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ABSTRACT

Linear inverse problems consist in recovering a signal from its noisy observation in
a lower dimensional space. Many popular resolution methods rely on data-driven
algorithms that learn a prior from pairs of signals and observations to overcome
the loss of information. However, these approaches are difficult, if not impossible,
to adapt to unsupervised contexts – where no ground truth data are available – due
to the need for learning from clean signals. This paper studies situations that do
or do not allow learning a prior in unsupervised inverse problems. First, we focus
on dictionary learning and point out that recovering the dictionary is unfeasible
without constraints when the signal is observed through only one measurement
operator. It can, however, be learned with multiple operators, given that they are
diverse enough to span the whole signal space. Then, we study methods where
weak priors are made available either through optimization constraints or deep
learning architectures. We empirically emphasize that they perform better than
hand-crafted priors only if they are adapted to the inverse problem.

1 INTRODUCTION

Linear inverse problems are ubiquitous in observational science such as imaging (Ribes & Schmitt,
2008), neurosciences (Gramfort et al., 2012) or astrophysics (Starck, 2016). They consist in recon-
structing signals X ∈ R n×N from remote and noisy measurements Y ∈ R m×N which are obtained
as a linear transformation A ∈ Rm×n of X , corrupted with noise B ∈ Rm×N : Y = AX +B. As the
dimension m of Y is usually much smaller than the dimension n of X , these problems are ill-posed,
and several solutions could lead to a given set of observations. The uncertainty of the measurements,
which can be noisy, increases the number of potential solutions. Therefore, practitioners rely on prior
knowledge of the data to select a plausible solution among all possible ones.

On the one hand, hand-crafted priors relying on sparsity in a basis produce satisfying results on
specific data, such as wavelets in imaging or Gaborlets in audio (Mallat, 2008). However, the
complexity and variability of the signals often make ad hoc priors inadequate. On the other hand,
the prior can be learned from ground truth data when available. For instance, frameworks based on
Plug-and-Play (Brifman et al., 2016) and Deep Learning (Chan et al., 2016; Romano et al., 2017;
Rick Chang et al., 2017) propose to integrate a pre-trained denoiser in an iterative algorithm to solve
the problem. Supervised methods leveraging sparsity also allow to summarize the structure of the
signal (Elad, 2010). In particular, dictionary learning (Olshausen & Field, 1997; Aharon et al., 2006;
Mairal et al., 2009) is efficient on pattern learning tasks such as blood cell detection or MEG signals
analysis (Yellin et al., 2017; Dupré la Tour et al., 2018). Nevertheless, these methods require clean
data, sometimes available in audio and imaging but not in fields like neuroimaging or astrophysics.

While data-driven methods have been extensively studied in the context of supervised inverse
problems, recent works have focused on unsupervised scenarios and provided new algorithms to
learn from corrupted data only (Lehtinen et al., 2018; Bora et al., 2018; Liu et al., 2020). Chen
et al. (2021) and Tachella et al. (2022) demonstrate that a necessary condition to learn extensive
priors from degraded signals is either to measure them with multiple operators which span the
whole space, or to introduce weak prior knowledge such as group structures and equivariance in the
model when only one operator is available. Other works based on Deep Learning have leveraged
successful architectures to recover images without access to any ground truth data. In particular,
Deep Image Prior shows that CNNs contain enough prior information to recover an image in several
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inverse problems, such as denoising or inpainting (Ulyanov et al., 2018). Finally, a few works have
demonstrated that it is possible to learn dictionaries from incomplete data, especially in the context
of missing values or inpainting in imaging (Szabó et al., 2011; Studer & Baraniuk, 2012; Naumova &
Schnass, 2017). Another line of work studied online factorization of large matrices by aggregating
partial information randomly selected from the data at each iteration (Mensch et al., 2016; 2017).
This is equivalent to learning a dictionary from incomplete data, except that one sample can be looked
at multiple times from different angles, which is hardly possible in an inverse problem context.

Contributions In this paper, we demonstrate practical limitations of prior learning methods for
unsupervised inverse problems. We first provide an analysis of dictionary learning when the data
is measured with a single or multiple operators. As mentioned by Tachella et al. (2022), "seeing
the whole space" is a necessary condition to learn a good prior from the data, as nothing can be
recovered in the kernel of the operator A. However, we point out that this is not sufficient in the case
of dictionary learning. Indeed, the problem is made harder by the measurement operators, and is
sometimes unfeasible even with access to the whole space. Then we study the practical behavior of
methods heavily relying on convolutions in cases where they work well (inpainting) and in cases
where they fail because the prior is too weak (deblurring), and provide experiments complementary
to the theoretical study of Tachella et al. (2022). We present three examples, namely Convolutional
Dictionary Learning, Deep Image Prior, and Plug and Play, and train the prior "as is" in the range
space without relying on any data augmentation technique or equivariance. Finally, we show that
the difficulty is deeper than the unsupervised setting by studying what happens in a self-supervised
setting when training on ground truth data. In particular, we emphasize that stronger prior information
is necessary to link low and high frequencies in deblurring, even in this simpler context.

2 THE MAIN BOTTLENECK OF PRIOR LEARNING IN INVERSE PROBLEMS

For inverse problems, the dimension of the measurements m is often smaller than the dimension of
the signal n. This dimension reduction implies that information on the signal contained in the null
space of A ∈ Rm×n is lost during the observation process, and needs to be reconstructed from the
observed signal. We first aim to study the impact of this degradation on constraint-free prior learning
through the lens of dictionary learning.

2.1 DICTIONARY LEARNING WITH A SINGLE MEASUREMENT OPERATOR.

Dictionary learning assumes that the signal can be decomposed into a sparse representation in a
redundant basis of patterns – also called atoms. In other words, the goal is to recover the signals X ∈
Rn×N as DZ where Z ∈ RL×N are sparse codes and D ∈ Rn×L is a dictionary. Taking the example
of Lasso-based dictionary learning, recovering X would require solving a problem of the form

min
Z∈RL×N ,D∈C

1

2
∥ADZ − Y ∥22 + λ ∥Z∥1 , (1)

where λ is a regularization hyperparameter and C is a set of constraints, typically set so that columns
of D have norm smaller than 1. We first aim to see the impact of A on the algorithm ability to recover
a proper dictionary. In Proposition 2.1, we focus on inpainting where the measurement operator
is a binary mask or equivalently a diagonal matrix with m non-zeros elements.
Proposition 2.1. Let A = diag(λ1, · · · , λn) ∈ Rn×n be a diagonal measurement matrix where
m < n, λ1 ≥ · · · ≥ λm > 0 and λm+1 = · · · = λn = 0. Let D0 ∈ Rn×L and D′ be such that

D′ =

(
∥D0,j∥

∥D0,j,m∥D0,j,m

0n−m

)
1≤j≤L

, where D0 =

(
D0,m

D0,n−m

)
Then

min
Z

1

2
∥AD′Z − Y ∥22 + λ ∥Z∥1 ≤ min

Z

1

2
∥AD0Z − Y ∥22 + λ ∥Z∥1 .

All proofs are deferred to Appendix C. In this simple case, our proposition shows that the optimal
dictionary must be 0 in the null space of A. The core idea behind the proof is that due to invariances,
the optimal solution for dictionary learning is contained in an equivalence class {PSD′ + V } where
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P is a permutation matrix, S is a scaling matrix, D′ is a matrix of rank m and V is a matrix of
rank n −m such that PSD′ ∈ ker(A)⊥ and V ∈ ker(A). Given a dictionary PSD′ + V in this
equivalence class, the dictionary PSD′ is always a better minimizer after proper rescaling. Therefore,
the solver puts to 0 all directions from which A loses the information to maximize the input from
the others. Proposition 2.2 generalizes Proposition 2.1 to the case of rectangular matrices.

Proposition 2.2. Let A ∈ Rm×n be a measurement matrix where m < n, and let Y ∈ Rm×N be the
observed data. If a dictionary D ∈ R n×L minimizes minZ∈RL×N ,D∈C

1
2 ∥ADZ − Y ∥22 + λ ∥Z∥1,

then D ∈ ker(A)⊥.

Similarly to what happens in inpainting, nothing can be recovered in the null space of A. Thus, we
can only expect to learn a dictionary of rank m with a single measurement matrix. This result relates
to the one from Tachella et al. (2022) which says that the signals cannot be recovered where there
is no information.
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Figure 1: Recovery score for Gaus-
sian dictionaries 100 × 100, after
degradation by a single compressed
sensing operator m × 100. When
the dimension m decreases, the part
of the dictionary not contained in
the null space can be recovered only
with sparse signals.

Dimension reduction makes dictionary learning harder in
the range space. Even in the range space of the signal, a
good dictionary cannot always be learned reliably. Guarantees
of identifiability of the dictionary or local recovery are strongly
based on the ability of the sparse coding algorithm to recover
an accurate estimation of Z (Arora et al., 2015; Gribonval et al.,
2015; Chatterji & Bartlett, 2017). As the dimension of the
measurement m becomes smaller than the dimension of the
signal n, these conditions are not valid anymore. As an example,
if D is a Gaussian random dictionary, the theory of compressed
sensing states that n ≥ 2s ln(Ls ) where s is the sparsity of
Z is a sufficient condition to be able to recover Z with high
probability (Foucart & Rauhut, 2013). When the dictionary is
degraded by a matrix A, this constraint becomes m ≥ 2s ln(Ls )
and the sparsity level s has to decrease by a ratio close to m

n
to compensate for the loss of information. This implies that
recovering the part of the dictionary not contained in the null
space of A also becomes harder with the corruption of the data.

Fig. 1 shows the recovery score for data generated with a
100×100 random Gaussian dictionary, depending on the size of the measurements and on the sparsity
of a Bernoulli Gaussian signal, after degradation by a single compressed sensing operator. We
compare it to the perfect score that we can achieve in the range space of the operator. We evaluate the
quality of the dictionary, based on the Pearson correlation of their columns. To make the metric sign
and permutation invariant, we use a best linear sum assignment S(C) = maxσ∈Sn

1
n

∑n
i=1 |Cσ(i),i|,

where Sn is the group of permutations of [1, n] and C is the cost matrix whose entry i, j compares
the atom i of the first dictionary and j of the second. It is equal to 1 when the dictionary is perfectly
recovered. The recovery score drops when the dimension m decreases and small values of m require
a high sparsity level to recover the dictionary in the range of A.

2.2 SEEING THE DATA THROUGH MULTIPLE OPERATORS

Even though it is not possible to recover the whole dictionary from a single measurement operator, the
situation changes when the measurement matrix is sample dependent. Indeed, several operators may
span different parts of the signal space and make it possible to recover the missing part of the signal.
In this section, we focus on cases where the data are observed through a set of Nm measurement
matrices (Ai)1≤i≤Nm

, and consider the task of learning a dictionary with the associated lasso-based
(Tibshirani, 1996) optimization problem

min
D∈C

F (ZA(D), D) ≜
Nm∑
i=1

1

2
∥AiDZAi(D)− Yi∥22 + λi ∥ZAi(D)∥1 ,

with ZAi(D) = argmin
Z

1

2
∥AiDZ − Yi∥22 + λi ∥Z∥1 .

(2)
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Figure 2: (left) Recovery score for Gaussian dictionaries 100 × 100, after degradation by Nm

compressed sensing operators m× 100. Nm ≥ ⌊ n
m⌋+ 1 is necessary, but not sufficient to recover

the dictionary when m is too small. In the case of inpainting, PSNR (center) and weighted recovery
score (right) depend on the proportion of missing values in dictionary learning on patches from a
natural image. When the dimension of the measurement space is large enough, the algorithm recovers
the image and the supervised dictionary successfully.

Here ZA(D) = (ZA1(D), . . . ZANm
(D)) denotes the sparse codes related to each operator. This

problem is non-convex and is usually solved through gradient descent, in order to find a local
minimum. In the following, we study the cases when the local minima of Eq. (2) are also local
minima for the problem without observation operators and provide an empirical analysis in different
scenarios. With multiple measurement operators, the gradient of Eq. (2) is given by

∇DF (ZA(D), D) =

Nm∑
i=1

AT
i (AiDZAi

(D)− Yi)ZAi
(D)T . (3)

The main difficulty in studying this quantity is that the sparse codes estimate ZAi(D) depends on
D and Ai. Each operator provides measurements from a limited number of samples in the data-set,
and the sparse codes are different with and without A. Thus, we consider the simplest case where
Z = ZAi

(D) is the same for all Ai, including A = I . This is an easier problem than the general
formulation in Eq. (2). If this is not feasible, then Eq. (2) is not feasible. In this case, we have

∇DF (ZA(D), D) = (
∑
i

AT
i Ai)∇DF (ZI(D), D) . (4)

KKT conditions imply that the gradient ∇DF (ZA(D), D) must vanish at local minima. Whenever∑
i A

T
i Ai is injective, ∇DF (ZI(D), D) vanishes if and only if ∇DF (ZA(D), D) vanishes. Thus,

local minima of Eq. (2) are also local minima for the original problem where Ai = I . This means that
when

∑
i A

T
i Ai spans the entire space, the dictionary from the original problem can be recovered.

Otherwise local minima of F (ZA(D), D) are not necessarily local minima of F (ZI(D), D). This
case boils down to the case previously studied in Section 2, as

∑
i A

T
i Ai is full rank whenever the

rank of the matrix obtained by stacking the operators (AT
1 , · · · , AT

Nm
) is equal to n. The message

from these results is essentially the same as the one from Chen et al. (2021): a necessary condition
for recovery is that the operators span the whole space. It is however important to note that this is
only a necessary condition to recover the dictionary, as sparse coding guarantees may not be met
when the dimension m is too small. We now present two examples of inverse problems with multiple
operators to illustrate what happens in practice.

Compressed sensing (CS). When all Ai are random Gaussian matrices, (AT
1 , · · · , AT

Nm
) is also

a random Gaussian matrix of dimension n×Nmm. Therefore, it is of rank n with probability 1 if
Nm ≥ ⌊ n

m⌋+ 1. Fig. 2 illustrates that it is indeed a necessary condition to recover D, but it is not
sufficient when m is too small, because sparse coding becomes inefficient. Multiview compressive
dictionary learning has also been studied in Anaraki & Hughes (2013); Pourkamali-Anaraki et al.
(2015); Chang et al. (2019).

Inpainting. All Ai are binary masks with coefficients following Bernoulli distributions of param-
eters p1, · · · , pn, i.e. Ai = diag(a1i , · · · , ani ) where each aji is equal to 1 with probability pj . The
rank of (AT

1 , · · · , AT
Nm

) is equal to n if for each coordinate j there exists an index i such that aji = 1.
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This happens with probability
∏

j(1− (1− pj)
Nm). Fig. A in appendix shows that similar to CS,

this is a necessary but insufficient condition to recover a proper dictionary. Even when the number of
samples compensates for missing values, the sparsity of the data plays a great role in the ability of the
algorithm to recover the proper dictionary after heavy dimension reduction. To illustrate what happens
on real data, we consider the example of image inpainting. Let A ∈ {0, 1}h×w be a binary mask
used to observe an image X ∈ [0, 1]h×w and Y = A⊙X be the observed image. While the operator
is unique when we consider the whole image at once, learning a dictionary from patches of size n
from the image is equivalent to learning a dictionary with multiple operators in Eq. (2). Denoting
Aij = diag(Ani:n(i+1),nj:n(j+1)) and Yij = vect(Yni:n(i+1),nj:n(j+1)) the i, j-patch, patch-based
dictionary learning solves

min
Zij ,D∈C

∑
i,j

1

2
∥AijDZij − Yij∥22 + λ ∥Zij∥1 (5)

The dictionary should be recovered if the image is large enough and if there are not too many masked
pixels. In Fig. 2, we show the PSNR (Peak Signal to Noise ratio) and the recovery score depending on
the proportion of missing values in an image of resolution 128× 128, from which we extract patches
of size 10× 10. To take into account that some atoms might not be as relevant as others, the score
is re-weighted by the sum of corresponding activations in the sparse codes Z – see Appendix A.3
for details. The recovery score drops when the proportion of missing values is larger than 50%.
Otherwise, the image is successfully recovered even when the dictionary is learned from the degraded
observation. This is why dictionary learning led to good results in unsupervised inpainting in the
literature (Szabó et al., 2011; Studer & Baraniuk, 2012; Naumova & Schnass, 2017).

We have demonstrated that dictionary learning won’t operate in the null space of the measurement
matrix. However, the usage of multiple operators allows for mitigating that issue, the whole signal
space being seen through different matrices Ai. Our experiments with synthetic and real data also
show that this is only a necessary condition to learn a good dictionary. In some cases, the sparse codes
cannot be recovered as the information is too degraded. Reducing the dimension of the observations
could then be a hard limit to dictionary learning, and theoretical results on the convergence of classical
optimization methods such as Alternating Minimization would be of great interest to ensure the
identifiability of the dictionary with multiple operators. In the following, we show that well chosen
weak prior knowledge can lift the problem and allow to recover the information from the kernel space
of a single operator through the example of convolutions in imaging.

3 WEAK PRIOR KNOWLEDGE THROUGH CONVOLUTIONS

The usage of convolutions in Deep Learning (LeCun et al., 1998) has encountered tremendous success
in a broad range of tasks from image classification to reconstruction. Convolutions and convolutional
neural networks are efficient to analyze translation invariant data while reducing the number of
parameters to be learned. In this section, we provide elements to understand the efficiency and the
limitations of convolutions used as weak prior knowledge for unsupervised image reconstruction
through the study of three methods based on prior learning: Convolutional Dictionary Learning
(Grosse et al., 2007), Plug and Play (Chan et al., 2016) and Deep Image Prior (Ulyanov et al., 2018).
All computations have been performed on a GPU NVIDIA Tesla V100-DGXS 32GB using PyTorch
(Paszke et al., 2019).1

Convolutional dictionary learning (CDL) consists in learning kernels of relatively small dimensions
from a signal Y . Lasso-based CDL solves a problem of the form

min
zk,dk∈C

1

2

∥∥∥∥∥A∑
k

dk ∗ zk − Y

∥∥∥∥∥
2

2

+ λ
∑
k

∥zk∥1 . (6)

Deep Image Prior (DIP) takes advantage of CNN architectures to project the observed image into a
well-suited range space by drawing a random code vector z in the latent space and optimizing the
parameters of the network f as follows

min
θ

∥Y −Afθ(z)∥22 . (7)

1Code is available in the supplementary materials.
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Figure 3: PSNR depending on the proportion of available pixels in the full space, kernel space, and
range space of the masking operator for reconstruction methods based on CDL, DIP, TV, and wavelets
for the 256 × 256 grey-level image in Fig. 4 (top), and for PnP based reconstruction on 160 × 160
grey-level images (bottom) with a SNR of 20db. Unsupervised prior learning methods work better
than hand-crafted methods even with a lot of lacking information and can recover missing information
in the kernel space. Moreover, they perform close to supervised methods (CDL supervised and PnP
supervised) when the ratio of missing pixels is not too high.

Plug and Play (PnP) is an iterative algorithm inspired from proximal gradient descent, which recovers
images from an observation Y with steps of the form

Xn+1 = fθ (Xn − τA∗(AXn − Y )) ∀n ≥ 1 , (8)

where X0 = 0, τ is a step size and fθ is an image denoiser. CDL and DIP can be applied to a single
observation without training on a data set, the prior being learned directly on one piece of degraded
data without needing other information. In contrast, PnP usually resort to a deep denoiser generally
pre-trained on a clean database. As we focus on the unsupervised setting, we adapt PnP by training
the denoiser on degraded data instead. In this case, we consider that we have access to a dataset
(Yi)1≤i≤N where each Yi = AXi + ϵi is an observation of an original image Xi degraded by the
same operator A and a gaussian noise ϵi. We artificially generate noisy images (Y ′

i )1≤i≤N from our
data-set of observations Y ′

i = Yi + ϵ′i, and we train a DnCNN (Zhang et al., 2017) to recover Yi from
Y ′
i in the range space of A by minimizing

min
θ

1

N

∑
i

∥A(fθ(Y
′
i )− Yi)∥

2
2 . (9)

The idea is to check in which case the architecture can compensate for the lack of information in
the kernel of A by learning from the information in the range space of A. To point out the limits of
these prior learning algorithms, we will compare them to two reconstruction methods based on Total
Variation (TV) (Chambolle et al., 2010) and sparse wavelets (Mallat, 2008).

The purpose is to highlight the hard limits of unsupervised methods in various contexts. Therefore,
we evaluate the performance reached by each algorithm over oracle hyper-parameters, namely
hyper-parameters leading to the best performances. While evaluating hyper-parameter sensitivity
is necessary when comparing different methods, it is orthogonal to our study, which considers the
difference between supervised and unsupervised training of similar methods.

3.1 WHY CONVOLUTIONS ARE LIKELY TO WORK ON TASKS LIKE INPAINTING

Works on prior learning in unsupervised inverse problems often evaluate the performance of the
methods they propose on an inpainting task (Ulyanov et al., 2018; Chen et al., 2021) and achieve
very good performance compared to supervised learning techniques. Here, we provide elements to
understand why this problem, in particular, is feasible with the help of convolutional dictionaries or
neural networks without access to ground truth data.
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Original Observation CDL DIP Wavelets TV

Figure 4: Reconstruction and PSD of a 256 × 256 RGB image with 50% missing pixels in a noiseless
scenario. PSNR: CDL 34.8dB, DIP 34.1dB, Wavelets 34.7dB, TV 34.3dB. The PSD reveals the
presence of ringing artifacts in the reconstruction by CDL. Otherwise, unsupervised algorithms
recover the whole spectrum of the original image and do as well as hand-crafted methods.

Learning convolutional dictionaries from incomplete data. To understand what happens in
inpainting, let’s consider a simple one-dimensional signal example. Let Xt be a wide sense stationary
(WSS) random process, and let At be an i.i.d Bernoulli process of mean ρ. The observed signal
Yt = AtXt is also a WSS random process and its auto-correlation function RY (τ) is

RY (τ) = E[AtXtAt+τXt+τ ] = RX(τ)E[AtAt+τ ] (10)

= ρ2RX(τ)1τ ̸=0 + ρRX(τ)1τ=0 . (11)
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Figure 5: The recovery score
of CDL depends on the image
size and the rate of available
pixels ρ. Increasing the size
improves the quality at high
enough rates.

Then, the Wiener-Khintchine theorem assures that the power spectral
density of X and Y are proportional. This shows that with sufficient
samples in the signal, the masking process won’t affect the spectrum
of the original signal X , and translation invariant priors can take
advantage of the information from all frequencies.

We illustrate the practical implication of this observation on the
ability of CDL to recover 10 digits from an image, depending on
the size of the image and the rate of available pixels ρ in Fig. 5. As
expected, the performance increases with the size when ρ is not too
low. It is essential to note that having access to all frequencies is only
a necessary condition to learn a good dictionary, as sparse coding
assumptions are not met when there are too many missing values.
Of course, these results do not stand for non-stationary signals.

Unsupervised reconstruction. Similar effects can be observed
for reconstruction. Natural images are stable enough to allow
convolution-based algorithms to learn from all frequencies that are
present in the signal. Fig. 3 presents an example where a single
natural image is degraded by a random binary mask and gaussian
noise and reports the PSNR of the reconstruction in the mask kernel
space and range space for CDL, DIP, and methods based on TV and
sparse wavelets for different rates of missing pixels with a SNR of
20dB. Other experiments with different values of SNR are available in appendix in Fig. C. Supervised
means the algorithm learns a prior on the clean signal and uses it for reconstruction after degradation,
whereas unsupervised means that the prior is learned directly on the observation. The experiments
highlight that unsupervised methods work as well as supervised CDL and are better than hand-crafted
priors in the kernel of A when the noise level is not too high (SNR ≥ 20). They succeed in learning
in the range space of A and generalizing in the kernel space. The PSNR drops in favor of TV and
wavelets when the noise increases, as it becomes more challenging to learn the structure of the signal.
Fig. 4 provides a visual example in the noiseless case. Unsupervised algorithms successfully recover
the original image after degradation by a binary mask with 50% pixels missing. The PSD shows that
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Figure 6: SNR depending on the size of the blur in the full space, kernel space, and range space
of the blur operator for reconstruction methods based on CDL, DIP, TV, and wavelets for th 256
× 256 grey-level image in Fig. 7 (top), and for PnP based reconstruction on 160 × 160 grey-level
images (bottom) with a SNR of 20db. This time, unsupervised prior learning methods fail to recover
information in the kernel space. More surprisingly, supervised PnP and CDL also struggle in the
kernel space.

Original Observation CDL DIP Wavelets TV

Figure 7: In a noiseless scenario, reconstruction and PSD of a 256 × 256 RGB image blurred by a
gaussian kernel. PSNR: CDL 31.9dB, DIP 31.7dB, Wavelets 34.6dB, TV 32.7dB. The PSD clearly
shows that nothing is learned in high frequencies compared to what was obtained in inpainting.

low and high frequencies are retrieved, despite ringing artifacts in the case of CDL. However, CDL
and DIP are sensitive to noise and fail to recover relevant frequencies from the observations in noisy
scenarios – see Fig. B in the appendix.

In the case of Plug-and-Play, we train a DnCNN to recover noisy images from the dataset Imagenette2

and plug it into an iterative reconstruction algorithm. In the unsupervised case, the denoiser learns
how to recover degraded images, as explained above. The results are shown in Fig. 3 for SNR=20dB
and in Fig. D in appendix for more values of SNR. When the noise is low, i.e., SNR ≥ 20, and
when the rate of missing pixels stays below 50%, unsupervised and supervised PnP leads to similar
performance levels in terms of PSNR. As for the single image example, unsupervised PnP can
generalize what is learned in the range space of A to the kernel space and performs closely to its
supervised counterpart as long as the rate of masked pixels is not too large.

3.2 THE PITFALL OF CONVOLUTIONS IN DEBLURRING

Convolutions work well when all frequencies are preserved, as shown for inpainting. However,
several inverse problems involve recovering a signal with missing frequencies. In super-resolution,

2The data are available at https://github.com/fastai/imagenette
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all odd frequencies lack in the signal. In deblurring, the signal is observed after degradation by a
low-pass filter. Unsupervised prior learning becomes troublesome in these cases, as mentioned in
(Tachella et al., 2022). We will focus on the example of deblurring in the following.

Original Blurred

DnCNN: clean data DnCNN: blurred data

5 10 15 20
Number atoms

50

60

70

80

Di
sc

re
pa

nc
y

not weighted
weighted

Figure 8: (top) Average PSD of
10 iterations of DnCNN trained on
clean and corrupted data. When
trained in a supervised setting,
the denoiser spontaneously adds
high frequencies to the image.
(bottom) Discrepancy of frequen-
cies in atoms from supervised con-
volutional dictionaries. When their
number increases, the atoms do not
necessarily mix frequencies in gen-
eral (not weighted), but the ones
used by sparse coding (weighted)
integrate high and low frequencies.

The CDL problem can be re-written in terms of Fourier trans-
forms with the Parseval equality

min
zk,dk

1

2

∥∥∥∥∥Â∑
k

d̂kẑk − Ŷ

∥∥∥∥∥
2

2

+ λ
∑
k

∥zk∥1 . (12)

As the spectrum Â is low-pass, nothing is observed in high
frequencies. Thus, optimal dictionaries contain atoms (dk)k
with high frequencies set to 0, for the same reason as pointed
out in Proposition 2.1. This is illustrated in Fig. G in appendix.

Fig. 7 displays the reconstructions and PSD of a blurred image
for various methods and Fig. 6 their performances for vari-
ous blur sizes in the kernel and range spaces. These results
show that neither CDL nor DIP can recover information out-
side the span of the blur, i.e., in high frequencies. While CDL
puts all high frequencies to 0, DIP adds noise. The same phe-
nomenon appears with PnP: there is a performance gap between
supervised and unsupervised learning in the kernel, and gener-
alization from the range space to the kernel space is impossible.

Is self-supervised learning adapted to deblurring ? We
have demonstrated why unsupervised prior learning based on
convolutions won’t work on deblurring. The figures also show
that learning a dictionary or a denoiser on clean signals does
not seem to lead to convincing performance: supervised CDL
does not outperform hand-crafted priors, and supervised PnP
hardly does better in the kernel space. The key to success is
finding a prior that can predict missing high frequencies from
observed low frequencies. Indeed, the average PSD output by
the DnCNN on Fig. 8 shows that the denoiser spontaneously
learns to add high frequencies when trained on images that have
not been blurred, which is not the case otherwise. Then we look
at the discrepancy of frequencies in atoms learned on a clean
image with CDL, defined as∑

i,j

PSD(ωi)PSD(ωj)| log(ωi + 1)− log(ωj + 1)| . (13)

Atoms with high discrepancies contain a broad range of fre-
quencies, while the others only focus on specific bandwidths.
We show the average and the weighted average to take into account the usage that is made of these
atoms. It is interesting to note that the algorithm prefers atoms with large bandwidths.

These experiments highlight that learning priors on pretext tasks like denoising in a supervised setting
somehow captures the spectral structure. However, supervised CDL and PnP do not perform as well
as expected on deblurring. This hints that it may be necessary to add specific regularizations or
non-linearities like Sharpen filters (Habeeb et al., 2018) to these models to ensure that they learn how
to link low and high frequencies appropriately.

4 CONCLUSION

Prior learning for unsupervised inverse problems is only feasible with multiple operators or appropri-
ate constraints in the model. When the operator is too ill-conditioned, which is typically the case
in deblurring, the prior knowledge should compensate for the lack of information. In particular,
exclusively relying on convolutions is not enough, even in self-supervised settings with access to
clean data.

9
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A FULL DESCRIPTION OF THE EXPERIMENTS

This section provides complementary information on the experiments presented in the paper.

Optimization for dictionary learning. The Lasso is always solved with FISTA (Beck & Teboulle,
2009), then the minimization is done by gradient descent over the dictionary with the help of a line
search.

A.1 PARTIAL RECOVERY IN DICTIONARY LEARNING WITH A SINGLE OPERATOR - FIG. 1

We generate 10 000 samples from a random Gaussian dictionary D of dimension 100 × 100 and
Bernoulli Gaussian sparse codes Z with several levels of sparsity, i.e. ratio of non zero elements
in average. Then we degrade the signals with a random Gaussian compressed sensing operator of
dimension m × 100 for several values of m, i.e. Y = ADZ. We compare the maximal recovery
scores over λ for each level of sparsity with the perfect score that we can achieve in the range space
of a single operator. We repeat this experiment 5 times.

A.2 RECOVERY IN DICTIONARY LEARNING WITH MULTIPLE OPERATORS - FIG. 2

We generate N = 10 000 samples from a random Gaussian dictionary D of dimension 100 × 100 and
Bernoulli Gaussian sparse codes Z with a ratio of non zero elements of 0.1. Then we degrade the
signals with a given number Nm of random Gaussian compressed sensing operators of dimension
m× 100, i.e. samples [i⌊ N

Nm
⌋, (i+1)⌊ N

Nm
⌋[ are seen through operator Ai. We compare the maximal

recovery scores over λ for each Nm with the perfect score that we can achieve with a single operator.
We repeat this experiment 5 times.

A.3 RECOVERY IN DICTIONARY LEARNING ON PATCHES FROM A NATURAL IMAGE IN
INPAINTING - FIG. 2

We mask a grey-level 256× 256 image with a binary mask containing a given level of missing pixels.
Then we split this image into 10× 10 patches and we learn a dictionary of size 100 on these patches,
with λ = 0.1. We compute the recovery score by comparing dictionaries obtained with and without
the mask, and we weight the costs by the average of sparse activations Z in absolute value for a given
atom

W = (

N∑
i=1

|Z1,i|, · · · ,
N∑
i=1

|ZL,i|)T /
∑
i,j

|Zi,j | (14)

C = DT
0 (D

T ⊙W )T . (15)
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This score better reflects the usefulness of the atoms, and allows to take into account the fact that
dictionaries learned on natural signals may contain irrelevant atoms that are almost never used. We
repeat this experiment 10 times.

A.4 PSNR RECONTRUCTION IN INPAINTING AND DEBLURRING - FIG. 3 AND FIG. 6

Single image (top). We mask a grey-level 256× 256 image with a binary mask containing a given
level of missing pixels.

• CDL. We learn a convolutional dictionary on the observed image (unsupervised) or clean
image (supervised) with atoms of size 10, and we take the maximal PSNR over several
values of λ.

• DIP. We leverage the architecture based on SkipNet proposed in Ulyanov et al. (2018), and
we train the network as in the DIP paper with Adam (Kingma & Ba, 2014), a learning
rate of 0.01, an input noise of standard deviation σ = 0.1, and a regularization noise of
standard deviation σ = 0.03. The result is displayed after 1000 epochs. This choice of
hyper-parameters led to good results in practice.

Plug and Play (bottom). The dataset is composed of 1000 natural images from the dataset Ima-
genette available at https://github.com/fastai/imagenette in grey-level and cropped
to size 160 × 160. We mask the images with the same operator A, and we learn to denoise degraded
images Y ′

i by minimizing the loss

1

N

N∑
i=1

∥A(fθ(Y
′
i )− Yi)∥

2
2 (16)

where Y ′
i = Yi + ϵi with ϵi ∼ N (0, σ2). The network is a DnCNN (Zhang et al., 2017) available at

https://github.com/cszn/DnCNN.git We train it wih Adam, learning rate 0.001, batch
size 32, maximal number of epochs 50. Then the network fθ is integrated in a reconstruction
algorithm

Xn+1 = fθ(Xn − τA(Xn − Y )) (17)

for 100 iterations, with τ = 1, which led to good results in practice. We display the maximal average
PSNR on the test set composed of 50 images from Imagenette degraded in the same way, over σ and
epochs.

SNR for deblurring. We rely on the Signal to Noise ratio (SNR) to measure the performance in
the case of deblurring. We define the range space of the blur as the part of its spectrum within 2σ.
95% of the power is contained in the range space, and 5% in the kernel space, hence the interest in
switching to the SNR instead of the PSNR.

A.5 DIGITS RECOVERY WITH DICTIONARY LEARNING - FIG. 5

We generate an image composed of 10 digits from the dataset digits of scikit-learn (Pe-
dregosa et al., 2012). We then learn a convolutional dictionary with 30 atoms of size 10 × 10, and
look at the correlation between each atom and each digit (we keep the best for each digit) to compute
the average recovery on all digits. The algorithm is run with different values of hyper-parameters and
we keep the best recovery score (oracle predictor). The experiment is repeated for several sizes of
images, from 50 × 50 to 300 × 300 and for several rates of missing pixels, with gaussian noise of
standard deviation σ = 0.1.

A.6 ILLUSTRATION OF INPAINTING AND DEBLURRING - FIG. 4, FIG. 7 AND FIG. B

In the case of inpainting, the image is degraded by a binary mask with a rate of missing pixels of 50%
without noise in Fig. 4 and with SNR=6dB in Fig. B In the case of deblurring, the image is degraded
by a gaussian blurr of size 10 × 10 with σ = 0.3 without noise. The algorithms that can be used on a
single image are run on each channel as described in Fig. 3 and we display the reconstruction plus
the power spectrum density.
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A.7 SELF-SUPERVISED PRIOR LEARNING - FIG. 8

Plug and Play (Top). We train a DnCNN as explained for Fig. 6 on both clean (supervised) and
blurred (unsupervised) images (1000 samples), and we look at the average PSD of images output by
10 fixed point iterations of the network when fed with the test set (50 samples), i.e.

Xn+1 = fθ(Xn) 1 ≤ n ≤ 10 , (18)

where X0 is the blurred observation. The goal is to check if the network is able to add missing high
frequencies to an image after being trained on a pretext task like denoising in the context of Plug and
Play, where gradient descent steps alternate with forward passes in the denoiser.

CDL (Bottom). We learn a convolutional dictionary with atoms of size 20 × 20 on a clean grey-
level image of size 256 × 256 and measure the discrepancy of frequencies in the atoms depending on
the number of atoms in the dictionary. In this example, the level of sparsity is high (we set λ = 1).
The discrepancy is defined as∑

i,j

PSD(ωi)PSD(ωj)| log(ωi + 1)− log(ωj + 1)| . (19)

We repeat the experiment 20 times.

B EXTRA FIGURES AND EXPERIMENTAL RESULTS

B.1 DICTIONARY RECOVERY DEPENDING ON SPARSITY, PROPORTION OF MISSING VALUES
AND NUMBER OF SAMPLES - FIG. A

We generate the data from a Gaussian dictionary of size 100× 100 and Bernoulli Gaussian sparse
codes of sparsity s (average rate of non zero coordinates). Then, we degrade the data with a binary
mask of variable rates of available coordinates p. We learn a dictionary of size 100× 100 over several
values of λ. We show the ability of the algorithm to recover the dictionary, depending on p, the
number of training samples and the level of sparsity in the data. Dictionary recovery is defined as
obtaining a recovery score of at least 0.95. We display the results from three different perspectives:

• Left. Minimal number of samples necessary to recover the dictionary depending on sparsity
and rate of available coordinates in the data. A number of samples larger than 104 means no
recovery possible.

• Center. Maximal level of sparsity s (maximal proportion of non zero coordinates) to recover
the dictionary depending on the number of samples and the rate of available coordinates. A
level equal to 0 means no recovery possible.

• Right. Minimal rate of available coordinates for recovery depending on the number of
samples and the level of sparsity. A level equal to 1 means no recovery possible.

These figures show that there is a hard limit to what can be learned depending on the proportion of
missing values and sparsity, regardless the number of training samples. Having access to the whole
signal space is not a sufficient condition to recover the dictionary.

B.2 RECONSTRUCTION WITH SNR 6DB - FIG. B.

The image is degraded by a binary mask with a rate of missing pixels of 50% and with gaussian noise
such that the SNR is equal to 6dB. The algorithms that can be used on a single image are run on each
channel as described for Fig. 4 and we display the reconstruction plus the power spectrum density.
As opposed to what we observed for SNR=20dB, the reconstruction is made harder by the presence
of noise.

B.3 PSNR FOR INPAINTING WITH VARIOUS LEVELS OF NOISE - FIG. C AND FIG. D

We repeat the experiments from Fig. 3 with various levels of SNR: noiseless, 20dB, 12dB, 6dB. When
the noise is too high, unsupervised prior learning methods fail to learn a proper prior in the range
space of A.
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Figure A: Dictionary recovery depending on sparsity, proportion of available coordinates p and
number of samples. There is a hard limit to what can be learned in inpainting, which depends on p
and sparsity.
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Figure B: Reconstruction in a noisy scenario with SNR 6dB.

B.4 SNR FOR DEBLURRING WITH VARIOUS LEVELS OF NOISE - FIG. E AND FIG. F

We repeat the experiments from Fig. 6 with various levels of SNR: noiseless, 20dB, 12dB, 6dB. When
the noise is too high, unsupervised prior learning methods fail to learn a proper prior in the range
space of A.
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Figure C: PSNR depending on the proportion of available pixels and noise for CDL, DIP, TV and
wavelets based reconstruction on a 256 × 256 grey-level image. Unsupervised prior learning works
only when the noise is not too high.
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and wavelets based reconstruction on a 256 × 256 grey-level image. Noise makes it difficult for
unsupervised prior learning to work in the range space of A.
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Figure F: SNR depending on the standard deviation of the blurr and noise for supervised and
unsupervised Plug and Play. When the noise is too high, unsupervised PnP fails to recover the image
in the range space of A.
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Figure G: 40 atoms of a dictionary learned with CDL (λ = 0.1, atoms of size 20× 20) for inpainting
(left) and deblurring (right) on the image of Figure 4. High frequencies are put to 0 in the case of
deblurring, thus the atoms appear blurry.
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C PROOFS

C.1 PROOF OF PROPOSITION 2.1

Let Z0 ∈ argminZ
1
2 ∥AD0Z − Y ∥22 + λ ∥Z∥1. Let Z ′

j =
∥D0,j,m∥
∥D0,j∥ Z0j . Then

∥AD′Z ′ − Y ∥2 = ∥AD′
0Z

′
0 − Y ∥2 (20)

∥Z ′∥1 ≤ ∥Z0∥1 (21)

The result follows.

C.2 PROOF OF PROPOSITION 2.2

Let A ∈ Rm×n, Y ∈ Rm×T . We aim to solve

min
D∈C,Z

1

2
∥ADZ − Y ∥22 + λ ∥Z∥1 (22)

Performing a SVD on A leads to

A = UΛV ∗ s.t. U ∈ Rm×m, V ∈ Rn×n and UU∗ = Im, V V ∗ = In (23)

Λ =


λ1 0 · · · 0 · · · 0
0 λ2 · · · 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · λm · · · 0

 (24)

Then,

min
D∈C,Z

1

2
∥ADZ − Y ∥22 + λ ∥Z∥1 = min

D∈C,Z

1

2
∥UΛV ∗DZ − Y ∥22 + λ ∥Z∥1 (25)

= min
D∈C,Z

1

2
∥ΛV ∗DZ − U∗Y ∥22 + γ ∥Z∥1 (26)

= min
D̃∈C,Z,D=V D̃,Ỹ=U∗Y

1

2

∥∥∥ΛD̃Z − Ỹ
∥∥∥2
2
+ γ ∥Z∥1 (27)

Adding zeros to Λ to make it square, and adding zeros at the end of the measurement vector U∗Y to
respect dimensions, the problem reduces to

min
D∈C,Z

1

2

∥∥∥ΛD̃Z − Ỹ
∥∥∥2
2
+ λ ∥Z∥1 s.t. Λ = diag(λ1, · · · , λm, 0, · · · , 0), Ỹ =

(
U∗Y
0n−m

)
. (28)

Then, Proposition 2.1 applies and an optimal dictionary is contained in ker(A)⊥.
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