
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RETRACTION-FREE OPTIMIZATION OVER THE STIEFEL
MANIFOLD WITH APPLICATION TO THE LORA FINE-
TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Optimization over the Stiefel manifold has played a significant role in various
machine learning tasks. Many existing algorithms either use the retraction operator
to keep each iterate staying on the manifold, or solve an unconstrained quadratic
penalized problem. The retraction operator in the former corresponds to orthonor-
malization of matrices and can be computationally costly for large-scale matrices.
The latter approach usually equips with an unknown large penalty parameter. To
address the above issues, we propose a retraction-free and penalty parameter-free
algorithm, which lands on the manifold. Moreover, our convergence theory allows
for the use of a constant step size, improving upon the result in (Ablin & Peyré,
2022), which only guarantees convergence to a neighborhood. A key component of
the analysis is the convex-like property of the quadratic penalty of the Stiefel mani-
fold, which enables us to explicitly characterize the constant penalty parameter. As
an application, we introduce a new algorithm, Manifold-LoRA, which employs the
landing technique and a carefully designed step size strategy to accelerate low-rank
adaptation (LoRA) in fine-tuning large language models. Numerical experiments
on the benchmark datasets demonstrate the efficiency of our proposed method.

1 INTRODUCTION

Optimization over the Stiefel manifold has attracted considerable attention in the context of machine
learning, e.g., RNN (Arjovsky et al., 2016), batch normalization (Cho & Lee, 2017), distributionally
robust optimization (Chen et al., 2017), and vision transformer (Kong et al., 2023). The mathematical
formulation of this class of problems is:

min
X∈Rd×r

f(X) subject to X ∈ St(d, r) := {X ∈ Rd×r : X⊤X = I}, (1)

where r ≤ d and f : Rd×r → R is a continuously differentiable function. The most popular
methods for solving (1) are retraction-based algorithms, which have been extensively studied in the
context of manifold optimization (Absil et al., 2008; Wen & Yin, 2013; Hu et al., 2020; Boumal,
2023). Recently, to alleviate the possible computational burden of the retraction operator, some
retraction-free methods have been developed in (Gao et al., 2018; 2022; Xiao et al., 2024; Ablin
& Peyré, 2022). The ideas in these papers are based on a combination of the manifold geometry
and a penalty function for the manifold constraint, which involves an unknown but sufficiently large
penalty parameter. For large-scale machine learning applications, retraction-free algorithms are
preferred. However, designing retraction-free algorithms with a known penalty parameter for solving
(1) remains a challenge.

Another motivation for studying retraction-free methods arises from its application in the fine-tuning
of large language models (LLMs). Recently, LLMs have revolutionized the field of natural language
processing (NLP), achieving unprecedented performance across various applications (Radford et al.,
2019; Qin et al., 2023). To tailor pretrained LLMs for specific downstream tasks, the most common
approach is full fine-tuning, which requires prohibitively large computational resources due to the
need to adapt all model weights, hindering the deployment of large models. As a result, parameter-
efficient fine-tuning (PEFT) has gained widespread attention for requiring few trainable parameters
while delivering comparable or even superior results to full fine-tuning. This paradigm involves

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

inserting learnable modules or designating only a small portion of weights as trainable, keeping the
main model frozen (Houlsby et al., 2019; Li & Liang, 2021; Zaken et al., 2021). Among fine-tuning
methods, low-rank adaptation (LoRA) (Hu et al., 2021) has become the de facto standard among
parameter-efficient fine-tuning techniques. It assumes that the change in weights lies in a low intrinsic
dimension, thereby modelling the update ∆W ∈ Rd×m by two low-rank (not greater than a small
integer r) matrices A ∈ Rr×m and B ∈ Rd×r, i.e., ∆W = BA. Since r ≪ d, the requirements on
both storage and computation are significantly reduced. Due to its decompositional nature, there is
redundancy in the representation of ∆W . Traditional optimization methods for LoRA are unable to
exploit this redundancy, which consequently undermines model performance. Instead, we reformulate
LoRA fine-tuning as an optimization problem over the product of Stiefel manifolds and Euclidean
spaces. Therefore, we propose an algorithmic framework called Manifold-LoRA to accelerate the
fine-tuning process and enhance model performance. Moreover, by exploiting projected gradients and
incorporating a parameter-free penalty, the overhead that our method incurs is relatively negligible.
Our contributions are as follows:

• We first prove the existence of explicit choice for the penalty parameter by establishing
a strong convexity-like condition of the nonconvex penalty problem associated with the
Stiefel manifold constraint. Our convergence theory also allows for the use of a constant step
size, which improves the result of convergence to neighborhood (Ablin & Peyré, 2022) and
simplifies the hyperparameter tuning process. Furthermore, for the given penalty parameter,
under mild conditions, we prove that the iterates of our proposed retraction-free gradient
descent method eventually land on the Stiefel manifold and achieve the optimality of (1).

• Building upon the established landing theory of retraction-free and penalty parameter-free
method and the AdamW framework, we propose a new method, Manifold-LoRA, which
employs a carefully designed step size strategy to accelerate the training process of fine-
tuning. Compared with the conventional AdamW method, we use the penalized gradient
instead of the usual gradient, and the computational overhead is negligible.

• Numerical experiments are conducted on a wide range of NLP tasks, demonstrating the
efficiency of our algorithm. Specifically, compared to the vanilla LoRA, our Manifold-LoRA
with half the trainable parameters not only delivers fast convergence but also yields improved
generalization. In particular, our method converges twice as fast as baseline methods on
several typical datasets, including the SQuAD 2.0 dataset and the CoLA dataset.

1.1 RELATED WORK

Optimization over the Stiefel manifold. Optimization over the Stiefel manifold has attracted lots of
attention due to its broad applications. Through the use of retraction, known as the generalization of
the exponential map, the Riemannian gradient descent is proposed (Absil et al., 2008; Boumal, 2023;
Hu et al., 2020), where all iterates lie on the manifold. When such retraction is computationally costly,
the authors (Gao et al., 2018) develop a retraction-free algorithm based on the augmented Lagrangian
method. More recently, by defining the constraint dissolving operator and adding a sufficiently
large penalty term, the authors (Xiao et al., 2024) convert the manifold constrained problem (1) into
an unconstrained problem and then apply unconstrained optimization algorithms. Inspired by the
convergence of Oja’s flow, a retraction-free method is developed in (Ablin & Peyré, 2022) for the
squared Stiefel manifold (i.e., d = r), where the landing flow consists of the projected gradient and
the gradient of the penalty function. All of these methods rely on an unknown penalty parameter to
ensure the convergence. This motivates us to design penalty parameter-free algorithms, which could
significantly reduce the need for tuning parameters in practical implementations.

LoRA. There are numerous variants of LoRA aiming to improve performance or reduce memory
usage. AdaLoRA (Zhang et al., 2023), a well-known successor, introduces the idea of adaptively
adjusting the rank of different layers by incorporating an additional vector g to serve as the diagonal
of a singular value matrix. This approach leverages a revised sensitivity-based importance measure to
decide whether to disable entries in vector g and in matrices A and B. A similar work, SoRA (Ding
et al., 2023), adopts the same model architecture as AdaLoRA, but proposes a different way to update
vector g after training. This update rule is the proximal gradient of L1 loss, acting as a post-pruning
method. Additionally, based on the idea that networks with random initialization contain subnetworks
that are optimal(Frankle & Carbin, 2018), VeRA is proposed in (Kopiczko et al., 2023) to reduce
memory overhead. Although LoRA has gained significant popularity and various variants have been

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

developed, the potential for efficient training through leveraging the manifold geometry to reduce
redundancy has not been well-explored.

1.2 NOTATION

For a matrix X ∈ Rd×r, we use ∥X∥ to denote its Frobenius norm. For a squared matrix A ∈ Rr×r,
we define sym(A) = A+A⊤

2 and use diag(A) ∈ Rr to denote its diagonal part. For two matrices
X,Y ∈ Rd×r, we use ⟨X,Y ⟩ :=

∑d
i=1

∑r
j=1 XijYij to denote their Euclidean inner product. For

a differential function f : Rd×r → R, we use ∇f(X) to denote its Euclidean gradient at X . We
define USt(d,r)(

1
8) = {X ∈ Rd×r | dist(X,St(d, r)) < 1

8} and ŪSt(d,r)(
1
8) = {X ∈ Rd×r |

dist(X,St(d, r)) ≤ 1
8} with dist(X,St(d, r)) := minY ∈St(d,r) ∥Y −X∥.

2 PRELIMINARIES

2.1 RETRACTION-BASED MANIFOLD OPTIMIZATION

Manifold optimization has attracted much attention in the past few decades, as evident in works such
as Absil et al. (2008); Hu et al. (2020); Boumal (2023). For the Stiefel manifold St(d, r), its tangent
space is denoted by TXM. The tangent space TXM of M at X is defined as the set of all tangent
vectors. For a differentiable f , the Riemannian gradient g̃radf(X) ∈ TXM is the unique tangent
vector satisfying 〈

g̃radf(X), ξ
〉
X

= df(X)[ξ],∀ξ ∈ TXM,

where ⟨·, ·⟩X is the Riemannian metric and df denotes the differential of function f . If M is a
submanifold embedded in Rd×r, the function f can be extended to Rd×r, and setting the Riemannian
metric as the Euclidean metric, then the Riemannian gradient of f at X can be computed as

g̃radf(X) = PTXM(∇f(X)),

where PTXM represents the orthogonal projection onto TXM. The normal space NXM is defined as
the orthogonal complement of TXM in Rd×r. In the design of Riemannian algorithms, an essential
concept is the so-called retraction operator. A retraction operator R at X , denoted as RX , is a
mapping from TXM to M that satisfies the following two conditions:

• RX(0X) = X , where 0X is the zero element of TXM.

• d
dtRX(tξX) |t=0= ξX for any ξX ∈ TXM.

It is well-known that the retraction operator is a generalization of the exponential map (Absil et al.,
2008). The iterative scheme of a Riemannian gradient descent method is usually given by

Xk+1 = RXk
(tkg̃radf(Xk)),

where tk > 0 is a step size. For the Stiefel manifold St(d, r), the Riemannian gradient is g̃radf(X) =
∇f(X) − Xsym(X⊤∇f(X)), and there are several choices for the retraction R, such as the
exponential map, the Cayley transform, the QR decomposition, and the polar decomposition, see (Hu
et al., 2020) for details. Among them, the Cayley transformation proposed by (Wen & Yin, 2013) is
popularly used. It can be expressed as

RCayley
X (−η) = X − U

(
I2r +

1

2
V ⊤U

)−1

V ⊤X,

where U = [(I − 1
2XX⊤)η,X], V = [X,−(I − 1

2XX⊤)η] ∈ Rd×(2r). This needs to inverse an
(2r)-by-(2r) matrix and the total computational flops from (Jiang & Dai, 2015) is 4dr2 + 40

3 r3,
which could be fast calculated for small r.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 PROXIMAL SMOOTHNESS

The notion of proximal smoothness, as introduced by (Clarke et al., 1995), refers to the characteristic
of a closed set whereby the nearest-point projection becomes a singleton when the point is close
enough to the set. This property facilitates algorithmic and theoretical advancements by endowing
nonconvex sets with convex-like structural attributes. Specifically, for any positive real number γ,
we define the γ-tube around M as UM(γ) := {X : dist(X,M) < γ}. We say a closed set M is
γ-proximally smooth if the projection operator PM(X) := argminY ∈M ∥Y −X∥2 is a singleton
whenever X ∈ UM(γ).

Obviously, any closed and convex set is proximally smooth for arbitrary γ ∈ (0,∞). According to
(Clarke et al., 1995, Corollary 4.6), a closed set M is convex if and only if it is proximally smooth
with a radius of γ for every γ > 0. It is worth noting that the Stiefel manifold is 1-proximally smooth.
By following the proof in (Clarke et al., 1995, Theorem 4.8),∥∥PSt(d,r)(X)− PSt(d,r)(X)

∥∥ ≤ 2∥X − Y ∥, ∀X,Y ∈ ŪSt(d,r)(
1

2
). (2)

Note that for any closed convex set M ⊂ Rd×r, the projection operator PM is 1-Lipschitz continuous
over Rd×r. The singleton property and the Lipschitz continuity (2) from the proximal smoothness
make St(d, r) locally behave like a convex set.

3 RETRACTION-FREE AND PENALTY PARAMETER-FREE OPTIMIZATION OVER
THE STIEFEL MANIFOLD

In this section, we focus on the design of retraction-free and penalty parameter-free algorithms for
solving problem (1). We will first present the retraction-free algorithm and then show how the penalty
parameter can be explicitly determined by characterizing the landscape of the penalty function.

3.1 RETRACTION-FREE ALGORITHMS

Inspired by the retraction-free algorithms (Gao et al., 2018; Xiao et al., 2024; Ablin & Peyré, 2022),
we consider the following retraction-free gradient descent method for problem (1):

Xk+1 = Xk − αgradf(Xk)− µXk(X
⊤
k Xk − I), (3)

where α, µ > 0 are step sizes and the projected gradient gradf(Xk) := ∇f(Xk) −
Xksym(X⊤

k ∇f(Xk)). Note that the tangent space of St(d, r) is TXk
St(d, r) := {ξ ∈ Rd×r :

X⊤
k ξ+ ξ⊤Xk = 0}. Then, for Xk ∈ St(d, r), gradf(Xk) is the projection of the Euclidean gradient

∇f(Xk) to the tangent space, i.e., gradf(Xk) = g̃radf(Xk). Note that the term Xk(X
⊤
k Xk − I) is

exactly the gradient of the following quadratic penalty function

φ(X) :=
1

4
∥X⊤X − I∥2.

As will be shown in our theorem, the negative gradient −∇φ(Xk) pulls the iterate Xk+1 back to the
manifold, while the use of the projected gradient gradf(Xk) is crucial for ensuring its asymptotic
orthogonality with ∇φ(Xk), resulting in landing on the manifold and convergence to a stationary
point. This differs with the usual penalty method, which optimizes f(X) + µφ(X) using the update
Xk+1 = Xk − α∇f(Xk)− µXk(X

⊤
k Xk − I), and requires µ → ∞ to guarantee the feasibility.

Compared with the popularly used Cayley transformation-based retraction-type algorithms, the
computational cost therein is 4dr2 + 40

3 r3, which is more than twice the cost of our method at
2dr2 for any r. Moreover, retractions on the Stiefel manifold involve complex orthogonalization
procedures, such as matrix inversion in the Cayley transformation, which are difficult to scale and
parallelize. In contrast, the landing update (3) can be executed using scalable BLAS3 operations.

3.2 EXPLICIT CHOICE FOR THE PENALTY PARAMETER

It is known that a large penalty parameter yields better feasibility (Nocedal & Wright, 1999, Chapter
17). To make the iterative scheme (3) be penalty parameter-free, we need a careful investigation on

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the landscape of the following optimization problem:

min
X∈Rd×r

φ(X). (4)

It can be easily verified that problem (4) is nonconvex and its optimal solution set is St(d, r). The
key of obtaining an explicit formula of µ is to establish certain strong convexity-type inequality and
show the gradient descent method with step size µ has linear convergence.

For any X ∈ Rd×r, let us denote X̄ := PSt(d,r)(X). Let X = USV ⊤ be the singular value
decomposition with orthogonal matrices U ∈ Rd×r, V ∈ Rr×r and diagonal matrix S ∈ Rr×r, then
X̄ = UV ⊤. Building on these notations, we demonstrate that problem (4) satisfies the restricted
secant inequality (RSI) (Zhang & Yin, 2013), which serves as an alternative to the strong convexity
in the linear convergence analysis of gradient-type methods.
Lemma 1. For any X ∈ Rd×r with ∥X − X̄∥ ≤ 1

8 , we have〈
∇φ(X), X − X̄

〉
≥ ∥X − X̄∥2. (5)

With the above RSI, we have the linear convergence of the gradient descent update for (4), i.e.,

Xk+1 = Xk − µ∇φ(Xk). (6)

Lemma 2. Let the sequence {Xk} be generated by (6) with µ = 1
3 . Suppose that ∥X0 − X̄0∥ ≤ 1

8 .
We have

∥Xk+1 − X̄k+1∥2 ≤ 2

3
∥Xk − X̄k∥2. (7)

The proofs of Lemmas 1 and 2 can be found in Appendix A.

3.3 LANDING ON THE STIEFEL MANIFOLD

Building on the established linear convergence of gradient descent for problem (4), we are now able
to show that the iterates generated by (3) will land on the Stiefel manifold eventually, and the limiting
point is a stationary point of (1), i.e., gradf(X∞) = 0.

Let us start with the Lipschitz continuity of gradf(X). For any X ∈ ŪSt(d,r)(
1
8), we define

PTXSt(d,r)(U) = U −Xsym(X⊤U) for U ∈ Rd×r. We first have the following quadratic upper
bound on f from its twice differentiability and the compactness of St(d, r).
Lemma 3. There exists a constant L > 0 such that for any X,Y ∈ St(d, r), the following quadratic
upper bound holds:

f(Y) ≤ f(X) + ⟨gradf(X), Y −X⟩+ L

2
∥Y −X∥2. (8)

In addition, there exists a constant L̂ > 0 such that for any X ∈ St(d, r), Y ∈ ŪSt(d,r)(
1
8),

∥gradf(X)− gradf(Y)∥ ≤ L̂∥X − Y ∥. (9)

By the linear convergence result in Lemma 2, we have the following bound on the feasibility error.
Lemma 4. Let {Xk} be the sequence generated by (3) with µ = 1

3 and ∥X0 − X̄0∥ ≤ 1
8 . We have

∥Xk+1 − X̄k+1∥ ≤
√

2

3
∥Xk − X̄k∥+ α∥gradf(Xk)∥. (10)

The following one-step descent lemma on f is crucial in establishing the convergence.
Lemma 5. Let {Xk} be the sequence generated by (3) with µ = 1

3 and ∥X0 − X̄0∥ ≤ 1
8 . We have

f(X̄k+1)− f(X̄k) ≤− (α− (4L̂2 + 4L+ 1)α2)∥gradf(Xk)∥2 +
1

2
∥Xk+1 − X̄k+1∥2

+
1

2

(
4D̂f + 8L̂2 + 8L+ 3

)
∥Xk − X̄k∥2.

(11)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

From the above lemma, the one-step descrease on f is related to both the gradient norm of f and
the feasibility error. Regarding convergence, we need both gradf(Xk) and ∥X⊤

k Xk − I∥ converge
to 0. The following theorem shows that the retraction-free and penalty parameter-free update (3)
converges.

Theorem 1. Let {Xk} be the sequence generated by (3) with µ = 1
3 and ∥X0 − X̄0∥ ≤ 1

8 . If the
step size α < 1

2c1
for some c1 large enough, then we have

min
k=0,...,K

∥gradf(Xk)∥2 ≤ 1

K
, min

k=0,...,K
∥X⊤

k Xk − I∥2 ≤ 1

K
. (12)

The proofs of the above lemmas and theorem are presented in Appendix A.

Remark 1. In comparison to the landing algorithm (Ablin & Peyré, 2022), which only addresses the
squared Stiefel manifold and requires tuning both parameters α and µ, our method handles general
Stiefel manifolds and only requires searching for the parameter α, as indicated by Theorem 1.

Remark 2. Theorem 1 establishes the exact convergence of our proposed retraction-free method
(3) with a constant step size. In contrast, the landing algorithm in (Ablin & Peyré, 2022) converges
only to a neighborhood whose size depends on the step size, as discussed in the paragraph following
Proposition 10 of their paper. Moreover, our iteration complexity of O(1/K) is on par with retraction-
based algorithms (Boumal et al., 2019).

4 ACCELERATE LORA FINE-TUNING WITH LANDING

In this section, we will first clarify where the Stiefel manifold constraint comes from in the LoRA
fine-tuning. Then, we will apply the above developed retraction-free and penalty parameter-free
method to enhance LoRA fine-tuning.

4.1 MANIFOLD OPTIMIZATION FORMULATION OF LORA FINE-TUNING

In neural networks, the dense layers perform matrix multiplication, and the weight matrices in these
layers usually have a full rank. However, when adapting to a specific task, pre-trained language models
have been shown to have a low intrinsic dimension, allowing them to learn efficiently even with a
random projection to a smaller subspace. One possible drawback in the current LoRA fine-tuning
framework is that the low-rank decomposition ∆W into product BA is not unique. Specifically, for
any invertible matrix C, it holds that BA = (BC)(C−1A). Note that BC shares the same column
space with B. This suggests us optimizing the subspace generated by B instead of B itself. Numerous
studies in the field of low-rank optimization, e.g., (Boumal & Absil, 2011; Dai et al., 2011; 2012),
investigate the manifold geometry of the low-rank decomposition and develop efficient algorithms.
However, such geometry has not been explored in the LoRA fine-tuning.

To address such redundancy (i.e., the non-uniqueness of BA representations), we regard B as the basis
through the manifold constraint and A as the coordinate of ∆W under B. Hence, the optimization
problem can be formulated as

min
A,B

L(BA), subject to B ∈ St(d, r) or B ∈ Ob(d, r), (13)

where Ob(d, r) := {B ∈ Rd×r : diag(B⊤B) = 1} and L represents the loss function. Compared
to the Stiefel manifold St(d, r), the oblique manifold Ob(d, r) necessitates that the matrix B has
unit norms in its columns, without imposing requirements for orthogonality between the columns.
Problem (13) is an optimization problem over the product of manifolds and Euclidean spaces.

4.2 MANIFOLD-LORA

The retraction-free method is well-suited to address (13), simultaneously minimizing the loss function
L(BA) and constraint violation. To control the constraint violation, we use the quadratic penalties
Rs(B) := ∥B⊤B − I∥2 and Ro(B) := ∥diag(B⊤B) − 1∥2 for the Stiefel manifold and oblique
manifold, respectively. As shown in the landing theory in Section 3, we shall use the projected

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1: Manifold-LoRA
Input: Initial point A0, B0, µ ∈ R, β1 = 0.9, β2 = 0.999, upper bound ≥ lower bound > 0,

ϵ = 10−8, λ > 0, and k = 0.
while Stopping conditions not met do

for C ∈ {A,B} do
if C = B then

Set g(Ck) according to (14) or (15) using the stochastic estimate of∇BL(BkAk)
// Projected gradient for matrix B

else
Set g(Ck) to be the stochastic estimate of∇AL(BkAk)

end
end
m(Ck)← β1m(Ck) + (1− β1)g(Ck)

v(Ck)← β2v(Ck) + (1− β2)g
2
t (Ck)

m̂(Ck)← m(Ck)

1−βt
1

v̂(Ck)← v(Ck)

1−βt
2

η(Ck)← clip(normCk , upper bound, lower bound)
// Scheduling step size of matrix A and B

Ck ← Ck−1 − ηt(Ck)
(
m̂t(Ck)/

(√
v̂t(Ck) + ϵ

))
− λCk−1

if C = B then
Ck ← Ck − µ∇Rs(Ck)(or∇Ro(Ck)) // Apply penalty gradient for
matrix B

end
end
k ← k + 1

end

gradient of the loss part instead of the Euclidean gradient. For the Stiefel manifold and the oblique
manifold, the respective projected gradients are

gradBL(BA) = ∇BL(BA)−Bsym(B⊤∇BL(BA)) (14)

and
gradBL(BA) = ∇BL(BA)−Bdiag(diag(B⊤∇BL(BA))). (15)

Thus, the gradients of our retraction-free method for A and B are ∇AL(BA) and gradBL(BA) +
µ∇Rs(B)(or∇Ro(B)).

Note that B and A represent the basis and the coordinate of ∆W , respectively. This results in
different magnitudes and different Lipschitz constants of their gradient function. In fact, let X = BA.
It follows

∇AL(BA) = B⊤∇XL(X), ∇BL(BA) = ∇XL(X)A⊤.

Then,
∥∇AL(BA1)−∇L(BA2)∥ ≤ ∥B∥2Lg∥A1 −A2∥,
∥∇BL(B1A)−∇L(B2A)∥ ≤ ∥A∥2Lg∥B1 −B2∥,

where Lg is the Lipschitz constant of ∇XL(X) and ∥ · ∥2 represent the matrix ℓ2 norm (i.e., the
largest singular value). Note that the step size generally should be propositional to the reciprocal of
Lipschitz constant for the gradient type algorithms (Nocedal & Wright, 1999; Bottou et al., 2018).
Hence, we schedule the learning rates for the two matrices based on their respective ℓ2 norms. Having
prepared the above, we incorporate the AdamW optimizer (Loshchilov & Hutter, 2018) with our
manifold-accelerated technique to enhance the LoRA fine-tuning, as presented in Algorithm 1.

5 EXPERIMENTS

In this section, we delve into the experimental results and their detailed analysis. This discussion is
structured around two principal areas: (1) the performance gain compared to other mainstream fine-
tuning methods and accelerated convergence achieved through our manifold-constrained optimization
approach; (2) the convergence of matrix B onto the manifold, illustrated by the heat map of B⊤B.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.1 NATURAL LANGUAGE UNDERSTANDING

We evaluate our backbone model DeBERTaV3-base (He et al., 2021) on GLUE (Wang et al., 2018)
benchmark containing nine subdatasets, including MNLI (Williams et al., 2017), SST-2 (Socher et al.,
2013), CoLA (Warstadt et al., 2019), QQP (Wang et al., 2018), QNLI (Rajpurkar et al., 2016), RTE
(Bentivogli et al., 2009), MRPC (Dolan & Brockett, 2005), and STS-B (Wang et al., 2018).

Manifold-LoRA exhibits superior performance on GLUE benchmark compared to other
memory-equivalent methods. Experimental results of the GLUE benchmark are recorded in Table
1. It can be seen that our method is superior to other baselines on most tasks. Notably, for RTE and
STS-B datasets, both sphere-constrained (i.e., oblique manifold-constrained) and Stiefel-constrained
have an obvious performance gain even with only half the trainable parameters compared to the
LoRA baseline, i.e., Spherer=8 and Stiefelr=8 beat LoRAr=16. Note that Manifold-LoRA and the
baselines have the same memory requirement under same rank r.

Manifold-LoRA achieves faster convergence across multiple datasets. In addition, with the help
of manifold geometry, the fine-tuning process can be significantly accelerated compared to the vanilla
AdamW optimizer, achieving a lower training loss, as shown in Figure 1. Particularly, on the CoLA
dataset presented in Figure 1a, our approach achieves the same training loss as the standard Adam
optimizer but requires nearly half the number of epochs.

5.2 QUESTION ANSWERING

We conduct an evaluation on two question answering datasets: SQuAD v1.1 (Rajpurkar et al., 2016)
and SQuADv2.0 (Rajpurkar et al., 2018). Manifold-LoRA is used to fine-tune DeBERTaV3-base for
these tasks, which are treated as sequence labeling problems predicting the probability of each token
as the start or end of an answer span. The main experimental results are presented in Table 2.

Manifold-LoRA surpasses full fine-tuning on question answering task . Notably, our proposed
algorithm outperforms fine-tuning methods, which requires three times larger memory consumption
compared to Manifold-LoRA. Moreover, as demonstrated in Table 2, Manifold-LoRA outperforms
all other baselines on both Stiefel and Sphere settings, regardless of whether r = 8 or r = 16.

Our method converges twice as fast as baseline methods on SQuAD datasets. Additionally,
we plot the training loss against epochs in Figure 2. We can suggest that the proposed Manifold-
LoRA method achieves a 2x speed-up in training epochs compared to AdamW, while simultaneously
improving model performance. We also illustrate the heat map of B⊤B in Figure 3, which indicates
that the matrix B lands on the manifold eventually. This supports our assertion that landing on
manifold enhances the performance of LoRA.

5.3 NATURAL LANGUAGE GENERATION

The E2E NLG Challenge(Novikova et al., 2017), as introduced by Novikova, provides a dataset for
training end-to-end, data-driven natural language generation systems, widely used in data-to-text
evaluations. The E2E dataset comprises approximately 42,000 training examples, 4,600 validation
examples, and 4,600 test examples, all from the restaurant domain. We test our method on the E2E
dataset using GPT-2 Medium and Large models, following the experimental setup outlined by LoRA.
For LoRA, we set the hyperparameters to match those specified in the original paper. The results from
the E2E dataset are recorded in Table 3, where we focus on comparing LoRA and Manifold-LoRA.
The results clearly indicate that our proposed algorithm outperforms the established baselines.

6 CONCLUSION

Optimization over the Stiefel manifold has been widely used in machine learning tasks. In this work,
we develop a retraction-free and penalty parameter-free gradient method, and prove that the generated
iterates eventually land on the manifold and achieve the optimality simultaneously. Moreover, our
convergence theory enables the use of a constant step size, improving on previous results that only
ensured convergence to a neighborhood. We then apply this landing theory to avoid the possible
redundancy of LoRA fine-tuning in LLMs. Specifically, we reformulate the LoRA fine-tuning as
an optimization problem over the Stiefel manifold, and propose a new algorithm, Manifold-LoRA,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: We present results using DeBERTaV3-base on the GLUE benchmark. For MNLI, we report the
accuracy (combining matched and mismatched sets), with the left panel representing matched subset and the
right panel representing mismatched subset. For CoLA, we report Matthew’s correlation, and for STS-B, we
report Pearson correlation. For all other tasks, we report accuracy. All metrics are same as the original LoRA
paper (Hu et al., 2021). Higher values are better for all metrics. The best results are highlighted in bold.

Method # Params MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B All
Acc Acc Mcc Acc / F1 Acc Acc Acc Corr Ave.

Full
FT

184.42M 90.45/90.60 95.48 68.17 91.99/89.12 93.60 79.28 88.93 90.92 87.85

Adapter 0.61M 90.13/90.16 94.86 69.37 91.38/88.46 93.54 81.87 89.12 91.52 88.06
BitFit 0.06M 87.08/86.39 94.88 69.11 87.96/84.35 92.19 76.52 87.06 90.96 85.65
LoRAr=8 0.30M 90.20/90.08 94.93 68.14 90.78/87.68 93.85 80.15 90.40 90.29 87.60
LoRAr=16 0.59M 90.44/90.12 95.41 68.19 90.92/87.77 94.00 80.58 90.20 90.34 87.74
Spherer=8 0.30M 90.37/90.09 95.48 69.55 91.25/88.34 94.02 82.44 91.55 91.26 88.44
Spherer=16 0.59M 90.52/90.19 95.64 70.14 91.46/88.65 94.29 82.16 91.67 91.59 88.63
Stiefelr=8 0.30M 90.25/89.99 95.46 69.85 91.44/88.60 94.09 83.16 91.18 91.22 88.52
Stiefelr=16 0.59M 90.26/90.28 95.76 68.92 91.71/89.00 94.10 82.16 91.10 91.51 88.48

0 5 10 15 20 25
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

Lora
Sphere
Stefiel

(a) Loss curves on CoLA dataset.

0 1 2 3 4 5
Epoch

0.150

0.175

0.200

0.225

0.250

0.275

0.300

Lo
ss

Lora
Sphere
Stefiel

(b) Loss curves on QQP dataset.

0 5 10 15 20 25
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

Lora
Sphere
Stefiel

(c) Loss curves on STSB dataset.

Figure 1: The figures illustrate that both sphere constrained and Stiefel constrained manifold-LoRA achieve
a faster convergence rate and attain a lower training loss within same optimization steps compared to LoRA
method on three distinct datasets CoLA, QQP, STS-B.

1 2 3 4
Epoch

0.5

1.0

1.5

2.0

2.5

Tr
ai

n
Lo

ss

Lora
Sphere
Stefiel

(a) SQuADv2.0 Train Loss

1 2 3 4
Epoch

60

65

70

75

80

85

Ex
ac

t M
at

ch

Lora
Sphere
Stefiel

(b) SQuADv2.0 Eval Exact Match

1 2 3 4
Epoch

65

70

75

80

85

90

Ev
al

 F
1

Lora
Sphere
Stefiel

(c) SQuADv2.0 Eval F1

Figure 2: The figures compare the training loss, evaluation exact match, and evaluation F1 metrics
against epochs for the SQuADv2.0 dataset. It can be clearly seen that our proposed Manifold-LoRA
method almost achieves a 2x speed-up in training epochs compared to the vanilla LoRA.

which incorporates a careful analysis of step sizes to enable fast training using the landing properties.
Extensive experimental results demonstrate that our approach not only accelerates the training process
but also yields significant performance improvements.

Our study suggests several potential directions for future research. Although the established landing
theory focuses on the Stiefel manifold, extending this theory to general manifolds, is one potential
direction. Additionally, evaluating the performance of Manifold-LoRA on LLMs with billions of
parameters would be valuable. Due to the heterogeneity of different layers, incorporating adaptive
ranks for ∆W across different layers is another possible direction. This may be achievable by adding
sparsity regularization to the coordinate matrix A.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Results with DeBERTaV3-base on SQuAD v1.1 and SQuADv2.0. We report EM/F1. The best results
in each setting are shown in bold.

Methods Params SQuADv1.1 SQuADv2.0

Full FT 184M 86.30 / 92.85 84.30 / 87.58
Adapterr=16 0.61M 87.46 / 93.41 85.30 / 88.23
Adapterr=32 1.22M 87.53 / 93.51 85.42 / 88.36

Bitfit 0.07M 80.26 / 88.79 74.21 / 87.19
LoRAr=8 1.33M 87.90 / 93.88 85.56 / 88.52
LoRAr=16 2.65M 87.94 / 93.75 85.90 / 88.81
Spherer=8 1.33M 88.51 / 94.25 86.33 / 89.20
Spherer=16 2.65M 88.32 / 94.03 86.15 / 89.03
Stiefelr=8 1.33M 88.68 / 94.23 86.35 / 89.09
Stiefelr=16 2.65M 88.25 / 94.04 86.41 / 89.22

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

layer.2.value_proj

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

layer.2.attention.output

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

layer.2.intermediate.dense

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

layer.2.output.dense

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

layer.3.query_proj

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

layer.3.key_proj

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

layer.3.value_proj

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

layer.3.attention.output

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

layer.2.value_proj

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

layer.2.attention.output

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

layer.2.intermediate.dense

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

layer.2.output.dense

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

layer.3.query_proj

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

layer.3.key_proj

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

layer.3.value_proj

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

layer.3.attention.output

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Figure 3: The heat map of B⊤B with the Stiefel manifold (the first and second rows) and the oblique
manifold (the third and fourth rows) at the end of training on SQuADv2.0 dataset.

Table 3: GPT-2 medium (M) and large (L) models were evaluated on the E2E NLG Challenge. * denotes results
from previously published works.

Model Parameters BLEU NIST MET ROUGE-L CIDEr

GPT-2 M (FT)* 354.92M 68.2 8.62 46.2 71.0 2.47
GPT-2 M (AdapterL)* 11.09M 68.9 8.71 46.1 71.3 2.47
GPT-2 M (AdapterH)* 11.09M 67.3±.6 8.50±.07 46.0±.2 70.7±.2 2.44±.01

GPT-2 M (FTTop2)* 25.19M 68.1 8.59 46.0 70.8 2.41
GPT-2 M (PreLayer)* 0.35M 69.7 8.81 46.1 71.4 2.49

GPT-2 M (LoRA) 0.35M 68.9 8.69 46.5 71.5 2.51
GPT-2 M(Stiefel) 0.35M 70.1 8.82 46.8 71.7 2.53
GPT-2 M(Sphere) 0.35M 70.3 8.83 46.7 71.7 2.52

GPT-2 L (FT)* 774.03M 68.5 8.78 46.0 69.9 2.45
GPT-2 L (AdapterL)* 23.00M 68.9±.3 8.70±.04 46.1±.1 71.3±.2 2.45±.02

GPT-2 L (PreLayer)* 0.77M 70.3 8.85 46.2 71.7 2.47
GPT-2 L (LoRA) 0.77M 70.1 8.82 46.7 72.0 2.53
GPT-2 L(Stiefel) 0.77M 70.4 8.86 46.8 72.1 2.53
GPT-2 L(Sphere) 0.77M 70.9 8.92 46.8 72.5 2.55

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Pierre Ablin and Gabriel Peyré. Fast and accurate optimization on the orthogonal manifold without
retraction. In International Conference on Artificial Intelligence and Statistics, pp. 5636–5657.
PMLR, 2022.

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds.
Princeton University Press, 2008.

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International conference on machine learning, pp. 1120–1128. PMLR, 2016.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The Fifth PASCAL Recognizing
Textual Entailment Challenge. TAC, 7(8):1, 2009.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM review, 60(2):223–311, 2018.

Nicolas Boumal. An introduction to optimization on smooth manifolds. Cambridge University Press,
2023.

Nicolas Boumal and Pierre-antoine Absil. RTRMC: A Riemannian trust-region method for low-rank
matrix completion. Advances in neural information processing systems, 24, 2011.

Nicolas Boumal, Pierre-Antoine Absil, and Coralia Cartis. Global rates of convergence for nonconvex
optimization on manifolds. IMA Journal of Numerical Analysis, 39(1):1–33, 2019.

Robert S Chen, Brendan Lucier, Yaron Singer, and Vasilis Syrgkanis. Robust optimization for
non-convex objectives. Advances in Neural Information Processing Systems, 30, 2017.

Shixiang Chen, Alfredo Garcia, Mingyi Hong, and Shahin Shahrampour. Decentralized Riemannian
gradient descent on the Stiefel manifold. In International Conference on Machine Learning, pp.
1594–1605. PMLR, 2021.

Minhyung Cho and Jaehyung Lee. Riemannian approach to batch normalization. Advances in Neural
Information Processing Systems, 30, 2017.

Francis H Clarke, Ronald J Stern, and Peter R Wolenski. Proximal smoothness and the lower-C2
property. Journal of Convex Analysis, 2(1-2):117–144, 1995.

Wei Dai, Olgica Milenkovic, and Ely Kerman. Subspace evolution and transfer (SET) for low-rank
matrix completion. IEEE Transactions on Signal Processing, 59(7):3120–3132, 2011.

Wei Dai, Ely Kerman, and Olgica Milenkovic. A geometric approach to low-rank matrix completion.
IEEE Transactions on Information Theory, 58(1):237–247, 2012.

Kangkang Deng and Jiang Hu. Decentralized projected Riemannian gradient method for smooth
optimization on compact submanifolds. arXiv preprint arXiv:2304.08241, 2023.

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and Maosong Sun.
Sparse low-rank adaptation of pre-trained language models. arXiv preprint arXiv:2311.11696,
2023.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Third international workshop on paraphrasing (IWP2005), 2005.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Bin Gao, Xin Liu, Xiaojun Chen, and Ya-xiang Yuan. A new first-order algorithmic framework
for optimization problems with orthogonality constraints. SIAM Journal on Optimization, 28(1):
302–332, 2018.

Bin Gao, Guanghui Hu, Yang Kuang, and Xin Liu. An orthogonalization-free parallelizable frame-
work for all-electron calculations in density functional theory. SIAM Journal on Scientific Comput-
ing, 44(3):B723–B745, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding sharing. arXiv preprint arXiv:2111.09543,
2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Jiang Hu, Xin Liu, Zai-Wen Wen, and Ya-Xiang Yuan. A brief introduction to manifold optimization.
Journal of the Operations Research Society of China, 8:199–248, 2020.

Shengding Hu, Ning Ding, Weilin Zhao, Xingtai Lv, Zhen Zhang, Zhiyuan Liu, and Maosong Sun.
Opendelta: A Plug-and-play Library for Parameter-efficient Adaptation of Pre-trained Models.
arXiv preprint arXiv:2307.03084, 2023.

Bo Jiang and Yu-Hong Dai. A framework of constraint preserving update schemes for optimization
on Stiefel manifold. Mathematical Programming, 153(2):535–575, 2015.

Lingkai Kong, Yuqing Wang, and Molei Tao. Momentum Stiefel Optimizer, with Applications to
Suitably-Orthogonal Attention, and Optimal Transport. In International Conference on Learning
Representations, 2023.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki Markus Asano. Vera: Vector-based random
matrix adaptation. arXiv preprint arXiv:2310.11454, 2023.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2018.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. The E2E dataset: New challenges for
end-to-end generation. arXiv preprint arXiv:1706.09254, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao Chen, Michihiro Yasunaga, and Diyi
Yang. Is chatgpt a general-purpose natural language processing task solver? arXiv preprint
arXiv:2302.06476, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for SQuAD. arXiv preprint arXiv:1806.03822, 2018.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods in natural language processing, pp.
1631–1642, 2013.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, 7:625–641, 2019.

Zaiwen Wen and Wotao Yin. A feasible method for optimization with orthogonality constraints.
Mathematical Programming, 142(1):397–434, 2013.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38–45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Nachuan Xiao, Xin Liu, and Kim-Chuan Toh. Dissolving constraints for Riemannian optimization.
Mathematics of Operations Research, 49(1):366–397, 2024.

Jinming Xu, Shanying Zhu, Yeng Chai Soh, and Lihua Xie. Augmented distributed gradient methods
for multi-agent optimization under uncoordinated constant stepsizes. In 2015 54th IEEE Conference
on Decision and Control (CDC), pp. 2055–2060. IEEE, 2015.

Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Hui Zhang and Wotao Yin. Gradient methods for convex minimization: better rates under weaker
conditions. arXiv preprint arXiv:1303.4645, 2013.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo
Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh International
Conference on Learning Representations, 2023.

13

https://www.aclweb.org/anthology/2020.emnlp-demos.6

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOFS

Proof of Lemma 1

Proof. Denote the SVD of X by X = USV ⊤. Then, it holds that dist(X,St(d, r)) = ∥X − X̄∥ =
∥s− 1∥2, where s = diag(S). Based on the assumption that ∥X − X̄∥ ≤ 1

8 , we have 7
8 ≤ si ≤ 9

8
for any i. Therefore, it follows that〈

∇φ(X), X − X̄
〉
=

〈
USV ⊤(V S2V ⊤ − I), USV ⊤ − UV ⊤〉

=
〈
U(S3 − S)V ⊤, U(S − I)V ⊤〉

= tr((S3 − S)(S − I))

≥ min
i

si(si + 1)∥s− 1∥22

≥ 3

2
∥s− 1∥22

=
3

2
∥X − X̄∥2,

where the last inequality comes from mini si(si + 1) ≥ 105
64 ≥ 3

2 . This completes the proof.

Proof of Lemma 2

Proof. It follows from 7
8 ≤ si ≤ 9

8 that

∥∇φ(Xk)∥2 = tr((S3 − S)2) ≤ 6∥Xk − X̄k∥2. (16)
Hence, we have

∥Xk+1 − X̄k+1∥2 ≤ ∥Xk+1 − X̄k∥2

= ∥Xk − 1

3
∇φ(Xk)− X̄k∥2

= ∥Xk − X̄k∥2 −
2

3

〈
Xk − X̄k,∇φ(Xk)

〉
+

1

9
∥∇φ(Xk)∥2

≤ (1− 1 +
2

3
)∥Xk − X̄k∥2

=
2

3
∥Xk − X̄k∥2,

where the first inequality is from X̄k+1 = argminX∈St(d,r) ∥X −Xk+1∥2 and the second inequality
is due to Lemma 1 and (16).

Proof of Lemma 3
Proof. Due to the twice differentiability of f and the compactness of St(d, r), the inequality
(8) directly follows from (Chen et al., 2021, Lemma 2.4) and (Deng & Hu, 2023, Lemma
4.2), where L := Lf + Df with Lf being the Lipschitz constant of ∇f(X) over St(d, r) and
Df := maxX∈St(d,r) ∥∇f(X)∥.

For the second argument, we have
∥gradf(X)− gradf(Y)∥

≤∥PTXSt(d,r)(∇f(X))− PTXSt(d,r)(∇f(Y))∥+ ∥PTXSt(d,r)(∇f(Y))− gradf(Y)∥

≤Lf∥X − Y ∥+ 1

2
∥X(X⊤∇f(Y) +∇f(Y)⊤X)− Y (Y ⊤∇f(Y) +∇f(Y)⊤Y)∥

≤Lf∥X − Y ∥+ 1

2
∥X((X − Y)⊤∇f(Y) +∇f(Y)⊤(X − Y))∥

+
1

2
∥(X − Y)(Y ⊤∇f(Y) +∇f(Y)⊤Y)∥

≤Lf∥X − Y ∥+ 1

2
(2D̂f + 3D̂f)∥X − Y ∥

=(Lf +
5

2
D̂f)∥X − Y ∥,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

where D̂f := maxX∈ŪSt(d,r)(
1
8)
∥∇f(X)∥, the second inequality is due to the contractive property

of PTXSt(d,r), and the last inequality is from the fact that ∥Y ∥2 ≤ 3
2 . By setting L̂ = Lf + 5

2D̂f ,
we complete the proof.

Proof of Lemma 4

Proof. It follows that

∥Xk+1 − X̄k+1∥ ≤ ∥Xk+1 − X̄k∥
≤ ∥Xk − µφ(Xk)− X̄k∥+ α∥gradf(Xk)∥

≤
√

2

3
∥Xk − X̄k∥+ α∥gradf(Xk)∥.

We complete the proof.

Proof of Lemma 5

Proof. First, let us prove the following equality

⟨gradf(X),∇ϕ(X)⟩ =
〈
∇f(X),PTXSt(d,r)(∇ϕ(X))

〉
.

In fact, using the definition of ⟨A,B⟩ = tr(A⊤B), we have

⟨gradf(X),∇ϕ(X)⟩ =
〈
∇f(X)−Xsym(X⊤∇f(X)),∇ϕ(X)

〉
= ⟨∇f(X),∇ϕ(X)⟩ −

〈
Xsym(X⊤∇f(X)),∇ϕ(X)

〉
= ⟨∇f(X),∇ϕ(X)⟩ −

〈
sym(X⊤∇f(X)), X⊤∇ϕ(X)

〉
= ⟨∇f(X),∇ϕ(X)⟩ −

〈
X⊤∇f(X), sym(X⊤∇ϕ(X))

〉
= ⟨∇f(X),∇ϕ(X)⟩ −

〈
∇f(X), Xsym(X⊤∇ϕ(X))

〉
=
〈
∇f(X),PTXSt(d,r)(∇ϕ(X))

〉
.

Then, it follows from (8) that

f(X̄k+1)− f(X̄k) ≤
〈
gradf(X̄k), X̄k+1 − X̄k

〉
+

L

2
∥X̄k+1 − X̄k∥2

≤
〈
gradf(X̄k), X̄k+1 −Xk+1 +Xk − X̄k

〉
+

〈
gradf(X̄k), Xk+1 −Xk

〉
+ 2L∥Xk+1 −Xk∥2

≤
〈
gradf(X̄k), X̄k+1 −Xk+1

〉
+

〈
gradf(X̄k), Xk+1 −Xk

〉
+ 4L(α2∥gradf(Xk)∥2 + µ2∥∇φ(Xk)∥2)

=
〈
gradf(X̄k)− gradf(X̄k+1), X̄k+1 −Xk+1

〉
+ ⟨gradf(Xk), Xk+1 −Xk⟩

+
〈
gradf(X̄k)− gradf(Xk), Xk+1 −Xk

〉
+ 4L(α2∥gradf(Xk)∥2 + µ2∥∇φ(Xk)∥2)

≤2L̂2∥Xk+1 −Xk∥2 +
1

2
∥Xk+1 − X̄k+1∥2 − α∥gradf(Xk)∥2

− µ ⟨gradf(Xk),∇φ(Xk)⟩+
1

2
(L̂2∥Xk − X̄k∥2 + ∥Xk+1 −Xk∥2)

+ 4L(α2∥gradf(Xk)∥2 + µ2∥∇φ(Xk)∥2)

≤− α∥gradf(Xk)∥2 − µ
〈
∇f(Xk),PTXk

St(d,r)(∇φ(Xk))
〉
+

1

2
∥Xk+1 − X̄k+1∥2

+
1

2
∥Xk − X̄k∥2 + (4L̂2 + 4L+ 1)(α2∥gradf(Xk)∥2 + µ2∥∇φ(Xk)∥2)

≤− (α− (4L̂2 + 4L+ 1)α2)∥gradf(Xk)∥2 +
1

2
∥Xk+1 − X̄k+1∥2

+ (6µD̂f +
1

2
+ 6(4L̂2 + 4L+ 1)µ2)∥Xk − X̄k∥2,

(17)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

where the second inequality is from the 2-Lipschitz continuity of PSt(d,r) over ŪSt(d,r)(
1
8), the third

inequality is due to the facts that Xk − X̄k ∈ NX̄k
St(d, r) and ⟨A,B⟩ ≤ 1

2 (∥A∥2 + ∥B∥2) for any
A,B ∈ Rd×r, and the last inequality comes from

∥PTXk
St(d,r)(∇φ(Xk))∥ = ∥Xk(X

⊤
k Xk − I)2∥ ≤ 6∥Xk − X̄k∥2.

Plugging µ = 1
3 into (17) gives (11).

Proof of Theorem.

Proof. First, we show Xk ∈ ŪSt(n,d)(
1
8) for any k ≥ 0 if α ≤ 1

45D̂f
. In fact, by proof of induction,

we have from (10) that

∥Xk+1 − X̄k+1∥ ≤
√

2

3
∥Xk − X̄k∥+

1

45D̂f

∥gradf(Xk)∥ ≤ 1

8
.

Moreover, applying (Xu et al., 2015, Lemma 2) to (10) yields
K∑

k=0

∥Xk − X̄k∥2 ≤ 60α2
K∑

k=0

∥gradf(X̄k)∥2 + 4. (18)

Then, summing (11) over k = 0, . . . ,K gives

f(X̄K+1)− f(X̄0)

≤− (α− (4L̂2 + 4L+ 1)α2)

K∑
k=0

∥gradf(Xk)∥2

+
1

2

(
4D̂f + 8L̂2 + 8L+ 4

)K+1∑
k=0

∥Xk − X̄k∥2

≤− (α− (4L̂2 + 4L+ 1)α2 + 30(4D̂f + 8L̂2 + 8L+ 4)α2)

K∑
k=0

∥gradf(Xk)∥2

+
1

2

(
4D̂f + 8L̂2 + 8L+ 4

)
(60α2∥gradf(XK+1)∥2 + 4).

(19)

Define c1 = 244L̂2 + 244L+ 120D̂f + 121 and c2 = (30D̂2
f + 2)(4D̂f + 8L̂2 + 8L+ 4). Then,

we have

α(1− c1α)

K∑
k=0

∥gradf(Xk)∥2 ≤ f(X̄0)− f(X̄K+1) + c2.

Therefore, for any α ≤ 1
2c1

(which implies α ≤ 1
45D̂f

), taking K → ∞ gives∑∞
k=0 ∥gradf(Xk)∥2 < ∞. Then by (12),

∑∞
k=0 ∥Xk − X̄k∥2 < ∞. These lead to (12).

B EXPERIMENTAL DETAILS

Baselines We compare our approach against several baseline methods, including full fine-tuning,
Adapter (Houlsby et al., 2019), BitFit (Zaken et al., 2021) and LoRA (Hu et al., 2021). The variants
of the Adapter method are excluded from the baselines, as their performance are relatively similar.

Implementation Details Our code is based on Pytorch (Paszke et al., 2019), Huggingface Transform-
ers (Wolf et al., 2020) and an open-source plug-and-play library for parameter-efficient fine-tuning
opendelta (Hu et al., 2023). The bottleneck dimension for the Adapter is set to 16 or 32, ensuring
that the number of trainable parameters aligns closely with that of the LoRA method and the new
layers are inserted into the attention layer and feed-forward layer. The update of LoRA is scaled by a
hyper-parameter α. This value is typically left unmodified, as it is usually set as 16 or 32 and never
tuned (Hu et al., 2021; Yang & Hu, 2020). The exponential moving average parameters β1 and β2 of
AdamW (Loshchilov & Hutter, 2017) are set to their default values of 0.9 and 0.999, respectively.
All the experiments are conducted on NVIDIA A800 GPUs.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

5 10 15 20 25
Epoch

0.60

0.62

0.64

0.66

0.68

0.70

0.72

Ev
al

 M
at

th
ew

s C
or

re
la

tio
n

Lora
Sphere
Stefiel

(a) CoLA evaluation matthews
correlation

0 1 2 3 4 5
Epoch

0.86

0.87

0.88

0.89

0.90

0.91

0.92

Ev
al

 A
cc

ur
ac

y

Lora
Sphere
Stefiel

(b) QQP evaluation accuracy

5 10 15 20 25
Epoch

0.87

0.88

0.89

0.90

0.91

0.92

Ev
al

 P
ea

rs
on

Lora
Sphere
Stefiel

(c) STS-B evaluation pearson

Figure 4: Performance on the validation sets across three datasets. The COLA dataset is evaluated
using the matthews correlation metric, QQP is measured by accuracy, and STS-B is evaluated by
Pearson correlation, all plotted against the number of epochs.

B.1 EXPERIMENTAL RESULTS

We present the omitted experimental results in Section 5. We plot the evaluation loss during training
to further demonstrate that Manifold-LoRA not only accelerates the optimization process but also
achieves better performance metrics more quickly in comparison to the vanilla Adam optimizer. This
highlights Manifold-LoRA’s effectiveness in reaching superior results faster during evaluation.

Manifold-LoRA yields a faster convergence rate. As shown in Figure 4c, both Oblique and Stiefel
constrained have a pronounced convergence speed improvement compared to the vanilla LoRA,
simultaneously achieving better performance.

Manifold-LoRA typically maintains lower variance compared to other methods. The plotted
results represent the average performance over five random seeds, with the shaded regions indicating
the variance. As shown in Figure 4, the variance (shaded area) for Manifold-LoRA is smaller
compared to LoRA, demonstrating its more stable performance.

B.2 HYPERPARAMETERS

In this section, we list the hyperparameters used in GLUE benchmark, question answering and
E2E benchmark. To make a fair comparison, All hyperparameters such as Batch size, learning rate
scheduler remain the same across experiments, except the additional parameters introduced by the
Manifold-LoRA.

Table 4: Hyperparameter setup of Manifold-LoRA for E2E benchmark.

Method Hyperparamter GPT-2(M) GPT-2(L)

Warmup Steps 500
LR Schedule Linear
Weight Decay 0.01
β1 0.9
β2 0.999
LoRA dropout 0
Batch Size 8
Learning Rate 2e-4
Epochs 5

Sphere(r=4) µ 1 0.9
Lower 0.5 0.5
Upper 2 2

Stiefel(r=4) µ 1 1.1
Lower 0.5 0.5
Upper 4 2

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: Hyperparameter setup of Manifold-LoRA for question answering tasks. For LoRA and our
algorithms, new layers are inserted into Wq,Wk,Wv,Wo, FC1, FC2.

Method Hyperparamter SQuADv1.1 SQuADv2.0

Warmup Ratio 0.06
LR Schedule Linear
Weight Decay 0.1
β1 0.9
β2 0.999
Batch Size 64
Learning Rate 3e-3
Epochs 4

Sphere(r=8) µ 0.85 0.85
Lower 0.25 0.25
Upper 0.75 0.5

Sphere(r=16) µ 0.9 0.85
Lower 0.25 0.25
Upper 0.5 0.5

Stiefel(r=8) µ 0.85 0.85
Lower 0.25 0.25
Upper 0.5 0.5

Stiefel(r=16) µ 0.9 0.85
Lower 0.25 0.25
Upper 0.5 0.5

Table 6: Hyperparameter configurations of Manifold-LoRA for GLUE benchmark

Method Hyperparameter MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B

Warmup Ratio 0.06
LR Schedule Linear

Max Sequence Length 256
Weight Decay 0.1

β1 0.9
β2 0.999

Batch Size 32
LoRA Layer Wq,Wv

Epochs 7 24 25 5 5 50 30 25
Learning rate 5e-4 8e-4 5e-4 5e-4 1.2e-3 1.2e-3 1e-3 2.2e-3

Sphere(r=16) µ 1 0.9 0.8 0.9 0.95 1.2 0.85 0.9
Lower 0.25 0.25 0.5 0.5 0.5 0.5 1 1
Upper 2 2 2 4 2 2 4 4

Sphere(r=8) µ 0.95 0.95 1 0.9 1 0.9 0.85 1
Lower 2 0.5 1 0.5 0.5 0.25 2 1
Upper 8 2 8 2 2 0.5 4 8

Stiefel(r=16) µ 0.8 0.85 0.95 0.9 0.95 1.2 0.8 1
Lower 2 0.5 2 0.5 0.5 0.5 1 1
Upper 8 1 8 4 1 2 4 16

Stiefel(r=8) µ 0.8 0.95 0.95 0.9 0.85 0.9 1 1
Lower 2 0.5 2 0.5 0.5 0.25 1 1
Upper 8 2 8 2 2 1 4 16

18

	Introduction
	Related Work
	Notation

	Preliminaries
	Retraction-based manifold optimization
	Proximal smoothness

	Retraction-free and penalty parameter-free optimization over the Stiefel manifold
	Retraction-free algorithms
	Explicit choice for the penalty parameter
	Landing on the Stiefel manifold

	Accelerate LoRA fine-tuning with landing
	Manifold optimization formulation of LoRA fine-tuning
	Manifold-LoRA

	Experiments
	Natural language understanding
	Question Answering
	Natural Language Generation

	Conclusion
	Proofs
	Experimental Details
	Experimental results
	Hyperparameters

