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ABSTRACT

Optimization over the Stiefel manifold has played a significant role in various
machine learning tasks. Many existing algorithms either use the retraction operator
to keep each iterate staying on the manifold, or solve an unconstrained quadratic
penalized problem. The retraction operator in the former corresponds to orthonor-
malization of matrices and can be computationally costly for large-scale matrices.
The latter approach usually equips with an unknown large penalty parameter. To
address the above issues, we propose a retraction-free and penalty parameter-free
algorithm, which lands on the manifold. Moreover, our convergence theory allows
for the use of a constant step size, improving upon the result in (Ablin & Peyrél
2022), which only guarantees convergence to a neighborhood. A key component of
the analysis is the convex-like property of the quadratic penalty of the Stiefel mani-
fold, which enables us to explicitly characterize the constant penalty parameter. As
an application, we introduce a new algorithm, Manifold-LoRA, which employs the
landing technique and a carefully designed step size strategy to accelerate low-rank
adaptation (LoRA) in fine-tuning large language models. Numerical experiments
on the benchmark datasets demonstrate the efficiency of our proposed method.

1 INTRODUCTION

Optimization over the Stiefel manifold has attracted considerable attention in the context of machine
learning, e.g., RNN (Arjovsky et al.} 2016), batch normalization (Cho & Lee, |2017), distributionally
robust optimization (Chen et al.,2017), and vision transformer (Kong et al.,2023). The mathematical
formulation of this class of problems is:

i f(X) subjectto X € St(d,r):={X e R>*": XX =T}, (1)
where r < d and f : R?" — R is a continuously differentiable function. The most popular
methods for solving (T]) are retraction-based algorithms, which have been extensively studied in the
context of manifold optimization (Absil et al., 2008; Wen & Yin, 2013; Hu et al., 2020; Boumal,
2023). Recently, to alleviate the possible computational burden of the retraction operator, some
retraction-free methods have been developed in (Gao et al.l |2018} 2022} Xiao et al., [2024} |Ablin
& Peyré, [2022). The ideas in these papers are based on a combination of the manifold geometry
and a penalty function for the manifold constraint, which involves an unknown but sufficiently large
penalty parameter. For large-scale machine learning applications, retraction-free algorithms are
preferred. However, designing retraction-free algorithms with a known penalty parameter for solving
(T) remains a challenge.

Another motivation for studying retraction-free methods arises from its application in the fine-tuning
of large language models (LLMs). Recently, LLMs have revolutionized the field of natural language
processing (NLP), achieving unprecedented performance across various applications (Radford et al.}
2019;|Qin et al.} 2023])). To tailor pretrained LLMs for specific downstream tasks, the most common
approach is full fine-tuning, which requires prohibitively large computational resources due to the
need to adapt all model weights, hindering the deployment of large models. As a result, parameter-
efficient fine-tuning (PEFT) has gained widespread attention for requiring few trainable parameters
while delivering comparable or even superior results to full fine-tuning. This paradigm involves
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inserting learnable modules or designating only a small portion of weights as trainable, keeping the
main model frozen (Houlsby et al.,|2019;|L1 & Liang, 2021} [Zaken et al.,[2021). Among fine-tuning
methods, low-rank adaptation (LoRA) (Hu et al., 2021)) has become the de facto standard among
parameter-efficient fine-tuning techniques. It assumes that the change in weights lies in a low intrinsic
dimension, thereby modelling the update AW € R*™ by two low-rank (not greater than a small
integer ) matrices A € R"*" and B € R*7 je., AW = BA. Since r < d, the requirements on
both storage and computation are significantly reduced. Due to its decompositional nature, there is
redundancy in the representation of AW. Traditional optimization methods for LoRA are unable to
exploit this redundancy, which consequently undermines model performance. Instead, we reformulate
LoRA fine-tuning as an optimization problem over the product of Stiefel manifolds and Euclidean
spaces. Therefore, we propose an algorithmic framework called Manifold-LoRA to accelerate the
fine-tuning process and enhance model performance. Moreover, by exploiting projected gradients and
incorporating a parameter-free penalty, the overhead that our method incurs is relatively negligible.
Our contributions are as follows:

* We first prove the existence of explicit choice for the penalty parameter by establishing
a strong convexity-like condition of the nonconvex penalty problem associated with the
Stiefel manifold constraint. Our convergence theory also allows for the use of a constant step
size, which improves the result of convergence to neighborhood (Ablin & Peyrél 2022) and
simplifies the hyperparameter tuning process. Furthermore, for the given penalty parameter,
under mild conditions, we prove that the iterates of our proposed retraction-free gradient
descent method eventually land on the Stiefel manifold and achieve the optimality of (T).

* Building upon the established landing theory of retraction-free and penalty parameter-free
method and the AdamW framework, we propose a new method, Manifold-LoRA, which
employs a carefully designed step size strategy to accelerate the training process of fine-
tuning. Compared with the conventional AdamW method, we use the penalized gradient
instead of the usual gradient, and the computational overhead is negligible.

* Numerical experiments are conducted on a wide range of NLP tasks, demonstrating the
efficiency of our algorithm. Specifically, compared to the vanilla LoRA, our Manifold-LoRA
with half the trainable parameters not only delivers fast convergence but also yields improved
generalization. In particular, our method converges twice as fast as baseline methods on
several typical datasets, including the SQuAD 2.0 dataset and the CoLA dataset.

1.1 RELATED WORK

Optimization over the Stiefel manifold. Optimization over the Stiefel manifold has attracted lots of
attention due to its broad applications. Through the use of retraction, known as the generalization of
the exponential map, the Riemannian gradient descent is proposed (Absil et al., 2008}, Boumal, [2023}
Hu et al.|[2020), where all iterates lie on the manifold. When such retraction is computationally costly,
the authors (Gao et al.|[2018) develop a retraction-free algorithm based on the augmented Lagrangian
method. More recently, by defining the constraint dissolving operator and adding a sufficiently
large penalty term, the authors (Xiao et al [2024) convert the manifold constrained problem (T)) into
an unconstrained problem and then apply unconstrained optimization algorithms. Inspired by the
convergence of Oja’s flow, a retraction-free method is developed in (Ablin & Peyrél 2022) for the
squared Stiefel manifold (i.e., d = r), where the landing flow consists of the projected gradient and
the gradient of the penalty function. All of these methods rely on an unknown penalty parameter to
ensure the convergence. This motivates us to design penalty parameter-free algorithms, which could
significantly reduce the need for tuning parameters in practical implementations.

LoRA. There are numerous variants of LoRA aiming to improve performance or reduce memory
usage. AdaLoRA (Zhang et al.,[2023)), a well-known successor, introduces the idea of adaptively
adjusting the rank of different layers by incorporating an additional vector g to serve as the diagonal
of a singular value matrix. This approach leverages a revised sensitivity-based importance measure to
decide whether to disable entries in vector g and in matrices A and B. A similar work, SORA (Ding
et al.,|2023), adopts the same model architecture as AdaLLoRA, but proposes a different way to update
vector g after training. This update rule is the proximal gradient of £, loss, acting as a post-pruning
method. Additionally, based on the idea that networks with random initialization contain subnetworks
that are optimal(Frankle & Carbinl [2018)), VeRA is proposed in (Kopiczko et al., [2023)) to reduce
memory overhead. Although LoRA has gained significant popularity and various variants have been
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developed, the potential for efficient training through leveraging the manifold geometry to reduce
redundancy has not been well-explored.

1.2 NOTATION

For a matrix X € R%*", we use || X|| to denote its Frobenius norm. For a squared matrix A € R"™",
we define sym(A) = # and use diag(A) € R” to denote its diagonal part. For two matrices
X,Y € R weuse (X,Y) := Z?Zl 22:1 X,;Y;; to denote their Euclidean inner product. For
a differential function f : R™" — R, we use V f(X) to denote its Euclidean gradient at X. We
define Ugy(q, (%) = {X € R>" | dist(X,St(d,r)) < %} and Ugy(a,(5) = {X € R>" |
dist(X, St(d, 7)) < £} with dist(X, St(d, 7)) := minyegg(a,r) [|Y — X]|.

2 PRELIMINARIES

2.1 RETRACTION-BASED MANIFOLD OPTIMIZATION

Manifold optimization has attracted much attention in the past few decades, as evident in works such
as|Absil et al.| (2008); Hu et al.|(2020); Boumal| (2023). For the Stiefel manifold St(d, ), its tangent
space is denoted by 7'x M. The tangent space Tx M of M at X is defined as the set of all tangent

vectors. For a differentiable f, the Riemannian gradient gfrgi f(X) € Tx M is the unique tangent
vector satisfying

(gradf(X).€) = df(X)[e], Ve € T,

where (-, -) ;- is the Riemannian metric and df denotes the differential of function f. If M is a

submanifold embedded in RZ*", the function f can be extended to R*7 and setting the Riemannian
metric as the Euclidean metric, then the Riemannian gradient of f at X can be computed as

grad f(X) = Pry m(V (X)),

where Pr, aq represents the orthogonal projection onto 7'x M. The normal space N x M is defined as
the orthogonal complement of T'x M in R%*", In the design of Riemannian algorithms, an essential
concept is the so-called retraction operator. A retraction operator R at X, denoted as Rx, is a
mapping from T'x M to M that satisfies the following two conditions:

* Rx(0x) = X, where Oy is the zero element of T'x M.
L %Rx(féx) |t:0: €X for any §X S Tx./\/l.

It is well-known that the retraction operator is a generalization of the exponential map (Absil et al.|
2008). The iterative scheme of a Riemannian gradient descent method is usually given by

X1 = Rx, (tkgrAajdf(Xk)),

where ¢, > 01s a step size. For the Stiefel manifold St(d, r), the Riemannian gradient is grad f (X ) =
Vf(X) — Xsym(X TV f(X)), and there are several choices for the retraction R, such as the
exponential map, the Cayley transform, the QR decomposition, and the polar decomposition, see (Hu
et al.| 2020) for details. Among them, the Cayley transformation proposed by (Wen & Yin, [2013) is
popularly used. It can be expressed as

1 —1
RV () =X —U <12T + 2VTU) VX,

where U = [(I — 1XX "), X],V = [X,—(I — 1XX )] € R¥(")_ This needs to inverse an
(2r)-by-(2r) matrix and the total computational flops from (Jiang & Dai, 2015) is 4dr? + 4,?07“3,
which could be fast calculated for small r.
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2.2 PROXIMAL SMOOTHNESS

The notion of proximal smoothness, as introduced by (Clarke et al.,|1995), refers to the characteristic
of a closed set whereby the nearest-point projection becomes a singleton when the point is close
enough to the set. This property facilitates algorithmic and theoretical advancements by endowing
nonconvex sets with convex-like structural attributes. Specifically, for any positive real number -,
we define the y-tube around M as Upq(7y) := {X : dist(X, M) < v}. We say a closed set M is
~y-proximally smooth if the projection operator P4 (X) := argminy ¢ o [|[Y — X||? is a singleton
whenever X € Upq(7).

Obviously, any closed and convex set is proximally smooth for arbitrary v € (0, 00). According to
(Clarke et al.,[1995|, Corollary 4.6), a closed set M is convex if and only if it is proximally smooth
with a radius of «y for every v > 0. It is worth noting that the Stiefel manifold is 1-proximally smooth.
By following the proof in (Clarke et al.,|1995| Theorem 4.8),

_ 1
| Pst(a,r (X) = Psgam (X)|| < 201X =Y, VX,Y € USt(d,r)(§)~ ()

Note that for any closed convex set M C R?*", the projection operator P is 1-Lipschitz continuous
over R4*". The singleton property and the Lipschitz continuity (2)) from the proximal smoothness
make St(d, ) locally behave like a convex set.

3 RETRACTION-FREE AND PENALTY PARAMETER-FREE OPTIMIZATION OVER
THE STIEFEL MANIFOLD

In this section, we focus on the design of retraction-free and penalty parameter-free algorithms for
solving problem (T)). We will first present the retraction-free algorithm and then show how the penalty
parameter can be explicitly determined by characterizing the landscape of the penalty function.

3.1 RETRACTION-FREE ALGORITHMS

Inspired by the retraction-free algorithms (Gao et al., [2018; Xiao et al., [2024; |Ablin & Peyré, 2022),
we consider the following retraction-free gradient descent method for problem (1)):

Xip1 = Xp — agradf(X) — pXp(X) X — 1), (3)

where a,p > 0 are step sizes and the projected gradient gradf(Xy) := Vf(Xg) —
Xpsym(X, Vf(Xy)). Note that the tangent space of St(d,r) is Tx, St(d,r) = {{ € R¥*" .
X,T¢€+¢T Xy, = 0}. Then, for X}, € St(d, ), gradf(Xy) is the projection of the Euclidean gradient

V f(X}) to the tangent space, i.e., grad f (Xj) = gr’?ade(Xk). Note that the term Xy (X, X}, — I) is
exactly the gradient of the following quadratic penalty function

1
P(X) = LIXTX — 1|,

As will be shown in our theorem, the negative gradient —V (X}, ) pulls the iterate X1 back to the
manifold, while the use of the projected gradient grad f (X},) is crucial for ensuring its asymptotic
orthogonality with V(X}), resulting in landing on the manifold and convergence to a stationary
point. This differs with the usual penalty method, which optimizes f(X) + pp(X) using the update
X1 =X — aVf(Xy) — MX;C(X,;FX;C — I, and requires u — oo to guarantee the feasibility.

Compared with the popularly used Cayley transformation-based retraction-type algorithms, the

computational cost therein is 4dr? + %73’ , which is more than twice the cost of our method at

2dr? for any r. Moreover, retractions on the Stiefel manifold involve complex orthogonalization
procedures, such as matrix inversion in the Cayley transformation, which are difficult to scale and
parallelize. In contrast, the landing update (3) can be executed using scalable BLAS3 operations.

3.2 EXPLICIT CHOICE FOR THE PENALTY PARAMETER

It is known that a large penalty parameter yields better feasibility (Nocedal & Wright, [1999, Chapter
17). To make the iterative scheme (3)) be penalty parameter-free, we need a careful investigation on
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the landscape of the following optimization problem:

i X). 4
Jmin - e(X) O]

It can be easily verified that problem (@) is nonconvex and its optimal solution set is St(d, 7). The
key of obtaining an explicit formula of p is to establish certain strong convexity-type inequality and
show the gradient descent method with step size  has linear convergence.

For any X € R", let us denote X := Pgy(q,(X). Let X = USV" be the singular value

decomposition with orthogonal matrices U € RX7 v € R™*" and diagonal matrix S € R"*", then
X=UV". Building on these notations, we demonstrate that problem (H]) satisfies the restricted
secant inequality (RSI) (Zhang & Yinl 2013)), which serves as an alternative to the strong convexity
in the linear convergence analysis of gradient-type methods.

Lemma 1. Forany X € R with | X — X|| < §, we have

(Vo(X),X - X) > ||X - X|°. )

With the above RSI, we have the linear convergence of the gradient descent update for @]) i.e.,

Xi+1 = X — pVo(Xg). (6)

Lemma 2. Let the sequence {X},} be generated by (6) with ju = 3. Suppose that || X — Xo|| < %.
We have 5

[ X1 — Xesa|* < gHXk - X% )

The proofs of Lemmas [I|and [2] can be found in Appendix

3.3 LANDING ON THE STIEFEL MANIFOLD

Building on the established linear convergence of gradient descent for problem (@), we are now able
to show that the iterates generated by (3) will land on the Stiefel manifold eventually, and the limiting
point is a stationary point of (I)), i.e., gradf(Xs) = 0.

Let us start with the Lipschitz continuity of gradf(X). For any X € (_]St(d’,ﬂ)(é), we define
Prysean(U) =U — Xsym(X TU) for U € R, We first have the following quadratic upper
bound on f from its twice differentiability and the compactness of St(d, ).

Lemma 3. There exists a constant L > 0 such that for any X, Y € St(d, r), the following quadratic
upper bound holds:

L
FY) < F(X) + (grad f(X), Y = X) + S|V = X%, ®)
In addition, there exists a constant L > 0 such that for any X € St(d,r),Y € USt(dm) (%),
lgrad f(X) — gradf(Y)|| < L| X Y. ©)

By the linear convergence result in Lemma 2] we have the following bound on the feasibility error.
Lemma 4. Let {X},} be the sequence generated by () with 1 = § and || Xo — Xo|| < 5. We have
_ 2 _
i1~ Kl < ) 215~ el + ol grad s (50 (10)

The following one-step descent lemma on f is crucial in establishing the convergence.

Lemma 5. Let { X} be the sequence generated by () with 1 = § and || Xo — Xo|| < 5. We have
_ _ a 1 _
F(Xi1) = F(Xi) < = (@ = (4L° + 4L + 1)a®) |[grad f (X3)||* + 1 Xk1 — Xt ]?
(1D
1 - - _
+3 (4Df +8L2 + 8L + 3) 11X — X2
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From the above lemma, the one-step descrease on f is related to both the gradient norm of f and
the feasibility error. Regarding convergence, we need both grad f(X},) and || X,] X, — I|| converge
to 0. The following theorem shows that the retraction-free and penalty parameter-free update (3)
converges.

Theorem 1. Let { X} be the sequence generated by @) with 1 = % and || Xo — Xo|| < §. If the
step size o < % for some cq large enough, then we have

(12)

=

1
i df (Xe)|? < —
pminlgrad f(Xe)[" < 2=

min || X, X — I||> <
k=0,....K

The proofs of the above lemmas and theorem are presented in Appendix [A]

Remark 1. In comparison to the landing algorithm (Ablin & Peyré||2022)), which only addresses the
squared Stiefel manifold and requires tuning both parameters o and p, our method handles general
Stiefel manifolds and only requires searching for the parameter c, as indicated by Theorem|]]

Remark 2. Theorem|I|establishes the exact convergence of our proposed retraction-free method
with a constant step size. In contrast, the landing algorithm in (Ablin & Peyré| |2022) converges
only to a neighborhood whose size depends on the step size, as discussed in the paragraph following
Proposition 10 of their paper. Moreover, our iteration complexity of O(1/K) is on par with retraction-
based algorithms (Boumal et al.} | 2019).

4 ACCELERATE LORA FINE-TUNING WITH LANDING

In this section, we will first clarify where the Stiefel manifold constraint comes from in the LoRA
fine-tuning. Then, we will apply the above developed retraction-free and penalty parameter-free
method to enhance LoRA fine-tuning.

4.1 MANIFOLD OPTIMIZATION FORMULATION OF LORA FINE-TUNING

In neural networks, the dense layers perform matrix multiplication, and the weight matrices in these
layers usually have a full rank. However, when adapting to a specific task, pre-trained language models
have been shown to have a low intrinsic dimension, allowing them to learn efficiently even with a
random projection to a smaller subspace. One possible drawback in the current LoRA fine-tuning
framework is that the low-rank decomposition AW into product B A is not unique. Specifically, for
any invertible matrix C, it holds that BA = (BC)(C~1A). Note that BC shares the same column
space with B. This suggests us optimizing the subspace generated by B instead of B itself. Numerous
studies in the field of low-rank optimization, e.g., (Boumal & Absil, 2011} Dai et al., [2011;2012),
investigate the manifold geometry of the low-rank decomposition and develop efficient algorithms.
However, such geometry has not been explored in the LoRA fine-tuning.

To address such redundancy (i.e., the non-uniqueness of B A representations), we regard B as the basis
through the manifold constraint and A as the coordinate of AW under B. Hence, the optimization
problem can be formulated as

IE%I L(BA), subjectto B € St(d,r)or B € Ob(d,r), (13)

where Ob(d,r) := {B € R¥" : diag(B " B) = 1} and L represents the loss function. Compared
to the Stiefel manifold St(d, r), the oblique manifold Ob(d, ) necessitates that the matrix B has
unit norms in its columns, without imposing requirements for orthogonality between the columns.
Problem is an optimization problem over the product of manifolds and Euclidean spaces.

4.2 MANIFOLD-LORA

The retraction-free method is well-suited to address (13)), simultaneously minimizing the loss function
L(BA) and constraint violation. To control the constraint violation, we use the quadratic penalties
Rs(B) :=||[B"B — I||? and R,(B) := |diag(B " B) — 1||? for the Stiefel manifold and oblique
manifold, respectively. As shown in the landing theory in Section (3| we shall use the projected
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Algorithm 1: Manifold-LoRA

Input: Initial point Ao, Bo, p € R, 51 = 0.9, B2 = 0.999, upper_bound > lower_bound > 0,
e=10"%,A>0,and k = 0.
while Stopping conditions not met do
for C € {A, B} do
if C = B then
Set g(C}) according to (T4) or (I3) using the stochastic estimate of V g L(Bj Ax)
// Projected gradient for matrix B
else
| Set g(C}) to be the stochastic estimate of V 4 L(Bj Ax)
end
end
m(Ck) <= Bim(Cr) + (1 = B1)g(Ck)
v(C) = B20(Cr) + (1 = B2)gi (Ci)
(C) - 2
v(Cg
(Cr) 53¢
N(Ck) < clip(norme, , upper_bound, lower_bound)
// Scheduling step size of matrix A and B

C + Cr1 — 1:(Ch) (mt(ok)/ ( 5e(Cr) + e)) —ACh

§>

)

S8

if C' = B then
Cr < Cr — uVRs(Cr)(or VRo(Ch)) // Apply penalty gradient for
matrix B
end
end
k+—k+1

end

gradient of the loss part instead of the Euclidean gradient. For the Stiefel manifold and the oblique
manifold, the respective projected gradients are

gradg L(BA) = VpL(BA) — Bsym(B'VzL(BA)) (14)
and
gradp L(BA) = V5L(BA) — Bdiag(diag(B'VL(BA))). (15)
Thus, the gradients of our retraction-free method for A and B are V4 £L(BA) and gradz L(BA) +
uVRy(B)(or VRy(B)).

Note that B and A represent the basis and the coordinate of AW, respectively. This results in
different magnitudes and different Lipschitz constants of their gradient function. In fact, let X = BA.
It follows
VAL(BA) = B"VxL(X), VpL(BA)=VxL(X)AT.
Then,
IV AL(BAL) — VL(BA)|| < | BllsLqll A1 — As],
IVBL(B1A) = VL(BA)|| < [[All2Lg|[ By — Bz,

where L, is the Lipschitz constant of Vx£(X) and || - |2 represent the matrix ¢, norm (i.e., the
largest singular value). Note that the step size generally should be propositional to the reciprocal of
Lipschitz constant for the gradient type algorithms (Nocedal & Wright, |[1999; Bottou et al., 2018]).
Hence, we schedule the learning rates for the two matrices based on their respective {5 norms. Having
prepared the above, we incorporate the AdamW optimizer (Loshchilov & Hutter, 2018)) with our
manifold-accelerated technique to enhance the LoRA fine-tuning, as presented in Algorithm I}

5 EXPERIMENTS

In this section, we delve into the experimental results and their detailed analysis. This discussion is
structured around two principal areas: (1) the performance gain compared to other mainstream fine-
tuning methods and accelerated convergence achieved through our manifold-constrained optimization
approach; (2) the convergence of matrix B onto the manifold, illustrated by the heat map of B ' B.
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5.1 NATURAL LANGUAGE UNDERSTANDING

We evaluate our backbone model DeBERTaV3-base (He et al., 2021) on GLUE (Wang et al., 2018)
benchmark containing nine subdatasets, including MNLI (Williams et al., 2017), SST-2 (Socher et al.|
2013)), CoLA (Warstadt et al.l 2019), QQP (Wang et al.l 2018)), QNLI (Rajpurkar et al., 2016), RTE
(Bentivogli et al.,|2009), MRPC (Dolan & Brockett, 2005), and STS-B (Wang et al., 2018).

Manifold-LoRA exhibits superior performance on GLUE benchmark compared to other
memory-equivalent methods. Experimental results of the GLUE benchmark are recorded in Table
It can be seen that our method is superior to other baselines on most tasks. Notably, for RTE and
STS-B datasets, both sphere-constrained (i.e., oblique manifold-constrained) and Stiefel-constrained
have an obvious performance gain even with only half the trainable parameters compared to the
LoRA baseline, i.e., Sphere,—g and Stiefel,_g beat LoORA,—15. Note that Manifold-LoRA and the
baselines have the same memory requirement under same rank 7.

Manifold-LoRA achieves faster convergence across multiple datasets. In addition, with the help
of manifold geometry, the fine-tuning process can be significantly accelerated compared to the vanilla
AdamW optimizer, achieving a lower training loss, as shown in Figure[l] Particularly, on the CoLA
dataset presented in Figure[Ta] our approach achieves the same training loss as the standard Adam
optimizer but requires nearly half the number of epochs.

5.2 QUESTION ANSWERING

We conduct an evaluation on two question answering datasets: SQuAD v1.1 (Rajpurkar et al.,[2016)
and SQuADV2.0 (Rajpurkar et al.,[2018)). Manifold-LoRA is used to fine-tune DeBERTaV3-base for
these tasks, which are treated as sequence labeling problems predicting the probability of each token
as the start or end of an answer span. The main experimental results are presented in Table [2]

Manifold-LoRA surpasses full fine-tuning on question answering task . Notably, our proposed
algorithm outperforms fine-tuning methods, which requires three times larger memory consumption
compared to Manifold-LoRA. Moreover, as demonstrated in Table 2] Manifold-LoRA outperforms
all other baselines on both Stiefel and Sphere settings, regardless of whether » = 8 or r = 16.

Our method converges twice as fast as baseline methods on SQuAD datasets. Additionally,
we plot the training loss against epochs in Figure[2] We can suggest that the proposed Manifold-
LoRA method achieves a 2x speed-up in training epochs compared to AdamW, while simultaneously
improving model performance. We also illustrate the heat map of B " B in Figure 3| which indicates
that the matrix B lands on the manifold eventually. This supports our assertion that landing on
manifold enhances the performance of LoRA.

5.3 NATURAL LANGUAGE GENERATION

The E2E NLG Challenge(Novikova et al.,|2017), as introduced by Novikova, provides a dataset for
training end-to-end, data-driven natural language generation systems, widely used in data-to-text
evaluations. The E2E dataset comprises approximately 42,000 training examples, 4,600 validation
examples, and 4,600 test examples, all from the restaurant domain. We test our method on the E2E
dataset using GPT-2 Medium and Large models, following the experimental setup outlined by LoRA.
For LoRA, we set the hyperparameters to match those specified in the original paper. The results from
the E2E dataset are recorded in Table 3] where we focus on comparing LoRA and Manifold-LoRA.
The results clearly indicate that our proposed algorithm outperforms the established baselines.

6 CONCLUSION

Optimization over the Stiefel manifold has been widely used in machine learning tasks. In this work,
we develop a retraction-free and penalty parameter-free gradient method, and prove that the generated
iterates eventually land on the manifold and achieve the optimality simultaneously. Moreover, our
convergence theory enables the use of a constant step size, improving on previous results that only
ensured convergence to a neighborhood. We then apply this landing theory to avoid the possible
redundancy of LoRA fine-tuning in LLMs. Specifically, we reformulate the LoRA fine-tuning as
an optimization problem over the Stiefel manifold, and propose a new algorithm, Manifold-LoRA,
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Table 1: We present results using DeBERTaV3-base on the GLUE benchmark. For MNLI, we report the
accuracy (combining matched and mismatched sets), with the left panel representing matched subset and the
right panel representing mismatched subset. For CoLA, we report Matthew’s correlation, and for STS-B, we
report Pearson correlation. For all other tasks, we report accuracy. All metrics are same as the original LoORA
paper (Hu et al.l|2021). Higher values are better for all metrics. The best results are highlighted in bold.

Method # Params MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B All
Acc Acc Mcc Acc / F1 Acc Acc Acc Corr Ave.

Full 184.42M 90.45/90.60 95.48 68.17 91.99/89.12 93.60 79.28 88.93  90.92 87.85
FT

Adapter  0.61M 90.13/90.16 94.86 69.37 91.38/88.46 93.54 81.87 89.12  91.52  88.06
BitFit 0.06M 87.08/86.39 94.88 69.11 87.96/84.35 92.19 76.52 87.06 90.96 85.65
LoRA,—g 0.30M 90.20/90.08 94.93 68.14 90.78/87.68 93.85 80.15 90.40 90.29  87.60
LoRA,—16 0.59M 90.44/90.12 95.41 68.19 90.92/87.77 94.00 80.58 90.20  90.34 87.74
Sphere,—g 0.30M 90.37/90.09 95.48 69.55 91.25/88.34 94.02 8244 91.55 91.26 88.44
Sphere,—16 0.59M  90.52/90.19 95.64 70.14 91.46/88.65 94.29 82.16 91.67 91.59  88.63
Stiefel,—g 0.30M 90.25/89.99 95.46 69.85 91.44/88.60 94.09 83.16 91.18 91.22  88.52
Stiefel,—16 0.59M 90.26/90.28  95.76  68.92 91.71/89.00 94.10 82.16 91.10 91.51 88.48
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(a) Loss curves on CoLLA dataset. (b) Loss curves on QQP dataset. (c) Loss curves on STSB dataset.

Figure 1: The figures illustrate that both sphere constrained and Stiefel constrained manifold-LoRA achieve
a faster convergence rate and attain a lower training loss within same optimization steps compared to LoRA
method on three distinct datasets CoLA, QQP, STS-B.
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Figure 2: The figures compare the training loss, evaluation exact match, and evaluation F1 metrics
against epochs for the SQuADv2.0 dataset. It can be clearly seen that our proposed Manifold-LoRA
method almost achieves a 2x speed-up in training epochs compared to the vanilla LoRA.

which incorporates a careful analysis of step sizes to enable fast training using the landing properties.
Extensive experimental results demonstrate that our approach not only accelerates the training process
but also yields significant performance improvements.

Our study suggests several potential directions for future research. Although the established landing
theory focuses on the Stiefel manifold, extending this theory to general manifolds, is one potential
direction. Additionally, evaluating the performance of Manifold-LoRA on LLMs with billions of
parameters would be valuable. Due to the heterogeneity of different layers, incorporating adaptive
ranks for AW across different layers is another possible direction. This may be achievable by adding
sparsity regularization to the coordinate matrix A.
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Table 2: Results with DeBERTaV3-base on SQUAD v1.1 and SQuADv2.0. We report EM/F1. The best results
in each setting are shown in bold.

Methods Params  SQuADvl1.1 SQuADv2.0

Full FT 184M  86.30/92.85 84.30/87.58
Adapter,—16 0.6IM  87.46/93.41 85.30/88.23
Adapter,—32  1.22M  87.53/93.51 85.42/88.36

Bitfit 0.07M  80.26/88.79 74.21/87.19
LoRA,—g 1.33M  87.90/93.88 85.56/88.52
LoRA,—16 2.65M  87.94/93.75 85.90/88.81
Sphere,—s 1.33M  88.51/94.25 86.33/89.20
Sphere,—16  2.65M  88.32/94.03  86.15/89.03
Stiefel,—g 1.33M  88.68/94.23  86.35/89.09
Stiefel,—16 2.65M  88.25/94.04  86.41/89.22
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Figure 3: The heat map of B " B with the Stiefel manifold (the first and second rows) and the oblique
manifold (the third and fourth rows) at the end of training on SQuADv2.0 dataset.

Table 3: GPT-2 medium (M) and large (L) models were evaluated on the E2E NLG Challenge. * denotes results
from previously published works.

Model Parameters BLEU NIST MET ROUGE-L CIDEr

GPT-2 M (FT)* 354.92M 68.2 8.62 46.2 71.0 247
GPT-2 M (Adapter")* 11.09M 68.9 8.71 46.1 71.3 247

GPT-2 M (Adapter')* 11.09M  67.3+6 850407 46.042 70742 24440
GPT-2 M (FT™P?)* 25.19M 68.1 8.59 46.0 70.8 241
GPT-2 M (PreLayer)* 0.35M 69.7 8.81 46.1 71.4 2.49
GPT-2 M (LoRA) 0.35M 68.9 8.69 46.5 71.5 251
GPT-2 M(Stiefel) 0.35M 70.1 8.82 46.8 71.7 2.53
GPT-2 M(Sphere) 0.35M 70.3 8.83 46.7 71.7 2.52
GPT-2 L (FT)* 774.03M 68.5 8.78 46.0 69.9 2.45

GPT-2 L (Adapter™)* 23.00M  68.913 870104 46111 71312 245402
GPT-2 L (PreLayer)* 0.77M 70.3 8.85 46.2 71.7 247
GPT-2 L (LoRA) 0.77M 70.1 8.82 46.7 72.0 2.53
GPT-2 L(Stiefel) 0.77M 70.4 8.86 46.8 72.1 2.53
GPT-2 L(Sphere) 0.77M 70.9 8.92 46.8 72.5 2.55
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A PROOFS
Proof of Lemma 1

Proof. Denote the SVD of X by X = USV . Then, it holds that dist(X, St(d,r)) = || X —

[|s — 1|2, where s = diag(5). Based on the assumption that | X — X|| < £, we have § < s; < 9
for any 7. Therefore, it follows that
(Vp(X) X)= <USVT v52vT 0n,Usv' —uvT)
= (U( viuis-nvh)
=tr ((S3 S)(S—I))
> min s;(s; +1)||s — 1[|3
3
> §||3 — 103
3
SlIX = X%
where the last inequality comes from min; s;(s; + 1) > % 105 > 5 2 This completes the proof. O
Proof of Lemma 2
Proof. 1t follows from % <s < % that
IVe(Xp)l* = tr((S* = 5)?) < 6] Xy, — Xi||*. (16)

Hence, we have
[ Xpt1 — Xpgr I? < (| X1 — Xl

1 _
= [| Xk — *VSD(Xk) — Xl
2 1
=X — X|* — <Xk — Xk, Vo(Xi)) + §|\V90(Xk)||2
<(1-1+ )”Xk — X?

2
= Jx, - X
3|| k= Xel?,

where the first inequality is from X}, ; = argmin xestn X — Xeg1 ||? and the second inequality

is due to Lemmal(T]and (T6).

Proof of Lemma 3

O

Proof. Due to the twice differentiability of f and the compactness of St(d,r), the inequality
(]EI) directly follows from (Chen et al.l 2021, Lemma 2.4) and (Deng & Hu, 2023, Lemma
4.2), where L := Ly + Dy with L being the Lipschitz constant of V f(X) over St(d,r) and

Dy = maxyesya,r |VF(X)].
For the second argument, we have
lgradf(X) — gradf(Y)
<IPrysean (VX)) = Presoan (VYD + 1 Prysecan (V) — grad f(Y))]

SLyIX Y]+ SIX(XTVAY) + VA TX) V(Y TV + V() TY)|
SLyIX Y] + S IX(X = Y) VA0 + V)T (X - 1)

X - Y)(YTVf(Y) V)Y
<Lyl X ~ Y+ 3(2D; +3Dp)|X - |

5
=Ly + 5 DpIIX =Y,
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where D := max X €Usyan (1) IVF(X)]], the second inequality is due to the contractive property

of Pryst(d,r)» and the last 1nequa11ty is from the fact that | Y||2 < % . By setting L = Ly + %f)f,
we complete the proof. O

Proof of Lemma 4

Proof. 1t follows that
[ Xkt1 = X | < [ Xpgr — X
< |1 Xk — po(Xe) — Xill + allgrad f (X

2 _
< \/ng = Xl + elgrad f (X))
We complete the proof. O

Proof of Lemma 5

Proof. First, let us prove the following equality

(grad f(X), V(X)) = (VF(X), Pryesi,n (Vo(X))) .
In fact, using the definition of (A, B) = tr(A" B), we have

(grad f(X), V(X)) = (Vf(X) = Xsym(X TV (X)), V$(X))
= (Vf(X), V(X)) — (Xsym(X TV f(X)), Vo (X))
= (Vf(X), V(X)) — (sym(X TV f(X)), X V(X))
=(VF(X),Vo(X)) = (X TVf(X),sym(X "V¢(X)))
= (Vf(X), V(X)) = (Vf(X), Xsym(X V(X))
=(Vf(X), Prysuan(V(X))) .

Then, it follows from (8) that

f(Xq1) — F(Xp) < (gradf(Xp), Xpp1 — Xi) + gHXIHI - Xil?

< (gradf(Xp), Xps1 — Xpp1 + Xi — Xi) + (grad f (Xi), Xpp1 — Xi)
+ 2L Xps1 — X|)?

< (gradf(Xp), Xp41 — Xig1) + (grad f(Xp), Xps1 — Xi)
+4L(?|lgrad f (Xg)|1* + 12| Vo (X)[|?)

= (gradf(Xx) — grad f(Xp11), Xp1 — Xpt1) + (grad f(Xe), Xe1 — X)
+ <gradf()_(k) —gradf(Xg), Xp+1 — Xk>
+4L(?|lgrad f (Xg)|1* + 12| V(X)) [|*)

<2L2|| Xp1 — Xi? + %HXI@+1 = Xig1lI” — allgrad f(Xi)||? (17
— plerad f(X0), Vo (X)) + 3 (7150 = Xall? + [ X — Xil?)
+ AL grad f(X0)|? + 2 T 00 )

< — allgrad (X0 ~ 1 {VF(Xe), Prg s (Vo (X)) + 51 X1 = K
+ 51X = Xl + (127 + 4L+ 1) (0 grad f(X0)|? + w2 V00 )

<~ (o~ (42 + 4L + 1)0?) arad f(X) P + 3| X — K

A 1 ~ _
+ (61D + 5+ 6(4L7 + AL + 1)p?) [ Xp — X%,
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where the second inequality is from the 2-Lipschitz continuity of Pg;(qg,) Over U, St(d,r) (%), the third
inequality is due to the facts that X, — X, € N, St(d, ) and (A4, B) < 1(||A||*> + || B||?) for any
A, B € R*", and the last inequality comes from

1Py, st (Vo(Xa) | = [ Xe (X)) Xy, — 1)) < 6]| X5 — X1
Plugging ;1 = % into (T7) gives (TI). O
Proof of Theorem.

1
45D "

Proof. First, we show X}, € Usy(n,q) () forany k > 0if o < In fact, by proof of induction,

we have from that

1
= rad f (X <
Dng fXw)I <

| =

_ D) _
Xpi1— X g[ Xi — Xl +
1 Xk+1 — Xet1]] 3|| K — Xkl "

Moreover, applying (Xu et al] 2015 Lemma 2) to (T0) yields
K

K
D NIXn = Xel|* < 60a” ) [lgrad f(Xp)|* + 4. (18)
k=0 k=0
Then, summing (IT) over £ = 0, ..., K gives
f(Xx41) = f(Xo)
K
< —(a— (L +4L + 1)a®) Y [lgrad f(X) ||
k=0
K+1 )
<4Df+8L2+8L+4) Z X5 — Xi|? (19)
k=0

1
2

K
< —(a—(4L* +4L+1)0” +30(4Ds + 8L* + 8L + 4)0®) > _ [|grad f (Xy)||?
k=0

1/ . .
+5 (4D + 812 + 8L + 4) (60* |grad f (X 41)]* + 4).

Define ¢y = 244L? + 244L + 120Dy + 121 and ¢ = (30D% + 2)(4Dy + 8L? + 8L + 4). Then,
we have

K
a(l—cra) Y |lerad f(Xp)|I” < f(Xo) — f(Xk11) + co.
k=0

Therefore, for any a < i (which implies a < L), taking K — oo gives

— 45Dy
Yoo llerad f(Xg)||* < oo. Then by (12), Y7o, | Xk — Xi||* < oco. These lead to (T2). O

B EXPERIMENTAL DETAILS

Baselines We compare our approach against several baseline methods, including full fine-tuning,
Adapter (Houlsby et al.l 2019)), BitFit (Zaken et al.| 2021) and LoRA (Hu et al.,|2021)). The variants
of the Adapter method are excluded from the baselines, as their performance are relatively similar.

Implementation Details Our code is based on Pytorch (Paszke et al., 2019), Huggingface Transform-
ers (Wolf et al.,|2020) and an open-source plug-and-play library for parameter-efficient fine-tuning
opendelta (Hu et al.,|2023)). The bottleneck dimension for the Adapter is set to 16 or 32, ensuring
that the number of trainable parameters aligns closely with that of the LoORA method and the new
layers are inserted into the attention layer and feed-forward layer. The update of LoRA is scaled by a
hyper-parameter o.. This value is typically left unmodified, as it is usually set as 16 or 32 and never
tuned (Hu et al.l 2021} [Yang & Hul, [2020). The exponential moving average parameters (3; and /35 of
AdamW (Loshchilov & Hutter, |2017)) are set to their default values of 0.9 and 0.999, respectively.
All the experiments are conducted on NVIDIA A800 GPUs.
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Figure 4: Performance on the validation sets across three datasets. The COLA dataset is evaluated
using the matthews correlation metric, QQP is measured by accuracy, and STS-B is evaluated by
Pearson correlation, all plotted against the number of epochs.

B.1 EXPERIMENTAL RESULTS

We present the omitted experimental results in Section[5} We plot the evaluation loss during training
to further demonstrate that Manifold-LoRA not only accelerates the optimization process but also
achieves better performance metrics more quickly in comparison to the vanilla Adam optimizer. This
highlights Manifold-LoRA’s effectiveness in reaching superior results faster during evaluation.

Manifold-LoRA yields a faster convergence rate. As shown in Figure |4c| both Oblique and Stiefel
constrained have a pronounced convergence speed improvement compared to the vanilla LoRA,
simultaneously achieving better performance.

Manifold-LoRA typically maintains lower variance compared to other methods. The plotted
results represent the average performance over five random seeds, with the shaded regions indicating
the variance. As shown in Figure E], the variance (shaded area) for Manifold-LoRA is smaller
compared to LoRA, demonstrating its more stable performance.

B.2 HYPERPARAMETERS

In this section, we list the hyperparameters used in GLUE benchmark, question answering and
E2E benchmark. To make a fair comparison, All hyperparameters such as Batch size, learning rate
scheduler remain the same across experiments, except the additional parameters introduced by the
Manifold-LoRA.

Table 4: Hyperparameter setup of Manifold-LoRA for E2E benchmark.

Method Hyperparamter GPT-2(M) GPT-2(L)
Warmup Steps 500
LR Schedule Linear
Weight Decay 0.01

1 0.9

Ba 0.999
LoRA dropout 0
Batch Size 8
Learning Rate 2e-4
Epochs 5

Sphere(r=4) p 1 0.9
Lower 0.5 0.5
Upper 2 2

Stiefel(r=4) pu 1 1.1
Lower 0.5 0.5
Upper 4 2
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Table 5: Hyperparameter setup of Manifold-LoRA for question answering tasks. For LoRA and our
algorithms, new layers are inserted into W, Wy, W,,, W, FCy, FC.

Method Hyperparamter SQuADv1.1 SQuADv2.0
Warmup Ratio 0.06
LR Schedule Linear
Weight Decay 0.1
51 0.9
B2 0.999
Batch Size 64
Learning Rate 3e-3
Epochs 4
Sphere(r=8) n 0.85 0.85
Lower 0.25 0.25
Upper 0.75 0.5
Sphere(r=16) pu 0.9 0.85
Lower 0.25 0.25
Upper 0.5 0.5
Stiefel(r=8) I3 0.85 0.85
Lower 0.25 0.25
Upper 0.5 0.5
Stiefel(r=16) u 0.9 0.85
Lower 0.25 0.25
Upper 0.5 0.5

Table 6: Hyperparameter configurations of Manifold-LoRA for GLUE benchmark

Method Hyperparameter MNLI SST-2 CoLA QQP OQNLI RTE MRPC STS-B
Warmup Ratio 0.06
LR Schedule Linear
Max Sequence Length 256
Weight Decay 0.1
b1 0.9
Ba 0.999
Batch Size 32
LoRA Layer We, Wy
Epochs 7 24 25 5 5 50 30 25
Learning rate Se-4 8e-4 S5e-4  S5e-4 1.2e-3 1.2e-3 le-3 2.2e-3
Sphere(r=16) I 1 0.9 0.8 0.9 0.95 1.2 0.85 0.9
Lower 0.25 0.25 0.5 0.5 0.5 0.5 1 1
Upper 2 2 2 4 2 2 4 4
Sphere(r=8) I 0.95 0.95 1 0.9 1 0.9 0.85 1
Lower 2 0.5 1 0.5 0.5 0.25 2 1
Upper 8 2 8 2 2 0.5 4 8
Stiefel(r=16) I 0.8 0.85 0.95 0.9 0.95 1.2 0.8 1
Lower 2 0.5 2 0.5 0.5 0.5 1 1
Upper 8 1 8 4 1 2 4 16
Stiefel(r=8) 7 0.8 0.95 0.95 0.9 0.85 0.9 1 1
Lower 2 0.5 2 0.5 0.5 0.25 1 1
Upper 8 2 8 2 2 1 4 16
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