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ABSTRACT

We present the All-Seeing (AS)1 project: a large-scale dataset and model for
recognizing and understanding everything in the open world. Using a scalable
data engine that incorporates human feedback and efficient models in the loop, we
create a new dataset (AS-1B) with over 1.2 billion regions annotated with semantic
tags, question-answering pairs, and detailed captions. It covers a wide range of 3.5
million common and rare concepts in the real world and has 132.2 billion tokens that
describe the concepts and their attributes. Leveraging this new dataset, we develop
the All-Seeing model (ASM), a unified framework for panoptic visual recognition
and understanding. The model is trained with open-ended language prompts and
locations, which allows it to generalize to various vision and language tasks with
remarkable zero-shot performance, including both region- and image-level retrieval,
region recognition, captioning, and question-answering. We hope that this project
can serve as a foundation for vision-language artificial general intelligence research.
Code is available at https://github.com/OpenGVLab/all-seeing.

1 INTRODUCTION

Creating artificial general intelligence (AGI) systems that can match human intelligence and excel in
any task across domains is the ultimate goal of artificial intelligence. Recent advancements in Large
Language Models (LLMs) have demonstrated impressive zero-shot capabilities in user-tailored natural
language processing (NLP) tasks, suggesting new avenues for achieving AGI. However, as shown in
Fig. 1a, most popular LLMs (OpenAI, 2022; Touvron et al., 2023; Chiang et al., 2023) are limited to
processing language information and lack the ability to understand the visual world. Although there
have been some recent developments (Zhu et al., 2023b; Liu et al., 2023a; Li et al., 2023a; Dai et al.,
2023) in open-world visual understanding, they are primarily focused on understanding images as a
whole, rather than recognizing and comprehending individual instances within the scene (see Fig. 1b).
This goes against the nature of the human visual system, as described by the feature integration
theory (Treisman & Gelade, 1980), which suggests that we attentively gather visual features and
contexts in certain regions to achieve high-level understanding and recognition, rather than analyzing
all information simultaneously.

To achieve instance-level visual understanding like humans, there are two major challenges as follows:
(1) The scarcity of open-world instance-text pair data. As listed in Table 1, existing datasets, such as
Visual Genome (Krishna et al., 2017), have limitations in terms of data scale. Laion-5B (Schuhmann
et al., 2022) only contains web-crawled image-text pairs without location information, and SA-
1B (Kirillov et al., 2023) lacks semantic information. (2) The lack of spatial information modeling in
most existing models. These models mainly focus on whole-image understanding. In this work, we
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1“All-Seeing” is derived from “The All-Seeing Eye”, which means having complete knowledge, awareness,
or insight into all aspects of existence.
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Figure 1: Overview and comparison of our All-Seeing project with other popular large foun-
dation models. To address the limitations of LLMs in understanding visual inputs and VLLMs in
effectively leveraging region-aware information, we propose (1) a large-scale dataset AS-1B which
consists of over 1 billion region-text pairs, 3.5 million open-world concepts, and 100 billion tokens
of region-related question-answering and caption; and (2) the All-Seeing model (ASM), which is
capable of recognizing and understanding context in arbitrary regions.

propose the All-Seeing (AS) project for open-world panoptic visual recognition and understanding,
driven by the goal of creating a vision system that mimics human cognition. The term “panoptic”
refers to including everything visible in one view (Kirillov et al., 2019). The AS project addresses the
challenges from both the data and model perspectives.

From the data aspect, we propose the All-Seeing 1B (AS-1B) dataset, consisting of over 1.2 billion
region annotations in various formats, such as semantic tags, question-answering pairs, and detailed
captions (refer to Fig. 2). AS-1B dataset is made possible by a scalable semi-automatic data engine,
which significantly lowers the previously unaffordable expense of manually annotating a massive
amount of open-world semantics. The data engine operates in a “data-human-model” loop, iteratively
refining data quality. Initially, diverse models, including large language models (LLMs) (Chiang
et al., 2023), detection (Wang et al., 2023c; Fang et al., 2023a), captioning (Li et al., 2022a), and
visual question answering (VQA) models (Liu et al., 2023a; Zhu et al., 2023b; Liu et al., 2023b), are
employed as “annotators”, which add semantic annotations to dense region proposals generated by
state-of-the-art object detectors (Kirillov et al., 2023; Fang et al., 2023a; Li et al., 2022b; Wang et al.,
2023c). Subsequently, human annotators verify the generated pseudo labels and provide feedback
with high-quality data, which is then used to fine-tune the models to improve their performance. The
enhanced models are then used to re-annotate the data, starting another iteration of the loop. As
shown in Fig. 2, AS-1B contains a wide range of open-world concepts, including over 3.5 million
different semantic tags ranging from common categories (e.g., human, backpack) to fine-grained or
rare categories with attributes (e.g., old metal latches). AS-1B also encompasses the 3.3 billion visual
question-answering pairs and 1.2 billion region captions for 1.2 billion regions.

In terms of the model perspective, we propose the All-Seeing model (ASM), a unified location-
aware image-text foundation model. The model consists of two key components: a location-aware
image tokenizer and an LLM-based decoder. The location-aware image tokenizer uses location
information such as bounding box as conditions (see Fig. 1c) to extract image features, which
contribute to the location capability of ASM. The LLM-based decoder inherits the world knowledge
and reasoning capability from LLMs, providing a strong foundation for visual recognition and
understanding. In addition, to unify image-text aligning and generation tasks, we introduce a new
decoding approach, where the aligning tasks are reformulated as a “special” generation task, enabling
our model to generalize to various vision-language tasks with shared weights. Compared to previous
methods (Radford et al., 2021; Li et al., 2023a; Liu et al., 2023a; Zhu et al., 2023b), our work offers
several advantages as follows: (1) Our model not only excels in image-level understanding but
also demonstrates exceptional capability in recognizing and comprehending objects at the instance
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Figure 2: Semantic concepts and annotations in the AS-1B dataset. The semantic tags in AS-1B
dataset encompass a wide range of concepts. Beyond brief semantic tags, detailed annotations,
including visual-question-answering pairs and region captions are also provided.

level, closely aligning with human cognitive processes. (2) Our model is a unified framework that
supports a wide range of image-text tasks, including discriminative tasks and generative tasks such
as visual captioning and question-answering. (3) Our model comes with AS-1B the largest dataset
with open-world panoptic semantics. Data and models feed each other in the data engine, iteratively
improving the model performance, data scale and diversity.

In summary, our contributions are three folds:

(1) We propose a new large-scale dataset (AS-1B) for open-world panoptic visual recognition and
understanding, using an economical semi-automatic data engine that combines the power of off-the-
shelf vision/language models and human feedback. As reported in Table 1, we have 159 times more
semantic tags and 33 times more regions compared with its counterparts.

(2) Based on the dataset, we develop a unified vision-language foundation model (ASM) for open-
world panoptic visual recognition and understanding. Aligning with LLMs, our ASM supports
versatile image-text retrieval and generation tasks, demonstrating impressive zero-shot capability.

(3) We evaluate our model on a representative vision and vision-language tasks. Our ASM outperforms
CLIP (Radford et al., 2021) by 10.7 and 13.4 (mAP) on COCO (Lin et al., 2014) and LVIS (Gupta
et al., 2019) in zero-shot region recognition tasks. When trained with AS-1B (region-level data) and
LaionCOCO (Schuhman et al., 2022) (image-level data), our model achieves superior zero-shot and
fine-tuned performance compared to recent image-level (Dai et al., 2023; Wang et al., 2023b; Huang
et al., 2023) and region-level (Yu et al., 2017; Wu et al., 2022; Peng et al., 2023) VLLMs.

2 RELATED WORK

Datasets for Visual Recognition and Understanding. As one of the three pillars of deep learning,
datasets play a critical role in the advancement of deep learning models, especially in the field of
visual recognition and comprehension. Prior to the era of large-scale models, datasets (Deng et al.,
2009; Lin et al., 2014; Goyal et al., 2017) are primarily closed-world or have limited data scale.
Additionally, datasets like Visual Genome (Krishna et al., 2017) and Visual7W (Zhu et al., 2016)
integrate visual location and understanding, offering more comprehensive tasks to describe the visual
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Table 1: Comparison with popular vision and vision-language datasets. “#” denotes the number
of something. “Open” and “Closed” means Open-World and Closed-Set respectively. We see that the
proposed AS-1B dataset has a significantly larger data scale and diversity than its counterparts.

Type Dataset #Images #Regions #Concepts #Tokens Location Semantic
Im

ag
e-

L
ev

el ImageNet-22K (Deng et al., 2009) 15M − 22,000 − − Closed
COCO Caption (Chen et al., 2015) 0.1M − − 8.4M − Closed
CC12M (Changpinyo et al., 2021) 12.4M − − 250.9M − Open
YFCC15M (Kalkowski et al., 2015) 15M − − 1.0B − Open
COYO700M (Byeon et al., 2022) 700M − − 15.0B − Open
Laion-5B (Schuhmann et al., 2022) 5B − − 135.0B − Open

R
eg

io
n-

L
ev

el

SA-1B (Kirillov et al., 2023) 11M 1.1B − − Open −
COCO (Lin et al., 2014) 0.1M 0.9M 80 − Closed Closed
LVIS (Gupta et al., 2019) 0.1M 1.5M 1,203 − Closed Closed
Open Images (Kuznetsova et al., 2020) 1.5M 14.8M 600 − Closed Closed
BigDetection (Cai et al., 2022) 3.5M 36.0M 600 − Closed Closed
V3Det (Wang et al., 2023a) 0.2M 1.5M 13,029 − Closed Closed
Visual Genome (Krishna et al., 2017) 0.1M 0.3M 18,136 51.2M Open Open
AS-1B (ours) 11M 1.2B 3.5M 132.2B Open Open

world. However, these datasets have limited semantics and fail to encompass diverse scenarios in the
open world, which hinders the generalization ability of models. To achieve open-world capability,
CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) propose training models using web-scale
image-text pairs collected from the internet. Subsequent works, such as Laion (Schuhmann et al.,
2021; 2022), COYO-700M (Byeon et al., 2022) and DataComp (Gadre et al., 2023), have also
been introduced for open-source research. However, these approaches only include descriptions
or question-answering pairs corresponding to the entire image, resulting in models struggling to
accurately recognize and understand specific objects at the instance level. Recently, Kirillov et al.
introduced SA-1B (Kirillov et al., 2023), which provides open-world location information such as
boxes and masks but still lacks semantic details. So existing datasets cannot meet the requirements
of data scale, open-world location, and semantics necessary for achieving visual AGI models, thus
posing challenges in supporting human-like panoptic visual recognition and understanding.

Models for Visual Recognition and Understanding. Significant advancements have been made in
the field of visual recognition and understanding in recent years. Previous methods (He et al., 2017;
Chen et al., 2023b; 2022b; Kirillov et al., 2019) mainly concentrate on the close-set recognition while
recent works begin to focus on the open world understanding. Subsequent works (Radford et al., 2021;
Li et al., 2021; Yu et al., 2022) can recognize and understand the open world semantics while failing to
capitalize on the powerful perception capabilities of existing powerful pre-trained models, increasing
the cost of developing new models. In recent years, Large Language Models (LLMs) (Brown et al.,
2020; OpenAI, 2023; Touvron et al., 2023) have demonstrated excellent performance across various
tasks, showcasing their potential for semantic understanding, dialogue generation, programming,
mathematical problem-solving, etc, which leads to the emergency of many LLM-based multimodal
models (Li et al., 2023a; Zhu et al., 2023b; Liu et al., 2023a; Wang et al., 2023b; Liu et al., 2023b; Li
et al., 2023b; Zhai et al., 2022; Tschannen et al., 2023). However, these works are only capable of
recognizing the entire image, lacking the ability to comprehend specific regions within the image.
Some concurrent methods (Chen et al., 2023a; Peng et al., 2023; Zhang et al., 2023) begin to focus
on location-aware understanding. However, without the support of large-scale instance-level visual
understanding data, the generalization ability of these models is still limited.

3 THE ALL-SEEING DATASET (AS-1B)

In this section, we introduce the All-Seeing-1B (AS-1B) dataset for open-world panoptic visual
recognition and understanding. The dataset consists of 1.2 billion regions in 11 million images2. Each
region is annotated with comprehensive information, including semantic tags, question-answer pairs,
and captions. Compared with the previous visual recognition datasets like ImageNet (Deng et al.,
2009) and COCO (Lin et al., 2014), visual understanding datasets like Visual Genome (Krishna et al.,
2017) and Laion-5B (Schuhmann et al., 2022), the proposed AS-1B dataset stands out due to its rich
and diverse instance-level annotation and corresponding detailed object concepts and descriptions.

2Images source from SA-1B (Kirillov et al., 2023)
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Figure 3: Data engine for AS-1B dataset. Our data engine consists of an automatic annotation
pipeline (i.e., (a), (b), (c), (d)) and a human verification stage (i.e., (e)). We combine various powerful
models to produce annotations for different regions, which are sampled and verified by human experts.
Automated annotations are used together with human validation results to train region-aware models,
which are then used in the automated annotation pipeline to improve data quality.

3.1 DATA ANNOTATION ENGINE

We develop a semi-automatic data engine that efficiently uses a wide range of state-of-the-art
foundation models as annotators, reducing the enormous labeling cost to an acceptable level. As
depicted in Fig. 3, the process of the data engine begins by generating noisy pseudo data using
well-trained off-the-shelf foundation models (Kirillov et al., 2023; Wang et al., 2023c; Fang et al.,
2023a; Li et al., 2022b; Radford et al., 2021; Lüddecke & Ecker, 2022; Chiang et al., 2023; Liu et al.,
2023b) from diverse fields. Subsequently, a subset of these pseudo data are sampled to be verified and
corrected by human annotators. After that, we pre-train our All-Seeing-Model (ASM) with the noisy
pseudo data and finetune it with the human-verified data. Then we re-annotate the data with the aid
of ASM. The process of annotation, verification, and fine-tuning are repeated to iteratively refine the
annotation quality. By employing this “data-human-model” cycle, we can generate a large number of
region-level annotations with exceptional quality. See Appendix E.3 for more details about the cycle.

As the core component of the data engine, the data generation pipeline consists of five steps as
follows: (1) Creating open-world location (e.g., bounding box, mask, point set) with an ensemble of
state-of-the-art class-agnostic, visual grounding, and closed-set perception models (Kirillov et al.,
2023; Li et al., 2022b; Wang et al., 2023c; Fang et al., 2023a); (2) Generating open-world semantic
tags using the combination of image captioning models (Li et al., 2022a; Zhu et al., 2023b) and
LLMs (Chiang et al., 2023); (3) Matching the semantic tags to proper regions with image-text aligning
models (Radford et al., 2021; Lüddecke & Ecker, 2022); (4) Using LLM (Chiang et al., 2023) and
VQA models (Liu et al., 2023b) to generate the attributions of each region based on the matched
semantic tags; (5) Generating detailed captions based on the semantics and attributions of each region.

3.2 OPEN-WORLD LOCALIZATION

To obtain comprehensive locations of all instances in an image, we combine the results of state-
of-the-art perception models from different fields, including (1) class-agnostic model: we adopt
the SAM (Kirillov et al., 2023) to provide initial proposals of most objects in view. (2) closed-set
detection model: we use InternImage-H (Wang et al., 2023c) and EVA-02 (Fang et al., 2023a)
trained on BigDetection (Cai et al., 2022) and LVIS (Gupta et al., 2019), respectively, to detect the
common-seen objects. (3) grounding model: we use GLIP (Li et al., 2022b) to ground open-world
semantics generated by LLMs (see Sec. 3.3). All the bounding boxes are gathered together to ensure
that all possible objects in view are covered. See Appendix B.1 for details of the gathering strategy.

3.3 OPEN-WORLD SEMANTIC

Manually labeling billions of regions for an open-world semantic description is impractical due to the
enormous cost and time required. To remedy these challenges, we draw inspiration from the recent
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advancements in Large Language Models (LLMs) and Visual Large Language Models (VLLMs). We
leverage a series of LLMs (Chiang et al., 2023) and VLLMs (OpenAI, 2023; Liu et al., 2023a; Li
et al., 2022a; Liu et al., 2023b; Wang et al., 2023b; Zhu et al., 2023b) as “semantic generators” and
tap into their vast world knowledge and reasoning abilities for open-world semantic generation. These
“semantic generators” can be specialized for producing short semantic tags or detailed descriptions,
including attributes, question-answering pairs, and captions, based on specially-designed prompts.

Semantic Tags. To generate as many semantic tags as possible for a view, different instructions are
employed to harness the diverse capabilities of LLMs and VLLMs, turning them into annotators with
different focuses and skills. Specifically, we have (1) a spotter, which identifies major instances and
provides an overview of the scenes, (2) a imaginator that leverages world knowledge to imagine
plausible objects, (3) a splitter that divides complicated objects into parts, as well as (4) a magnifier
which zooms on each region to produce region-specific candidates. These models complement each
other to create a powerful system that can generate comprehensive open-world semantic tags for each
region and the entire image. See Appendix B.2.1 for more details.

Detailed Descriptions. To provide detailed descriptions that include attributes and statuses of each
region, we develop a pipeline that expands the region description using the open-world location
and its matched semantic tags (see Sec. 3.4 for location-semantic matching). We utilize a series of
skilled LLMs, including (1) a questioner that asks specific questions about the attributes or status of
a given semantic tag; (2) a responder that provides the accurate answers for these questions based on
the region’s content; and (3) a writer responsible for composing a detailed caption for each region,
according to the generated semantic tags, attributes, and status. See Appendix B.2.2 for more details.

3.4 MATCHING LOCATION AND SEMANTIC

In the matching process, we employ a region-text aligning model to measure the similarity between a
certain region and its semantic tag list. For each region, the semantic tag list is constructed by LLMs
(i.e., “spotter”, “imaginator”, “divider” and “magnifier”) and closed-set object detectors. Initially, in
the first iteration of the data engine, we use a CLIP model (Radford et al., 2021) for the region-text
alignment, where the input is the cropped region. To make sure the semantic tag is matched with the
major object in the bounding boxes, CLIPSeg (Lüddecke & Ecker, 2022) is also utilized to generate
the mask for each candidate. The original CLIP confidence is then modulated with the corresponding
mask area. In the subsequent iterations, we upgrade the CLIP model to our All-Seeing Model.

3.5 HUMAN VERIFICATION

Albeit efficient, annotations from the automated pipeline still contains some noise due to the cropping
process, which might discard essential context information. Therefore, to enhance the data quality,
we find it crucial to include human verification and implement a “data-human-model” loop to
continuously improve the data quality. Specifically, the human annotators are asked to verify the
annotations of semantic tags and question-answer pairs. For semantic tags, we simply the task for
annotators by focusing on picking the incorrect ones from the top-5 candidates in each region. For
question-answer pairs, a two-stage verification procedure is employed. In the first stage, human
annotators are asked to annotate the pairs with one of four choices: correct answer, wrong answer,
unanswerable question, or wrong semantic tag. Samples annotated as the latter two options are
annotated with a rejection answer, while those annotated as “wrong answer” will be further corrected
in the second stage. With such an annotation strategy, human annotators only need to verify the
outputs of the model instead of writing any long sentence, which greatly reduces the annotation cost.
See Appendix B.3 and B.4 for more details.

4 THE ALL-SEEING MODEL (ASM)

4.1 OVERAL ARCHITECTURE

Our objective is to create a unified framework that supports contrastive and generative image-text
tasks at both the image level and region levels. By leveraging pre-trained LLMs and powerful vision
foundation models (VFMs), this model demonstrates promising performance in discriminative tasks
like region recognition, as well as generative tasks such as image captioning, region captioning, etc.

6



Published as a conference paper at ICLR 2024

Backbone LLM-based Decoder

Task Instruction, Question ...

Desired Output

Transformer Decoder

......

......
Image w/ Location

Random Queries
Region Queries

Location-Aware Image Tokenizer

LLM-based Decoder

𝒫! 𝑏𝑜𝑠 Human: 𝒱 What is 
this? Assistant:

This is the Sphinx Generative
Loss ℒ!"#

LLM-based Decoder

𝒫" 𝑏𝑜𝑠 Human: 𝒱 What is
this? 𝑎𝑙𝑖𝑔𝑛

LLM-based Decoder

𝒫" 𝑏𝑜𝑠 Assistant: A photo 
of the Sphinx. 𝑎𝑙𝑖𝑔𝑛

For generative tasks:

ℱ

ℛ

𝒱

DiscriminaDve  Loss ℒ$%&
For discriminative tasks:

Figure 4: Overview of the All-Seeing Model (ASM). ASM incorporates a location-aware image
tokenizer to extract image-level and region-level features and a specific prompt design to handle both
generative tasks and discriminative tasks using a unified architecture with shared parameters.

As illustrated in Fig. 4, our All-Seeing Model (ASM) comprises three key designs: (1) a location-
aware image tokenizer extracting features from both the image and region levels based on the
input image and bounding box, respectively. (2) a trainable task prompt that is incorporated at the
beginning of the vision and text tokens to guide the model in distinguishing between discriminative
and generative tasks. In the case of the discriminative task, a trainable align token is appended
to the input sequence to gather the overall representation, and its embedding is then used in the
matching process. (3) a LLM-based decoder that is utilized to extract vision and text features for
discriminative tasks, as well as to auto-regressively generate response tokens in generative tasks.

The training objective of ASM is Ltotal = Lgen + Ldis , where the generation loss Lgen is the same
as the loss of GPT series (Radford et al., 2019) and the discriminative loss follows the contrastive loss
of CLIP (Radford et al., 2021), where each region is treated as an image when calculating the loss.

4.2 LOCATION-AWARE IMAGE TOKENIZER

Here, we propose an extension of the Query Transformer (Li et al., 2023a) for a location-aware
image tokenizer that conditions its queries on location information, such as bounding boxes. As
depicted in Fig. 4, we first apply the ViT-g/14 (Fang et al., 2023b) to encode the input image and
utilize RoIAlign (He et al., 2017) to extract the region featuresR from the image features F based on
the given bounding box. Then, the flattened region featuresR are projected to the same shape as the
randomly initialized query tokensQ′. They are concatenated to form the location-aware query tokens
Q. Subsequently, these location-aware query tokens Q are passed through the Q-Former to extract
output features from F . Finally, the output features are projected to match the feature dimension
of the LLM and are used as the soft prompt for subsequent decoding processes. Particularly, when
no location information is provided, the bounding box is assumed to cover the entire image. This
method guarantees a consistent approach for both local region and whole image tokenization.

4.3 LLM-BASED DECODER

To develop a unified LLM-based framework that can effectively handle both generation tasks and
discriminative tasks, we utilize Husky-7B (Liu et al., 2023b) as our foundation language model.

For generative tasks, the input sequence comprises three types of tokens, including (1) learnable
generative task prompts Pg ∈ RM×Dt , which informs the model that it should perform a generative
task. (2) location-aware image tokens V that contain the extracted image-level and region-level
information from the input image and (3) user prompt that expresses his/her requirements. Given
such an input sequence, the LLM generates text tokens sequentially in an autoregressive manner until
an end token ⟨eos⟩ is reached. An example prompt is shown in Appendix D.1.
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Table 2: Performance on the region-level captioning task. “FS: 4” refers to the few-shot result
with 4 samples. “-FT” denotes ASM with fine-tuning.

Model Zero-Shot Visual Genome RefCOCOg
Meteor CIDEr Meteor CIDEr

GRiT (Wu et al., 2022) % 17.1 142.0 15.2 71.6
SLR (Yu et al., 2017) % - - 15.4 59.2
SLR+Rerank (Yu et al., 2017) % - - 15.9 66.2
Kosmos-2 (FS: 4) (Peng et al., 2023) % - - 14.1 62.3
Kosmos-2 (Peng et al., 2023) ! - - 12.2 60.3
ASM (ours) ! 13.0 46.8 15.0 48.8
ASM-FT (ours) % 18.3 148.7 21.8 107.8

For discriminative tasks, the input sequence of input image consists of soft prompt tokens that
indicate task information, as well as vision tokens. Similarly, the input sequence of input text consists
of the same soft prompt tokens as those of input image and text tokens that represent the corresponding
region caption or object class name. In addition, we append a trainable align token ⟨align⟩ to each of
the input sequences to extract the holistic representation of the current input sequence. During the
process of region-text matching, we achieve image-text retrieval by simply computing the similarity
of the embedding of the ⟨align⟩ token. The example prompts are provided in Appendix D.1.

5 EXPERIMENTS

We compare our ASM with CLIP-based and other VLLMs on representative vision tasks such as
zero-shot region recognition, image caption, and region caption. In addition to standard metrics, we
also use human evaluation for LLM-based models (see Appendix E.1). For the AS-1B dataset, a brief
analysis has been provided in Fig. 2 and Table 1. The detailed analysis is present in Appendix C.

5.1 TEXT GENERATION

Settings. We evaluate the image-level caption ability of our model on Flickr30K (Young et al., 2014)
and NoCaps (Agrawal et al., 2019) dataset. Following the common practice (Huang et al., 2023;
Li et al., 2023a), we report the CIDEr (Vedantam et al., 2015) and SPICE (Anderson et al., 2016)
metrics on these benchmarks. To assess the region-level caption ability, we also evaluate ASM on the
Visual Genome (Krishna et al., 2017) and RefCOCOg (Mao et al., 2016). On the region caption task,
we adopt both the Meteor (Banerjee & Lavie, 2005) and CIDEr metrics as our evaluation metrics,
following Kosmos-2 (Peng et al., 2023). All of the metrics are computed by COCOEvalCap.

During training, a two-stage training process is employed. The first stage utilizes AS-1B (region-level)
and LaionCOCO (image-level) for pre-training, while the second stage utilizes a subset of AS-1B that
has been verified by human annotators, along with other high-quality data, for supervised fine-tuning.
The fine-tuned ASM is denoted as ASM-FT. See Appendix D for more training details.

Results. For region-level captioning, as shown in Table 2, our ASM model surpasses the concurrent
region-aware VLLMs, Kosmos-2 (Peng et al., 2023), by 2.8 points on the RefCOCOg dataset, under
the zero-shot setting. After the second-stage fine-tuning, our ASM model has achieved a new record
for referring expression generation on RefCOCOg. Besides, on the Visual Genome (VG) dataset,
although the Meteor score of zero-shot ASM is inferior to GRiT (Wu et al., 2022), ASM-FT achieves
significantly better results than GRiT given relevant data.

In addition, our model also excels at image-level captioning, as presented in Table 3, our ASM
model demonstrates promising zero-shot performance on Flickr30K (Young et al., 2014) and No-
Caps (Agrawal et al., 2019) dataset. Specifically, under the zero-shot setting, our model achieves a
CIDEr score of 79.5 without the second-stage fine-tuning and 88.0 after the second-stage fine-tuning,
which outperforms all the concurrent VLLMs, such as InstructBLIP (Dai et al., 2023), Shikra-
13B (Chen et al., 2023a) and Kosmos-2 (Peng et al., 2023). Furthermore, on the NoCaps dataset,
ASM also achieves comparable performance compared to the baselines. These results indicate that
our ASM model retains a strong image-level comprehension ability while also being region-aware.
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Table 3: Zero-shot performance on the image-level captioning tasks.

Model Zero-shot Flickr30K NoCaps
CIDEr SPICE CIDEr SPICE

Flamingo-9B (Alayrac et al., 2022) ! 61.5 - - -
SimVLM (Wang et al., 2022) ! - - 110.3 14.5
BLIP (Li et al., 2022a) ! - - 113.2 14.7
BLIP-2 (Li et al., 2023a) ! - - 121.6 15.8
InstructBLIP (Dai et al., 2023) ! 82.8 - 123.1 -
Shikra-13B (Chen et al., 2023a) ! 73.9 - - -
Kosmos-1 (Huang et al., 2023) ! 67.1 14.5 - -
Kosmos-2 (Peng et al., 2023) ! 66.7 - - -
ASM (ours) ! 79.5 17.6 107.7 14.6
ASM-FT (ours) ! 88.0 18.8 116.9 15.6

Table 4: Zero-Shot object recognition performance. We report the zero-shot recognition perfor-
mance on COCO and LVIS dataset. The ground-truth boxes are used for inference.

Model COCO LVIS
mAP APS APM APL mAP APS APM APL

CLIP (Radford et al., 2021) 58.9 50.7 70.4 58.3 47.1 40.3 59.2 57.4
OpenCLIP (Ilharco et al., 2021) 63.3 47.8 75.6 60.9 49.1 37.4 62.8 66.5
R-CLIP (our baseline) 68.6 61.4 75.4 79.3 54.8 49.3 60.6 66.6
ASM (ours) 69.6 63.7 77.3 72.2 60.5 55.8 67.3 69.3

5.2 ZERO-SHOT REGION RECOGNITION

Settings. We use zero-shot region recognition to evaluate the region-text alignment ability of our
model. We use COCO (Lin et al., 2014) and LVIS (Gupta et al., 2019) detection dataset for evaluation.
Since our current focus is not on object localization, we use the ground-truth boxes and use the model
to predict the categories given the corresponding texts following RegionCLIP (Zhong et al., 2022).
We report the mean Average Precision (mAP) metrics for this evaluation. The model is shared with
text generation tasks, which is trained with a two-stage schedule.

Results. As shown in Table 4, both our baseline model R-CLIP (see Appendix D.3) and the proposed
ASM achieve promising zero-shot region recognition performance. On the COCO dataset, R-CLIP
outperforms the original CLIP by 9.7 mAP, and ASM further increases the performance by 10.7 mAP.
On the more challenging LVIS dataset with 1,203 categories, R-CLIP outperforms CLIP by 7.7 mAP,
and ASM achieves a more significant improvement of 13.4 mAP over CLIP. These results demonstrate
the effectiveness of region-text data in AS-1B dataset and the proposed ASM in region-text alignment
tasks. Notably, our ASM simultaneously performs caption and region recognition tasks with the same
weight, showcasing its versatility and efficiency.

6 CONCLUSION

In this paper, we present the All-Seeing (AS) Project, which develops a comprehensive system
for panoptic visual recognition and understanding in the open world, from both dataset and model
perspectives. In terms of data, we elaborate a semi-automatic data engine consisting of an automatic
annotation pipeline and a human verification step. Using this data engine, we annotated the AS-1B
dataset comprising over 1 billion region-level comprehensive annotations, with controllable costs.
From the model aspect, we propose a region-aware multi-modal large language model called the
All-Seeing Model (ASM). The ASM utilizes a unified LLM decoder to model both region-text
alignment and generation tasks. Leveraging the AS-1B dataset and other high-quality data, ASM
achieves promising results on image and region-level tasks. We believe that the data engine, AS-1B
dataset, and the ASM model proposed in the All-Seeing Project will inspire further research and
development towards empowering artificial intelligence systems with an “all-seeing eye”, enabling
them to achieve a deeper understanding of the world.
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APPENDIX OF “THE ALL-SEEING PROJECT: TOWARDS PANOPTIC VISUAL
RECOGNITION AND UNDERSTANDING OF THE OPEN WORLD”

A DATASHEET FOR AS-1B DATASET

A.1 MOTIVATION

Q1 For what purpose was the dataset created? Was there a specific task in mind? Was there
a specific gap that needed to be filled? Please provide a description.

• AS-1B was created as the first large-scale dataset with comprehensive and detailed
instance-level annotations. This dataset contains a wide range of open-world concepts,
including over 3.5 million different semantic tags ranging from common categories
(e.g., human, backpack) to fine-grained or rare categories with attributes (e.g., old metal
latches), which serves as the data foundation to train a powerful model for open-world
panoptic visual recognition and understanding. Before the curation of AS-1B, existing
large-scale image-text pair datasets (Schuhmann et al., 2022; Byeon et al., 2022; Gadre
et al., 2023) only include descriptions or question-answering pairs corresponding to
the entire image. On the other hand, datasets like Visual Genome (Krishna et al., 2017)
and Visual7W (Zhu et al., 2016) integrate visual location and understanding, offering
more comprehensive tasks to describe the visual world. However, these datasets have
limited data scale and fail to encompass diverse scenarios in the open world.

Q2 Who created the dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)?

• This dataset is presented by OpenGVLab of Shanghai AI Laboratory.

Q3 Who funded the creation of the dataset? If there is an associated grant, please provide the
name of the grantor and the grant name and number.

• This work was sponsored by Shanghai AI Laboratory.

Q4 Any other comments?

• No.

A.2 COMPOSITION

Q5 What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)? Are there multiple types of instances (e.g., movies, users, and ratings;
people and interactions between them; nodes and edges)? Please provide a description.

• Each instance in AS-1B represents a region in a certain image.

Q6 How many instances are there in total (of each type, if appropriate)?

• AS-1B consists of over 11 million images, 1 billion region-text pairs, 3.5 million
open-world concepts, and 100 billion tokens of region-related question-answering and
captions. A further overview of the statistics may be seen in the Table 1.

Q7 Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set? If the dataset is a sample, then what is the larger set? Is the
sample representative of the larger set (e.g., geographic coverage)? If so, please describe
how this representativeness was validated/verified. If it is not representative of the larger set,
please describe why not (e.g., to cover a more diverse range of instances, because instances
were withheld or unavailable).

• AS-1B is created based on the SA-1B dataset (Kirillov et al., 2023). From this collection
of images, we extend the original annotations in SA-1B with a scalable semi-automatic
data engine. Please see Section 3 for more details about the data engine.

Q8 What data does each instance consist of? “Raw” data (e.g., unprocessed text or images)
or features? In either case, please provide a description.
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• We provide 1.2 billion instance-level annotations. Each annotation consists of the
following: an image file url; box coordinates in the format of (x1, y1, x2, y2); semantic
tag; three question-answer pairs; one detailed region caption.

Q9 Is there a label or target associated with each instance? If so, please provide a description.

• No, we do not define any label or target for the instances. Targets are task-dependent.
AS-1B can be used for a variety of tasks such as region recognition (inputs = regions,
targets = semantic tags), region captioning (inputs = regions, targets = captions),
or region-level visual question answering (inputs = images and questions, targets =
answers).

Q10 Is any information missing from individual instances? If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does not
include intentionally removed information, but might include, e.g., redacted text.

• No.

Q11 Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)? If so, please describe how these relationships are made explicit.

• No.

Q12 Are there recommended data splits (e.g., training, development/validation, testing)? If
so, please provide a description of these splits, explaining the rationale behind them.

• No.

Q13 Are there any errors, sources of noise, or redundancies in the dataset? If so, please
provide a description.

• AS-1B is noisy by design since the annotations are produced by a semi-automatic data
annotation pipeline. However, this pipeline operated in a “data-human-model” loop,
iteratively refining data quality. Besides, we also provide a fully human-verified subset
of AS-1B with over 800k instance-level annotations, which is much more clean.

Q14 Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? If it links to or relies on external resources, a) are
there guarantees that they will exist, and remain constant, over time; b) are there official
archival versions of the complete dataset (i.e., including the external resources as they
existed at the time the dataset was created); c) are there any restrictions (e.g., licenses, fees)
associated with any of the external resources that might apply to a future user? Please
provide descriptions of all external resources and any restrictions associated with them, as
well as links or other access points, as appropriate.

• This dataset is established based on SA-1B dataset (Kirillov et al., 2023). In response to
sub-questions: (a) These image servers ensure stable access unless the SA-1B authors
delete their images; (b) Yes, AS-1B archives all the annotations. For images, AS-1B
only archives the URL and not the media content; (c) All restrictions follow the SA-1B
dataset. We do not introduce any additional restrictions.

Q15 Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor–patient confidentiality, data that includes the
content of individuals’ non-public communications)? If so, please provide a description.

• No.

Q16 Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? If so, please describe why.

• The annotations in this dataset are produced by a semi-automatic data engine. For the
image component of AS-1B, we utilize high-resolution images from SA-1B. These
images have undergone rigorous selection and privacy protection by Meta AI to ensure
their suitability and compliance with privacy standards. For the text component of
AS-1B, we have constrained the model not to generate offensive content and have
removed annotations containing potentially offensive words or phrases3.

3https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words
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Q17 Does the dataset relate to people? If not, you may skip the remaining questions in this
section.

• People might be found in the images or textual descriptions, but they are not the primary
emphasis of the dataset.

Q18 Does the dataset identify any subpopulations (e.g., by age, gender)?
• We don’t include any indicators of subpopulations as attributes for the region-text pairs,

although it might be inferred in certain annotations.

Q19 Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset? If so, please describe
how.

• No. The images in AS-1B are sourced from the SA-1B, where faces and vehicle license
plates have been blurred in the released images.

Q20 Does the dataset contain data that might be considered sensitive in any way (e.g., data
that reveals racial or ethnic origins, sexual orientations, religious beliefs, political
opinions or union memberships, or locations; financial or health data; biometric or
genetic data; forms of government identification, such as social security numbers;
criminal history)? If so, please provide a description.

• No. The annotations in this dataset are generated by a semi-automatic data engine. Our
model is not able to generate any sensitive content.

Q21 Any other comments?
• No.

A.3 COLLECTION PROCESS

Q22 How was the data associated with each instance acquired? Was the data directly
observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or
indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses
for age or language)? If data was reported by subjects or indirectly inferred/derived from
other data, was the data validated/verified? If so, please describe how.

• The annotations of AS-1B are generated by a semi-automatic data engine. As the core
component of the data engine, the data generation pipeline consists of five steps as
follows: (1) Creating open-world location (e.g., bounding box, mask, point set) with an
ensemble of state-of-the-art class-agnostic, visual grounding, and closed-set perception
models (Kirillov et al., 2023; Li et al., 2022b; Wang et al., 2023c; Fang et al., 2023a);
(2) Generating open-world semantic tags using the combination of image captioning
models (Li et al., 2022a; Zhu et al., 2023b) and LLMs (Chiang et al., 2023); (3)
Matching the semantic tags to proper regions with image-text aligning models (Radford
et al., 2021; Lüddecke & Ecker, 2022); (4) Using LLM (Chiang et al., 2023) and VQA
models (Liu et al., 2023b) to generate the attributions of each region based on the
matched semantic tags; (5) Generating detailed captions based on the semantics and
attributions of each region. See Section 3 for more details about the data engine.

• To verify the quality of the generated annotations, we asked 10 experts to annotate 1000
randomly sampled data from AS-1B with correct or wrong after each human-in-loop
iteration separately. These annotations achieve an accuracy rate of 83.5%. In addition
to the large-scale automatic annotations for over 1 billion regions, we will also release
a clean version dataset, containing over 800k annotations that have been fully verified
by human annotators. The accuracy of annotations from such a version is 95.7%.

Q23 What mechanisms or procedures were used to collect the data (e.g., hardware apparatus
or sensor, manual human curation, software program, software API)? How were these
mechanisms or procedures validated?

• We ran the data engine in Python, over 32 8-A100(80G) GPU machine. We validate
our implementation by manually checking a few results of the data engine.

Q24 If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)?
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• AS-1B is created based on the SA-1B dataset. We annotate all images in the SA-1B.

Q25 Who was involved in the data collection process (e.g., students, crowdworkers, contrac-
tors) and how were they compensated (e.g., how much were crowdworkers paid)?

• Our data engine requires crowdworkers to verify a subset of the generated annotations.
Specifically, human annotators are tasked with verifying the annotations of semantic
tags and question-answer pairs. For semantic tag verification, we pay 0.02 dollars for
each region. Regarding the verification of question-answer pairs, we pay 0.02 dollars
for the first stage and 0.07 dollars for the second stage.

Q26 Over what timeframe was the data collected? Does this timeframe match the creation
timeframe of the data associated with the instances (e.g., recent crawl of old news
articles)? If not, please describe the timeframe in which the data associated with the
instances was created.

• The licensed photos vary in their date taken over a wide range of years up to 2022

Q27 Were any ethical review processes conducted (e.g., by an institutional review board)?
If so, please provide a description of these review processes, including the outcomes, as well
as a link or other access point to any supporting documentation.

• We did not conduct a formal ethical review process via institutional review boards.
However, as described in Q16, we employed several filtering mechanisms to try and
remove instances that could be problematic.

Q28 Does the dataset relate to people? If not, you may skip the remaining questions in this
section.

• People might be present in the images and descriptions, although they are not the sole
emphasis of the dataset.

Q29 Did you collect the data from the individuals in question directly, or obtain it via third
parties or other sources (e.g., websites)?

• We collect the data by annotating the images from the SA-1B dataset with our proposed
semi-automatic data engine.

Q30 Were the individuals in question notified about the data collection? If so, please describe
(or show with screenshots or other information) how notice was provided, and provide a
link or other access point to, or otherwise reproduce, the exact language of the notification
itself.

• For the image component of AS-1B, we utilize high-resolution images from SA-
1B, which are licensed from a third party who provided appropriate representations
regarding the collection of any notices and consents as required from individuals.
For the text component of AS-1B, annotations are generated by a semi-automatic
data engine, and the individuals in the image were not notified since their personal
information has been hidden via facial blurring.

Q31 Did the individuals in question consent to the collection and use of their data? If so,
please describe (or show with screenshots or other information) how consent was requested
and provided, and provide a link or other access point to, or otherwise reproduce, the exact
language to which the individuals consented.

• No. See Q30 for more details.

Q32 If consent was obtained, were the consenting individuals provided with a mechanism to
revoke their consent in the future or for certain uses? If so, please provide a description,
as well as a link or other access point to the mechanism (if appropriate).

• Users can contact the research team of the SA-1B dataset for image(s) removal. Besides,
users can contact us to remove any annotation in our proposed AS-1B.

Q33 Has an analysis of the potential impact of the dataset and its use on data subjects (e.g.,
a data protection impact analysis) been conducted? If so, please provide a description
of this analysis, including the outcomes, as well as a link or other access point to any
supporting documentation.
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• To eliminate any potential impact on people whose photos are included in the dataset,
identifiable information (faces, license plates) has been blurred by the research team of
the SA-1B dataset.

Q34 Any other comments?
• No.

A.4 PREPROCESSING, CLEANING, AND/OR LABELING

Q35 Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucket-
ing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)? If so, please provide a description. If not, you may skip the
remainder of the questions in this section.

• The data engine operates in a “data-human-model” loop, iteratively refining data quality.
Besides, we will also release a subset of AS-1B with over 800k annotations, which has
been fully verified by human annotators.

Q36 Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? If so, please provide a link or other access point to
the “raw” data.

• No.

Q37 Is the software used to preprocess/clean/label the instances available? If so, please
provide a link or other access point.

• Yes, the data collection code will be open-sourced and accessible from the dataset
website.

Q38 Any other comments?
• No.

A.5 USES

Q39 Has the dataset been used for any tasks already? If so, please provide a description.

• The AS-1B has been employed to train the All-Seeing-Model (ASM). As discussed in
Section 5, ASM exhibits powerful performance in both region recognition and region
captioning tasks, which strongly demonstrates the effectiveness of AS-1B.

Q40 Is there a repository that links to any or all papers or systems that use the dataset? If
so, please provide a link or other access point.

• No.

Q41 What (other) tasks could the dataset be used for?
• The dataset could be used for a variety of region-level vision-and-language (V&L)

tasks, such as region recognition, region captioning, and region-level visual question
answering.

Q42 Is there anything about the composition of the dataset or the way it was collected
and preprocessed/cleaned/labeled that might impact future uses? For example, is there
anything that a future user might need to know to avoid uses that could result in unfair
treatment of individuals or groups (e.g., stereotyping, quality of service issues) or other
undesirable harms (e.g., financial harms, legal risks) If so, please provide a description. Is
there anything a future user could do to mitigate these undesirable harms?

• No.

Q43 Are there tasks for which the dataset should not be used? If so, please provide a
description.

• Our dataset should only be used for non-commercial academic research.

Q44 Any other comments?
• No.
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A.6 DISTRIBUTION

Q45 Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? If so, please
provide a description.

• Yes, the dataset will be open-source.

Q46 How will the dataset be distributed (e.g., tarball on website, API, GitHub)? Does the
dataset have a digital object identifier (DOI)?

• The data will be available through GitHub.

Q47 When will the dataset be distributed?
• 31/03/2024 and onward.

Q48 Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? If so, please describe this license
and/or ToU, and provide a link or other access point to, or otherwise reproduce, any relevant
licensing terms or ToU, as well as any fees associated with these restrictions.

• Apache 2.0 license

Q49 Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? If so, please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any relevant licensing terms, as well as any fees
associated with these restrictions.

• AS-1B owns the metadata and release as Apache 2.0 license.
• We do not own the copyright of the images.

Q50 Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? If so, please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any supporting documentation.

• No.

Q51 Any other comments?
• No.

A.7 MAINTENANCE

Q52 Who will be supporting/hosting/maintaining the dataset?
• Huggingface will support hosting of the metadata.
• OpenGVLab of Shanghai AI Laboratory will maintain the samples distributed.

Q53 How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
• https://github.com/OpenGVLab/all-seeing

Q54 Is there an erratum? If so, please provide a link or other access point.

• No.

Q55 Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete in-
stances)? If so, please describe how often, by whom, and how updates will be communicated
to users (e.g., mailing list, GitHub)?

• No. However, specific samples can be removed on request.

Q56 If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were individuals in question told that their data
would be retained for a fixed period of time and then deleted)? If so, please describe
these limits and explain how they will be enforced.

• People may contact us to add specific samples to a blacklist.

Q57 Will older versions of the dataset continue to be supported/hosted/maintained? If so,
please describe how. If not, please describe how its obsolescence will be communicated to
users.
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• We will only support and maintain the latest version at all times and a new version
release of AS-1B will automatically deprecate its previous version.

Q58 If others want to extend/augment/build on/contribute to the dataset, is there a mech-
anism for them to do so? If so, please provide a description. Will these contributions
be validated/verified? If so, please describe how. If not, why not? Is there a process for
communicating/distributing these contributions to other users? If so, please provide a
description.

• We welcome any contributions to AS-1B and we will announce updates regarding
dataset extensions on GitHub. However, contributors must demonstrate the quality and
harmlessness of the extended data annotations; otherwise, we will not accept these
extensions.

Q59 Any other comments?

• No.

B DETAILS OF DATA ANNOTATION ENGINE

B.1 OPEN-WORLD LOCALIZATION

Due to the incomparable score ranges of different models, directly using non-maximum suppression
(NMS) to eliminate duplicated proposals from multiple resources is infeasible. Therefore, we develop
an effective strategy that keeps all the semantics while removing highly overlapped regions. As
shown in Alg. 1, the merging strategy works as follows: (1) We start by initializing the result region
proposal setR with the class-agnostic bounding boxes generated by SAM. (2) When a set of region
proposals R′ from a new source (e.g., closed-set/grounding detector) comes in, we calculate the
Intersection over Union (IoU) between the regions inR′ andR. (3) If the IoU between a new region
r′ ∈ R′ and an existing region r ∈ R is greater than a threshold TIoU, the region r′ is removed, and
its closed-set/grounding tags are appended to the tag list of the matched region r. (3) Finally, the
remaining low-IoU regions inR′ along with their tags are added toR. By employing this strategy, we
sequentially combine the results of SAM, InternImage, EVA-02 and GLIP to obtain comprehensive
location information for an image.

Algorithm 1 Region Proposal Merging

Input:
Existing region proposalsR
New region proposalsR′

IoU threshold TIoU

Output:
Merged region proposalsR

1: for region r′ ∈ R′ do
2: Calculate IoU between r′ and proposals inR
3: if maximum IoU > TIoU then
4: Merge semantic tags from r′ into the semantic tag of corresponding regions inR
5: Delete r′

6: else
7: Add r′ intoR
8: end if
9: end for

B.2 OPEN-WORLD SEMANTIC

Expanding on our brief description in Section 3.3, this section provides an illustration of the modules
utilized to generate the semantic tags and detailed descriptions.
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B.2.1 SEMANTIC TAGS

Spotter. This module aims to list the prominent and major objects present in the given image. To
achieve this, we use MiniGPT4 (Zhu et al., 2023b) to provide an overall caption of the input image.
From the generated captions, we extract noun phrases to serve as the semantic tags shared by all the
regions in the input image. In addition, we also add an OCR detector (contributors, 2023) to detect
the texts as semantic tags in the scenes. Note that the generated caption will also be passed to other
annotators, which gives visual signal for the LLMs, serving as their eyes.

Imaginator. Although the “spotter” can find out the major objects in the scenes, it fails to identify
many insignificant objects. To address this limitation, we develop an “imaginator” to further expand
the semantic tag list with plausible imagination. The “imaginator” emulates human-like thinking.
When provided with descriptions of a particular scene, humans can effortlessly imagine the potential
objects present. For instance, if informed that an image depicts a group of children standing in a
classroom, one may envision objects like “teacher”, “blackboard”, and “stationery”. In our data
engine, we utilize Vicuna (Chiang et al., 2023) to imagine possible objects in scenes based on the
captions generated by the “spotter”, and then extend the set using web search engines (Qiu et al.,
2013). The “imaginator” excels at supplementing scene-specific object candidates, such as suggesting
“airport stuff” instead of simply “person”. This significantly enhances the concept diversity within
this project.

Splitter. This model is proposed to divide the generated concepts into more fine-grained parts. We
find that some region proposals only cover a part of the objects, such as the wing of a plane or the
windshield of a car. However, most of the existing perception or caption models are not capable of
detecting parts. To this end, we further instruct the Vicuna (Chiang et al., 2023) to divide the semantic
tag into parts. For example, “building" will be decomposed into “roof”, “door”, “windows” and
“walls”. We tailor the prompt for LLM so that the model only divides the semantic tag that represents
a concrete object into parts. LLM is instructed to ignore the semantic candidate that is non-physical
or cannot be further divided, such as “water”, “sky”, etc.

Magnifier. Although hundreds of open-world semantic tags can be generated by the aforementioned
annotators for each image, there still exists some regions whose semantics are absent from the
generated tag lists. So we introduce a “magnifier” to zoom in on each region and add semantic tags
for them. We simply crop the region and use a caption model to describe the cropped image, and then
extract the noun phrases, which are used as the semantic candidates exclusive for the corresponding
regions. In this model, we use BLIP (Li et al., 2022a) for efficiency.

B.2.2 DETAILED DESCRIPTIONS

Questioner. Given semantic tag, to determine its commonly-used attributes, we use Vicuna (Chiang
et al., 2023) as a questioner to generate three questions about the attributes or statuses. The prompt is
shown below. In this way, we leverage the world knowledge and reasoning capabilities of LLMs to
identify the most relevant attribute of an object.

Instruction: I will give you some objects. Please list 3 questions about the given objects. These
questions must be answerable based on a photograph of the object and cannot rely on any
outside knowledge. Some examples are listed as follows:

Human: Person
Assistant: Q1: What is the sex of this person? Q2: What is the hairstyle of this person? Q3:
What is this person doing?

Human: {Semantic Tag}
Assistant:

Responder. After obtaining the questions related to a semantic tag, we employ Husky (Liu et al.,
2023b), an LLM-based VQA model, to generate the responses to each question. The responses are
generated in several sentences, taking into account the content of the region. An example prompt
is shown below. This approach enables us to gather additional information about a region while
preventing the inclusion of irrelevant content.
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Instruction: <img><ImageContent></img>
Human: {Question for the image}
Assistant:

Writer. Based on the question-answering pairs, we proceeded to use Vicuna (Chiang et al., 2023) to
rephrase them into a single sentence, resulting in a detailed description of the region. The prompt used
during annotation is shown below. It is notable that both the question-answering pairs from previous
steps and the region captions from this step are valuable for visual recognition and understanding
models.

Human: Please paraphrase the following sentences into one sentence. {answer for question 1}
{answer for question 2} {answer for question 3}
Assistant:

B.3 HUMAN ANNOTATION

Here, we introduce the details of human annotation process.

Semantic tags. We design a data sampling strategy and simplify the task for annotators by focusing
on picking the incorrect ones from the top-5 candidates in each region. In the real world, concepts
exhibit long-tail distribution as shown in Fig. 2. Therefore, many rare concepts will be missed if
the region is randomly sampled for validation. To address this issue, we implement a concept-wise
sampling strategy. Specifically, we collect a list of concepts in the first 1M images in the AS-1B
dataset. From this list, we select most concepts for verification. We randomly sample 6 regions from
the least frequent concepts and 90 regions from the concepts with the highest number of regions.
During the human verification process, the semantic tag list for the sampled regions is provided to
the annotators, who are then tasked with filtering out any incorrect tags.

Visual Question-Answering Pairs. Although using LLMs/VLLMs greatly reduces the annotation
cost of generating visual question-answer pairs, there are still some issues that may introduce noise
into the data. (1) The answer to the question is wrong since the VLLM is not perfect. (2) The generated
question for the semantic tag may be unanswerable according to the given image content. (3) The
semantic tag assigned to a region may be incorrect, leading to meaningless generated questions. For
example, if a region containing a dog is wrongly labeled as a cat, asking about the color of the cat
would be nonsensical.

To address these issues, we perform a two-stage verification procedure. In the first stage, human
annotators are provided with the image, location (bounding box), and corresponding question-answer
pairs. They are then asked to annotate the visual question-answer pair with one of four choices: correct
answer, wrong answer, unanswerable question, or wrong semantic tag. Samples annotated as “correct
answer” are retained, while those annotated as “wrong answer” are re-annotated with a correct answer
generated by human annotators in the second stage. Samples annotated as “unanswerable question” or
“wrong semantic tag” are annotated with a rejection answer, such as “This question is unanswerable
according to the image” or “The object in this region is incorrectly labeled”, respectively.

Verification Review. We engaged 50 human annotators to perform verification on the annotations
generated by our model. To guarantee the quality of this verification process, we additionally request
10 experts to review the verified annotations. These experts are selected based on their domain
knowledge and experience in annotation tasks. To streamline the process, we organize the regions
requiring review into groups of 100. Each group is assigned to one expert, who checks the accuracy
and consistency of the annotations within the group. Any package with an accuracy rate below 95%
will be sent back for re-verification by another annotator. This review process double-checks the
annotations, further ensuring their reliability and validity for our models.

B.4 DATA ENGINE ITERATION

To continuously improve the data quality, we implement a “data-human-model” loop that maximizes
the utilization of both human-verified data and models. As depicted in Alg. 2, the data engine iteration
comprises three steps as follows: (1) The images are processed with the annotation pipeline which
produces automatic annotations. (2) The ASM model is then trained using these coarse annotations,
enabling it to perform both discriminative and generative tasks such as region-text matching and
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Algorithm 2 Data Engine

Input:
Iteration Number n
Images I
ModelsM
Annotation Pipeline P (M, I)

Output:
Annotations: A
Improved ModelsM

1: Generate initial annotation A0 by off-the-shelf models;
2: Train ASM with A0, yieldM0;
3: i← 0

4: while i < n do
5: Perform Human verification on Ai, yield A′

i;
6: Fine-tuneMi with A′

i, obtainMi+1;
7: Obtain Annotation Ai+1 by P (Mi+1, I);
8: i← i+ 1

9: end while

region captioning. (3) The automatic annotations are sampled, reviewed, and corrected by human
annotators, yielding high-quality human annotations. This verified data is then used to fine-tune the
ASM model, thereby enhancing its performance. (4) The fine-tuned model is utilized to re-rank the
semantic tags and generate more accurate region captions and answers. Repeat the third and fourth
steps until the data quality meets the requirements. By following this data iteration process, we ensure
continuous optimization of data quality, ultimately leading to superior results. In Appendix E.3, we
demonstrate the effectiveness of this iteration process with quantitative experiments.

C DATA ANALYSIS

We conduct an in-depth analysis of our AS-1B dataset. We begin by showcasing the abundance of
data in terms of quantity. Next, we explore the data diversity and open-world semantics captured in
AS-1B. Finally, we thoroughly analyze the data quality of the initial automatic annotation pipeline
and explain how we have improved it through data engineering and human feedback.

C.1 DATA SCALE

Statistics. The AS-1B dataset consists of a vast collection of 1.2 billion region-text pairs extracted
from 11 million images, encompassing 3.5 million distinct semantic tags. Regions in the dataset are
categorized into five different resolution scales: tiny, small, medium, large, xlarge, and huge. As
indicated in Table 5, the distribution of region resolutions follows a roughly normal distribution. Over
half of the regions are on the medium or large scale. In Sec. 3.2, we utilize several region proposal
generators, including SAM (Kirillov et al., 2023), InternImage (Wang et al., 2023c), EVA-02 (Fang
et al., 2023a), and GLIP (Li et al., 2022b), to generate region proposals for the AS-1B dataset. Table 6
presents the proportion of regions provided by each model in the 1.2 billion regions. SAM generates
36.4% of the regions, while the other three models contribute to 63.6% of the regions. Therefore,
although our dataset shares images with SA-1B (Kirillov et al., 2023) and has a similar number of
regions, the actual regions are different due to the use of diverse region proposal generators.

Each region is also annotated with detailed question-answer pairs and a caption, which yields a total
of 3.3 billion visual question-answering pairs and 1.2 billion detailed region captions. As seen in
Table 7, the average token number of the answers is 16.91, while the average token number of the
composited caption is 34.84. The total number of tokens in our detailed region captions amounts to
approximately 42.2 billion. This extensive collection of detailed captions provides valuable textual
descriptions of regions within the images.
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Table 5: Region statistics and semantic sources. The percentage of semantic tags generated by
different models at each resolution are reported. LLM/VLLMs (Chiang et al., 2023; Zhu et al., 2023b;
Li et al., 2022a) contribute significantly to the semantic diversity of our dataset.

Region Type Area Range Proportion (V)LLMs BLIP InternImage EVA-02 GLIP

Tiny < 202 4.2% 33.8% 16.5% 24.6% 25.1% 0.0%
Small 202 ∼ 402 8.7% 34.5% 14.3% 24.6% 25.9% 0.7%
Medium 402 ∼ 1002 35.8% 55.6% 22.9% 8.3% 11.6% 1.7%
Large 1002 ∼ 2002 23.7% 58.5% 26.2% 5.0% 7.9% 2.3%
Xlarge 2002 ∼ 5002 18.3% 62.6% 27.1% 3.0% 4.3% 3.0%
Huge > 5002 9.5% 69.7% 24.9% 1.6% 1.2% 2.7%
All − 100% 55.4% 24.0% 8.2% 10.4% 2.1%
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Figure 5: The accuracy of semantic tags from different sources. LLM/VLLMs (Chiang et al.,
2023; Zhu et al., 2023b; Li et al., 2022a) show lower accuracy than other models, especially on low
resolution regions.

Comparisons. When comparing the AS-1B dataset with popular datasets containing region-level
annotations, AS-1B stands out with a significantly larger number of regions. It has about 33 times
more regions than the current largest detection dataset, BigDetection (Cai et al., 2022). While AS-1B
has fewer images compared to close-set classification datasets (Deng et al., 2009) or vision-language
datasets (Schuhmann et al., 2022), it compensates with valuable region annotations. Additionally,
AS-1B offers an abundant collection of detailed region annotations. Compared to the largest region-
level dataset, Visual Genome (Krishna et al., 2017), AS-1B’s detailed region annotation is about 1941
times larger than Visual Genome’s 1.7 million pairs of VQA annotations and 222 times larger than its
5.4 million region captions.

C.2 DATA DIVERSITY

Statistics. A distinctive feature of AS-1B is its vast inclusion of open-world concepts, demonstrated
through two key aspects: 1) a large number of semantic tags and 2) long and informative detailed
descriptions. Fig. 6 visually demonstrates the wide range of open-world concepts present in AS-1B.
The dataset covers diverse categories, including fine-grained categories like “lynx”, proper nouns
such as “The Sphinxs”, object parts like “charging cords”, and attributes like “pink and white baby
cribs”. In Fig. 2, we display the frequency distribution of semantic tags, revealing a clear long-tail
pattern. The most frequent semantic tags predominantly represent broad category names, while less
frequent tags correspond to fine-grained category names or instances with specific attributes.

In Table 5, we analyze the sources of each semantic tag to understand how open-world concepts
are enriched. We report the proportion of sources for the top-1 semantics in the semantic tags at
different scales. The results reveal that 55% of the top-1 semantic candidates are from the LLM,
while 24% originate from the BLIP (the “magnifier” in Sec. 3.3). Interestingly, only 19% of the top-1
candidates are generated from the closed-set detectors, InternImage, and EVA-02. This highlights
that the majority of concepts in the AS-1B dataset are obtained from open-world sources, especially
the LLMs and VLLMs.

However, although semantic tags generated by LLM/VLLMs can introduce comprehensive open-
world semantic tag candidates, they may also introduce some semantic tags that do not exist in
the image, thus giving rise to hallucinations. So we further analyze the accuracy of these retained
semantic tags generated by LLM/VLLMs through human evaluation. Through human evaluation,
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Table 6: The proportion of region proposals
generated by different models. Only 40% re-
gions are generated from SAM.

Model SAM InternImage EVA-02 GLIP

Proportion 36.4% 20.5% 22.5% 20.6%

Table 7: The statistics of detailed description
in AS-1B dataset. The overall number of tokens
reaches 132.2 billion.

Type Number #Tokens Average Tokens

Question 3.3B 34.6B 10.50
Answer 3.3B 55.4B 16.91
Caption 1.2B 42.2B 34.84

Table 8: The statistics of annotation accuracy. AS-LoopX denotes the accuracy after the X-th
human-in-loop iteration. AS-Human represents the accuracy of the subset of AS-1B which has been
fully verified by human annotators.

Stage AS-Loop0 AS-Loop1 AS-Loop2 AS-Loop3 AS-Human

Acc for semantic tags 54.8% 70.2% 76.7% 80.6% 95.3%

Acc for question-answer pairs 54.8% 75.0% 80.3% 83.5% 95.7%

the accuracy for the automatic data annotations is approximately 80.6%. For the data annotations
that have undergone complete manual verification, the accuracy is 94.6%. Furthermore, the retained
proportion of semantic tags ultimately produced from LLM/VLLMs is approximately 26.0%. These
data demonstrate that, despite the fact that most semantic tags generated by LLM/VLLMs may not
actually be present in the image, they do not introduce excessive noise after the semantic-location
matching stage.

As for the detailed region caption, the VQA-based generation approach in AS-1B has proven
advantageous, resulting in longer and more informative region descriptions. A more straight-forward
way is to directly ask the VLLM to generate region captions. However, without guidance from
semantic tags and questions, the model tends to output inaccurate information or hallucinations.

Comparisons. Instead of using fixed labels from a pre-defined set, the AS-1B dataset employs
flexible and open-world semantic tags to label each region. Table 1 highlights that AS-1B contains a
significantly larger number of semantic tags and concepts compared to close-set classification datasets
or object detection datasets. For example, the number of semantic tags in AS-1B is approximately
159 times greater than the widely-used classification dataset ImageNet-22k (Deng et al., 2009), and it
is 268 times larger than the category number in V3Det (Wang et al., 2023a).

C.3 DATA QUALITY

The Accuracy of Automatic Annotations. We asked 10 experts to annotate 1000 randomly
sampled data from AS-1B with correct or wrong after each human-in-loop iteration separately and
report the accuracy rates of our annotations for semantic tags and question-answer pairs after each
human-in-loop iteration separately. As shown in Table 8, the introduction of human verification
significantly improves the data quality, from 54.8% before human involvement to 75.0% after the first
human-in-loop iterations. Moreover, as the number of loop iterations increases, the data annotation
quality gradually improves. After the third loop, we are able to achieve an accuracy rate of 83.5%.
In addition to the large-scale automatic annotations for over 1 billion regions, we will also release
a clean version dataset, containing over 800k annotations that have been fully verified by human
annotators. The accuracy of annotations from such a version is 95.3% for semantic tags and 95.7%
for question-answer pairs.

As shown in Figure 5, we find that different models in the annotation pipeline exhibit complementary
behavior. The LLM and BLIP models show lower accuracy for small regions as they are not robust for
cropped low-resolution images. In contrast, close-set detectors perform better on these small regions,
providing more accurate semantic candidates. For larger regions, LLMs and VLLMs become more
accurate. Hence, the inclusion of close-set detectors can provide a trade-off between data quality
and open-world semantics. This interplay of models contributes to the overall improvement of data
quality in AS-1B.
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Consumption Analysis. Here we focus on the consumption and efficiency of human verification in
the context of the semi-automatic data engine we constructed. This approach significantly reduces
the human labor required for data refinement compared with annotating all the data by humans. For
verifying semantic tags, it takes approximately 10 seconds for one annotator to complete one region.
Verifying every 1 million regions would take about 2,750 working hours. Considering a group of
50 annotators in our case, the entire verification process takes approximately 15 days. If we were to
annotate all regions, the annotation consumption would become 1,000 times larger, approximately 42
years. Such a large-scale human annotation effort would be unaffordable.

Moreover, for detailed captions with longer texts, the verification process would take even longer,
e.g., 15 seconds for each VQA annotation. Therefore, for large-scale annotation involving billions of
regions in our case, utilizing models to annotate data at scale and correcting the models’ bias with
limited human annotation proves to be both feasible and efficient.
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Burj 
khalifa air traffic 

control tower pink and white 
baby cribs

a boat lift

The Sphinxs

candle 
drippings

Charging cords

Eagle beak

Trump

lynx

Figure 6: Examples of the semantic tags. Benefitting from the world knowledge of LLMs/VLLMs,
the AS-1B dataset covers diversity semantic tags in the real world.
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Q1:  What color is the shirt this person is 
wearing?
A1: The shirt the person is wearing is yellow.
Q2: Is the shirt tucked in or out?
A2: The shirt is tucked in.
Q3: What type of material is the shirt made of?
A3: The shirt is made of a lightweight material, 
such as cotton or linen, which allows for easy 
movement and breathability.

Detailed Caption: The person is wearing a 
yellow shirt that is tucked in and made of a 
lightweight material, such as cotton or linen, 
which allows for easy movement and 
breathability.

Detailed Annotation

Semantic Tag
a yellow shirt

Semantic Tag
banner

Detailed Annotation
Q1: What is the size of this banner?
A1: The size of the banner is not provided in the 
image.
Q2: What is the material used to make this 
banner?
A2: The material used to make the banner is a 
combination of fabric and plastic.
Q3: : What is the purpose of this banner? 
A3: : The purpose of this banner is to advertise a 
product or service, likely a beverage, to the public.

Detailed Caption: The banner in the image is 
made of a combination of fabric and plastic and is 
used to advertise a beverage product or service to 
the public, but the size of the banner is not 
specified.

Detailed Annotation

Semantic Tag
small windows

Semantic Tag
statue

Detailed Annotation
Q1: What is the material this statue is made of?
A1: The statue is made of bronze.
Q2: What is the height of this statue?
A2: The height of the statue is not provided in the 
image.
Q3: What is the subject of this statue?
A3: The subject of the statue is a woman, 
possibly a goddess or a historical figure, standing 
in front of a building.

Detailed Caption: The statue, made of bronze, 
depicts a woman, possibly a goddess or a 
historical figure, standing in front of a building, 
with no provided height in the image.

Q1: Are these small windows operable? 
A1: Yes, the small windows in the image are 
operable.
Q2: What is the purpose of these small 
windows?
A2: The purpose of these small windows is to 
provide natural light and ventilation to the 
building, allowing fresh air to circulate and 
brighten up the space.
Q3: Are these small windows located on the 
exterior or interior of the building?
A3: The small windows are located on the 
exterior of the building.
Detailed Caption: The purpose of the small 
windows in the image, which are located on the 
exterior of the building and are operable, is to 
provide natural light and ventilation to the 
building, allowing fresh air to circulate and 
brighten up the space.

Q1: What is the length of this barge?
A1: The length of the barge is not provided in the 
image.
Q2: What is the color of this barge?
A2: The color of the barge is red.
Q3: What is the purpose of this barge?
A3: The purpose of this barge is to transport 
people and goods across the river.

Detailed Caption: The length of the barge is not 
specified in the image, but it is red and is used to 
transport people and goods across the river.

Detailed Annotation

Semantic Tag
barge

Semantic Tag
a building

Detailed Annotation
Q1: What is the name of this building?
A1: The name of the building is not provided in 
the image.
Q2: What is the architectural style of this 
building?
A2: The architectural style of the building in the 
image is modern and sleek, featuring a 
combination of white and gray colors and a 
minimalist design.
Q3: What is the purpose of this building?
A3: The purpose of this building is to serve as a 
residential or commercial space for people or 
businesses.

Detailed Caption: The image shows a modern and 
sleek building with a white and gray color scheme 
and minimalist design, which serves as a 
residential or commercial space for people or 
businesses.

Figure 7: Examples of the detailed region annotations. Visual question-answering pairs and
captions are provided based on the semantic tags. Failure cases are marked in red.
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D INPLEMENTATION DETAILS

D.1 MODEL DETAILS

The example prompts used by ASM are shown below. Prompt #1 is an example prompt for generative
tasks, while Prompt #2 and #3 are example prompts for discriminative tasks.

Prompt #1: “{Pg} ⟨bos⟩ Human: {V}What is this? Assistant:” ,

where the token number of task prompt M is set to 5. ⟨bos⟩ represents the beginning of the sentence.

Prompt #2: “{Pd} ⟨bos⟩ Human: {V}What is this? ⟨align⟩” ,

where Pd ∈ RM×Dt represents the learnable task prompt used for discriminative tasks.

Prompt #3: “{Pd} ⟨bos⟩ Assistant: A photo of the Sphinx. ⟨align⟩” .

It is notable that the learnable task prompt tokens and align tokens used in Prompt #2 and #3 are
shared, while the task prompt tokens differ between generative tasks (Prompt #1) and discriminative
tasks (Prompt #2 and #3).

D.2 TRAINING DETAILS

The pre-training of the All-Seeing Model (ASM) involves three types of labels obtained from the
AS-1B dataset, including region-level semantic tags, question-answer pairs, and detailed captions.
The semantic tags are used for aligning regions with corresponding text, while the other annotations
are used to train the text generation task. In addition, we also include LaionCOCO (Schuhman et al.,
2022) in our pre-training process, since the image-level caption data from LaionCOCO is beneficial
for ASM’s ability to comprehend the whole images. For the supervised fine-tuning process, in
addition to human-verified region annotations, we also utilize MiniGPT-4 (Zhu et al., 2023b), LLaVA-
150k (Liu et al., 2023a), TextCaps (Sidorov et al., 2020), and COCO caption dataset (Chen et al.,
2015) as image-level text generation data, along with VG (Krishna et al., 2017) and RefCOCOg (Mao
et al., 2016) datasets as region-level text data. VQA datasets (Goyal et al., 2017; Hudson & Manning,
2019; Krishna et al., 2017; Chen et al., 2022a) are also utilized to enhance the vqa ability of ASM.
In both of the stages, we optimize the Q-Former, soft prompt tokens and align tokens. In addition,
LoRA (Hu et al., 2022) is employed to finetune the Vision Foundation Model (VFM) (Fang et al.,
2023b) and Large Language Model (LLM) (Liu et al., 2023b).

We adopt a multi-task training approach that combines text generation and region-text alignment tasks
to train our ASM. The batch size for text generation is set to 256, while for region text alignment
it is set to 32,768. We employ the AdamW optimizer (Loshchilov & Hutter, 2019) with the β1 of
0.9, the β2 of 0.999, and the weight decay of 0. During training, the learning rate is initialized as
5× 10−4 and includes a linear warmup that lasts until the first 10% of training steps. The warmup
is followed by a cosine decay strategy with a minimum learning rate of 0. The image resolution of
ASM is set to 224 × 224 for pre-training and 364 × 364 for fine-tuning. We initialize the model
parameters using Husky (Liu et al., 2023b) and train the model for one epoch. In addition, we also
provide a second-stage fine-tuning setting to further improve the effectiveness of ASM. Specifically,
we utilize high-quality multi-modal data MiniGPT-4 (Zhu et al., 2023b), LLaVA-150k (Liu et al.,
2023a), and COCO caption dataset (Chen et al., 2015) as image-level text generation data, along
with VG (Krishna et al., 2017) and RefCOCOg (Mao et al., 2016) datasets as region-level text data.
Human-verified region annotations are also included. During fine-tuning, we set the learning rate to
5× 10−5 and apply a weight decay of 0. The other settings remain the same as during pre-training.

D.3 BASELINE MODELS

To make comparison with recent popular multi-modality large language models (VLLMs) (Zhu
et al., 2023b; Liu et al., 2023a; Li et al., 2023a) that only focus on processing the entire image,
we crop a region from the image and input it to these models for region-level visual recognition
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Table 9: Human evaluation results on caption tasks. We ask the users to select the caption that
contains the most information regarding the image/region while does not producing any factual errors.

Model Visual Genome RefCOCOg Flickr30K NoCaps
Rate Length Rate Length Rate Length Rate Length

Human 47.8 13.6 10.3 6.3 30.0 16.0 27.3 15.1
LLaVA (Liu et al., 2023a) 4.3 110.8 15.4 100.6 17.5 114.0 9.1 108.4
MiniGPT4 (Zhu et al., 2023b) 8.7 110.9 15.4 113.5 14.2 114.6 13.6 101.0
ASM (ours) 39.2 34.5 46.1 110.8 38.3 121.4 50.0 115.9

and understanding. However, this cropping may result in the loss of some contextual information
from the entire image. For better comparison, we implement a simple region-text contrastive model
based on CLIP (Radford et al., 2021) as a baseline. The baseline model, named Region-Aware CLIP
(R-CLIP), is equipped with a RoIAlign layer (He et al., 2017) on the feature maps obtained from
the vision encoder in the CLIP model. To initialize the model weights, we leverage CLIP (Radford
et al., 2021) (ViT-L/14) and then train the CLIP model on our AS-1B dataset. The model is trained
for 10, 000 steps with a batch size of 32,768. Other training settings is the same as those of ASM.
Unless otherwise specified, the image resolution of R-CLIP is set to 224 × 224.

E SUPPLEMENTARY EXPERIMENTS

E.1 VISUAL CAPTIONING

As discussed in ChatCaptioner (Zhu et al., 2023a), using conventional image caption metrics such
as Meteor (Banerjee & Lavie, 2005) and CIDEr (Vedantam et al., 2015) may not reliably evaluate
relatively lengthy texts generated from LLM-based models. To better assess the text generation ability
from a human perspective, we conducted a user study.

Evaluation Setting. In our user study, we involve a total of 5 participants to evaluate the performance
of the All-Seeing Model (ASM) along with two other powerful VLLMs: MiniGPT4 (Zhu et al.,
2023b), and LLaVA (Liu et al., 2023a). We evaluate image and region-level captioning. For the
evaluation, we randomly select 20 samples from each of the Visual Genome, RefCOCOg, COCO,
and Flickr30K datasets. Participants are asked to choose the most informative captions without any
factual errors or hallucinations. Aside from model outputs, we also add the ground truth captions as
options, which can be viewed as human outputs.

Results. The human evaluation results in Table 9 indicate that captions generated by our ASM
are preferred over those from MiniGPT4 and LLaVA. While LLaVA and MiniGPT4 may produce
longer captions for region-level tasks (VG and RefCOCOg), they often introduce over-association,
hallucinations, and factual errors. In contrast, ASM generates captions with moderate length and
more accurate information. On RefCOCOg, Flickr30K, and NoCaps datasets, ASM even outperforms
human annotations with longer and more detailed captions. This is because human annotators tend
to write short captions, while users prefer longer, detailed captions generated by ASM, which also
contain fewer factual errors. For image-level generation tasks, ASM produces captions with similar
lengths to those from MiniGPT4 and LLaVA but is more frequently favored by users.

The results clearly demonstrate the effectiveness of ASM and the AS-2B dataset. The VQA-based
annotation pipeline provides region-specific information with less irrelevant content, reducing the
occurrence of hallucinations. Moreover, human verification further enhances the data quality, leading
to significantly better performance on region-level tasks.

E.2 VISUAL QUESTION ANSWERING

Setting. We evaluate our model on the general visual question answering (VQA) benchmarks,
including VQAv2 (Goyal et al., 2017), OKVQA (Marino et al., 2019), and GQA (Hudson & Manning,
2019). Following BLIP2 (Li et al., 2023a), we report VQAScore (Goyal et al., 2017) metric on
VQAv2 and OKVQA and Accuracy on GQA. Besides, considering the lack of widely recognized
region-level VQA benchmarks, we perform the human evaluation to evaluate the region-level VQA
ability of our ASM. We randomly select 100 question-anser pairs from the proposed AS-1B. Note
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that these question-answer pairs are annotated by our proposed ASM and have not been manually
verified. Then, 5 participants are involved, and each of them is asked to annotate 20 question-answer
pairs with one of four choices: correct answer, wrong answer, unanswerable question, or wrong
semantic tag (e.g.the question has nothing to do with the object in the region).

Table 10: Quantitative results on the VQA task.

Model VQAv2 OKVQA GQA

Flamingo-9B (Alayrac et al., 2022) 51.8 44.7 -
Flamingo-80B (Alayrac et al., 2022) 56.3 50.6 -
Kosmos-1 (Huang et al., 2023) 51.0 - -
Kosmos-2 (Peng et al., 2023) 51.1 - -
BLIP-2 (Li et al., 2023a) 65.0 45.9 32.3
InstructBLIP (Dai et al., 2023) - - 49.5
ASM-FT (ours) 73.1 48.6 59.0

Results. For image-level visual ques-
tion answering, as shown in table 10, our
ASM model achieves comparable perfor-
mance with recent Visual Large Language
Models (VLLMs) (Dai et al., 2023; Peng
et al., 2023). Specifically, on VQAv2
and OKVQA benchmarks, ASM achieves
VQAScore of 73.1 and 48.6, respectively.
On GQA benchmark, ASM achieves 59.0
accuracy. It is notable that the ground truth
answers to the questions in these VQA
benchmarks are quite brief and consist of only several words, while our ASM model is proposed
to annotate the region with detailed descriptions and tends to generate more detailed and complete
sentences. So these traditional VQAScore are not proper to evaluate the ability of LLM-based VQA
systems like ASM. For region-level visual question answering, as there are no standard benchmarks,
we score our model via human verification. As presented in Table 8, our ASM achieves remarkable
performance, which demonstrates the ability of ASM to generate detailed and accurate answers to
region-level visual questions.

E.3 DATA ENGINEERING

Here, we use quantitative results to show the impact of data quantity and data engineering, which
is shown in Alg. 2. Considering the cost of the experiment, we use our baseline model R-CLIP.
We use the Zero-shot object recognition metrics as in Sec. 5.2 to inspect the impact of data engi-
neering, i.e., we use the ground-truth boxes and use R-CLIP to determine the categories following
RegionCLIP (Zhong et al., 2022).

Data Scaling-Up. We find that scaling up the semantic tags can be helpful for zero-shot region
recognition. To verify this, we train our baseline R-CLIP with different amounts of semantic tags.
As shown in Table 11, with more training data (from 1M to 5M images), the R-CLIP model attains
better zero-shot object recognition performance.

Data Cleaning. Data cleaning and post-processing are important. In practice, the original data
annotation pipeline outputs a total of 2.14 billion regions. We devise a simple data cleaning strategy:
(1) we sample the top 100 regions with the highest CLIP score at different scales from each image in
the AS-1B dataset and (2) we further re-rank the semantic candidates with CLIPSeg (Lüddecke &
Ecker, 2022), as discussed in Sec. 3.4. This data cleaning process will compress the original 2.14B
regions into 1.2B regions. As shown in Table 12, adding data cleaning can significantly improve the
mAP by 6.0% and 7.5% on COCO and LVIS datasets.

How human verification improves the model? An important part of our data engine is to improve
the model with human feedback. In this way, the improved model can be used to refine the initial
data which is automatically generated. In this section, we investigate the effectiveness of the human
verification process. We fine-tune the trained R-CLIP model with human-verified region annotations
and find that a small number of human labels can significantly boost the model performance.

Specifically, to make the most of human labels, we utilized both the positive and negative candidates
marked by the human annotators. When calculating the contrastive loss, for each region, we randomly
selected one positive candidate and use all the unselected candidates as negative samples. Compared
with the image-to-text part in the original CLIP-style contrastive loss, each region will be compared
with more negative text samples. The unselected candidates can be viewed as valuable hard samples,
indicating when the model will make mistakes.

As shown in Table 13, fine-tuning the model with human data can yield significant performance gain.
This demonstrates that a small amount of human data can correct the model’s bias and hard cases,
thus improving performance. The effectiveness of human verification lays the foundation for data
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Table 11: Zero-shot object
recognition performance
(mAP) with different train-
ing data scale.

Data Scale COCO LVIS

1M 67.8 54.0
2M 67.5 55.0
5M 68.6 54.8

Table 12: Zero-shot object
recognition performance
(mAP) with and without
data cleaning.

Data Cleaning COCO LVIS

% 61.8 46.5
! 67.8 54.0

Table 13: Zero-shot object recogni-
tion performance (mAP) with and
without fine-tuning on human-verified
annotations.

Human Data COCO LVIS

% 67.8 54.8
! 70.2 55.0

Label 1: flippers
Label 2: waves
Label 3: waves

Label 1: tires
Label 2: life buoy
Label 3: tires Label 1: silver spoons

Label 2: reflector 
Label 3: reflector

Label 1: car
Label 2: white car
Label 3: mirror

Label 1: front grille
Label 2: front grille 
Label 3: handle

CLIP R-CLIP / ASM ASM / R-CLIPHuman 
VerificationLabel 2 Label 1 Label 3 

generate train generate train generate

Figure 8: Visualization of the data iteration process. The iteration process improves the label
accuracy. We visualize three types of models: (1) Label 1: labels produced the original CLIP; (2)
Label 2: labels produced by R-CLIP or ASM, trained with Label 1 as input data; (3) Label 3: labels
produced by R-CLIP or ASM which is further tuned with human verification data.

quality improvement in the data engine iterations. To intuitively show the data quality improvements,
we show the labeling results for CLIP as well as the outputs of R-CLIP before and after the human
data fine-tuning in Fig. 8. The original CLIP is unreliable for small objects. Thanks to the data
cleaning strategy, R-CLIP pre-trained on AS-1B data performs better in these small objects. However,
it may fail to recognize some objects due to noisy labels, e.g., labeling the tires hung by the boat as a
“life buoy”. The human data fine-tuning process can correct the pre-trained R-CLIP.

E.4 ABLATION

Table 14: Ablations on captioning tasks.

Model VG RefCOCOg COCO Caption Flickr30K NoCaps

zero-shot setting

Flamingo-9B (Alayrac et al., 2022) - - 73.9 61.5 -
Kosmos-2 (Peng et al., 2023) - 60.3 - 67.1 -
Shikra (Chen et al., 2023a) - - 117.5 73.9 -
Emu (Sun et al., 2023) - - 117.7 - -
ASM 46.8 48.8 119.8 79.5 107.7
ASM w/o LoRA 42.6 45.3 123.0 81.7 111.0

SFT setting

GRiT (Wu et al., 2022) 142.0 71.6 - - -
BLIP (Li et al., 2022a) - - 133.3 - 113.2
BLIP2 (Li et al., 2023a) - - 145.8 - 121.6
InstructBLIP (Dai et al., 2023) - - - 82.8 123.1
ASM-SFT 148.7 107.8 140.2 88.0 116.9
ASM-SFT w/o LoRA 144.9 102.4 142.3 84.9 118.7

Considering the fine-tuning strategy utilizing LoRA (Hu et al., 2022) is different from other meth-
ods (Li et al., 2022a; 2023a; Dai et al., 2023), we supplement our results in Table 14, which includes
outcomes without LoRA. Here, We report CIDEr. Note that the results under the SFT setting are
fine-tuned with the COCO Caption dataset. We can observe that our model achieves powerful perfor-
mance across the board in both zero-shot and finetuning settings. Besides, the results also reveal that
our ASM without the LoRA fine-tuning strategy also demonstrates comparable performance with the
counterpart tuned by LoRA. Since the ASM tune with LoRA achieves slightly better performance on
region-level captioning tasks, we use this training strategy for human-in-loop iterations.
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