu Yue, Hongsheng Li, and Yu Jiao Qiao. Imagebind-llm: Multi-modality instruction
tuning. ArXiv, abs/2309.03905, 2023. URL https://api.semanticscholar.org/
CorpusID:261582620.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2015.
URLhttps://api.semanticscholar.org/CorpusID:206594692.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729-9738, 2020.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Xinyu Jia, Chuang Zhu, Minzhen Li, Wenqi Tang, and Wenli Zhou. Llvip: A visible-infrared
paired dataset for low-light vision. 2021 IEEE/CVF International Conference on Computer Vi-
sion Workshops (ICCVW), pp. 3489-3497,2021. URL https://api.semanticscholar.
org/CorpusID:2372785309.

Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and Li Fei-
Fei. Large-scale video classification with convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2014.

Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, and Dima Damen. Slow-fast auditory
streams for audio recognition. In ICASSP 2021-2021 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 855-859. IEEE, 2021.

Chris Dongjoo Kim, Byeongchang Kim, Hyunmin Lee, and Gunhee Kim. AudioCaps: Generat-
ing captions for audios in the wild. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.),
Proceedings of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp.
119-132, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1011. URL https://aclanthology.org/N19-1011l

12


https://proceedings.mlr.press/v97/ghorbani19b.html
https://arxiv.org/abs/2305.05665
https://arxiv.org/abs/2305.05665
https://arxiv.org/abs/2106.13043
https://api.semanticscholar.org/CorpusID:261582620
https://api.semanticscholar.org/CorpusID:261582620
https://api.semanticscholar.org/CorpusID:206594692
https://api.semanticscholar.org/CorpusID:237278539
https://api.semanticscholar.org/CorpusID:237278539
https://aclanthology.org/N19-1011

Under review as a conference paper at ICLR 2025

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014. URL https://api.semanticscholar.org/CorpusID:
6628106.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114,
2013. URL https://api.semanticscholar.org/CorpusID:216078090.

Khaled Koutini, Jan Schliiter, Hamid Eghbal-Zadeh, and Gerhard Widmer. Efficient training of
audio transformers with patchout. arXiv preprint arXiv:2110.05069, 2021.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Victor Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Y Zou. Mind the
gap: Understanding the modality gap in multi-modal contrastive representation learning. Ad-
vances in Neural Information Processing Systems, 35:17612—-17625, 2022.

Minghua Liu, Ruoxi Shi, Kaiming Kuang, Yinhao Zhu, Xuanlin Li, Shizhong Han, H. Cai,
Fatih Murat Porikli, and Hao Su. Openshape: Scaling up 3d shape representation to-
wards open-world understanding. ArXiv, abs/2305.10764, 2023. URL https://api.
semanticscholar.org/CorpusID:258762826.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012-10022, 2021.

Lajanugen Logeswaran and Honglak Lee. An efficient framework for learning sentence representa-
tions. arXiv preprint arXiv:1803.02893, 2018.

Zhou Lu. A theory of multimodal learning. ArXiv, abs/2309.12458, 2023. URL https://api.
semanticscholar.org/CorpusID:262217483.

Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei, Nan Duan, and Tianrui Li. Clip4clip: An
empirical study of clip for end to end video clip retrieval and captioning. Neurocomputing, 508:
293-304, 2022.

Yuanhuiyi Lyu, Xu Zheng, Jiazhou Zhou, and Lin Wang. Unibind: Llm-augmented unified and
balanced representation space to bind them all. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 26752-26762, 2024.

Charles H. Martin and Michael W. Mahoney. Implicit self-regularization in deep neural networks:
Evidence from random matrix theory and implications for learning. Journal of Machine Learning
Research, 22(165):1-73, 2021. URL http://jmlr.org/papers/v22/20-410.html.

Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew Zis-
serman. End-to-end learning of visual representations from uncurated instructional videos. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9879—
9889, 2020.

Niluthpol Chowdhury Mithun, Juncheng Li, Florian Metze, and Amit K. Roy-Chowdhury. Learning
joint embedding with multimodal cues for cross-modal video-text retrieval. In Proceedings of
the 2018 ACM on International Conference on Multimedia Retrieval, ICMR ’18, pp. 19-27, New
York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450350464. doi: 10.
1145/3206025.3206064. URL https://doi.org/10.1145/3206025.3206064!

Seungwhan Moon, Andrea Madotto, Zhaojiang Lin, Alireza Dirafzoon, Aparajita Saraf, Amy
Bearman, and Babak Damavandi. Imu2clip: Multimodal contrastive learning for imu mo-
tion sensors from egocentric videos and text. ArXiv, abs/2210.14395, 2022. URL https:
//api.semanticscholar.orqg/CorpusID:253117171l

Arsha Nagrani, Paul Hongsuck Seo, Bryan Seybold, Anja Hauth, Santiago Manén, Chen Sun, and
Cordelia Schmid. Learning audio-video modalities from image captions. In European Conference
on Computer Vision, 2022. URL https://api.semanticscholar.org/CorpusID:
247939759.

13


https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:216078090
https://api.semanticscholar.org/CorpusID:258762826
https://api.semanticscholar.org/CorpusID:258762826
https://api.semanticscholar.org/CorpusID:262217483
https://api.semanticscholar.org/CorpusID:262217483
http://jmlr.org/papers/v22/20-410.html
https://doi.org/10.1145/3206025.3206064
https://api.semanticscholar.org/CorpusID:253117171
https://api.semanticscholar.org/CorpusID:253117171
https://api.semanticscholar.org/CorpusID:247939759
https://api.semanticscholar.org/CorpusID:247939759

Under review as a conference paper at ICLR 2025

Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor segmentation and support
inference from rgbd images. In ECCV, 2012.

Andreea-Maria Oncescu, A Koepke, Joao F Henriques, Zeynep Akata, and Samuel Albanie. Audio
retrieval with natural language queries. arXiv preprint arXiv:2105.02192, 2021.

Achraf Oussidi and Azeddine Elhassouny. Deep generative models: Survey. In 2018 International
conference on intelligent systems and computer vision (ISCV), pp. 1-8. IEEE, 2018.

Karol J. Piczak. Esc: Dataset for environmental sound classification. Proceedings of the 23rd ACM
international conference on Multimedia, 2015. URL https://api.semanticscholar.
org/CorpusID:17567398.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
https://arxiv.org/abs/2103.00020.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. ArXiv, abs/2204.06125, 2022. URL https:
//api.semanticscholar.org/CorpusID:248097655.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

W. Rudin. Principles of Mathematical Analysis. International series in pure and applied mathemat-
ics. McGraw-Hill, 1976. ISBN 9780070856134. URL https://books.google.com.sqg/
books?id=kwgzPAAACAAJ.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211-252, 2015. doi: 10.1007/s11263-015-0816-y.

Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. Sun rgb-d: A rgb-d scene understand-
ing benchmark suite. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 567-576, 2015.

Alex Tamkin, Mike Wu, and Noah D. Goodman. Viewmaker networks: Learning views for
unsupervised representation learning. ArXiv, abs/2010.07432, 2020. URL https://api.
semanticscholar.org/CorpusID:222381644.

Yapeng Tian, Jing Shi, Bochen Li, Zhiyao Duan, and Chenliang Xu. Audio-visual event localization
in unconstrained videos. In ECCV, 2018.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In Computer
Vision—ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings,
Part XI 16, pp. 776-794. Springer, 2020.

Adron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. ArXiv, abs/1807.03748, 2018. URL https://api.semanticscholar.org/
CorpusID:49670925.

Jianhua Wang, Chuanxia Zheng, Weihai Chen, and Xingming Wu. Learning aggregated features
and optimizing model for semantic labeling. The Visual Computer, 33:1587-1600, 2017.

Peng Wang, Shijie Wang, Junyang Lin, Shuai Bai, Xiaohuan Zhou, Jingren Zhou, Xinggang Wang,
and Chang Zhou. One-peace: Exploring one general representation model toward unlimited
modalities. ArXiv, abs/2305.11172,2023a. URL https://api.semanticscholar.org/
CorpusID:258762390.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International Conference on Machine Learning,
2020. URL https://api.semanticscholar.org/CorpusID:218718310.

14


https://api.semanticscholar.org/CorpusID:17567398
https://api.semanticscholar.org/CorpusID:17567398
https://arxiv.org/abs/2103.00020
https://api.semanticscholar.org/CorpusID:248097655
https://api.semanticscholar.org/CorpusID:248097655
https://books.google.com.sg/books?id=kwqzPAAACAAJ
https://books.google.com.sg/books?id=kwqzPAAACAAJ
https://api.semanticscholar.org/CorpusID:222381644
https://api.semanticscholar.org/CorpusID:222381644
https://api.semanticscholar.org/CorpusID:49670925
https://api.semanticscholar.org/CorpusID:49670925
https://api.semanticscholar.org/CorpusID:258762390
https://api.semanticscholar.org/CorpusID:258762390
https://api.semanticscholar.org/CorpusID:218718310

Under review as a conference paper at ICLR 2025

Zehan Wang, Yang Zhao, Xize Cheng, Haifeng Huang, Jiageng Liu, Lilian H. Y. Tang, Lin
Li, Yonggiang Wang, Aoxiong Yin, Ziang Zhang, and Zhou Zhao. Connecting multi-
modal contrastive representations. ArXiv, abs/2305.14381, 2023b. URL https://api.
semanticscholar.org/CorpusID:258866011.

Zehan Wang, Ziang Zhang, Xize Cheng, Rongjie Huang, Luping Liu, Zhenhui Ye, Haifeng Huang,
Yang Zhao, Tao Jin, Peng Gao, and Zhou Zhao. Freebind: Free lunch in unified multi-
modal space via knowledge fusion. ArXiv, abs/2405.04883, 2024a. URL https://api.
semanticscholar.org/CorpusID:269626610.

Zehan Wang, Ziang Zhang, Hang Zhang, Luping Liu, Rongjie Huang, Xize Cheng, Hengshuang
Zhao, and Zhou Zhao. Omnibind: Large-scale omni multimodal representation via binding
spaces. arXiv preprint arXiv:2407.11895, 2024b.

Ho-Hsiang Wu, Prem Seetharaman, Kundan Kumar, and Juan Pablo Bello. Wav2clip: Learning
robust audio representations from clip. ICASSP 2022 - 2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 4563-4567, 2021. URL https:
//api.semanticscholar.org/CorpusID:239616434.

Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng Wan, and S Yu Philip. Multimodal large
language models: A survey. In 2023 IEEE International Conference on Big Data (BigData), pp.
2247-2256. IEEE, 2023.

Yusong Wu, K. Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, and Shlomo Dubnov.
Large-scale contrastive language-audio pretraining with feature fusion and keyword-to-caption
augmentation. ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 1-5, 2022. URL https://api.semanticscholar.org/
CorpusID:253510826.

Peng Xu, Xiatian Zhu, and David A Clifton. Multimodal learning with transformers: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(10):12113-12132, 2023.

Fengyu Yang, Chao Feng, Daniel Wang, Tianye Wang, Ziyao Zeng, Zhiyang Xu, Hyoungseob
Park, Pengliang Ji, Hanbin Zhao, Yuanning Li, and Alex Wong. Neurobind: Towards unified
multimodal representations for neural signals. ArXiv, abs/2407.14020, 2024. URL https:
//api.semanticscholar.org/CorpusID:271310533.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
multimodal large language models. arXiv preprint arXiv:2306.13549, 2023.

Bin Zhu, Bin Lin, Munan Ning, Yang Yan, Jiaxi Cui, HongFa Wang, Yatian Pang, Wenhao Jiang,
Junwu Zhang, Zongwei Li, Wancai Zhang, Zhifeng Li, Wei Liu, and Li Yuan. Languagebind: Ex-
tending video-language pretraining to n-modality by language-based semantic alignment, 2024.
URLhttps://arxiv.org/abs/2310.01852.

15


https://api.semanticscholar.org/CorpusID:258866011
https://api.semanticscholar.org/CorpusID:258866011
https://api.semanticscholar.org/CorpusID:269626610
https://api.semanticscholar.org/CorpusID:269626610
https://api.semanticscholar.org/CorpusID:239616434
https://api.semanticscholar.org/CorpusID:239616434
https://api.semanticscholar.org/CorpusID:253510826
https://api.semanticscholar.org/CorpusID:253510826
https://api.semanticscholar.org/CorpusID:271310533
https://api.semanticscholar.org/CorpusID:271310533
https://arxiv.org/abs/2310.01852

Under review as a conference paper at ICLR 2025

A ADDITIONAL THEORETICAL ANALYSIS

A.1 PROOF OF THEOREM1

Proof. First, we apply the chain rule to get the gradient of £™ with respect to the parameter ©:
oL 0xb 0T, (xb) oL

%

= . 12
00 00 9zt 9T, (x%) (12
Sil:lilaf‘ly, using the chainrrule to calculate the gradient of Ly;4, With respect to O, we get 35:;“ =
%“g %‘; = Substituting %ﬁz b with &; according to equation we get
oLalien oxb
50 7786101" (13)
Take the inner product agz)ig" + )xi%n and 852}@ to get formula
oLt oL oL poxt'oxt \ oL™ oI (ah)" 9ul ' 0y (14
00 00 00 oo 00" T, (xb) Oxb 00 00"
b b
Notably, we expand 8Tﬁ;(f ) as in equation , and find that ElTaTT(f’) = 0 due to
I (1-feiz) =0
¢l b
ot _ 21~ )7 omu sl \ _ oT(a)
b= ] = — (15)
Ox; Ox; 0 (I — 24 )J; 1e01* /o (I - \TECT]Q) zb

lle: 11
Next, we introduce Lemma[2]

Lemma 2. We have 2T AT Ay > —(k(ATA) — 1)= ||Ay\|2%, ifyTx = 0 and k(-) is condistion
number.

Proof. Rather than proving this inequality directly, we turn to the follow the lower bound for the
optimization problem[T6

min zT AT Ay,
subject to yTz =0, (16)
Te =1,

To solve optimization problem(I6] we write the Lagrangian function in[T7]
L(z, p1, po) = 27 AT Ay + pya®y + po (T2 — 1), (17

We can easily get the Lagrangian dual function [I8]form [T7]

(ATA = Dyl

L(p1, p2) = inf Lz, 1, p2) = 1 t2, (18)
z 2
Thus, we obtain the unconstrained Lagrangian dual problem I9]
max L1, p2). (19)
Hisp2

Besides, we have

max L(p1, po) = |(ATA — Dy = (u%yTy — 2yt AT Ay + yTATAATAy) 2, (20)

Thus, we get
1
AT Ay [*llyl* — | Ay]*) ®
max L(p1, o) = maxmax L(pq, p2) = — ( Pyl = | ) . 21
1,12 M1 H2 HyH
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Since the maximum eigenvalue of A7 A divided by the minimum eigenvalue of A” A is less than 2,
we have

A 2 y 2
IAT AylP gl < AR AylP gl = |Ay||4”Hj1y"2 < ATA) AL @)
After that, according to[2T]and 22] we have
2
max L(p1, po) > —(r(ATA) — 1)% 4] (23)
p1pz lyll

According to the duality principle (Boyd & Vandenberghe, 2004), we have Iz HATAy >

—(K(ATA) —1)2 ”“?‘3""2 which completes the proof. O

According toMartin & Mahoney|(2021);/Arora et al. (201 8)' Du et al.|(2019); Ghorbani etal. (2019),

T
89:? 87;? Tz, (x ) ot
k| 5o 8@) will converge and less than 2. Consider 2 e T AT, (0

in Lemmal]Z] respectively. According to Lemmal[2] we can get mequahty{Q_?l]

ao asx,y,and A

|3Téi($§) oL I

oLl gran L griie - 9gh =55 o1z, @

> =012 1 . 24
20 T e e = lzeall & ) 29
. 3T5.(rb)
Moreover, expanding ————~— in equation15|we have
— )1
H \2
I el N b I el \ b T
OL(et) _, U Tt (U - fe)=t) (25)
oI — i)t I~ i)t
gel AT, (z?) .. .
Furthermore, we find (I — W) and ——— i are both projection matrix (Horn & Johnson)
o(I- “évﬁz )lf
2012)), and both spectral radius are less than 1. Thus, we have
| Haled) 0%y 2Ly 26)
9t 0T, (ab)" = oL, (a})

due to the spectral radius of 2Le ( D ; is less than 1. Thus, according to inequality and we
have

. . z:“"
o Lalign H[tan T o Lalign ox?b ) || T, (27) H
> || =26 — , 27
oo "6 ) e = lIge il ||,|\ el @n
which means (852;3" —+ )\%ﬁgn )z aggg" > 0 when A < % and complete the proof. O

9Tz, (=9)

A.2 INFONCE vs. TANGENTTERM

In this section, we roughly analyze why directly using infoNCE to align with generative embeddings
results in a degradation of the core modal alignment capability. For ease of understanding, we
consider the case where similarity function is cosine similarity and 7 = 1. As analyzed in Sec[3.2}
£ aligns the two modes, while £"™ just plays a role of regular term. Thus, the align parts of
the two infoNCEs are added together and we get

Lalign(Aq b) + £align(ci7xlg) _ (ii'a)T.’Eb _ ch,b (ja + Ci)T.’Eb (28)

K3 79
which means that when z? is neither aligned with ¢; nor with £, but instead with normalize (¢ +c;).

As a result, the ability to align with the core modality is destroyed. However, if we use Tangent
Term instead of infoNCE, then the loss function for the alignment part becomes

ciien — _cTab — (29)T normalize((I — H C”2 )zy). (29)
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It is worth noting that to simplify the notation, we still use Ealit‘%n in equation where there is a
slight difference between equation and equation Letting £i2" take the derivative of z?, we get

. et b( @ b)T
oLre — e —(I— x?(fﬂ?)T>( B CiCiT) = e (U - e )32, (30)
Oz 212 lez]? (T = Tt )| '
Since x% is confined to the hypersphere, (I — mﬁif]);) appears in equation Taking an inner
product of ¢; and ag;l;g" , we have
) Gic N\, b ael \ B\ T
PO sy el U7 R (U - fe)et) ). (31)
G el T O T Y T e CRWE e
? ? — Tel2 i
! [es I )z ||
It is easy to find that
b(b\T T b
T i (@7) T _ G Ti (T
S (L — =c; — x)), 32
O ) T g ey
where -
T Cici o
G (I - ||Ci||2) - 07 (33)
and -
T\ b _&ce; b)
ot (- GV (o T~ pefe) ((I ) 0 34)
ez U ) ¢ TRy AL
' ' (0 — )
Thus, we have
aﬁalign
C;TF o —c;frcl- <0, (35

which means that the similarity between 2% and ¢; is on increase.

B DOWNSTREAM DATASETS

AudioSet (Gemmeke et al.,[2017) contains 10s videos from YouTube annotated into 527 classes.
It consists of the following: a balanced subset containing about 20,000 videos, a test subset contain-
ing 18,000 videos, and an unbalanced training subset containing about 2 million videos. In image
and text core modality training, we use the balanced set of 16,000 for audio-video and audio-text
alignment respectively. For the zero-shot evaluation in Table[I] we use the test set and compute
logits for each class using textual class names. 16,000 data pairs are used for training. During the
text core modality model training and zero-shot evaluation we use prompt templates for class names
as described later in AppendixC.1] The metric used is mAP.

AudioCaps (Kim etal.l|2019) is a dataset of audio-visual clips from YouTube with textual descrip-
tions. It consists of clips from the AudioSet dataset. Following ImageBind, we used the splitting
method provided in Oncescu et al.|(2021)) to remove clips that overlap with the VGGSound dataset.
We obtain 48,198 training segments, 418 validation segments, and 796 test segments. We use only
the test set for zero-shot evaluation of our model. The task is text — audio retrieval and is evaluated
using recall@K.

ESC-50 (Piczakl [2015)) is used to perform a zero-shot evaluation of the learned representations.
The task here is “Environmental Sound Categorization” (ESC). It consists of 2000 5 s audio clips
organized into 50 categories. In this work, we make zero-shot predictions for evaluation. The metric
used is the accuracy of the top-1 accuracy.

VGG-S (Chen et al.||2020) contains approximately 200,000 video clips of 10 seconds in length an-
notated with 309 sound categories, including human actions, sound-producing objects, and human-
object interactions. We performed zero-shot classification and RGB— Audio retrieval using only the
audio from the test set. Evaluations are performed using top-1 accuracy for zero-shot classification
and Recall@K for RGB— Audio retrieval.
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Table 6: Training Settings in ImageCore model

Config Audio | Depth | Infrared
Encoder ViT-Huge
Number of Heads 12 | 8 | 12
Optimizer AdamW
Optimizer Momentum 51 =0.9, 6, = 0.95
Epochs 8 2 2
Learning rate Se-4 Se-4 le-4
Temperature 0.07 0.2 0.1
Weight decay 0.2 0.2 0.05
Batch size 512 256 256
Learning rate schedule Cosine decay

AVE (Tian et al.| 2018) contains 4,143 YouTube videos across 28 event categories and videos in
the AVE dataset that are temporally labeled with audiovisual event boundaries. Evaluations were
performed using top-1 accuracy for zero-shot classification and Recall@K for RGB— Audio re-
trieval with the highest accuracy.

Clotho (Drossos et al.l 2019) is an audio dataset with textual descriptions from the Freesound
platform. It consists of a development set and a test set containing 2893 audio clips and 1045 audio
clips respectively, each associated with 5 descriptions. We consider the text — audio retrieval task
and treat each of the 5 associated descriptions as a separate test query, which is then retrieved from
the set of audio clips. The metric used is recall @K, i.e., a given test query is assumed to be solved
correctly if the base fact audio is retrieved in the first K audio clips retrieved.

SUN (Song et al., 2015} contains about 10,000 RGB-D images. We follow ImageBind to post
process the depth maps in three steps- 1) in-filled depth values, 2) convert them to disparity for scale
normalization and 3) limited the minimum and maximum depth to 0.01 and 10 meters respectively.
We use training split (about 5,000 data pair) for training models. Specific, for text core modality
model training, we use prompt templates for the class names as described later in Appendix[C.1]

NYU-D (Nathan Silberman & Fergus, |[2012) is used to evaluation by 80% samples. Through pre-
processing, we limited the minimum and maximum depth of the depth images to 0.01 and 10 meters
respectively. Following ImageBind, we performed a classification and reorganization process which
produced a total of 10 scene categories. For zero-shot evaluation and RGB — Depth retrieval task,
we use top-1 accuracy and Recall@1. We use prompt templates as described later in Appendix[C.1]
in RGB — Depth retrieval task.

LLVIP (Jia et all 2021) is an infrared spectral pedestrian object detection dataset. Following
the ImageBind method, we extracted all people in the image and designated all other objects as
background elements. This process resulted in a dataset containing 7622 “background” categories
and 7954 “people” categories, which were subsequently used for binary classification tests. About
5,000 Infrared-RGB pairs are used to training. Besides, prompt templates as described later in
Appendix[C.T]is used in zero-shot classification task. Since LLVIP is intended to be used for detect
tasks and each RGB image is not text labeled, we use GPT4o to generate text annotations for each
RGB image during the training process for text core modality.

Imagenet-1K |Russakovsky et al.| (2015) encompasses 1,000 object classes and comprises 1.28M
images for training, 5000 images for validation, and 100,000 images for testing. Building upon
this foundation, Imagenet-1K-VL-Enriched E] enhances Imagenet-1K dataset by including image
captions, bounding boxes, and corrected label information. Caption & image pairs from Imagenet-
1K-VL-Enriched training split are used for training diffusion model.

3Dataset can be found in https://huggingface.co/datasets/visual-layer/imagenet- 1k-vl-enriched
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Table 7: Training Settings in LanguageCore model

Config Audio | Depth | Infrared
Encoder ViT-Huge
Number of Heads 12 | 8 | 12
Optimizer AdamW
Optimizer Momentum B1=0.9, 5, =0.95
Epochs 8 4 4
Learning rate le-4 Se-4 le-4
Temperature 0.05 0.2 0.2
Weight decay 0.2 0.1 0.05
Batch size 512 256 256
Learning rate schedule Cosine decay

C IMPLEMENTATION DETAILS

We now describe the implementation details used in this work. In table[6]and[7] we detail the settings
used to train each of the modalities. Our experiments were done on 4 24GB 4090 GPUs and 4 48GB
A40 GPUs.

C.1 PrROMPT TEMPLATES

For all evaluations, we use the default set of templates from CLIP(Radford et al., 2021)). It is worth
mentioning that we use the same templates for non visual modalities like audio and depth as well
since we only use semantic/textual supervision associated with images.

C.2 MODEL ARCHITECTURE

Diffusion Model We deployed two symmetric decode-only diffusion models, one for generating
text embeddings from image embeddings and another for the reverse. Both models use the same
transformer architecture with a 1024-dimensional embedding, 8 attention heads of 128 dimensions
each, and 6 layers and the number of training parameters is about 30M. Training involves 100
timesteps, with a 5% embedding dropout to facilitate classifier-free guidance, optimized using an
AdamW optimizer, a learning rate of le-4, and a batch size of 128, following the loss functionI] of
our methodology documentation. For the model where the image is the core modality, the image
embedding serves as the input, and the text embedding is the output to generate. Conversely, when
text is the core modality, text embedding is used as input to generate the image embedding. This
approach allows us to efficiently handle and transform data within the latent space, reducing com-
putational demands. This setup not only ensures the capability of model in cross-modal generation
but also enhances its performance in generating high-quality, contextually accurate outputs across
different modalities.

Multimodal Encoders For image core model and language core model, we use the same structure
of encoder on the same modality. Following Girdhar et al.| (2023)) we use 12-layer, 1024-dimensional
vision transformer with a patch size of 16 and a stride of 10 for the VISION, AUDIO, DEPTH, and
INFRARED modalities. For video data, our strategy includes capturing two frames every two sec-
onds to optimize processing efficiency. Besides, we used 128 mel-spectrogram partitions to convert
2 seconds of audio sampled at 16kHz into a spectrogram. Similarly, thermal and depth images are
treated as single-channel inputs and encoded using the same ViT architecture, facilitating consistent
handling across these modalities. The encoders for both the image and language core models are
initialized with weights from the ImageBind-Huge and LanguageBind pre-trained models respec-
tively for enhancing learning efficiency and demonstrating the transferability of our TangentBind
approach. This leverages their advanced pre-trained features to accelerate convergence and improve
generalization across varied multimodal applications.

Temperature Tangent Term [6] and infoNCE [2] use the same temperature 7 during training for
encoder of the same modality. In our experiments, we found that fixed temperatures worked best by
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comparing learnable and fixed temperatures. The experiments show the temperature with the best
effect for each modality in table[6| and [7]

C.3 ABLATION DETAILS

ResNet We employed the standard ResNet50(He et al| architecture provided by PyTorch.
The ResNet50 model has a nearly number of training parameters with the diffusion model employed,
suggesting that both architectures share comparable complexity and computational demands, which
allows for an equitable comparison of their performance in analogous tasks. To tailor the model for
our embedding-based task, the output dimension of the final fully connected layer was modified to
produce embeddings with a dimensionality of 1024. These embeddings are subsequently normal-
ized to lie on the unit hypersphere to facilitate the use of cosine similarity measures in subsequent
analyses. For training the modified ResNet50, we utilized the L2 loss function, which is well-suited
for embedding normalization by encouraging the model to minimize the Euclidean distance between
the predicted and target embeddings. The optimizer of choice was AdamW, the learning rate was
set to le-4. The training was conducted with a batch size of 128. Our training procedure mirrored
that of the diffusion model in terms of dataset usage; specifically, we trained on the train split of the
ImageNet-1K-VL-Enriched dataset. During training, the core modality embeddings were utilized as
inputs, while the embeddings of an alternative modality served as labels.

C-MCR We employed the C-MCR(Wang et al} 2023b) method to generate cross-modal em-
beddings, leveraging the training split of the ImageNet-1K-VL-Enriched dataset to obtain paired

(x| p'ex) embeddings that serve as image and text memories. This approach is rooted in the

framework established by the C-MCR methodology, where embeddings for both modalities are
computed based on

N i O
gimage _ Z eXp(51m( X 2) 1mage et = 2 : eXp (sim ("™, ) text
1 )
' — SN exp(sim(zex, xljmage)) ' N exp(sim(zimage, zox)) ‘

(36)
and subsequently normalize to lie on the unit hypersphere. As illustrated in Figure[f] the CDF curve
corresponding to the C-MCR method approximates a straight line. This outcome primarily arises
due to the SUN dataset, which consists of scene data that does not align well with the ImageNet-
1K-VL-Enriched dataset. During our experiments, we observed that whether text or image served as

text 7Jc;mage ) ) image ,:L[sxl ) )

exp(sim(z exp(sim(z
T, explam@ee ) 0 S G )
each embedding from the SUN dataset on the ImageNet1 K were minutely different. This minimal
variation led to the generation of nearly identical embeddings for both modalities, hence the nearly
linear CDF curve observed. This phenomenon underscores a critical aspect of the C-MCR method:
its strong dependence on the memory.

the core modality, the weights in l| assigned to

VAE We implemented a VAE(Kingma & Welling} [2013)) where both the encoder and decoder
components are constructed using convolutional neural networks (CNNs)(CeCun et al] [1998). The
architecture of the encoder and decoder are symmetric, each comprising ten layers with the following
input channels of convolutional layers: [32, 32, 64, 64, 128, 128, 256, 256, 512, 512]. This VAE
model possesses a comparable number of training parameters to the diffusion model used, indicating
that both architectures are similarly complex and computationally demanding, facilitating a fair
comparison of their performance across similar tasks. Each convolutional layer is defined with a
kernel size of 3, a stride of 2, and padding of 1. Post convolution, the decoder maps the latent space
representation to embedding with dimensionality of 1024. This representation is then normalized
to lie on the unit hypersphere. The loss function employed is the L2 loss, similar to that used in
ResNet50 architectures, which helps in minimizing the distance between the reconstructed outputs
and the actual inputs, thereby ensuring better fidelity in the generated samples. AdamW optimizer
is chosen with a learning rate of le-4 and a batch size of 128. Training was conducted using the
training split of the ImageNet-1K-VL-Enriched dataset. In this setup, core modality embeddings
were used as inputs, and embeddings from another modality served as labels. This training approach
not only facilitates effective learning of cross-modal representations but also ensures that the VAE is
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capable of generating high-quality embeddings that are highly representative of the input data across
different modalities.

22



	INTRODUCTION
	RELATED WORK
	Multimodal Learning
	Contrastive Learning

	METHOD
	Aligning Core modality and Generative Network
	Aligning Core Modality and Generative Modality

	THEORETICAL ANALYSIS
	EXPERIMENTS AND RESULTS
	Implementation Details
	Tangent Term Augmenting ImageCore Model
	Tangent Term Augmenting LanguageCore Model
	Ablation Study

	CONCLUSION
	Additional Theoretical Analysis
	Proof of Theorem1
	infoNCE vs. TangentTerm

	Downstream Datasets
	Implementation Details
	Prompt Templates
	Model Architecture
	Ablation Details


