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Benchmarking of Deep Learning Methods
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Abstract—Recent advances in deep learning have led
to robust automated tools for segmentation of abdominal
computed tomography (CT). Meanwhile, segmentation of
magnetic resonance imaging (MRI) is substantially more
challenging due to the inherent signal variability and the
increased effort required for annotating training datasets.
Hence, existing approaches are trained on limited sets of
MRI sequences, which might limit their generalizability. To
characterize the landscape of MRI abdominal segmenta-
tion tools, we present here a comprehensive benchmark-
ing of the three state-of-the-art and open-source mod-
els: MRSegmentator, MRISegmentator-Abdomen, and To-
talSegmentator MRI. Since these models are trained using
labor-intensive manual annotation cycles, we also intro-
duce and evaluate ABDSynth, a SynthSeg-based model
purely trained on widely available CT segmentations (no
real images). More generally, we assess accuracy and gen-
eralizability by leveraging three public datasets (not seen
by any of the evaluated methods during their training),
which span all major manufacturers, five MRI sequences,
as well as a variety of subject conditions, voxel resolutions,
and fields-of-view. Our results reveal that MRSegmentator
achieves the best performance and is most generalizable.
In contrast, ABDSynth yields slightly less accurate results,
but its relaxed requirements in training data make it an
alternative when the annotation budget is limited. The eval-
uation code and datasets are given for future benchmark-
ing at https://github.com/deepakri201/AbdoBench,
along with inference code and weights for ABDSynth.

Index Terms— benchmark, segmentation, abdominal MRI

[. INTRODUCTION

CCURATE segmentation of abdominal organs in mag-
netic resonance imaging (MRI) volumes is a prerequisite
for an array of clinical tasks [8] such as volumetry [9], [10],
early diagnosis, longitudinal disease monitoring, radiotherapy
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planning [11], [12], and biomarker extraction [13], [14].
However, manual expert contouring is labor-intensive [15] and
prone to inter- and intra-rater reproducibility issues [16]. To
mitigate these challenges and improve consistency, automated
multi-organ segmentation methods have been proposed.

While automated segmentation of abdominal MRI scans is
essential, this task has been hindered by the large variability
in acquisition parameters for this modality. Indeed, MRI lacks
inherent intensity normalization, which poses a challenge in
automatic segmentation since traditional deep neural networks
[17] are fragile against MRI contrast variations [18], an issue
known as “domain gap” [19]. This variability also complicates
manual MRI segmentation and thus hinders the creation of
large annotated training sets. As a result, only a few methods
have been proposed until recently for multi-organ abdominal
MRI segmentation [20]-[23]. This is in contrast with com-
puted tomography (CT), where methods like TotalSegmentator
can benefit from the highly standardized signal [3].

Recent advances in deep learning segmentation networks,
best represented by nnU-Net [24], have led to the development
of state-of-the-art methods for multi-organ abdominal segmen-
tation in MRI: MRSegmentator [1], MRISegmentator-Abdomen
[5], and TotalSegmentator MRI [6], each capable of segment-
ing more than 40 regions, including organs, bones, muscles,
and vessels. The development of these methods has been per-
formed jointly with the annotation of their respective training
datasets. Specifically, the employed training procedures all rely
on a very labor-intensive strategy where annotated datasets are
obtained with iterative expert refinements. With this technique,
the aforementioned methods are trained on large MRI cohorts
from the UK Biobank [2], the German National Cohort
(NAKO) [25], Imaging Data Commons [7], TotalSegmentator
[3], and other sources [1], [26], [27]. Crucially, these datasets
span multiple MRI sequences, manufacturers, voxel resolu-
tions, and pathologies, thereby improving the robustness of
these methods compared to previous approaches [20], [21] by
increasing the variability of the training data. However, the
accuracy and generalizability of these models remain to be
compared for generic out-of-the-box usage.

Since direct annotation of MRI datasets is challenging,
other approaches propose to tackle the generalization issue of
abdominal MRI segmentation networks by adopting domain
adaptation strategies [28], where the goal is to transfer models
trained on labeled data from a source domain to a target
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TABLE |
SUMMARY OF THE TRAINING DATA FOR THE BENCHMARKED METHODS. BRACKETS DENOTE RANGES. CE=CONTRAST-ENHANCED.
Method Training source # scans Abnormalities Data type Resolution (mm) Dimension
v in-[%haﬁe 2.23%2.23x3.00 224x156%x44
UK Biobank [2 1200 i thologi T1 Dixon out-of-phase [2.23%2.23%3.00] [224x156x44]
iobank 2] vanous pafiologies T1 Dixon wateronly  [223x2.23x4.50]  [224x174x72]
MRSegmentator [1] T1 Dixon fat only
X Tl 100-450
In-house dataset 221 kidney tumors T1 fat-saturated 1.00%x1.00x1.00 (only given in
T2 fat-saturated axial direction)
TotalSegmentator [3], [4] 1228 various pathologies CT 1.50x1.50%x1.50 [ 4[9497;44380);2895]1]
| c T1 re-con’ltra}slt [0.34x0.34] 22824080
MRIS tator-Abd 5 In-house dataset 780 liver tumors, pancreatic cysts E T1 arterial phase [1.47x1.47] [228%240x80]
cgmentator omen [5] fi-house datase other abnormalities CE venous phase (inter-slice res. [320%x320x96]
CE delayed phase not given)
L . . . T1 [0.17x0.17x0.17] [11x10x10]
University Hospital Basel various pathologies T2 [20.0x10.64x14.40] [1092x1280x1915]

Proton density

TotalSegmentator MRI [6] Imaging Data Commons [7] 1088

cancer

[0.29%0.29x0.43] [17x5x5]

Various sequences

[7.50%x25.00x28.0]  [672x672x512]
TotalSegmentator [3], [4] various pathologies CT 1.50x1.50%1.50 [ 4[9%7$80>;2895]1]
ABDSynth Subset of TotalSegmentator 128 various pathologies CT segm. (no real images)  1.50x1.50x1.50 300x300%x250

domain where labels are unavailable. Li et al. propose training
an image-translation network to create synthetic MRI data with
pseudo-labels [29]. Segmentation is then performed with an
automatic multi-stage network. Another approach [30] first
performs CT-to-MRI translation using a CycleGAN model
[31] equipped with an organ-attention mechanism. An nnU-
Net with some additional enhancements is then trained for
supervised segmentation of these MRI scans. However, these
domain adaptation approaches need to be retrained for each
new MRI sequence, which does not comply with our scenario
of out-of-the-box MRI segmentation.

SynthSeg [32], [33] is a relatively new technique that pro-
poses to circumvent domain adaptation strategies with domain
randomization [34]. Specifically, SynthSeg leverages a para-
metric generative model based on a Gaussian mixture model
(GMM) conditioned on input segmentations (no real images
needed). Synthetic scans are created by randomly sampling all
generation parameters from wide uniform distributions, thus
yielding scans of randomized MRI contrast. Exposing a down-
stream segmentation network to such variable scans forces it
to learn domain-agnostic features, so that the trained network
can be used on any domain without retraining [32]. SynthSeg
has originally been proposed for brain segmentation [18], but
has since been extended to MRI and CT cardiac segmentation
[32]. More generally, the SynthSeg framework is an alternative
to the latest methods in MRI abdominal segmentation, since it
eases their burdensome annotation process by only requiring
segmentations as training inputs, which can be taken from
other modalities such as widely available CT label maps [3].

In this paper, we propose a benchmark for existing and
future abdominal MRI segmentation methods. In particu-
lar, we conduct an analysis on three datasets: AMOS MRI
[35], CHAOS MRI [36]-[38], and LiverHCCSeg [39], [40].
These contain a variety of MRI scans acquired at differ-
ent institutions, using scanners from all major manufactur-
ers, and include variable MRI sequences, voxel resolutions,
and populations (i.e., healthy subjects and diseased patients).

Here, we assess the performances of the three state-of-the-
art methods: MRSegmentator [1], MRISegmentator-Abdomen
[5], and TotalSegmentator MRI [6]. For completeness, we
also evaluate a new method, named ABDSynth, that extends
SynthSeg [32] for out-of-the-box MRI multi-organ abdominal
segmentation and that is trained solely on CT segmenta-
tions. Our results reveal that MRSegmentator outperforms
the other methods, both for in-domain accuracy and out-of-
domain generalization. Meanwhile, ABDSynth is slightly less
accurate than the other methods, but presents an alternative
in scenarios where annotated MRI data is scarce. The data
and evaluation code are available for future benchmarking
https://github.com/deepakri201/AbdoBench.

[I. MATERIALS AND METHODS
A. Benchmarked methods and associated training data

1) MRSegmentator [1]: is a method based on nnU-Net [24],
and is trained on multiple datasets of various sequences and
modalities, including T1-weighted (T1), T2-weighted (T2),
and CT scans (Table [[). Training volumes are annotated using
an iterative process. First, image-to-image translation is used
to convert MRI volumes into pseudo-CT scans. Then, these
are segmented with TotalSegmentator [3], and the resulting
label maps are propagated to the original MRI scans. Finally,
the segmentations are manually refined by a radiologist using
MONALI Label [41]. After annotating 50 scans, an initial nnU-
Net model is trained and iteratively refined as additional data
becomes available. MRSegmentator can segment 40 reg10nsE|
We use model v1.2.0 published in August 2024 and imple-
mented in Python 3.11.5.

2) MRISegmentator-Abdomen [5]: is also based on nnU-
Net, and is trained solely on T1 scans. Similarly to MRSeg-
mentator, a cross-modality approach is first used to convert
the MRI volumes to synthetic CT scans [42] in order to obtain
labels with TotalSegmentator. Once the labels are propagated

Ihttps://github.com/hhaentze/MRSegmentatod
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Fig. 1. Overview of an ABDSynth training step. 1) A CT segmentation is sampled from the training set. 2) A synthetic volume is generated using a
segmentation-conditioned GMM with randomized parameters. 3,4) Abdominal volume/segmentation pairs are used to train a supervised 3D U-Net.

TABLE Il
SUMMARY OF THE PUBLICLY AVAILABLE DATASETS USED FOR EVALUATION. BRACKETS DENOTE RANGES.

Presence of

Regions with

Dataset # subj. Manufacturer Sequence abnormalities expert annotations Resolution (mm) Dimension
S{)leen, kidneys,
gallbladder, esophagus,
AMOS [35] 60 Philips MRI (sequences Abdominal cancer liver, stomach, aorta, [0.69x0.69%x0.82]  [192x60x64]
not provided) and abnormalities inferior vena cava, pancreas, [1.95x3.00x3.00] [576x468x512]
adrenal glands, duodenum,
bladder, prostate/uterus
T1 dual in-phase Liver, spleen,
CHAOS [36]-[38] 20 Philips T1 dual out-phase Healthy right kidney, [1.36x1.36x5.49] [256%256x26]
T2 SPIR left kidney [2.03%2.03%9.00]  [320%x320x50]
GE Tl
LiverHCCSeg [39], [40] 17 Philips arterial Hepatocellular Liver (two raters) [0.74x0.74%1.75] [256x152x19]
Siemens phase carcinoma [1.41x1.41x10.8] [512x512x131]

back to the MRI volumes, an iterative annotation process
is used to progressively train an nnU-Net model. In total,
MRISegmentator-Abdomen can segment 62 regionﬂ. We use
model v1.0.0 (June 2024, Python 3.11.10).

3) TotalSegmentator MRI [6]: is a nnU-Net-based architec-
ture extended from TotalSegmentator for CT segmentation
[3]. Starting from manual segmentations of 10 volumes, an
iterative strategy is used to train a model, similar to MRSeg-
mentator and MRISegmentator-Abdomen. In total, 59 regions
can be segmented by the modef. We use model v2.2.0 (May
2024, Python 3.10.13).

4) ABDSynth: alleviates the need for manual MRI annota-
tions by leveraging CT segmentations that are already pub-
licly available. Specifically, we use the SynthSeg framework
[32] to train a domain-agnostic network for MRI abdominal
segmentation (Figure [I). Synthetic data is generated using a
GMM conditioned on the input training label maps. Crucially,
the GMM parameters are randomly sampled from uniform
distributions of very wide ranges. Moreover, to further increase
the diversity of the synthetic data, we apply aggressive aug-
mentations including: affine and non-linear spatial transforms,
bias field corruption, contrast augmentation, noise injection,
and modeling of various voxel resolutions. Presenting the
downstream segmentation network with such data forces it to
learn features that are robust against these variations, such that

Zhttps://github.com/rsummersil/MRISegmentaton
Jhttps://github.com/wasserth/TotalSegmentaton

it can segment test scans of any domain without retraining.

We train ABDSynth using 128 segmentations from the
training set of TotalSegmentator CT [3]. These label maps
are center-cropped/padded to a 300x300x250 size at 1.5mm
isotropic resolution. Additional preprocessing details are given
in the Appendix. In total, ABDSynth segments 33 regiond]. We
use the same architecture and generation parameters as in [32],
and train the network for 500,000 iterations with a soft Dice
loss [43]. Training takes two weeks (Nvidia A100 40GB GPU)
using resources provisioned by Jetstream?2 [44], [45].

B. Evaluation datasets

Our benchmark utilizes three public MRI datasets (Table [II).
These datasets are not used by any of the benchmarked meth-
ods for training. Overall, this cohort spans three manufacturers,
five MRI sequences, healthy and diseased subjects, and a wide
range of resolutions and fields-of-view, all of which enable a
comprehensive evaluation for out-of-the-box deployment.

1) AMOS [35]: includes MRI scans of diseased patients
with abdominal cancer and other abnormalities acquired at
two centers and with eight scanners. Here, we combine the
provided training and validation sets (initially used for a Grand
Challengeﬁ) into a single test set of 60 volumes. Annotations
are provided for 15 abdominal organs (Table [I). These have

4https://github.com/deepakri201/AbdoBench
Shttps://amos22.grand-challenge.orq/
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TABLE Il
MEAN (STANDARD DEVIATIONS) DICE AND HD95 SCORES OBTAINED BY ALL BENCHMARKED APPROACHES. METHODS THAT ARE NOT TRAINED ON
THE TESTED MRI SEQUENCE ARE IN ITALICS. BEST-PERFORMING METHODS ARE IN BOLD, AND ASTERISKS DENOTE STATISTICAL SIGNIFICANCE
WITH ALL OTHER MODELS (5% LEVEL, BONFERRONI-CORRECTED WILCOXON SIGNED-RANK TEST).

Dataset Region MRSegmentator MRISegmentator-Abdomen TotalSegmentator MRI ABDSynth
Dice HD95 (mm) Dice HD95 Dice HD95 Dice HD95
Liver 0.96 (0.01) 2.87* (1.35) 0.97* (0.02) 18.86 (40.15) 0.93 (0.01) 4.92 (2.35) 0.95(0.02)  4.50 (4.80)
Spleen 0.94 (0.03)  2.04* (0.98) 0.96* (0.04) 16.60 (60.13) 0.90 (0.02) 2.77 (0.96)  0.94 (0.05)  2.52 (2.94)
Kidney, left 0.95*% (0.02) 1.99* (0.66) 0.95 (0.10) 7.42 (24.74) 091 (0.07) 2.73 (1.90) 0.92 (0.06)  2.51 (1.33)
Kidney, right 0.95*% (0.03) 2.25(1.45) 0.94 (0.06) 31.10 (58.37) 0.92 (0.12) 3.33 (7.66) 0.92 (0.13)  2.83 (4.98)
AMOS Pancreas 0.80 (0.12)  5.20* (4.95) 0.85* (0.11) 5.52 (16.54) 0.75 (0.13)  6.67 (5.30) 0.72 (0.17) 12.43 (17.88)
Stomach 0.87 (0.10)  5.25* (6.42) 0.88* (0.13) 11.35 (36.02) 0.86 (0.10) 5.86 (7.76)  0.83 (0.14)  8.83 (10.66)
Gallbladder 0.78 (0.18)  5.78 (6.63) 0.82* (0.18) 7.40 (20.30) 0.79 (0.19) 5.54* (7.69) 0.70 (0.32)  7.65 (8.89)
Duodenum 0.60 (0.16) 11.18 (7.46) 0.69* (0.14) 9.02* (5.88) 0.57 (0.17) 12.97 (9.97) 0.56 (0.22) 19.96 (18.32)
Adrenal gland, left  0.53 (0.21)  6.39 (5.25) 0.62* (0.19) 5.39* (5.64) 0.51 (0.20) 6.48 (6.27) 0.45(0.24)  9.12 (7.92)
Adrenal gland, right 0.54 (0.14) 5.88 (3.97) 0.61* (0.13) 3.80* (2.54) 0.52 (0.14) 6.04 (3.95) 0.50(0.13)  6.02 (4.19)
Liver 0.93* (0.01) 2.05* (0.41) 0.81 (0.12) 40.86 (25.42) 0.90 (0.02) 528 (4.45) 091 (0.03)  4.86 (5.76)
CHAOS Spleen 0.89* (0.02) 1.82* (0.63) 0.34 (0.23) 20.67 (5.64) 0.87 (0.02) 2.0l (0.49) 0.84 (0.08)  3.38 (2.26)
T1 in-phase  Kidney, left 0.88* (0.03) 2.29* (0.49) 0.63 (0.26)  6.83 (9.25) 0.79 (0.03) 3.30 (0.71)  0.68 (0.30)  8.03 (8.93)
Kidney, right 0.90* (0.04) 1.86* (0.52) 0.78 (0.13) 18.01 (32.49) 0.80 (0.05) 3.12 (0.50) 0.68 (0.33)  6.45 (6.81)
Liver 0.93* (0.01) 2.18* (0.50) 0.83 (0.10) 30.93 (30.28) 0.89 (0.02) 4.76 (4.22) 0.90 (0.03)  4.87 (6.09)
CHAOS Spleen 0.88* (0.03) 2.11* (1.12) 0.45(0.18) 38.88 (39.16) 0.85(0.03) 229 (0.77) 0.76 (0.27)  4.25 (5.22)
T1 out-phase  Kidney, left 0.87* (0.04) 2.44* (0.58) 0.77 (0.06)  5.48 (5.82) 0.77 (0.04) 3.52(0.75) 0.74 (0.17)  4.18 (2.14)
Kidney, right 0.88* (0.04) 2.06* (0.47) 0.74 (0.18) 10.21 (20.21) 0.80 (0.03) 2.95(0.57) 0.68 (0.26)  4.71 (3.24)
Liver 0.91 (0.02) 294 (1.61) 0.88(0.12) 11.77 (19.06) 0.91 (0.03) 4.59 (6.35) 0.90 (0.05)  5.11 (6.03)
CHAOS Spleen 0.88 (0.12) 239 (2.50)  0.87 (0.22) 13.56 (28.42) 0.86 (0.08) 5.31 (9.28) 0.91*(0.04) 2.22 (1.67)
T2 SPIR idney, left 0.91 (0.03) 2.27* (0.83) 0.92* (0.02) 5.63 (14.56) 0.88 (0.03) 2.67 (0.86) 0.83 (0.09)  3.34 (0.86)
Kidney, right 0.92* (0.02) 1.88* (0.77) 0.91 (0.05)  2.69 (2.55) 0.90 (0.02) 2.56 (0.58) 0.86 (0.14)  3.34 (2.25)
LiverHCCSeg Liver (Rater 1) 0.93* (0.03) 4.93* (3.94) 0.93 (0.07) 10.20 (21.90) 0.91 (0.04) 6.49 (4.66) 0.90 (0.08) 11.49 (19.42)

been obtained with an iterative process, where a model is first
trained on a small set of annotated data to generate pseudo-
labels, which are then refined by two radiologists.

2) CHAOS [36]-[38]: contains healthy subjects from the
Dokuz Eylul University Hospital. It consists of three MRI
sequences: T1 dual in-phase, T1 dual out-phase, and T2 SPIR
(spectral pre-saturation inversion recovery). The T1 sequences
are fat-suppressed, and T2 SPIR is designed to highlight the
liver parenchyma. Consensus ground truth segmentations are
provided for the liver, spleen, right kidney, and left kidney
using majority voting between three radiologists. 20 volumes
are included for each sequence, for a total of 60 volumes.

3) LiverHCCSeg [39], [40]: includes 17 subjects with hepa-
tocellular carcimona from TCGA-LIHC [46] and imaged with
a T1 arterial phase sequence. All scans are provided with
manual liver segmentations from two independent raters.

C. Evaluation metrics

We use Dice scores [47] and the 95th percentile of the
Hausdorff distance (HD95) [48] as evaluation metrics. Dice
quantifies the overlap between two segmented regions in [0,1],
where 1 indicates perfect overlap and O indicates no overlap.
HDO95, expressed in millimeters, measures the 95th percentile
of the surface distance between two segmentations.

[1l. RESULTS
We organize the benchmark results by datasets (Table [III).

A. AMOS

Among the benchmarked methods, MRISegmentator-
Abdomen achieves the highest Dice scores for the majority

9https://chaos.grand-challenge.orqg/Data/

of organs (average gap of 0.035 Dice with MRSegmentator),
except for the kidneys. However, it consistently exhibits high
HDO9S5 values and extreme outliers compared to the other meth-
ods. This is likely due to MRISegmentator-Abdomen producing
implausible segmentations, including predictions of irrelevant
regions, as seen in Figure Bl In contrast, MRSegmentator and
TotalSegmentator MRI achieve much more spatially coherent
predictions, as indicated by lower HD95 values. ABDSynth
performs competitively on high-contrast organs such as the
liver, spleen, and kidneys, but underperforms on more spatially
variable regions, such as the stomach and gallbladder.

More precisely, Figure [2] reveals that all four methods
yield accurate segmentations of the liver, spleen, and kidneys
(Dice higher than 0.9 in all cases), but substantially lower
and more variable performances for other regions. This is
explained by the morphological variability, small size, and
high deformability of regions like the pancreas [49], [50].
Additional complexity arises for organs such as the duodenum,
where peristaltic motion during imaging introduces artifacts
that further degrade segmentation performance. Moreover,
while smaller Dice scores are indicative of lower performances
in the adrenal glands, we highlight that Dice is known to
degrade faster in such small regions. This is confirmed by
the fact that results are more homogeneous across regions for
HD95 than Dice.

Figure 3] shows qualitative results for each method, with a
focus on the pancreas, where no method achieves anatomi-
cally correct segmentation of this region. The 3D renderings
reveal over-/under-segmentation (e.g., gallbladder, spleen, and
kidneys) patterns across different methods.

B. CHAOS

Table [ shows that MRSegmentator achieves the highest
Dice scores (above 0.87) and lowest HD95 (below 3mm)
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Dice (top) and HD95 (bottom) boxplots for AMOS results for the four benchmarked methods. We observe similar performances for all

methods across the liver, spleen, and kidneys, but highly variable results across the regions that are smaller and/or with more variable morphologies.

Ground truth MRSegmentator

MRISegmentator-Abdomen

TotalSegmentator MRI ABDSynth

Fig. 3. Sample segmentations by all methods on AMOS. (a) Pancreas slice, where all methods do not fully segment the region. (b) 3D renderings
for another subject. Arrows indicate segmentation errors in the region of corresponding color.

among all methods and for almost all sequence types and
evaluated regions. TotalSegmentator MRI and ABDSynth also
yield fairly high Dice scores and low HD95 values. In contrast,
MRISegmentator-Abdomen, which is not trained on any of the
sequences used in CHAOS, displays much lower Dice scores
and higher HD95 values, especially for the T1 scans.

Figure @ illustrates the distributions of the Dice and HD95
metrics, as well as the volume repeatability across the MRI
sequences used in CHAOS (T1 dual in-phase/out-phase, and
T2 SPIR). In particular, we focus on the liver and right kidney,
which are the most and least consistently segmented regions,
respectively, among the four available labels in CHAOS. We
also show qualitative segmentation examples obtained by all
methods for the liver and right kidney in Figure

For the liver, Dice scores are consistently high across all
methods and scan types, with medians above 0.8 in all cases.
However, this high overall accuracy is nuanced by the HD95

metric, for which substantial variations in standard deviations
indicate local under- and over-segmentations (Figure [3). This
effect is particularly visible for MRISegmentator-Abdomen
(HD95 standard deviations above 19mm for all sequences),
where typical segmentation mistakes are illustrated in Figure[3l
More precisely, MRISegmentator-Abdomen, which has not
been trained on any of the CHAOS sequences, yields an av-
erage HD95 gap of 16.6mm with the best performing method
(MRSegmentator) across all CHAOS regions and sequences,
which is far worse than the other methods. This issue is
also highlighted by the volume analysis (Figure M), where
MRISegmentator-Abdomen displays large volumetric intra-
subject differences across sequences. In comparison, the other
approaches exhibit consistent liver volume estimates across
sequences for most subjects, thus highlighting the accuracy of
their liver segmentation predictions.

Meanwhile, we observe the opposite trend for the right
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Fig. 4. Dice score (left), HD95 (middle), and volume repeatability (right) obtained on CHAQOS for two representative regions (liver and right kidney)
across different sequences. In the volume repeatability subfigure, the consecutive points represent T1 dual in-phase, T1 dual out-phase, and T2
SPIR, respectively. In general, the liver is more consistently segmented across MRI sequences than the right kidney.

Ground truth MRSegmentator

Liver

MRISegmentator-Abdomen

TotalSegmentator MRI

ABDSynth

Right kidney

Fig. 5. CHAOS subject 39, where blue = liver and yellow = right kidney. Blue and yellow arrows point at major differences between ground truth

and automated segmentations for the liver and right kidney, respectively.

kidney, where all methods obtain tighter HD95 distributions
but more variable Dice scores (Figure ). Here, the lower
Dice scores are due to the substantially smaller size of the
kidney, since the Dice metric is more sensitive to segmentation
mistakes in smaller regions. Yet, the Dice results also reflect
frequent instances of under-segmentation of the right kidney
by all methods (Figure [B). In particular, we observe that
ABDSynth fails to produce segmentations for several subjects,
as indicated by missing points in the volume repeatability plot
in Figure [l Nevertheless, these segmentation mistakes remain
relatively smaller compared to the liver (all methods produce
substantially lower HD95 scores for the right kidney across
all sequences), which may be due to the good tissue contrast
with the surrounding organs.

C. LiverHCCSeg

For the LiverHCCSeg dataset, Table [Tl presents the per-
formance of automated methods relative to Rater 1. We
observe consistently high Dice scores across all meth-
ods, ranging from 0.9 (ABDSynth) to 0.93 (MRSegmenta-
tor and MRISegmentator-Abdomen). In contrast, the HD95

values exhibit substantial variability, with ABDSynth and
MRISegmentator-Abdomen reporting the highest means at
11.49 mm and 10.20 mm, respectively. Figure [6] illustrates
this high segmentation variability across methods for a rep-
resentative subject. It can be seen that while most algorithms
perform well in the mid-transverse slice, discrepancies become
apparent in the superior slice, where predictions vary widely.
In the inferior slice, the presence of a hepatocellular carcinoma
appears to degrade segmentation quality across all methods.

Since LiverHCCSeg provides liver annotations from two
experts, we now compare the results of all methods against
inter-rater reproducibility scores. First, the two experts show a
strong overall consistency with a mean Dice score of 0.95 [39].
Remarkably, all methods yield results that are relatively close,
thus highlighting the quality of the produced segmentations.
The inter-rater HD is only 15.7mm [39], which is worse
than any automated method. Beyond further emphasizing the
good performance of the benchmarked methods, this result
highlights the inter-rater reproducibility issues in annotating
regions, especially for diseased tissues such as hepatocellular
carcinoma in this example.
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Fig. 6. Example of liver segmentations for the superior, middle, and inferior axial slices of a representative LiverHCCSeg subject. For the inferior
axial slice, all methods do not segment the liver well, likely due to the presence of a hepatocellular carcinoma, as indicated by the yellow arrows.

TABLE IV
COMPARISON OF INFERENCE TIME AND MODEL SIZE.

Benchmarked method Inference time (s)  Trainable params.

MRSegmentator 57.95 £+ 53.15 3IM
MRISegmentator-Abdomen 98.19 £+ 69.83 31M
TotalSegmentator MRI 39.60 £ 10.34 31M
ABDSynth 21.17 £+ 19.30 13M

D. Computational requirements and inference time

We now compare all methods in terms of inference time
(computed on the same A100 Nvidia GPU as before) and
model size (Table [V)). Inference time differences among the
nnU-Net-based models are explained by their preprocessing
strategies, and especially by the size of the patches used
for sliding-window inference: MRSegmentator (96 x 128 x 160
patches), MRISegmentator-Abdomen (48 x 160 x 192), and
TotalSegmentator MRI (112x128x160). In contrast, ABDSynth
represents an alternative in time-constrained scenarios, as it is
faster (it does not use a patch-based strategy) and is two-thirds
smaller in terms of number of parameters.

IV. DISCUSSION

In this paper, we present a thorough benchmarking of
the state-of-the-art methods in MRI abdominal segmenta-
tion: MRSegmentator, MRISegmentator-Abdomen, and To-
talSegmentator MRI. Since these methods are trained on MRI
segmentations obtained by a labor-intensive iterative process
involving several rounds of corrections, we also test another
method ABDSynth (extending the SynthSeg framework) that
only requires widely available CT segmentations to be trained.
We perform benchmarking on a collection of three publicly
available datasets, AMOS, CHAOS, and LiverHCCSeg, which
cover three manufacturers, five different MRI sequences, dif-
ferent subject conditions (healthy and diseased patients), as
well as a large range of resolutions and fields-of-view.

A. Robustness of the methods

1) Effect of sequence type: In order to analyze robustness
to different sequences, we focus on the results obtained on
CHAOS, which is the only evaluation dataset with multiple
sequences for all subjects. Table[[Ill shows that MRSegmentator
has the highest performance for all sequences. This can be
explained by the fact that MRSegmentator is trained on the
most diverse dataset with multiple T1 and T2 sequences (Ta-
ble M. In comparison, TotalSegmentator MRI yields slightly
lower performances, which may be due to its less abundant
training data (1561 fewer scans than MRSegmentator). Re-
garding MRISegmentator-Abdomen, it produces lower quality
segmentations on the CHAOS and LiverHCCSeg datasets,
which may be due to its relatively high training resolutions
compared to the CHAOS resolutions (mean in-slice resolution
of 1.28mm vs. 1.62mm, and mean slice spacing of 3.1mm
vs. Smm). Finally, despite ABDSynth having never seen real
images during training, it can accurately segment them during
testing. However, ABDSynth fails in some cases since it does
not have access to real intensity distributions during training,
an issue known as the reality gap [51].

To further study robustness across sequences, we perform
statistical tests between the Dice scores obtained by each
method on each region of CHAOS by using the Friedman chi-
square test with a significance level of 0.05. Almost all of the
regions show statistically significant results, except in three
cases (ABDSynth for liver and spleen, MRSegmentator for
spleen, and TotalSegmentator MRI for spleen), thus emphasiz-
ing the remaining performance differences across sequences.

2) Presence of pathologies: While the CHAOS dataset com-
prises only healthy subjects, the AMOS and LiverHCCSeg
cohorts contain patients with cancer and other abnormalities.
Overall, even though the benchmarked methods are trained
on datasets containing various abnormalities (e.g., tumors,
cysts, etc.), we observe that the evaluated methods may lack
robustness to diverse pathological conditions. Importantly, we
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Fig. 7. Right kidney segmentations for CHAOS subject 1. The yellow

arrow points to major differences between ground truth and automated
segmentations, where the ground truth includes the renal pelvis.

note that the public datasets used here for benchmarking do
not provide subject-specific medical information. Therefore, it
is challenging to discern whether a model’s lower performance
stems from subject-specific abnormalities or from the inher-
ent difficulty of segmenting certain anatomical regions. This
ambiguity is illustrated in Figure Bl which shows consistently
poor pancreas segmentation across all methods for a patient
with liver pathology, which is likely exacerbated by the
pancreas being inherently difficult to segment. Interestingly,
for the AMOS dataset, high segmentation performance is
observed across all methods for the primary abdominal organs,
liver, spleen, and kidneys, as shown in Table [[II, despite
the presence of pathologies. In contrast, the LiverHCCSeg
dataset reveals more variable segmentation quality, likely due
to the presence of hepatocellular carcinoma. As illustrated
in Figure [6] although all methods achieve high Dice scores
(Table [II), segmentation accuracy tends to degrade in inferior
slices affected by this pathology, while segmentations of mid-
axial slices remain comparatively consistent.

B. Inconsistencies in segmentation conventions

Figure [7] illustrates differences in anatomical conventions
between the CHAOS ground truth annotations and those used
in the training data of the evaluated methods. Here, the expert
reference includes the renal pelvis as part of the kidney
segmentation, whereas the automated methods exclude this
region (yellow arrow). These discrepancies in the definition
of anatomical boundaries contribute to the lower volume
estimates observed in the volume repeatability analysis (Fig-
ure d). This example shows a limitation of our study, where
the evaluated methods and benchmarking datasets might use
different conventions for some of the regions. More generally,
this highlights the importance of identifying semantic inconsis-
tencies in annotation protocols when deploying models across
heterogeneous datasets.

C. Key difference between benchmarked methods

Three of the benchmarked methods, MRSegmentator,
MRISegmentator-Abdomen, and TotalSegmentator MRI re-
quire expert involvement during training, where a clinician
or radiologist guides the model through an iterative la-
bels refinement process. In addition to this labor-intensive

training paradigm, these methods rely on large datasets:
MRSegmentator was trained on 2,649 MRI and CT volumes,
MRISegmentator-Abdomen on 780 MRI volumes, and To-
talSegmentator MRI on 1,088 MRI and CT volumes. CT
data was utilized by MRSegmentator and TotalSegmentator
MRI to improve robustness and cross-modality segmentation
capabilities. Furthermore, because these models are trained on
specific sequences, their performances degrade when applied
to unseen sequences. This limitation is particularly evident in
the performance of MRISegmentator-Abdomen on the CHAOS
dataset (Table [I), where the model shows poorer results
across all three scan types, due to a lack of training on those
sequences. Consequently, adapting these methods to segment
a new MRI sequence would require additional retraining or
fine-tuning.

In contrast, ABDSynth requires only a single set of annotated
CTs, which are widely available, for training. This represents
a significant advantage given the relative scarcity of large,
annotated MRI datasets compared to CT. By leveraging anno-
tated CT data for MRI segmentation, ABDSynth substantially
reduces the burden of manual labeling in the MRI imaging
space. Furthermore, the method’s synthetic data generation
approach enables adaptation to new MRI sequence types
without requiring additional expert-annotated MRI datasets
and retraining.

However, as shown in Table [Il, ABDSynth generally yields
lower segmentation performance compared to the other bench-
marked methods. Moreover, there are multiple instances where
ABDSynth produces very poor segmentation outputs, most
notably for the T1 out-phase scans in the CHAOS dataset, as
reflected by the missing volumes in the volume repeatability
plot in Figure @ These observations highlight an inherent
trade-off among the benchmarked methods, balancing (i) train-
ing and annotation effort, (ii) the diversity of sequences used
for training, and (iii) overall segmentation performance.

V. CONCLUSION

We presented a benchmarking study of abdominal MRI
segmentation methods, including three state-of-the-art models
trained on real data and one method trained on synthetically
generated data. The models are evaluated on publicly available
datasets from multiple grand challenges, as well as a multi-
rater liver segmentation dataset. Among the evaluated meth-
ods, MRISegmentator-Abdomen achieved high Dice scores on
the AMOS dataset but exhibited high HD95 values, indicating
many outlier segments. Moreover, its performance on the
CHAOS dataset was notably lower, likely due to the presence
of MRI sequences not included in its training set. In contrast,
MRSegmentator demonstrated consistent performance across
all datasets, with moderately high Dice scores and lower
variability, suggesting greater robustness, which is potentially
attributed to its more diverse training set.

Our benchmarking approach suffers from several limita-
tions, which we plan to address in future work. First, while
this study focused on a core set of representative automated
methods, we did not evaluate all other available tools, and
notably TotalVibeSegmentator [52], which is specifically de-
signed for segmenting volumetric interpolated breath-hold
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examination (VIBE) sequences. Inclusion of such specialized
models may be considered in future evaluations targeting
sequence-specific performance. Secondly, a pathology-specific
performance analysis was not feasible due to dataset con-
straints, as the AMOS dataset lacks pathology labels, CHAOS
includes only healthy subjects, and although LiverHCCSeg
contains patients who all have hepatocellular carcinoma, it
is limited by the small number of subjects in the dataset
(17). Future benchmarking efforts would benefit from larger,
more diverse datasets with well-annotated pathological labels
to enable an evaluation of segmentation performance as a
function of different pathologies.

Overall, by releasing our evaluation code as well as the
diverse cohort of testing MRI scans, the proposed benchmark
represents a first step towards precise and thorough bench-
marking of current and future methods for MRI multi-organ
abdominal segmentation, a rapidly evolving and promising
field for clinical practice.

APPENDIX
Preprocessing the training data of ABDSynth

In SynthSeg [32], synthetic data is generated using a GMM
conditioned on training label maps, where each anatomical
label is associated with a single Gaussian distribution. While
effective, representing the intensities of a given label by a
single Gaussian can be insufficient for labels that include
heterogeneous substructures with distinct intensity profiles.
For example, regions like the renal cortex and medulla in
the kidneys, or hepatic vasculature, contain fine-grained dif-
ferences that are not well captured by a single Gaussian. To
address this, we refine the label maps used for synthetic data
generation to introduce finer anatomical detail. We adopt a
similar strategy to Billot et al. when they extended SynthSeg
to cardiac segmentation [32]. Using the original TotalSeg-
mentator CT scans, we subdivide each label into subregions
by clustering the corresponding intensities using expectation-
maximization (EM) [53]. In order to capture different levels
of granularity, we randomly sample the number of clusters
from {1,2,3} for each foreground label. We also apply the
same strategy to the background class, but we sample the
number of clusters in {3,4,5,6, 7} to account for the greater
variability of the underlying tissues (Algorithm [I). Clustering
is performed dynamically during synthetic volume generation,
with the number of clusters selected at runtime.

After subdividing labels into substructures, we also simu-
late different scanning poses that are more specific to MRI
acquisitions, and especially poses where only the trunk of the
subject is acquired. This is achieved by removing the arms of
the subject with a 0.5 probability, where the arm regions have
been defined using the 3D Slicer Sandbox extension].
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