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Benchmarking of Deep Learning Methods
for Generic MRI Multi-Organ

Abdominal Segmentation
Deepa Krishnaswamy, Cosmin Ciausu, Steve Pieper, Ron Kikinis, Benjamin Billot, Andrey Fedorov

Abstract—Recent advances in deep learning have led
to robust automated tools for segmentation of abdominal
computed tomography (CT). Meanwhile, segmentation of
magnetic resonance imaging (MRI) is substantially more
challenging due to the inherent signal variability and the
increased effort required for annotating training datasets.
Hence, existing approaches are trained on limited sets of
MRI sequences, which might limit their generalizability. To
characterize the landscape of MRI abdominal segmenta-
tion tools, we present here a comprehensive benchmark-
ing of the three state-of-the-art and open-source mod-
els: MRSegmentator, MRISegmentator-Abdomen, and To-
talSegmentator MRI. Since these models are trained using
labor-intensive manual annotation cycles, we also intro-
duce and evaluate ABDSynth, a SynthSeg-based model
purely trained on widely available CT segmentations (no
real images). More generally, we assess accuracy and gen-
eralizability by leveraging three public datasets (not seen
by any of the evaluated methods during their training),
which span all major manufacturers, five MRI sequences,
as well as a variety of subject conditions, voxel resolutions,
and fields-of-view. Our results reveal that MRSegmentator
achieves the best performance and is most generalizable.
In contrast, ABDSynth yields slightly less accurate results,
but its relaxed requirements in training data make it an
alternative when the annotation budget is limited. The eval-
uation code and datasets are given for future benchmark-
ing at https://github.com/deepakri201/AbdoBench,
along with inference code and weights for ABDSynth.

Index Terms— benchmark, segmentation, abdominal MRI

I. INTRODUCTION

A
CCURATE segmentation of abdominal organs in mag-

netic resonance imaging (MRI) volumes is a prerequisite

for an array of clinical tasks [8] such as volumetry [9], [10],

early diagnosis, longitudinal disease monitoring, radiotherapy
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planning [11], [12], and biomarker extraction [13], [14].

However, manual expert contouring is labor-intensive [15] and

prone to inter- and intra-rater reproducibility issues [16]. To

mitigate these challenges and improve consistency, automated

multi-organ segmentation methods have been proposed.

While automated segmentation of abdominal MRI scans is

essential, this task has been hindered by the large variability

in acquisition parameters for this modality. Indeed, MRI lacks

inherent intensity normalization, which poses a challenge in

automatic segmentation since traditional deep neural networks

[17] are fragile against MRI contrast variations [18], an issue

known as “domain gap” [19]. This variability also complicates

manual MRI segmentation and thus hinders the creation of

large annotated training sets. As a result, only a few methods

have been proposed until recently for multi-organ abdominal

MRI segmentation [20]–[23]. This is in contrast with com-

puted tomography (CT), where methods like TotalSegmentator

can benefit from the highly standardized signal [3].

Recent advances in deep learning segmentation networks,

best represented by nnU-Net [24], have led to the development

of state-of-the-art methods for multi-organ abdominal segmen-

tation in MRI: MRSegmentator [1], MRISegmentator-Abdomen

[5], and TotalSegmentator MRI [6], each capable of segment-

ing more than 40 regions, including organs, bones, muscles,

and vessels. The development of these methods has been per-

formed jointly with the annotation of their respective training

datasets. Specifically, the employed training procedures all rely

on a very labor-intensive strategy where annotated datasets are

obtained with iterative expert refinements. With this technique,

the aforementioned methods are trained on large MRI cohorts

from the UK Biobank [2], the German National Cohort

(NAKO) [25], Imaging Data Commons [7], TotalSegmentator

[3], and other sources [1], [26], [27]. Crucially, these datasets

span multiple MRI sequences, manufacturers, voxel resolu-

tions, and pathologies, thereby improving the robustness of

these methods compared to previous approaches [20], [21] by

increasing the variability of the training data. However, the

accuracy and generalizability of these models remain to be

compared for generic out-of-the-box usage.

Since direct annotation of MRI datasets is challenging,

other approaches propose to tackle the generalization issue of

abdominal MRI segmentation networks by adopting domain

adaptation strategies [28], where the goal is to transfer models

trained on labeled data from a source domain to a target
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TABLE I

SUMMARY OF THE TRAINING DATA FOR THE BENCHMARKED METHODS. BRACKETS DENOTE RANGES. CE=CONTRAST-ENHANCED.

Method Training source # scans Abnormalities Data type Resolution (mm) Dimension

MRSegmentator [1]

UK Biobank [2] 1200 various pathologies
T1 Dixon in-phase

T1 Dixon out-of-phase [2.23×2.23×3.00] [224×156×44]
T1 Dixon water only [2.23×2.23×4.50] [224×174×72]

T1 Dixon fat only

In-house dataset 221 kidney tumors
T1

1.00×1.00×1.00
100–450

T1 fat-saturated (only given in
T2 fat-saturated axial direction)

TotalSegmentator [3], [4] 1228 various pathologies CT 1.50×1.50×1.50 [47×48×29]
[499×430×851]

MRISegmentator-Abdomen [5] In-house dataset 780
T1 pre-contrast [0.94×0.94]

liver tumors, pancreatic cysts CE T1 arterial phase [1.47×1.47] [228×240×80]
other abnormalities CE venous phase (inter-slice res. [320×320×96]

CE delayed phase not given)

University Hospital Basel various pathologies
T1 [0.17×0.17×0.17] [11×10×10]
T2 [20.0×10.64×14.40] [1092×1280×1915]

Proton density

TotalSegmentator MRI [6] Imaging Data Commons [7] 1088 cancer Various sequences [0.29×0.29×0.43] [17×5×5]
[7.50×25.00×28.0] [672×672×512]

TotalSegmentator [3], [4] various pathologies CT 1.50x1.50×1.50 [47×48×29]
[499×430×851]

ABDSynth Subset of TotalSegmentator 128 various pathologies CT segm. (no real images) 1.50×1.50×1.50 300×300×250

domain where labels are unavailable. Li et al. propose training

an image-translation network to create synthetic MRI data with

pseudo-labels [29]. Segmentation is then performed with an

automatic multi-stage network. Another approach [30] first

performs CT-to-MRI translation using a CycleGAN model

[31] equipped with an organ-attention mechanism. An nnU-

Net with some additional enhancements is then trained for

supervised segmentation of these MRI scans. However, these

domain adaptation approaches need to be retrained for each

new MRI sequence, which does not comply with our scenario

of out-of-the-box MRI segmentation.

SynthSeg [32], [33] is a relatively new technique that pro-

poses to circumvent domain adaptation strategies with domain

randomization [34]. Specifically, SynthSeg leverages a para-

metric generative model based on a Gaussian mixture model

(GMM) conditioned on input segmentations (no real images

needed). Synthetic scans are created by randomly sampling all

generation parameters from wide uniform distributions, thus

yielding scans of randomized MRI contrast. Exposing a down-

stream segmentation network to such variable scans forces it

to learn domain-agnostic features, so that the trained network

can be used on any domain without retraining [32]. SynthSeg

has originally been proposed for brain segmentation [18], but

has since been extended to MRI and CT cardiac segmentation

[32]. More generally, the SynthSeg framework is an alternative

to the latest methods in MRI abdominal segmentation, since it

eases their burdensome annotation process by only requiring

segmentations as training inputs, which can be taken from

other modalities such as widely available CT label maps [3].

In this paper, we propose a benchmark for existing and

future abdominal MRI segmentation methods. In particu-

lar, we conduct an analysis on three datasets: AMOS MRI

[35], CHAOS MRI [36]–[38], and LiverHCCSeg [39], [40].

These contain a variety of MRI scans acquired at differ-

ent institutions, using scanners from all major manufactur-

ers, and include variable MRI sequences, voxel resolutions,

and populations (i.e., healthy subjects and diseased patients).

Here, we assess the performances of the three state-of-the-

art methods: MRSegmentator [1], MRISegmentator-Abdomen

[5], and TotalSegmentator MRI [6]. For completeness, we

also evaluate a new method, named ABDSynth, that extends

SynthSeg [32] for out-of-the-box MRI multi-organ abdominal

segmentation and that is trained solely on CT segmenta-

tions. Our results reveal that MRSegmentator outperforms

the other methods, both for in-domain accuracy and out-of-

domain generalization. Meanwhile, ABDSynth is slightly less

accurate than the other methods, but presents an alternative

in scenarios where annotated MRI data is scarce. The data

and evaluation code are available for future benchmarking

https://github.com/deepakri201/AbdoBench.

II. MATERIALS AND METHODS

A. Benchmarked methods and associated training data

1) MRSegmentator [1]: is a method based on nnU-Net [24],

and is trained on multiple datasets of various sequences and

modalities, including T1-weighted (T1), T2-weighted (T2),

and CT scans (Table I). Training volumes are annotated using

an iterative process. First, image-to-image translation is used

to convert MRI volumes into pseudo-CT scans. Then, these

are segmented with TotalSegmentator [3], and the resulting

label maps are propagated to the original MRI scans. Finally,

the segmentations are manually refined by a radiologist using

MONAI Label [41]. After annotating 50 scans, an initial nnU-

Net model is trained and iteratively refined as additional data

becomes available. MRSegmentator can segment 40 regions1.

We use model v1.2.0 published in August 2024 and imple-

mented in Python 3.11.5.

2) MRISegmentator-Abdomen [5]: is also based on nnU-

Net, and is trained solely on T1 scans. Similarly to MRSeg-

mentator, a cross-modality approach is first used to convert

the MRI volumes to synthetic CT scans [42] in order to obtain

labels with TotalSegmentator. Once the labels are propagated

1https://github.com/hhaentze/MRSegmentator

https://github.com/deepakri201/AbdoBench
https://github.com/hhaentze/MRSegmentator
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Fig. 1. Overview of an ABDSynth training step. 1) A CT segmentation is sampled from the training set. 2) A synthetic volume is generated using a
segmentation-conditioned GMM with randomized parameters. 3,4) Abdominal volume/segmentation pairs are used to train a supervised 3D U-Net.

TABLE II

SUMMARY OF THE PUBLICLY AVAILABLE DATASETS USED FOR EVALUATION. BRACKETS DENOTE RANGES.

Dataset # subj. Manufacturer Sequence Presence of Regions with Resolution (mm) Dimension
abnormalities expert annotations

Spleen, kidneys,
gallbladder, esophagus,

AMOS [35] 60 Philips MRI (sequences Abdominal cancer liver, stomach, aorta, [0.69×0.69×0.82] [192×60×64]
not provided) and abnormalities inferior vena cava, pancreas, [1.95×3.00×3.00] [576×468×512]

adrenal glands, duodenum,
bladder, prostate/uterus

T1 dual in-phase Liver, spleen,
CHAOS [36]–[38] 20 Philips T1 dual out-phase Healthy right kidney, [1.36×1.36×5.49] [256×256×26]

T2 SPIR left kidney [2.03×2.03×9.00] [320×320×50]

GE T1
LiverHCCSeg [39], [40] 17 Philips arterial Hepatocellular Liver (two raters) [0.74×0.74×1.75] [256×152×19]

Siemens phase carcinoma [1.41×1.41×10.8] [512×512×131]

back to the MRI volumes, an iterative annotation process

is used to progressively train an nnU-Net model. In total,

MRISegmentator-Abdomen can segment 62 regions2. We use

model v1.0.0 (June 2024, Python 3.11.10).

3) TotalSegmentator MRI [6]: is a nnU-Net-based architec-

ture extended from TotalSegmentator for CT segmentation

[3]. Starting from manual segmentations of 10 volumes, an

iterative strategy is used to train a model, similar to MRSeg-

mentator and MRISegmentator-Abdomen. In total, 59 regions

can be segmented by the model3. We use model v2.2.0 (May

2024, Python 3.10.13).

4) ABDSynth: alleviates the need for manual MRI annota-

tions by leveraging CT segmentations that are already pub-

licly available. Specifically, we use the SynthSeg framework

[32] to train a domain-agnostic network for MRI abdominal

segmentation (Figure 1). Synthetic data is generated using a

GMM conditioned on the input training label maps. Crucially,

the GMM parameters are randomly sampled from uniform

distributions of very wide ranges. Moreover, to further increase

the diversity of the synthetic data, we apply aggressive aug-

mentations including: affine and non-linear spatial transforms,

bias field corruption, contrast augmentation, noise injection,

and modeling of various voxel resolutions. Presenting the

downstream segmentation network with such data forces it to

learn features that are robust against these variations, such that

2https://github.com/rsummers11/MRISegmentator
3https://github.com/wasserth/TotalSegmentator

it can segment test scans of any domain without retraining.

We train ABDSynth using 128 segmentations from the

training set of TotalSegmentator CT [3]. These label maps

are center-cropped/padded to a 300×300×250 size at 1.5mm

isotropic resolution. Additional preprocessing details are given

in the Appendix. In total, ABDSynth segments 33 regions4. We

use the same architecture and generation parameters as in [32],

and train the network for 500,000 iterations with a soft Dice

loss [43]. Training takes two weeks (Nvidia A100 40GB GPU)

using resources provisioned by Jetstream2 [44], [45].

B. Evaluation datasets

Our benchmark utilizes three public MRI datasets (Table II).

These datasets are not used by any of the benchmarked meth-

ods for training. Overall, this cohort spans three manufacturers,

five MRI sequences, healthy and diseased subjects, and a wide

range of resolutions and fields-of-view, all of which enable a

comprehensive evaluation for out-of-the-box deployment.

1) AMOS [35]: includes MRI scans of diseased patients

with abdominal cancer and other abnormalities acquired at

two centers and with eight scanners. Here, we combine the

provided training and validation sets (initially used for a Grand

Challenge5) into a single test set of 60 volumes. Annotations

are provided for 15 abdominal organs (Table II). These have

4https://github.com/deepakri201/AbdoBench
5https://amos22.grand-challenge.org/

https://github.com/rsummers11/MRISegmentator
https://github.com/wasserth/TotalSegmentator
https://github.com/deepakri201/AbdoBench
https://amos22.grand-challenge.org/
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TABLE III

MEAN (STANDARD DEVIATIONS) DICE AND HD95 SCORES OBTAINED BY ALL BENCHMARKED APPROACHES. METHODS THAT ARE NOT TRAINED ON

THE TESTED MRI SEQUENCE ARE IN ITALICS. BEST-PERFORMING METHODS ARE IN BOLD, AND ASTERISKS DENOTE STATISTICAL SIGNIFICANCE

WITH ALL OTHER MODELS (5% LEVEL, BONFERRONI-CORRECTED WILCOXON SIGNED-RANK TEST).

Dataset Region MRSegmentator MRISegmentator-Abdomen TotalSegmentator MRI ABDSynth

Dice HD95 (mm) Dice HD95 Dice HD95 Dice HD95

Liver 0.96 (0.01) 2.87* (1.35) 0.97* (0.02) 18.86 (40.15) 0.93 (0.01) 4.92 (2.35) 0.95 (0.02) 4.50 (4.80)
Spleen 0.94 (0.03) 2.04* (0.98) 0.96* (0.04) 16.60 (60.13) 0.90 (0.02) 2.77 (0.96) 0.94 (0.05) 2.52 (2.94)
Kidney, left 0.95* (0.02) 1.99* (0.66) 0.95 (0.10) 7.42 (24.74) 0.91 (0.07) 2.73 (1.90) 0.92 (0.06) 2.51 (1.33)
Kidney, right 0.95* (0.03) 2.25 (1.45) 0.94 (0.06) 31.10 (58.37) 0.92 (0.12) 3.33 (7.66) 0.92 (0.13) 2.83 (4.98)

AMOS Pancreas 0.80 (0.12) 5.20* (4.95) 0.85* (0.11) 5.52 (16.54) 0.75 (0.13) 6.67 (5.30) 0.72 (0.17) 12.43 (17.88)
Stomach 0.87 (0.10) 5.25* (6.42) 0.88* (0.13) 11.35 (36.02) 0.86 (0.10) 5.86 (7.76) 0.83 (0.14) 8.83 (10.66)
Gallbladder 0.78 (0.18) 5.78 (6.63) 0.82* (0.18) 7.40 (20.30) 0.79 (0.19) 5.54* (7.69) 0.70 (0.32) 7.65 (8.89)
Duodenum 0.60 (0.16) 11.18 (7.46) 0.69* (0.14) 9.02* (5.88) 0.57 (0.17) 12.97 (9.97) 0.56 (0.22) 19.96 (18.32)
Adrenal gland, left 0.53 (0.21) 6.39 (5.25) 0.62* (0.19) 5.39* (5.64) 0.51 (0.20) 6.48 (6.27) 0.45 (0.24) 9.12 (7.92)
Adrenal gland, right 0.54 (0.14) 5.88 (3.97) 0.61* (0.13) 3.80* (2.54) 0.52 (0.14) 6.04 (3.95) 0.50 (0.13) 6.02 (4.19)

Liver 0.93* (0.01) 2.05* (0.41) 0.81 (0.12) 40.86 (25.42) 0.90 (0.02) 5.28 (4.45) 0.91 (0.03) 4.86 (5.76)
CHAOS Spleen 0.89* (0.02) 1.82* (0.63) 0.34 (0.23) 20.67 (5.64) 0.87 (0.02) 2.01 (0.49) 0.84 (0.08) 3.38 (2.26)
T1 in-phase Kidney, left 0.88* (0.03) 2.29* (0.49) 0.63 (0.26) 6.83 (9.25) 0.79 (0.03) 3.30 (0.71) 0.68 (0.30) 8.03 (8.93)

Kidney, right 0.90* (0.04) 1.86* (0.52) 0.78 (0.13) 18.01 (32.49) 0.80 (0.05) 3.12 (0.50) 0.68 (0.33) 6.45 (6.81)

Liver 0.93* (0.01) 2.18* (0.50) 0.83 (0.10) 30.93 (30.28) 0.89 (0.02) 4.76 (4.22) 0.90 (0.03) 4.87 (6.09)
CHAOS Spleen 0.88* (0.03) 2.11* (1.12) 0.45 (0.18) 38.88 (39.16) 0.85 (0.03) 2.29 (0.77) 0.76 (0.27) 4.25 (5.22)
T1 out-phase Kidney, left 0.87* (0.04) 2.44* (0.58) 0.77 (0.06) 5.48 (5.82) 0.77 (0.04) 3.52 (0.75) 0.74 (0.17) 4.18 (2.14)

Kidney, right 0.88* (0.04) 2.06* (0.47) 0.74 (0.18) 10.21 (20.21) 0.80 (0.03) 2.95 (0.57) 0.68 (0.26) 4.71 (3.24)

Liver 0.91 (0.02) 2.94 (1.61) 0.88 (0.12) 11.77 (19.06) 0.91 (0.03) 4.59 (6.35) 0.90 (0.05) 5.11 (6.03)
CHAOS Spleen 0.88 (0.12) 2.39 (2.50) 0.87 (0.22) 13.56 (28.42) 0.86 (0.08) 5.31 (9.28) 0.91* (0.04) 2.22 (1.67)
T2 SPIR Kidney, left 0.91 (0.03) 2.27* (0.83) 0.92* (0.02) 5.63 (14.56) 0.88 (0.03) 2.67 (0.86) 0.83 (0.09) 3.34 (0.86)

Kidney, right 0.92* (0.02) 1.88* (0.77) 0.91 (0.05) 2.69 (2.55) 0.90 (0.02) 2.56 (0.58) 0.86 (0.14) 3.34 (2.25)

LiverHCCSeg Liver (Rater 1) 0.93* (0.03) 4.93* (3.94) 0.93 (0.07) 10.20 (21.90) 0.91 (0.04) 6.49 (4.66) 0.90 (0.08) 11.49 (19.42)

been obtained with an iterative process, where a model is first

trained on a small set of annotated data to generate pseudo-

labels, which are then refined by two radiologists.

2) CHAOS [36]–[38]: contains healthy subjects from the

Dokuz Eylul University Hospital. It consists of three MRI

sequences: T1 dual in-phase, T1 dual out-phase, and T2 SPIR

(spectral pre-saturation inversion recovery). The T1 sequences

are fat-suppressed, and T2 SPIR is designed to highlight the

liver parenchyma6. Consensus ground truth segmentations are

provided for the liver, spleen, right kidney, and left kidney

using majority voting between three radiologists. 20 volumes

are included for each sequence, for a total of 60 volumes.

3) LiverHCCSeg [39], [40]: includes 17 subjects with hepa-

tocellular carcimona from TCGA-LIHC [46] and imaged with

a T1 arterial phase sequence. All scans are provided with

manual liver segmentations from two independent raters.

C. Evaluation metrics

We use Dice scores [47] and the 95th percentile of the

Hausdorff distance (HD95) [48] as evaluation metrics. Dice

quantifies the overlap between two segmented regions in [0,1],

where 1 indicates perfect overlap and 0 indicates no overlap.

HD95, expressed in millimeters, measures the 95th percentile

of the surface distance between two segmentations.

III. RESULTS

We organize the benchmark results by datasets (Table III).

A. AMOS

Among the benchmarked methods, MRISegmentator-

Abdomen achieves the highest Dice scores for the majority

6https://chaos.grand-challenge.org/Data/

of organs (average gap of 0.035 Dice with MRSegmentator),

except for the kidneys. However, it consistently exhibits high

HD95 values and extreme outliers compared to the other meth-

ods. This is likely due to MRISegmentator-Abdomen producing

implausible segmentations, including predictions of irrelevant

regions, as seen in Figure 3. In contrast, MRSegmentator and

TotalSegmentator MRI achieve much more spatially coherent

predictions, as indicated by lower HD95 values. ABDSynth

performs competitively on high-contrast organs such as the

liver, spleen, and kidneys, but underperforms on more spatially

variable regions, such as the stomach and gallbladder.

More precisely, Figure 2 reveals that all four methods

yield accurate segmentations of the liver, spleen, and kidneys

(Dice higher than 0.9 in all cases), but substantially lower

and more variable performances for other regions. This is

explained by the morphological variability, small size, and

high deformability of regions like the pancreas [49], [50].

Additional complexity arises for organs such as the duodenum,

where peristaltic motion during imaging introduces artifacts

that further degrade segmentation performance. Moreover,

while smaller Dice scores are indicative of lower performances

in the adrenal glands, we highlight that Dice is known to

degrade faster in such small regions. This is confirmed by

the fact that results are more homogeneous across regions for

HD95 than Dice.

Figure 3 shows qualitative results for each method, with a

focus on the pancreas, where no method achieves anatomi-

cally correct segmentation of this region. The 3D renderings

reveal over-/under-segmentation (e.g., gallbladder, spleen, and

kidneys) patterns across different methods.

B. CHAOS

Table III shows that MRSegmentator achieves the highest

Dice scores (above 0.87) and lowest HD95 (below 3mm)

https://chaos.grand-challenge.org/Data/
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Fig. 2. Dice (top) and HD95 (bottom) boxplots for AMOS results for the four benchmarked methods. We observe similar performances for all
methods across the liver, spleen, and kidneys, but highly variable results across the regions that are smaller and/or with more variable morphologies.

(a)

(b) 

Ground truth MRSegmentator ABDSynthMRISegmentator-Abdomen TotalSegmentator MRI

Fig. 3. Sample segmentations by all methods on AMOS. (a) Pancreas slice, where all methods do not fully segment the region. (b) 3D renderings
for another subject. Arrows indicate segmentation errors in the region of corresponding color.

among all methods and for almost all sequence types and

evaluated regions. TotalSegmentator MRI and ABDSynth also

yield fairly high Dice scores and low HD95 values. In contrast,

MRISegmentator-Abdomen, which is not trained on any of the

sequences used in CHAOS, displays much lower Dice scores

and higher HD95 values, especially for the T1 scans.

Figure 4 illustrates the distributions of the Dice and HD95

metrics, as well as the volume repeatability across the MRI

sequences used in CHAOS (T1 dual in-phase/out-phase, and

T2 SPIR). In particular, we focus on the liver and right kidney,

which are the most and least consistently segmented regions,

respectively, among the four available labels in CHAOS. We

also show qualitative segmentation examples obtained by all

methods for the liver and right kidney in Figure 5.

For the liver, Dice scores are consistently high across all

methods and scan types, with medians above 0.8 in all cases.

However, this high overall accuracy is nuanced by the HD95

metric, for which substantial variations in standard deviations

indicate local under- and over-segmentations (Figure 5). This

effect is particularly visible for MRISegmentator-Abdomen

(HD95 standard deviations above 19mm for all sequences),

where typical segmentation mistakes are illustrated in Figure 5.

More precisely, MRISegmentator-Abdomen, which has not

been trained on any of the CHAOS sequences, yields an av-

erage HD95 gap of 16.6mm with the best performing method

(MRSegmentator) across all CHAOS regions and sequences,

which is far worse than the other methods. This issue is

also highlighted by the volume analysis (Figure 4), where

MRISegmentator-Abdomen displays large volumetric intra-

subject differences across sequences. In comparison, the other

approaches exhibit consistent liver volume estimates across

sequences for most subjects, thus highlighting the accuracy of

their liver segmentation predictions.

Meanwhile, we observe the opposite trend for the right
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Fig. 4. Dice score (left), HD95 (middle), and volume repeatability (right) obtained on CHAOS for two representative regions (liver and right kidney)
across different sequences. In the volume repeatability subfigure, the consecutive points represent T1 dual in-phase, T1 dual out-phase, and T2
SPIR, respectively. In general, the liver is more consistently segmented across MRI sequences than the right kidney.

ABDSynth

Liver Right kidney  

MRSegmentator TotalSegmentator MRIMRISegmentator-AbdomenGround truth

Liver

Fig. 5. CHAOS subject 39, where blue = liver and yellow = right kidney. Blue and yellow arrows point at major differences between ground truth
and automated segmentations for the liver and right kidney, respectively.

kidney, where all methods obtain tighter HD95 distributions

but more variable Dice scores (Figure 4). Here, the lower

Dice scores are due to the substantially smaller size of the

kidney, since the Dice metric is more sensitive to segmentation

mistakes in smaller regions. Yet, the Dice results also reflect

frequent instances of under-segmentation of the right kidney

by all methods (Figure 5). In particular, we observe that

ABDSynth fails to produce segmentations for several subjects,

as indicated by missing points in the volume repeatability plot

in Figure 4. Nevertheless, these segmentation mistakes remain

relatively smaller compared to the liver (all methods produce

substantially lower HD95 scores for the right kidney across

all sequences), which may be due to the good tissue contrast

with the surrounding organs.

C. LiverHCCSeg

For the LiverHCCSeg dataset, Table III presents the per-

formance of automated methods relative to Rater 1. We

observe consistently high Dice scores across all meth-

ods, ranging from 0.9 (ABDSynth) to 0.93 (MRSegmenta-

tor and MRISegmentator-Abdomen). In contrast, the HD95

values exhibit substantial variability, with ABDSynth and

MRISegmentator-Abdomen reporting the highest means at

11.49 mm and 10.20 mm, respectively. Figure 6 illustrates

this high segmentation variability across methods for a rep-

resentative subject. It can be seen that while most algorithms

perform well in the mid-transverse slice, discrepancies become

apparent in the superior slice, where predictions vary widely.

In the inferior slice, the presence of a hepatocellular carcinoma

appears to degrade segmentation quality across all methods.

Since LiverHCCSeg provides liver annotations from two

experts, we now compare the results of all methods against

inter-rater reproducibility scores. First, the two experts show a

strong overall consistency with a mean Dice score of 0.95 [39].

Remarkably, all methods yield results that are relatively close,

thus highlighting the quality of the produced segmentations.

The inter-rater HD is only 15.7mm [39], which is worse

than any automated method. Beyond further emphasizing the

good performance of the benchmarked methods, this result

highlights the inter-rater reproducibility issues in annotating

regions, especially for diseased tissues such as hepatocellular

carcinoma in this example.
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Fig. 6. Example of liver segmentations for the superior, middle, and inferior axial slices of a representative LiverHCCSeg subject. For the inferior
axial slice, all methods do not segment the liver well, likely due to the presence of a hepatocellular carcinoma, as indicated by the yellow arrows.

TABLE IV

COMPARISON OF INFERENCE TIME AND MODEL SIZE.

Benchmarked method Inference time (s) Trainable params.

MRSegmentator 57.95 ± 53.15 31M
MRISegmentator-Abdomen 98.19 ± 69.83 31M
TotalSegmentator MRI 39.60 ± 10.34 31M
ABDSynth 21.17 ± 19.30 13M

D. Computational requirements and inference time

We now compare all methods in terms of inference time

(computed on the same A100 Nvidia GPU as before) and

model size (Table IV). Inference time differences among the

nnU-Net-based models are explained by their preprocessing

strategies, and especially by the size of the patches used

for sliding-window inference: MRSegmentator (96×128×160
patches), MRISegmentator-Abdomen (48 × 160 × 192), and

TotalSegmentator MRI (112×128×160). In contrast, ABDSynth

represents an alternative in time-constrained scenarios, as it is

faster (it does not use a patch-based strategy) and is two-thirds

smaller in terms of number of parameters.

IV. DISCUSSION

In this paper, we present a thorough benchmarking of

the state-of-the-art methods in MRI abdominal segmenta-

tion: MRSegmentator, MRISegmentator-Abdomen, and To-

talSegmentator MRI. Since these methods are trained on MRI

segmentations obtained by a labor-intensive iterative process

involving several rounds of corrections, we also test another

method ABDSynth (extending the SynthSeg framework) that

only requires widely available CT segmentations to be trained.

We perform benchmarking on a collection of three publicly

available datasets, AMOS, CHAOS, and LiverHCCSeg, which

cover three manufacturers, five different MRI sequences, dif-

ferent subject conditions (healthy and diseased patients), as

well as a large range of resolutions and fields-of-view.

A. Robustness of the methods

1) Effect of sequence type: In order to analyze robustness

to different sequences, we focus on the results obtained on

CHAOS, which is the only evaluation dataset with multiple

sequences for all subjects. Table III shows that MRSegmentator

has the highest performance for all sequences. This can be

explained by the fact that MRSegmentator is trained on the

most diverse dataset with multiple T1 and T2 sequences (Ta-

ble II). In comparison, TotalSegmentator MRI yields slightly

lower performances, which may be due to its less abundant

training data (1561 fewer scans than MRSegmentator). Re-

garding MRISegmentator-Abdomen, it produces lower quality

segmentations on the CHAOS and LiverHCCSeg datasets,

which may be due to its relatively high training resolutions

compared to the CHAOS resolutions (mean in-slice resolution

of 1.28mm vs. 1.62mm, and mean slice spacing of 3.1mm

vs. 5mm). Finally, despite ABDSynth having never seen real

images during training, it can accurately segment them during

testing. However, ABDSynth fails in some cases since it does

not have access to real intensity distributions during training,

an issue known as the reality gap [51].

To further study robustness across sequences, we perform

statistical tests between the Dice scores obtained by each

method on each region of CHAOS by using the Friedman chi-

square test with a significance level of 0.05. Almost all of the

regions show statistically significant results, except in three

cases (ABDSynth for liver and spleen, MRSegmentator for

spleen, and TotalSegmentator MRI for spleen), thus emphasiz-

ing the remaining performance differences across sequences.

2) Presence of pathologies: While the CHAOS dataset com-

prises only healthy subjects, the AMOS and LiverHCCSeg

cohorts contain patients with cancer and other abnormalities.

Overall, even though the benchmarked methods are trained

on datasets containing various abnormalities (e.g., tumors,

cysts, etc.), we observe that the evaluated methods may lack

robustness to diverse pathological conditions. Importantly, we
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Fig. 7. Right kidney segmentations for CHAOS subject 1. The yellow
arrow points to major differences between ground truth and automated
segmentations, where the ground truth includes the renal pelvis.

note that the public datasets used here for benchmarking do

not provide subject-specific medical information. Therefore, it

is challenging to discern whether a model’s lower performance

stems from subject-specific abnormalities or from the inher-

ent difficulty of segmenting certain anatomical regions. This

ambiguity is illustrated in Figure 3, which shows consistently

poor pancreas segmentation across all methods for a patient

with liver pathology, which is likely exacerbated by the

pancreas being inherently difficult to segment. Interestingly,

for the AMOS dataset, high segmentation performance is

observed across all methods for the primary abdominal organs,

liver, spleen, and kidneys, as shown in Table III, despite

the presence of pathologies. In contrast, the LiverHCCSeg

dataset reveals more variable segmentation quality, likely due

to the presence of hepatocellular carcinoma. As illustrated

in Figure 6, although all methods achieve high Dice scores

(Table III), segmentation accuracy tends to degrade in inferior

slices affected by this pathology, while segmentations of mid-

axial slices remain comparatively consistent.

B. Inconsistencies in segmentation conventions

Figure 7 illustrates differences in anatomical conventions

between the CHAOS ground truth annotations and those used

in the training data of the evaluated methods. Here, the expert

reference includes the renal pelvis as part of the kidney

segmentation, whereas the automated methods exclude this

region (yellow arrow). These discrepancies in the definition

of anatomical boundaries contribute to the lower volume

estimates observed in the volume repeatability analysis (Fig-

ure 4). This example shows a limitation of our study, where

the evaluated methods and benchmarking datasets might use

different conventions for some of the regions. More generally,

this highlights the importance of identifying semantic inconsis-

tencies in annotation protocols when deploying models across

heterogeneous datasets.

C. Key difference between benchmarked methods

Three of the benchmarked methods, MRSegmentator,

MRISegmentator-Abdomen, and TotalSegmentator MRI re-

quire expert involvement during training, where a clinician

or radiologist guides the model through an iterative la-

bels refinement process. In addition to this labor-intensive

training paradigm, these methods rely on large datasets:

MRSegmentator was trained on 2,649 MRI and CT volumes,

MRISegmentator-Abdomen on 780 MRI volumes, and To-

talSegmentator MRI on 1,088 MRI and CT volumes. CT

data was utilized by MRSegmentator and TotalSegmentator

MRI to improve robustness and cross-modality segmentation

capabilities. Furthermore, because these models are trained on

specific sequences, their performances degrade when applied

to unseen sequences. This limitation is particularly evident in

the performance of MRISegmentator-Abdomen on the CHAOS

dataset (Table III), where the model shows poorer results

across all three scan types, due to a lack of training on those

sequences. Consequently, adapting these methods to segment

a new MRI sequence would require additional retraining or

fine-tuning.

In contrast, ABDSynth requires only a single set of annotated

CTs, which are widely available, for training. This represents

a significant advantage given the relative scarcity of large,

annotated MRI datasets compared to CT. By leveraging anno-

tated CT data for MRI segmentation, ABDSynth substantially

reduces the burden of manual labeling in the MRI imaging

space. Furthermore, the method’s synthetic data generation

approach enables adaptation to new MRI sequence types

without requiring additional expert-annotated MRI datasets

and retraining.

However, as shown in Table III, ABDSynth generally yields

lower segmentation performance compared to the other bench-

marked methods. Moreover, there are multiple instances where

ABDSynth produces very poor segmentation outputs, most

notably for the T1 out-phase scans in the CHAOS dataset, as

reflected by the missing volumes in the volume repeatability

plot in Figure 4. These observations highlight an inherent

trade-off among the benchmarked methods, balancing (i) train-

ing and annotation effort, (ii) the diversity of sequences used

for training, and (iii) overall segmentation performance.

V. CONCLUSION

We presented a benchmarking study of abdominal MRI

segmentation methods, including three state-of-the-art models

trained on real data and one method trained on synthetically

generated data. The models are evaluated on publicly available

datasets from multiple grand challenges, as well as a multi-

rater liver segmentation dataset. Among the evaluated meth-

ods, MRISegmentator-Abdomen achieved high Dice scores on

the AMOS dataset but exhibited high HD95 values, indicating

many outlier segments. Moreover, its performance on the

CHAOS dataset was notably lower, likely due to the presence

of MRI sequences not included in its training set. In contrast,

MRSegmentator demonstrated consistent performance across

all datasets, with moderately high Dice scores and lower

variability, suggesting greater robustness, which is potentially

attributed to its more diverse training set.

Our benchmarking approach suffers from several limita-

tions, which we plan to address in future work. First, while

this study focused on a core set of representative automated

methods, we did not evaluate all other available tools, and

notably TotalVibeSegmentator [52], which is specifically de-

signed for segmenting volumetric interpolated breath-hold
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examination (VIBE) sequences. Inclusion of such specialized

models may be considered in future evaluations targeting

sequence-specific performance. Secondly, a pathology-specific

performance analysis was not feasible due to dataset con-

straints, as the AMOS dataset lacks pathology labels, CHAOS

includes only healthy subjects, and although LiverHCCSeg

contains patients who all have hepatocellular carcinoma, it

is limited by the small number of subjects in the dataset

(17). Future benchmarking efforts would benefit from larger,

more diverse datasets with well-annotated pathological labels

to enable an evaluation of segmentation performance as a

function of different pathologies.

Overall, by releasing our evaluation code as well as the

diverse cohort of testing MRI scans, the proposed benchmark

represents a first step towards precise and thorough bench-

marking of current and future methods for MRI multi-organ

abdominal segmentation, a rapidly evolving and promising

field for clinical practice.

APPENDIX

Preprocessing the training data of ABDSynth

In SynthSeg [32], synthetic data is generated using a GMM

conditioned on training label maps, where each anatomical

label is associated with a single Gaussian distribution. While

effective, representing the intensities of a given label by a

single Gaussian can be insufficient for labels that include

heterogeneous substructures with distinct intensity profiles.

For example, regions like the renal cortex and medulla in

the kidneys, or hepatic vasculature, contain fine-grained dif-

ferences that are not well captured by a single Gaussian. To

address this, we refine the label maps used for synthetic data

generation to introduce finer anatomical detail. We adopt a

similar strategy to Billot et al. when they extended SynthSeg

to cardiac segmentation [32]. Using the original TotalSeg-

mentator CT scans, we subdivide each label into subregions

by clustering the corresponding intensities using expectation-

maximization (EM) [53]. In order to capture different levels

of granularity, we randomly sample the number of clusters

from {1, 2, 3} for each foreground label. We also apply the

same strategy to the background class, but we sample the

number of clusters in {3, 4, 5, 6, 7} to account for the greater

variability of the underlying tissues (Algorithm 1). Clustering

is performed dynamically during synthetic volume generation,

with the number of clusters selected at runtime.

After subdividing labels into substructures, we also simu-

late different scanning poses that are more specific to MRI

acquisitions, and especially poses where only the trunk of the

subject is acquired. This is achieved by removing the arms of

the subject with a 0.5 probability, where the arm regions have

been defined using the 3D Slicer Sandbox extension7.
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