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ABSTRACT

Improving the alignment of modalities has proven effective across various down-
stream tasks in multimodal models. Currently, modality alignment follows two
main research directions: aligning all modalities simultaneously or binding the
others by aligning to a core modality. The first ensures direct alignment, but it is
difficult to extend to new modalities. The second is scalable but weak in emer-
gent ability due to needing more direct inter-modality alignment. To address these
problems, we propose the TangentBind. Specifically, we first align all modalities
to a core modality, e.g., image or text. Then, we introduce a generative network
that generates the embeddings of the second modality, e.g., text or image, based
on the core modality embedding. Thirdly, other modalities, such as audio, are
aligned to the core modality and generative embedding, improving emergent abil-
ity while retaining alignment with the core modality. During training, in addition
to infoNCE, the Tangent Term is introduced to align the new modalities with the
generated embeddings. This addresses accuracy issues caused by using generated
vectors as representations for modalities. With VISION and TEXT as the core
modality, our experiments include other modalities such as AUDIO, DEPTH, and
INFRARED. Eventually, our experiments show that the emergent ability of Tan-
gentBind significantly outperforms the original benchmark on 9 datasets.

1 INTRODUCTION

Unifying multimodal representation aims to learn a shared semantic representation space across
various modalities, such as audio, RGB images, text, depth images, and heatmaps(Wang et al.,
2023a; Girdhar et al., 2023; Guzhov et al., 2021; Wu et al., 2021; 2022; Liu et al., 2023). A unified
multimodal space is essential as a critical foundation for multimodal understanding and generation
(Karpathy et al., 2014; Mithun et al., 2018; Lu, 2023). However, the previous multimodal requires
all modes to coexist, which is challenging and labor-intensive(Guzhov et al., 2021; Radford et al.,
2021; Moon et al., 2022).

Due to the limitations of existing datasets, recent approaches only utilize pairs of modalities or a
few visual modalities. Consequently, the resulting embeddings are confined to the modality pairs
used during training and lack alignment for other modalities (Zhu et al., 2024). Recent works have
introduced more flexible alignment strategies to address this issue.(Gao et al., 2024; Wang et al.,
2024a; Zhu et al., 2024; Dhakal et al., 2024; Wang et al., 2024b; Lyu et al., 2024). Among them,
ImageBind was the first work in this direction, introducing a core modality alignment framework to
reduce paired data requirements, where only the image as core modality is directly aligned with other
modalities. The concept of emergent alignment pertains to the indirect alignment performance, and
it also facilitates a degree of alignment between modalities that are not directly trained together.
However, when other modalities are indirectly aligned through text, the emergent effect exists only
in limited form, which typically results in suboptimal zero-shot performance.

To address the weak zero-shot performance issue of ImageBind, LanguageBind (Zhu et al., 2024)
selects text as the core modality and employs generative data to enhance text-related zero-shot ca-
pabilities. However, LanguageBind struggles with retrieval tasks involving non-text modalities due
to the limitations of the binding method. Specifically, text needs more of the fine-grained details
presented in images. Using text as the core modality significantly reduces retrieval performance
across various image-based modalities. Besides, generating large amounts of data requires much
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human work and computational resources. A vital limitation of these binding methods relying on
indirect alignment lies in the potential degradation of emergent or zero-shot performance, especially
for modalities that lack direct alignment(Zhu et al., 2024).

LLVIP
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AudioCaps
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TangentBind-ImageCore ImageBind OpenClip CLAP

Infrared

Audio

Depth

Figure 1: Zero-shot Language-related task per-
formance. TangentBind with image core modality
was demonstrated as a powerful emergent ability
for indirect alignment modalities.

In this paper, we propose TangentBind. This
method is capable of mapping all modalities
into a unified embedding space and enhanc-
ing the emergent capabilities of models us-
ing an embedding generative network. Fur-
thermore, our method does not require extra
datasets where all modalities are present simul-
taneously, nor does it rely on massive synthetic
data across different modalities. Instead, we
train a generative network to generate the em-
bedding vectors of modalities that have already
been aligned with the core modality. Based
on the embedding vector of the core modal-
ity, these generated embeddings can be used
to align with other modalities. Notably, when
the generated embedding is used to align the
generated embedding vector with other modal-
ities, it can affect the alignment with the core
modality. Therefore, we propose the Tan-
gent Term for preventing this problem, and we
demonstrate the effectiveness of the Tangent
Term in section 3.2. Additionally, we demon-
strate that TangentBind can be initialized us-
ing large-scale pre-trained multimodal models,
such as CLIP(Radford et al., 2021), Language-
Bind(Zhu et al., 2024), and ImageBind(Girdhar et al., 2023), and that Tangent Term can massively
increase the emergence capacity used to initialize the model. We utilized Image and Text as the
core modalities, respectively, and ensured the extension of vision and language to audio, depth,
and infrared modalities. The model demonstrated strong emergent capabilities in tasks involving
each modality that was not directly trained. In figure.2, we compare TangentBind with ImageBind
and LanguageBind and show the advantages of TangentBind. TangentBind, with the image as the
core modality, achieved emergent classification top-1 accuracy. Figure.1 demonstrates the powerful
emergent capabilities of TangentBind with image core modality. Our experiment results surpass
ImageBind by 8.5%, 10.3%, and 16.1%, respectively, on ESC, LLVIP, and NYU-D benchmarks.
Similarly, TangentBind, with text as the core modality, also achieved emergent retrieval Recall@1
results of 25.1, 12.8, and 23.9 on image retrieval tasks in VGG-S, LLVIP, and NYU-D benchmarks
surpassing LanguageBind by 15.1, 5.3, and 6.0, respectively. Therefore, TangentBind can compete
with or outperform specialized models trained with direct supervision.

Our primary contributions are listed as follows:

• We propose TangentBind, a multimodal pre-train method based on latent space genera-
tion. During training, all modalities are aligned with the core modality through contrastive
learning, while the generative model enhances the emergent capabilities of the indirect
alignment modality.

• We propose Tangent Term, a loss function term that enhances the emergent ability of the
model while maintaining core modality alignment.

• Extensive experiments validate the effectiveness of our method, demonstrating significant
performance improvements in the emergent capabilities of bind-type models.

2 RELATED WORK

2.1 MULTIMODAL LEARNING

CLIP(Radford et al., 2021) is a pioneering multimodal learning method that aligns images and text
for constructing cross-modal representations. Various methods, such as CLIP4Clip(Luo et al., 2022)

2
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Image Text Video Infrared IMU Depth
Text 

Embedding Audio

ImageBind LanguageBind TangentBind
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Figure 2: TangentBind vs. ImageBind and LanguageBind. The image on the left shows ImageBind’s
indirect alignment of the modal by aligning it directly with image. The center image shows Lan-
guageBind augmenting the zero-shot capability of the model by generating data. The right image
demonstrates TangentBind, with image as the core modality, which enhances the emergent zero-shot
capabilities by simply generating embedding.

and Clip2Video(Fang et al., 2021), etc, adapt CLIP to extract semantic vision representations. Re-
cent efforts have comprehensively explored multimodal alignment through pretraining(Yin et al.,
2023; Xu et al., 2023; Wu et al., 2023). In addition to language and vision modalities, Audio-
CLIP(Guzhov et al., 2021) adds audio as an additional modality with the CLIP framework, enabling
zero-shot audio classification. Imagebind(Girdhar et al., 2023) expands multi-modal alignment pre-
training by aligning all modalities with the vision modality. ImageBind-LLM(Han et al., 2023)
uses the joint embedding space in the pre-trained ImageBind to fine-tune LLaMA efficiently. Neu-
roBind(Yang et al., 2024) learns a general representation based on pre-trained image embedding
space that unifies multiple types of brain signals. UniBind(Lyu et al., 2024) adaptively build LLM-
augmented classwise embedding centers and learn to achieve a unified and balanced representa-
tion space. To enhance the performance on language-related tasks, MEDBind(Gao et al., 2024),
LanguageBind(Zhu et al., 2024) use text data as the core modality to align other modalities. The
methods mentioned above, however, did not investigate strategies to enhance the model’s emergent
capabilities for previously untrained modality pairs.

2.2 CONTRASTIVE LEARNING

Contrastive learning has been remarkably successful in learning representations from multimodal
data pairs (Logeswaran & Lee, 2018; He et al., 2020). The primary motivation behind these work
is maximizing the mutual information between two views (Tian et al., 2020; Bachman et al., 2019;
Tamkin et al., 2020). The loss functions, such as NCE (Gutmann & Hyvärinen, 2010), infoNCE
(van den Oord et al., 2018) and MIL-NCE (Miech et al., 2020), have been proposed for contrastive
learning. However, these loss functions focus on the alignment of two modalities. To extend the
model to multiple modalities, (Guzhov et al., 2021; Alayrac et al., 2020) propose a simple summa-
tion of loss functions for joint learning across various modalities. According to Wang & Isola (2020),
the loss function of contrastive learning can be split into the alignment and uniformity parts. The
alignment part is responsible for the alignment when using loss function summation for multimodal
alignment. We analyze the direct summation of two loss functions, and then the two alignment parts
will interfere in appendix A.2.

3 METHOD

We present TangentBind, a multimodal pretraining approach to align different modalities and en-
hance cross-modal retrieval and emergent classification. Figure 3 shows the process of aligning text

3
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Step 3: Align Audio with image and generative text embedding

Step 2: Generative net training

Step 1: Text & Image alignment

Figure 3: An example of TangentBind overview with Ma,Mb and C are text, audio, and image,
respectively. Firstly, we align image with text with infoNCE loss function. Secondly, our work
trains generative network fed by image embedding conditions on text embedding with frozen image
encoder and text encoder parameters. Finally, our method uses infoNCE and tangentbind to align
the audio with the image and the generated text embedding.

with image and then aligning audio with image and generative text embedding, with the image as
the core modality. TangentBind consists of three steps:

1. Align modality Ma with the core modality C
2. Train a generative network to produce Ma embedding using core modality embedding.
3. Align modality Mb with both the C and the generative modality

When using TangentBind to bind N+1-th modality, this process only needs to replace Ma and Mb

with any modality that has been aligned with C and N + 1-th modality, and then perform step 2 and
3.

3.1 ALIGNING CORE MODALITY AND GENERATIVE NETWORK

Following ImageBind (Girdhar et al., 2023) and LanguageBind (Zhu et al., 2024), TangentBind
trains each encoder separately for respective modality. First, step 1 uses a contrastive learning
method to train Ma encoder and C encoder for alignment. Then TangentBind uses aligned modality
Ma to train a latent generative model of modality pair ⟨xa

i , ci⟩. We train our model to predict the
unnoised xa

i directly and use a mean-squared error loss on this prediction:

L = Et∼[1,T ]∥GΘ(x̂
a,(t)
i , t, ci)− xa

i ∥2. (1)

In formula 1, G is generative net and Θ is the training coefficient. Finally, they can be normalized
on the hypersphere, and we can get the generated embedding x̂a

i . When aligning other modalities
with C, we also use the Tangent Term to align with the generated Ma embedding in the tangent
space.

3.2 ALIGNING CORE MODALITY AND GENERATIVE MODALITY

The alignment performance will be weakened if we directly align with the generated inaccurate
embedding (Oussidi & Elhassouny, 2018). Therefore, Tangent Term, an improvement of infoNCE,
is proposed to reduce the adverse effects of inaccurate embeddings.

The definition of infoNCE is given by the equation:

LinfoNCE
Mb→C = − 1

N

N∑
i

log(
exp(sim(xb

i , ci)/τ)∑N
j exp(sim(xb

i , cj)/τ)
). (2)
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In equation 2 xb
i , ci is i−th embedding vector of Mb, C respectively, τ is temperature and sim(·, ·)

is similarity function. According to Wang & Isola (2020), infoNCE can be divided into the align
part and the uniform part as shown in equation 3 and 4 respectively.

Lalign = −sim(xb
i , ci)/τ, (3) Luniform = log(

∑
j

exp(sim(xb
i , cj)/τ)). (4)

The align part is responsible for aligning the features, and the uniform part makes the embedding
space more evenly distributed on the hypersphere.

c̄i ≜ −∂Lalign

∂xb
i

=
∂sim(xb

i , ci)

∂xb
i

/τ. (5)

To achieve higher similarity between xb
i and ci, the moving direction of xb

i and the inner product of
−∂Lalign/∂xi are greater than 0 after updating the parameters. We denote c̄i in equation 51.

Tangent Term (see equation 6) is proposed for keeping the similarity between xb
i and ci increasing

while aligning Mb with the generative Ma embedding x̂a
i .

Ltan
Mb→Ma

= − 1

N

N∑
i

log(
exp(sim(Tc̄i(x

b
i ), x̂

a
i )/τ)∑N

j exp(sim(Tc̄i(x
b
i ), x̂

a
j )/τ)

). (6)

Tangent Term In equation 6, x̂a
i is generated from ci by the generative network in 3.1 and Tc̄i(·)

is tangent normalize function. It is the crucial function in Tangent Term. Its functionality is map-
ping the embedding to the space tangent to c̄i and scaling it to the unit hypersphere.Thus, Tc̄i(·) is
defined as Tc̄i(x)

∆
= normalize(

(
I − c̄ic̄

T
i

∥c̄i∥2

)
x), where

(
I − c̄ic̄

T
i

∥c̄i∥2

)
project x into the orthogonal

complement space of c̄i which means c̄Ti
(
I − c̄ic̄

T
i

∥c̄i∥2

)
= 0 as shown in Figure.4.

ҧ𝑐𝑖

𝑇 ҧ𝑐𝑖(𝑥)

𝑥

Figure 4: Tc̄i maps x to the orthogonal space
of c̄i and normalizes it.

𝜙

𝜃𝑎𝜃𝑏

𝑐𝑖

ො𝑥𝑖𝑎

𝑥𝑖𝑏

Figure 5: The process of aligning xb
i with ci

and x̂a
i simultaneously. θa, θb represent the

angles of ci with x̂a
i , xb

i , respectively. ϕ is
denoted as the angle between x̂a

i and xb
i in

the tangent space of ci.

Finally, the loss function can be rewritten into the following form:

L = LinfoNCE + λLtan. (7)
In equation 7, λ is the hyperparameter , Ltan = (Ltan

Mb→Ma
+ Ltan

Ma→Mb
)/2 and LinfoNCE =

(LinfoNCE
Mb→C + LinfoNCE

C→Mb
)/2.

Figure 5 illustrates the loss function 7 enables xb
i to simultaneously align with both ci and x̂a

i while
using cosine similarity. The black arrow toward ci represents the infoNCE objective, bringing xb

i

1It is worth noting that the higher the similarity, the lower Lalign
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and ci closer together. The other black arrow indicates the Tangent Term, which drives xb
i toward

x̂a
i within the space orthogonal to ci. As this orthogonal space on the sphere corresponds to the

tangent space at ci (do Carmo, 2016), we refer to the method as TangentBind.

4 THEORETICAL ANALYSIS

This analysis mainly illustrates the effect of the Tangent Term on the similarity of xb
i and ci while

ignoring the effect of Luniform. Since the optimization methods(Kingma & Ba, 2014; Ruder, 2016),
are all gradient-based optimization, our analysis is based on gradients primarily. The update param-
eter ∆Θ can be simply written as δ(∂L

align

∂Θ +λ∂Ltan

∂Θ ) where δ is step size. To clarify the effect of Ltan

on Lalign during gradient descent, we introduce Theorem 1, and the proof is shown in Appendix.A.1.

Theorem 1. If λ ≤ ∥c̄i∥
∥ ∂Ltan

∂Tc̄i
(xb

i
)
∥

, then we have

(
∂Lalign

∂Θ
+ λ

∂Ltan

∂Θ
)T

∂Lalign

∂Θ
≥ 0. (8)

According to Theorem.1 and Taylor expansion(Rudin, 1976), when updating the coefficients, we
have

Lalign(Θ +∆Θ) ≈ Ltan(Θ)− δ(
∂Lalign

∂Θ
+ λ

∂Ltan

∂Θ
)T

∂Lalign

∂Θ
≤ Lalign(Θ), (9)

which means the similarity between xb
i and ci will not decrease. To be specific, when sim(·, ·) is

cosine similarity, substituting ∂Ltan

∂xb
i

with c̄i according to equation.5 we have

∥c̄i∥ = ∥∂L
align

∂xb
i

∥ = ∥∂(c
T
i · xb

i )

∂xb
i

∥/τ = ∥cTi ∥/τ =
1

τ
, (10)

and

∥ ∂Ltan

∂Tc̄i(x
b
i )
∥ = ∥∂((x̂

a
i )

T · Tc̄i(x
b
i ))

∂Tc̄i(x
b
i )

∥/τ = ∥x̂a
i ∥/τ =

1

τ
. (11)

Thus, cosine similarity means λ ≤ 1 can ensure that (∂L
align

∂Θ + λ∂Ltan

∂Θ )T ∂Lalign

∂Θ ≥ 0 due to
∥c̄i∥/∥ ∂Ltan

∂Tc̄i
(xb

i )
∥ = 1.

In the above analysis, we ignore the effect of Luniform. However, during the training process, Luniform

may cause similarity to decrease. The detailed analysis for Luniform has been studied in previous
work (Liang et al., 2022; Wang & Isola, 2020).

5 EXPERIMENTS AND RESULTS

This section includes an evaluation of the effectiveness of TangentBind in various downstream tasks
such as RGB image, depth image, infrared image, and audio. The effectiveness of the generative
network has also been tested. We also conduct the ablation study to analyze the impact of Tangent
Term and different parameter configurations on the performance of TangentBind. For the dataset
and experimental implementation details, please refer to the Appendix.B and C.

5.1 IMPLEMENTATION DETAILS

Only two modalities (image and language) have datasets paired with multiple other modalities, so
we only show the results using TangentBind with Image and Text as the core modality, respectively.
The sim(·, ·) notation in TangentBind is cosine similarity. To demonstrate the adaptability of Tan-
gent Term, we use the pre-trained multimodal models ImageBind-Huge(Girdhar et al., 2023) and
LanguageBind(Zhu et al., 2024) respectively for initialization. Since the embedding generated by
the diffusion model is different at each time, we generate Ma embeddings 100 times based on each
ci and calculate the mean of the generated Ma embeddings. We use AudioSet(Gemmeke et al.,
2017), SUN(Song et al., 2015), and LLVIP(Jia et al., 2021) to fine-tune models. While fine-tuning
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Table 1: X-Language classification. * donates Emergent Zero-shot. We report the top-1 classifica-
tion accuracy(%) for all datasets except AudioSet (mAP). The SOTA of NYU-D, SUN, AudioSet,
ESC-50, and VGG-S come from (Girdhar et al., 2022)(Girdhar et al., 2022; Koutini et al., 2021;
Chen et al., 2022; Kazakos et al., 2021) respectively. DepthSwin model(Girdhar et al., 2022) is
finetuned from the ImageSwin model(Liu et al., 2021). Our results are highlighted in bold.

Method Infrared Depth Audio
LLVIP NYU-D SUN AudioSet ESC-50 VGG-S

OpenCLIP(Cherti et al., 2023) 82.2 45.4 25.4 - - -
DepthSwin(Girdhar et al., 2022) - 72.5 63.1 - - -
JointCRF(Wang et al., 2017) - 65.8 63.6 - - -
DFCR(Cao et al., 2018) - 65.3 56.3 - - -
AudioCLIP(Guzhov et al., 2021) - - - 28.4 68.6 47.4
CLAP(Elizalde et al., 2023) - - - 23.1 92.6 46.2
WAV2CLIP(Wu et al., 2021) - - - 0.71 41.4 10.0
LanguageBind 87.2 65.1 - 27.7 91.8 28.9
Tan-LanguageCore 85.1 65.8 - 28.1 92.0 29.3
ImageBind* 63.4 54.0 35.1 17.6 66.9 27.8
Tan-ImageCore* 73.7 70.1 40.3 25.4 68.4 36.3
Absolute SOTA - 79.4 64.9 49.6 97.0 52.5

the encoders of other modalities , we freeze the image and text encoder parameters of ImageBind
and LanguageBind. The temperature of Tangent Term and infoNCE is set to the same to balance
the functionality between them. According to Sec.4, to ensure the alignment with core modal-
ity, we make λ = 1. We use a 6−layer decode-only transformer architecture diffusion model in
Ramesh et al. (2022) with 100 time steps for the generative network,2. To demonstrate the en-
hancement of the emergent capability with Tangent Term, we use only generative networks that
produce either image or text for our downstream tasks, which are all text-related or image-related.

Table 2: Zero-shot Audio-Language retrieval. * donates Emergent
Zero-shot. Our results are highlighted in bold.

Method Clotho AudioCaps
R@1 R@10 R@1 R@10

AVFIC(Nagrani et al., 2022) 3.0 17.5 8.7 37.7
AudioClip(Guzhov et al., 2021) 3.20 20.3 3.53 31.6
WAV2Clip(Wu et al., 2021) 0.78 12.1 0.88 15.3
C-MCR(Wang et al., 2023b) 8.37 36.7 15.76 48.1
LanguageBind 12.1 44.0 12.2 53.2
Tan-LanguageCore 11.7 41.8 11.8 52.1
ImageBind* 6.0 28.4 9.3 42.3
Tan-ImageCore* 10.0 33.4 10.1 49.2

5.2 TANGENT
TERM AUGMENTING
IMAGECORE MODEL

Emergent Ability As
shown in Table 1, we tested
the effect of Tangent
Term on ImageCore on
the emergent classification
task on 6 datasets. On
the emergent zero-shot
classification tasks of
Audio, Depth, and In-
frared (VGG-S(Chen et al.,
2020), NYU-D(Nathan Silberman & Fergus, 2012), and LLVIP(Jia et al., 2021)), TangentBind
top-1 accuracy outperforms ImageBind 8.5%, 16.1%, and 10.3% respectively. In addition, as
shown in Table 2, we also test TangentBind on the Audio-Language emergent retrieval task. The
recall@10 on the Clotho(Drossos et al., 2019), AudioCaps(Kim et al., 2019) datasets are 5% and
6.9% higher than the ImageBind after the introduction of Tangent Term. The emergent capability
shows significant improvement across all benchmarks, achieving performance levels that closely
approximate those achieved by incorporating text features. These experiment results suggest that
TangentBind effectively aligns multiple modalities within Tangent Space, thereby significantly
enhancing the emergent zero-shot capabilities.

Core Modality Alignment Ability Table 3 presents the performance of TangentBind for zero-
shot retrieval using RGB images. The experimental results demonstrate that the introduction of

2The code can be found in https://github.com/lucidrains/DALLE2-pytorch
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the Tangent Term leads to improvements in Recall@1 for AVE (Tian et al., 2018), VGG-S (Chen
et al., 2020), LLVIP (Jia et al., 2021), and NYU-D (Nathan Silberman & Fergus, 2012) by 0.1,
1.4, 1.1, and 0.5, respectively, compared to ImageBind model. This indicates that incorporating
the Tangent Term does not degrade the alignment of the various modalities with the core modality.

Table 3: Comparison of RGB→X retrieval.* donates Emer-
gent. Our results are highlighted in bold.

Dataset Method Task R@1

AVE

ImageBind

RGB→A

36.9
LanguageBind* 10.6
Tan-ImageCore 37.0
Tan-LanguageCore* 15.1

VGG-S

Imagebind

RGB→A

28.7
LanguageBind* 10.0
Tan-ImageCore 30.1
Tan-LanguageCore* 15.1

LLVIP

Imagebind

RGB→I

26.3
LanguageBind* 7.5
Tan-ImageCore 27.4
Tan-LanguageCore* 12.8

NYU-D

Imagebind

RGB→D

34.7
LanguageBind* 17.9
Tan-ImageCore 35.2
Tan-LanguageCore* 23.9

5.3 TANGENT
TERM AUGMENTING
LANGUAGECORE MODEL

Emergent Ability As presented in
Table 3, we evaluated the impact of
the Tangent Term on LanguageCore
in the emergent RGB-related retrieval
task across four datasets. For the
modalities of Audio, Depth, and In-
frared, TangentBind demonstrated
superior performance in Recall@1
on AVE (Tian et al., 2018), VGG-
S (Chen et al., 2020), NYU-D
(Nathan Silberman & Fergus, 2012),
and LLVIP (Jia et al., 2021), with im-
provements of 4.5, 5.1, 6.0, and 5.3,
respectively, surpassing Language-
Bind model. The emergent capabil-
ity is significantly enhanced across all
benchmarks. It demonstrates that the
Tangent Term remains effective even when the core modality is altered.

Core Modality Alignment Ability As shown in Table 1, to verify that the alignment between
various modalities and the core text modality is not compromised by the introduction of the Tan-
gent Term, we evaluated its effect on LanguageCore model across six datasets in the zero-shot
classification task. For the modalities of Audio, Depth, and Infrared, TangentBind top-1 accuracy
outperforms LanguageBind on VGG-S (Chen et al., 2020), NYU-D (Nathan Silberman & Fergus,
2012), and ESC-50 (Piczak, 2015), with marginal improvements of 0.4%, 0.7%, and 0.2%, respec-
tively. On LLVIP (Jia et al., 2021), there is only a minor top-1 accuracy decrease of 2.1%. To further
assess the impact of the Tangent Term on the core text modality, Table 2 highlights its effect on
the audio-language emergent retrieval task. Following the introduction of the Tangent Term, the
maximum recall value on Clotho (Drossos et al., 2019) and AudioCaps (Kim et al., 2019) decreases
by only 2.2. These results demonstrate that the negative impact of the Tangent Term on tasks where
text serves as the core modality is minimal.

5.4 ABLATION STUDY

The effect of generative networks To illustrate the efficacy of the diffusion model, we substituted
it with ResNet(He et al., 2015), VAE(Kingma & Welling, 2013), and C-MCR(Wang et al., 2023b)
in Step 2. In Figure 6, we display the cumulative distribution function (CDF) curves of cosine
similarity between the embeddings generated by these methods and the actual data embeddings for
VGG-S(Chen et al., 2020) and SUN(Song et al., 2015). When the CDF curve approaches 1.0, it
indicates the generated embeddings are similar to the actual data embeddings. As illustrated in
Figure 6, the embeddings produced by the diffusion model closely resemble the actual embeddings.
Notably, the C-MCR method failed on the SUN dataset. Detailed descriptions of each method’s
implementation are provided in Appendix C. To demonstrate the necessity of Step 2 and the robust
capability of TangentTerm to maintain alignment with the core modality, we introduced Gaussian
noise with a mean of 0 and a variance of 1e-3 to the core modal embeddings and normalized them as
a disturbance sample. Table 4 shows that the image core model with the diffusion model achieved
top-1 classification accuracy of 36.3%, 73.7%, and 70.1% on emergent text-related classification
tasks across the VGG-S, LLVIP, and NYU-D datasets, respectively, outperforming other methods.
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Figure 6: CDF Curve of Similarity on VGG-S and SUN. The top/bottom row displays curves repre-
senting the cosine similarity between text/image embeddings generated by various methods in Step
2 and the actual text/image embeddings, with image/text as the core modality. The solid, dashed,
dash-dotted, and dotted lines correspond to the diffusion, C-MCR, ResNet, and VAE methods, re-
spectively.

Table 4: Diffusion Model Embedding vs. Other Method Embedding. Top-1 accuracy on X → T
tasks and Recall@1 on RGB → X tasks. Diff denotes the generation of embeddings using a
diffusion model (Ramesh et al., 2022) in Step 2. The best results are highlighted in bold. A gray
background indicates that the result is from an Emergent Zero-shot task.

Dataset Task ImageCore+ LanguageCore+
Diff ResNet VAE Noise C-MCR Diff ResNet VAE Noise C-MCR

VGG-S A→T 36.3 30.7 32.1 23.7 26.7 29.3 27.2 28.3 26.4 29.1
RGB→A 30.1 29.3 28.1 27.7 28.3 15.1 12.3 13.5 8.1 9.5

LLVIP I→T 73.7 68.1 64.3 59.1 61.7 85.1 83.1 87.5 86.2 86.9
RGB→I 27.4 26.5 27.1 26.1 25.9 12.8 10.3 9.1 5.2 8.9

NYU-D D→T 70.1 67.2 69.3 50.2 58.4 65.8 65.7 64.8 64.1 65.4
RGB→D 35.2 35.0 33.9 33.1 34.4 23.9 20.7 22.4 14.6 18.9

Similarly, Table 4 reveals that the text core model with the diffusion model reached the highest
Recall@1 scores of 15.1, 12.8, and 23.9 on emergent RGB-related retrieval tasks across the same
datasets. Moreover, it is noteworthy that models using the diffusion model in Step 2 achieved optimal
performance in all core modality-related tasks, which is white background in Table 4, except for a
slight decline in the I → T task on the LLVIP dataset compared to the best result.

Replacing Tangent Term by infoNCE To visualize the ability of Tangent Term to maintain the
core modality alignment, Table 5 presents the core modality alignment results of models with image
and text as the core modalities. In Table 5, LinfoNCE is used to directly align with the generated
embeddings instead of Ltan. In detail, the Tangent Term Ltan

Mb→Ma
+ Ltan

Ma→Mb
is replaced by

LinfoNCE
Mb→Ma

+ LinfoNCE
Ma→Mb

in loss function. For consistency, the value of λ is set to 1. As shown in
Table 5, compared to Tangent Term, infoNCE Recall@1 scores on the image-based retrieval tasks
on the VGG-S, AVE, NYU-D, and LLVIP datasets drop by 4.9, 4.7, 6.1, and 5, respectively. This
indicates a direct use of infoNCE can severely disrupt the alignment of core modalities. A similar
pattern is observed when text is the core modality, as Table 5 demonstrates that if infoNCE is used
directly then the top-1 accuracy of text-based classification on the VGG-S, ESC-50, NYU-D, and
LLVIP datasets will drop significantly to 22.2%, 72.3%, 55.7% and 64.1%. These results suggest
that the Tangent Term enhances emergent capabilities and mitigates the negative impact on core
modality alignment compared to direct alignment using infoNCE.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 0.5 1 1.5 2
30

32

34

36

38

40

42

T
o
p
-
1
 
A
c
c
u
r
a
c
y
(
%
)

24

26

28

30

32

R
@
1

Experiments on VGG-S

Audio Classification Top-1 Accuracy

RGB2A retrieval Recall@1

0 0.5 1 1.5 2
65

70

75

T
o
p
-
1
 
A
c
c
u
r
a
c
y
(
%
)

20

22

24

26

28

30

R
@
1

Experiments on LLVIP

Infrared Classification Top-1 Accuracy

RGB2I retrieval Recall@1

0 0.5 1 1.5 2
55

60

65

70

T
o
p
-
1
 
A
c
c
u
r
a
c
y
(
%
)

29

30

31

32

33

34

35

36

R
@
1

Experiments on NYU-D

Depth Classification Top-1 Accuracy

RGB2D retrieval Recall@1

0 0.5 1 1.5 2
24

26

28

30

32

T
o
p
-
1
 
A
c
c
u
r
a
c
y
(
%
)

10

12

14

16

18

R
@
1

Experiments on VGG-S

Audio Classification Top-1 Accuracy

RGB2A retrieval Recall@1

0 0.5 1 1.5 2
70

75

80

85

T
o
p
-
1
 
A
c
c
u
r
a
c
y
(
%
)

6

8

10

12

14

R
@
1

Experiments on LLVIP

Infrared Classification Top-1 Accuracy

RGB2I retrieval Recall@1

0 0.5 1 1.5 2

56

58

60

62

64

66

T
o
p
-
1
 
A
c
c
u
r
a
c
y
(
%
)

14

16

18

20

22

24

R
@
1

Experiments on NYU-D

Depth Classification Top-1 Accuracy

RGB2D retrieval Recall@1

Figure 7: Experimental results on classification and retrieval tasks after varying hyperparameters
λ. The first row of figures from left to right shows the results on the VGG-S, LLVIP, and NYU-D
datasets with images as the core modality. The second row of figures from left to right shows the
results on VGG-S, LLVIP, and NYU-D datasets with text as the core modality, respectively.

Changing Hyperparameter λ Figure.7 presents the top-1 accuracy and Recall@1 values for clas-
sification and retrieval on various datasets as a function of varying λ during training. As observed
in Figure.7, the emergent capability of the model with the image core modality on LLVIP improves
with increasing values of λ, reaching its peak at λ = 1.25. However, when λ > 1.25, the emergent
performance gradually declines on such a model. In contrast, the Recall@1 value for image re-
trieval consistently decreases as λ increases. This trend aligns with Theorem 1, which indicates that
the Tangent Term negatively impacts core modality alignment when λ becomes excessively large.

Table 5: Image based retrieval and text based classifica-
tion on VGG-S, AVE, NYU-D, LLVIP and ESC-50. We
replace Tangent Term by infoNCE in image core and text
core modality modal during training, respectively, and com-
pare core modality alignment performance. We report the
Recall@1 score for image based retrieval tasks and top-1
classification accuracy(%) for text based classification tasks.

Dataset Task Core infoNCE+
Tan Term infoNCE

VGG-S RGB→A Image 30.1 25.2
A→T Text 29.3 22.2

AVE RGB→A Image 37.0 32.3

NYU-D RGB→D Image 35.2 29.1
D→T Text 65.8 55.7

LLVIP RGB→I Image 27.4 22.4
I→T Text 85.1 64.1

ESC-50 A→T Text 92.0 72.3

6 CONCLUSION

In this work, we introduce Tan-
gentBind, an emergent enhancement
method for multimodal pretraining.
To improve the integrity of modality,
we train a generative network that in-
directly aligns modality embeddings.
Additionally, to prevent the gener-
ated embeddings from compromis-
ing alignment with the core modal-
ity, we propose the Tangent Term
for aligning the generated modal-
ity embeddings. Extensive experi-
ments, including the use of multi-
ple core modalities and ablation stud-
ies, demonstrate that the Tangent
Term can enhance the emergent ca-
pabilities of the multimodal align-
ment model while preserving align-
ment with the core modality.
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A ADDITIONAL THEORETICAL ANALYSIS

A.1 PROOF OF THEOREM1

Proof. First, we apply the chain rule to get the gradient of Ltan with respect to the parameter Θ:

∂Ltan

∂Θ
=

∂xb
i

∂Θ

∂Tc̄i(x
b
i )

∂xb
i

∂Ltan

∂Tc̄i(x
b
i )
. (12)

Similarly, using the chain rule to calculate the gradient of Lalign with respect to Θ, we get ∂Lalign

∂Θ =
∂xb

i

∂Θ
∂Ltan

∂xb
i

. Substituting ∂Ltan

∂xb
i

with c̄i according to equation.5, we get

∂Lalign

∂Θ
= −∂xb

i

∂Θ
c̄i. (13)

Take the inner product ∂Lalign

∂Θ + λ∂Ltan

∂Θ and ∂Lalign

∂Θ to get formula.14.

(
∂Lalign

∂Θ
+ λ
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∂Θ
)T

∂Lalign
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i
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T
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i

∂Θ
c̄i, (14)

Notably, we expand ∂Tc̄i
(xb

i )

∂xb
i

as in equation.15, and find that c̄Ti
∂Tc̄i

(xb
i )

∂xb
i

= 0 due to

c̄Ti
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Next, we introduce Lemma.2

Lemma 2. We have xTATAy ≥ −(κ(ATA) − 1)
1
2 ∥Ay∥2 ∥x∥

∥y∥ , if yTx = 0 and κ(·) is condistion
number.

Proof. Rather than proving this inequality directly, we turn to the follow the lower bound for the
optimization problem.16.

min
x

xTATAy,

subject to yTx = 0,

xTx = 1,

(16)

To solve optimization problem16, we write the Lagrangian function in 17,

L(x, µ1, µ2) = xTATAy + µ1x
T y + µ2(x

Tx− 1). (17)

We can easily get the Lagrangian dual function 18 form 17,

L(µ1, µ2) = inf
x

L(x, µ1, µ2) = −∥(ATA− µ1I)y∥2

4µ2
− µ2, (18)

Thus, we obtain the unconstrained Lagrangian dual problem 19

max
µ1,µ2

L(µ1, µ2). (19)

Besides, we have

max
µ2

L(µ1, µ2) = ∥(ATA− µ1I)y∥ =
(
µ2
1y

T y − 2µ1y
TATAy + yTATAATAy

) 1
2 . (20)

Thus, we get

max
µ1,µ2

L(µ1, µ2) = max
µ1

max
µ2

L(µ1, µ2) = −
(
∥ATAy∥2∥y∥2 − ∥Ay∥4

) 1
2

∥y∥
. (21)
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Since the maximum eigenvalue of ATA divided by the minimum eigenvalue of ATA is less than 2,
we have

∥ATAy∥2∥y∥2 ≤ ∥A∥2∥Ay∥2∥y∥2 = ∥Ay∥4 ∥A∥2∥y∥2

∥Ay∥2
≤ κ(ATA)∥Ay∥4. (22)

After that, according to 21 and 22, we have

max
µ1,µ2

L(µ1, µ2) ≥ −(κ(ATA)− 1)
1
2
∥Ay∥2

∥y∥
. (23)

According to the duality principle (Boyd & Vandenberghe, 2004), we have xT

∥x∥A
TAy ≥

−(κ(ATA)− 1)
1
2
∥Ay∥2

∥y∥ which completes the proof.

According to Martin & Mahoney (2021); Arora et al. (2018); Du et al. (2019); Ghorbani et al. (2019),

κ

(
∂xb

i
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T
∂xb

i

∂Θ

)
will converge and less than 2. Consider ∂Tc̄i

(xb
i )

∂xb
i

∂Ltan

∂Tc̄i
(xb

i )
, c̄i and ∂xb

i

∂Θ as x, y, and A

in Lemma.2, respectively. According to Lemma.2, we can get inequality.24
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). (24)

Moreover, expanding ∂Tc̄i
(xb

i )

∂(I−
c̄ic̄

T
i

∥c̄i∥2
)xb

i

in equation.15 we have
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Furthermore, we find (I − c̄ic̄
T
i

∥c̄i∥2 ) and ∂Tc̄i
(xb

i )

∂(I−
c̄ic̄

T
i
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)xb

i

are both projection matrix (Horn & Johnson,

2012), and both spectral radius are less than 1. Thus, we have
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due to the spectral radius of ∂Tc̄i
(xb

i )

∂xb
i

is less than 1. Thus, according to inequality .24 and 26, we
have

(
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which means (∂L
align

∂Θ + λ∂Ltan

∂Θ )T ∂Lalign

∂Θ ≥ 0 when λ ≤ ∥c̄i∥
∥ ∂Ltan

∂Tc̄i
(xb

i
)
∥

and complete the proof.

A.2 INFONCE VS. TANGENTTERM

In this section, we roughly analyze why directly using infoNCE to align with generative embeddings
results in a degradation of the core modal alignment capability. For ease of understanding, we
consider the case where similarity function is cosine similarity and τ = 1. As analyzed in Sec.3.2,
Ltan aligns the two modes, while Luniform just plays a role of regular term. Thus, the align parts of
the two infoNCEs are added together and we get

Lalign(x̂a
i , x

b
i ) + Lalign(ci, x

b
i ) = −(x̂a

i )
Txb

i − cTi x
b
i = −(x̂a

i + ci)
Txb

i , (28)

which means that when xb
i is neither aligned with ci nor with x̂a

i , but instead with normalize(x̂a
i +ci).

As a result, the ability to align with the core modality is destroyed. However, if we use Tangent
Term instead of infoNCE, then the loss function for the alignment part becomes

Lalign = −cTi x
b
i − (x̂a

i )
T normalize((I − cic

T
i

∥ci∥2
)xb

i ). (29)
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It is worth noting that to simplify the notation, we still use Lalign in equation.29, where there is a
slight difference between equation.29 and equation.3. Letting Lalign take the derivative of xb

i , we get

∂Lalign

∂xb
i

= −ci − (I − xb
i (x

b
i )
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∥xb
i∥2
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i∥2
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i . (30)

Since xb
i is confined to the hypersphere, (I − xb

i (x
b
i )

T

∥xb
i∥2 ) appears in equation.30. Taking an inner

product of ci and ∂Lalign
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, we have
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It is easy to find that

cTi (I −
xb
i (x

b
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T

∥xb
i∥2

) = cTi − cTi x
b
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∥xb
i∥2

(xb
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where
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Thus, we have

cTi
∂Lalign

∂xb
i

= −cTi ci ≤ 0, (35)

which means that the similarity between xb
i and ci is on increase.

B DOWNSTREAM DATASETS

AudioSet (Gemmeke et al., 2017) contains 10s videos from YouTube annotated into 527 classes.
It consists of the following: a balanced subset containing about 20,000 videos, a test subset contain-
ing 18,000 videos, and an unbalanced training subset containing about 2 million videos. In image
and text core modality training, we use the balanced set of 16,000 for audio-video and audio-text
alignment respectively. For the zero-shot evaluation in Table.1, we use the test set and compute
logits for each class using textual class names. 16,000 data pairs are used for training. During the
text core modality model training and zero-shot evaluation we use prompt templates for class names
as described later in Appendix.C.1. The metric used is mAP.

AudioCaps (Kim et al., 2019) is a dataset of audio-visual clips from YouTube with textual descrip-
tions. It consists of clips from the AudioSet dataset. Following ImageBind, we used the splitting
method provided in Oncescu et al. (2021) to remove clips that overlap with the VGGSound dataset.
We obtain 48,198 training segments, 418 validation segments, and 796 test segments. We use only
the test set for zero-shot evaluation of our model. The task is text → audio retrieval and is evaluated
using recall@K.

ESC-50 (Piczak, 2015) is used to perform a zero-shot evaluation of the learned representations.
The task here is “Environmental Sound Categorization” (ESC). It consists of 2000 5 s audio clips
organized into 50 categories. In this work, we make zero-shot predictions for evaluation. The metric
used is the accuracy of the top-1 accuracy.

VGG-S (Chen et al., 2020) contains approximately 200,000 video clips of 10 seconds in length an-
notated with 309 sound categories, including human actions, sound-producing objects, and human-
object interactions. We performed zero-shot classification and RGB→ Audio retrieval using only the
audio from the test set. Evaluations are performed using top-1 accuracy for zero-shot classification
and Recall@K for RGB→ Audio retrieval.
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Table 6: Training Settings in ImageCore model

Config Audio Depth Infrared
Encoder ViT-Huge

Number of Heads 12 8 12
Optimizer AdamW

Optimizer Momentum β1 = 0.9, β2 = 0.95
Epochs 8 2 2

Learning rate 5e-4 5e-4 1e-4
Temperature 0.07 0.2 0.1
Weight decay 0.2 0.2 0.05

Batch size 512 256 256
Learning rate schedule Cosine decay

AVE (Tian et al., 2018) contains 4,143 YouTube videos across 28 event categories and videos in
the AVE dataset that are temporally labeled with audiovisual event boundaries. Evaluations were
performed using top-1 accuracy for zero-shot classification and Recall@K for RGB→ Audio re-
trieval with the highest accuracy.

Clotho (Drossos et al., 2019) is an audio dataset with textual descriptions from the Freesound
platform. It consists of a development set and a test set containing 2893 audio clips and 1045 audio
clips respectively, each associated with 5 descriptions. We consider the text → audio retrieval task
and treat each of the 5 associated descriptions as a separate test query, which is then retrieved from
the set of audio clips. The metric used is recall@K, i.e., a given test query is assumed to be solved
correctly if the base fact audio is retrieved in the first K audio clips retrieved.

SUN (Song et al., 2015) contains about 10,000 RGB-D images. We follow ImageBind to post
process the depth maps in three steps- 1) in-filled depth values, 2) convert them to disparity for scale
normalization and 3) limited the minimum and maximum depth to 0.01 and 10 meters respectively.
We use training split (about 5,000 data pair) for training models. Specific, for text core modality
model training, we use prompt templates for the class names as described later in Appendix.C.1.

NYU-D (Nathan Silberman & Fergus, 2012) is used to evaluation by 80% samples. Through pre-
processing, we limited the minimum and maximum depth of the depth images to 0.01 and 10 meters
respectively. Following ImageBind, we performed a classification and reorganization process which
produced a total of 10 scene categories. For zero-shot evaluation and RGB → Depth retrieval task,
we use top-1 accuracy and Recall@1. We use prompt templates as described later in Appendix.C.1
in RGB → Depth retrieval task.

LLVIP (Jia et al., 2021) is an infrared spectral pedestrian object detection dataset. Following
the ImageBind method, we extracted all people in the image and designated all other objects as
background elements. This process resulted in a dataset containing 7622 “background” categories
and 7954 “people” categories, which were subsequently used for binary classification tests. About
5,000 Infrared-RGB pairs are used to training. Besides, prompt templates as described later in
Appendix.C.1 is used in zero-shot classification task. Since LLVIP is intended to be used for detect
tasks and each RGB image is not text labeled, we use GPT4o to generate text annotations for each
RGB image during the training process for text core modality.

Imagenet-1K Russakovsky et al. (2015) encompasses 1,000 object classes and comprises 1.28M
images for training, 5000 images for validation, and 100,000 images for testing. Building upon
this foundation, Imagenet-1K-VL-Enriched 3 enhances Imagenet-1K dataset by including image
captions, bounding boxes, and corrected label information. Caption & image pairs from Imagenet-
1K-VL-Enriched training split are used for training diffusion model.

3Dataset can be found in https://huggingface.co/datasets/visual-layer/imagenet-1k-vl-enriched
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Table 7: Training Settings in LanguageCore model

Config Audio Depth Infrared
Encoder ViT-Huge

Number of Heads 12 8 12
Optimizer AdamW

Optimizer Momentum β1 = 0.9, β2 = 0.95
Epochs 8 4 4

Learning rate 1e-4 5e-4 1e-4
Temperature 0.05 0.2 0.2
Weight decay 0.2 0.1 0.05

Batch size 512 256 256
Learning rate schedule Cosine decay

C IMPLEMENTATION DETAILS

We now describe the implementation details used in this work. In table 6 and 7, we detail the settings
used to train each of the modalities. Our experiments were done on 4 24GB 4090 GPUs and 4 48GB
A40 GPUs.

C.1 PROMPT TEMPLATES

For all evaluations, we use the default set of templates from CLIP(Radford et al., 2021). It is worth
mentioning that we use the same templates for non visual modalities like audio and depth as well
since we only use semantic/textual supervision associated with images.

C.2 MODEL ARCHITECTURE

Diffusion Model We deployed two symmetric decode-only diffusion models, one for generating
text embeddings from image embeddings and another for the reverse. Both models use the same
transformer architecture with a 1024-dimensional embedding, 8 attention heads of 128 dimensions
each, and 6 layers and the number of training parameters is about 30M. Training involves 100
timesteps, with a 5% embedding dropout to facilitate classifier-free guidance, optimized using an
AdamW optimizer, a learning rate of 1e-4, and a batch size of 128, following the loss function1 of
our methodology documentation. For the model where the image is the core modality, the image
embedding serves as the input, and the text embedding is the output to generate. Conversely, when
text is the core modality, text embedding is used as input to generate the image embedding. This
approach allows us to efficiently handle and transform data within the latent space, reducing com-
putational demands. This setup not only ensures the capability of model in cross-modal generation
but also enhances its performance in generating high-quality, contextually accurate outputs across
different modalities.

Multimodal Encoders For image core model and language core model, we use the same structure
of encoder on the same modality. Following Girdhar et al. (2023) we use 12-layer, 1024-dimensional
vision transformer with a patch size of 16 and a stride of 10 for the VISION, AUDIO, DEPTH, and
INFRARED modalities. For video data, our strategy includes capturing two frames every two sec-
onds to optimize processing efficiency. Besides, we used 128 mel-spectrogram partitions to convert
2 seconds of audio sampled at 16kHz into a spectrogram. Similarly, thermal and depth images are
treated as single-channel inputs and encoded using the same ViT architecture, facilitating consistent
handling across these modalities. The encoders for both the image and language core models are
initialized with weights from the ImageBind-Huge and LanguageBind pre-trained models respec-
tively for enhancing learning efficiency and demonstrating the transferability of our TangentBind
approach. This leverages their advanced pre-trained features to accelerate convergence and improve
generalization across varied multimodal applications.

Temperature Tangent Term 6 and infoNCE 2 use the same temperature τ during training for
encoder of the same modality. In our experiments, we found that fixed temperatures worked best by
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comparing learnable and fixed temperatures. The experiments show the temperature with the best
effect for each modality in table.6 and .7.

C.3 ABLATION DETAILS

ResNet We employed the standard ResNet50(He et al., 2015) architecture provided by PyTorch.
The ResNet50 model has a nearly number of training parameters with the diffusion model employed,
suggesting that both architectures share comparable complexity and computational demands, which
allows for an equitable comparison of their performance in analogous tasks. To tailor the model for
our embedding-based task, the output dimension of the final fully connected layer was modified to
produce embeddings with a dimensionality of 1024. These embeddings are subsequently normal-
ized to lie on the unit hypersphere to facilitate the use of cosine similarity measures in subsequent
analyses. For training the modified ResNet50, we utilized the L2 loss function, which is well-suited
for embedding normalization by encouraging the model to minimize the Euclidean distance between
the predicted and target embeddings. The optimizer of choice was AdamW, the learning rate was
set to 1e-4. The training was conducted with a batch size of 128. Our training procedure mirrored
that of the diffusion model in terms of dataset usage; specifically, we trained on the train split of the
ImageNet-1K-VL-Enriched dataset. During training, the core modality embeddings were utilized as
inputs, while the embeddings of an alternative modality served as labels.

C-MCR We employed the C-MCR(Wang et al., 2023b) method to generate cross-modal em-
beddings, leveraging the training split of the ImageNet-1K-VL-Enriched dataset to obtain paired
⟨xImage

i , xtext
i ⟩ embeddings that serve as image and text memories. This approach is rooted in the

framework established by the C-MCR methodology, where embeddings for both modalities are
computed based on

x̂image
i =

N∑
i=1

exp(sim(xtext, ximage
i ))∑N

j=1 exp(sim(xtext, ximage
j ))

ximage
i ; x̂text

i =

N∑
i=1

exp(sim(ximage, xtext
i ))∑N

j=1 exp(sim(ximage, xtext
j ))

xtext
i ,

(36)
and subsequently normalize to lie on the unit hypersphere. As illustrated in Figure 6, the CDF curve
corresponding to the C-MCR method approximates a straight line. This outcome primarily arises
due to the SUN dataset, which consists of scene data that does not align well with the ImageNet-
1K-VL-Enriched dataset. During our experiments, we observed that whether text or image served as

the core modality, the weights exp(sim(xtext,ximage
i ))∑N

j=1 exp(sim(xtext,ximage
j ))

and exp(sim(ximage,xtext
i ))∑N

j=1 exp(sim(ximage,xtext
j ))

in (36) assigned to

each embedding from the SUN dataset on the ImageNet1K were minutely different. This minimal
variation led to the generation of nearly identical embeddings for both modalities, hence the nearly
linear CDF curve observed. This phenomenon underscores a critical aspect of the C-MCR method:
its strong dependence on the memory.

VAE We implemented a VAE(Kingma & Welling, 2013) where both the encoder and decoder
components are constructed using convolutional neural networks (CNNs)(LeCun et al., 1998). The
architecture of the encoder and decoder are symmetric, each comprising ten layers with the following
input channels of convolutional layers: [32, 32, 64, 64, 128, 128, 256, 256, 512, 512]. This VAE
model possesses a comparable number of training parameters to the diffusion model used, indicating
that both architectures are similarly complex and computationally demanding, facilitating a fair
comparison of their performance across similar tasks. Each convolutional layer is defined with a
kernel size of 3, a stride of 2, and padding of 1. Post convolution, the decoder maps the latent space
representation to embedding with dimensionality of 1024. This representation is then normalized
to lie on the unit hypersphere. The loss function employed is the L2 loss, similar to that used in
ResNet50 architectures, which helps in minimizing the distance between the reconstructed outputs
and the actual inputs, thereby ensuring better fidelity in the generated samples. AdamW optimizer
is chosen with a learning rate of 1e-4 and a batch size of 128. Training was conducted using the
training split of the ImageNet-1K-VL-Enriched dataset. In this setup, core modality embeddings
were used as inputs, and embeddings from another modality served as labels. This training approach
not only facilitates effective learning of cross-modal representations but also ensures that the VAE is
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capable of generating high-quality embeddings that are highly representative of the input data across
different modalities.
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