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Abstract
Instruction tuning effectively optimizes Large001
Language Models (LLMs) for downstream002
tasks. Due to the changing environment in real-003
life applications, LLMs necessitate continual004
task-specific adaptation without catastrophic005
forgetting. Considering the heavy computa-006
tional cost, replay-based Continual Learning007
(CL) methods are the simplest and most widely008
used for LLMs to address the forgetting issue.009
However, traditional replay-based methods do010
not fully utilize instructions to customize the011
replay strategy. In this work, we propose a012
novel paradigm called Instruction-based Con-013
tinual Learning (InsCL). InsCL dynamically014
replays previous data based on task similar-015
ity, calculated by Wasserstein Distance with016
instructions. Moreover, we further introduce017
an Instruction Information Metric (InsInfo) to018
quantify the complexity and diversity of instruc-019
tions. According to InsInfo, InsCL guides the020
replay process more inclined to high-quality021
data. We conduct extensive experiments over022
16 tasks with different training orders, observ-023
ing consistent performance improvements of024
InsCL. When all tasks have been trained, In-025
sCL achieves performance gains of 3.0 Rela-026
tive Gain compared with Random Replay, and027
27.96 Relative Gain compared with No Replay.028

1 Introduction029

Large Language Models (LLMs) show remarkable030

capabilities from a wide range of Natural Lan-031

guage Processing (NLP) tasks (Brown et al., 2020;032

Ouyang et al., 2022; Touvron et al., 2023), demon-033

strating large potential in handling various task-034

specific settings. To complete realistic downstream035

tasks, recent works suggest that instruction tuning036

is an incredible method for unleashing the power of037

LLMs (Wei et al., 2021; Peng et al., 2023; Shi et al.,038

2023). However, in real-life applications, the con-039

sistent emergence of new corpora and knowledge040

changes task schemas frequently, necessitating con-041

tinual task-specific adaptation for LLMs (Jin et al.,042

Figure 1: The framework of InsCL, the index denotes
task id. D represents task data, and R represents the
sampled data to replay. InsCL dynamically replays α∗

data for each previous task based on the task similarity
calculated via Wasserstein Distance W . The dots repre-
sent instructions included in each task, and the darker
colors represent higher InsInfo. The size of each color
bar denotes the corresponding amount of replay data.

2021; Daruna et al., 2021). Accordingly, Contin- 043

ual Learning (CL) is proposed to learn a sequence 044

of tasks incrementally, updating models for the 045

changing environment without catastrophic forget- 046

ting (Goodfellow et al., 2013; Kemker et al., 2018). 047

Considering the heavy burden on computing 048

time and GPU memory of tuning LLMs, replay- 049

based methods are the simplest and most effec- 050

tive among all traditional CL methods. Despite 051

several replay-based methods that have been well- 052

studied (Sun et al., 2019; Wang et al., 2020; Mi 053

et al., 2020; Qin et al., 2022), some traditional 054

strategies cannot achieve optimal performance in 055

continual instruction tuning due to the unique data 056

composition. To address this issue, we propose 057

a data-efficient paradigm called Instruction-based 058

Continual Learning (InsCL), applied to continual 059

fine-tuning LLMs with natural language instruc- 060

tions. InsCL effectively utilizes instructions as 061

high-quality task descriptions, designing a dynamic 062

instruction-information-based replay method. As 063

shown in Figure 1, when the new task Di comes, In- 064

1



sCL will sample replay data R from all the previous065

tasks (here we list two previous tasks in Figure 1).066

InsCL dynamically replays α∗ data from previ-067

ous tasks based on their similarity with the cur-068

rent task. We draw on the application of Opti-069

mal Transport (Torres et al., 2021) in comparing070

different distributions and adopt Wasserstein Dis-071

tance (Liu et al., 2022) as a similarity measure.072

Since instructions naturally contain high-quality073

task-related descriptions, we use instructions to cal-074

culate Wasserstein Distance instead of using the075

full amount of data, significantly reducing the com-076

putational cost (Cuturi, 2013). For the previous077

tasks that are more different from the current task,078

InsCL allocates a larger replay scale (larger bar079

width in Figure 1).080

After determining the sample size based on task081

similarity, InsCL leverages instruction information082

to guide the sampling process more inclined to083

high-quality data. Prior works have shown that the084

performance with less but high-quality data can085

be comparable with full data (Toneva et al., 2018;086

Abbas et al., 2023; Tirumala et al., 2023). For in-087

struction tuning scenarios, early attempts (Wang088

et al., 2022a; Xu et al., 2023a; Ding et al., 2023)089

affirm that LLMs’ performance can be improved by090

increasing the training template complexity and di-091

versity. Inspired by this, we propose an Instruction092

Information Metric (InsInfo) to quantify the com-093

plexity and diversity of instructions. With InsInfo-094

guided sampling, InsCL replays more high-quality095

data (longer bar length in Figure 1). We empir-096

ically demonstrate that replaying more data with097

high InsInfo helps to alleviate the forgetting issue.098

The main contributions of this paper include:099

(1) We propose InsCL, a novel replay-based CL100

paradigm for instruction tuning. InsCL allocates101

replay size based on task similarity, dynamically102

replaying high-quality data with high InsInfo. (2)103

Experiments are conducted over 16 tasks with dif-104

ferent training orders, demonstrating the effective-105

ness of InsCL. (3) We further analyze the forget-106

ting phenomenon in continual instruction tuning.107

Without replying, we found that complex reasoning108

tasks suffer from a higher forgetting rate, where for-109

getting instances are mainly instruction-unrelated.110

2 Related Work111

2.1 Instruction Tuning112

Recently, LLMs have demonstrated impressive per-113

formance across various NLP tasks. After being114

Instruction : In this task, you’re given reviews from
Amazon’s products. Your task is to generate the Sum-
mary of the review.
Input : Totally screwed up my system. Instructions

terrible. Disk gives long list of files, had to determine
what does what. Has already wasted 4 hours of my time.
I gave up and pulled the thing. Don’t buy this.
Output : Terrible. Instructions are non-existent.

Table 1: A case of data template in instruction tuning.

unsupervised pre-trained on large-scale raw text, 115

LLMs are further trained via instruction tuning to 116

generate appropriate outputs based on the given 117

input instructions (Sanh et al., 2021; Mishra et al., 118

2021; Chung et al., 2022). Prior works supervised 119

fine-tuned (SFT) LLMs with datasets consisting 120

of {instruction, input, output} pairs, as shown in 121

Table 1, and evaluated on another set of held-out 122

tasks (Wei et al., 2021; Longpre et al., 2023). They 123

demonstrate that the performance of unseen tasks 124

can be improved with more tasks and templates. To 125

improve the diversity and complexity of instruction, 126

a broad range of open-source instruction tuning 127

datasets are proposed. Some are gathered through 128

crowd-sourcing (Conover et al., 2023; Zhou et al., 129

2023) while others are distilled from strong propri- 130

etary models (Wang et al., 2022a; Peng et al., 2023; 131

Taori et al., 2023). 132

With the help of various low-cost methods of 133

constructing high-quality templates, instruction 134

datasets can expand easily over time as new tasks 135

appear. When the data scale grows dynamically, 136

we can easily obtain sufficient task-specific data. 137

Considering this, rather than evaluating zero-shot 138

ability on held-out tasks, we are more concerned 139

about adapting an instruction-tuned model to a new 140

task without suffering from catastrophic forgetting. 141

In this work, we fine-tune LLMs in a continuous 142

manner and analyze their performance on previous 143

tasks, aiming to explore the forgetting issue in a 144

changeable environment. 145

2.2 Traditional CL Methods 146

CL aims to learn a sequence of tasks incrementally 147

without forgetting the previously learned knowl- 148

edge. Early attempts in CL can be generally di- 149

vided into three categories: (1) Consolidation- 150

based methods aim at protecting important pa- 151

rameters. As the representative of the regulariza- 152

tion sub-family, EWC (Kirkpatrick et al., 2017) 153

constrains the loss based on parameter importance 154
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calculated by the fisher information matrix. Sev-155

eral works distill the model from the previous stage156

to keep relevant knowledge (Zhang et al., 2020;157

Monaikul et al., 2021; Liu et al., 2021; Qin and158

Joty, 2021). (2) Architecture-based methods add159

task-specific parameters to the base model for each160

task (Rusu et al., 2016; Gu et al., 2020; Madotto161

et al., 2020). By separating trainable parameters,162

the model can mitigate the impact on old tasks163

when updating parameters. However, the model164

scale grows linearly when tasks increase, bring-165

ing inevitable memory costs. (3) Replay-based166

methods store a small subset of previous training167

examples and replay when the new task comes. Sun168

et al. (2019); Zhang et al. (2022) leverage language169

models to generate pseudo-examples for previous170

tasks, but the quality of examples cannot be guar-171

anteed (Ke et al., 2021).172

Despite the success of traditional CL methods,173

their backbones are relatively small in scale, such174

as BERT (Devlin et al., 2018) and RoBERTa (Liu175

et al., 2019). Under LLMs’ full fine-tuning sce-176

narios, consolidation-based and architecture-based177

methods will bring additional parameter storage178

and training costs. Considering the heavy burden179

on computing time and GPU memory, replay-based180

CL methods are the simplest and most widely used181

in tuning LLMs as data-efficient methods that do182

not change the model structure.183

2.3 CL for LLMs instruction tuning184

Due to the scaling laws for neural language mod-185

els, LLMs emerge with capabilities when the scale186

increases. They can be better adapted to various187

downstream tasks through instruction tuning, of-188

fering immense practical value in real-world ap-189

plications. The exploration of CL for LLMs is190

still in its early stages. Continual-T0 (Scialom191

et al., 2022) first fine-tuned LLMs with instructions192

in an incremental manner, claiming that well-pre-193

trained models can be continual learners by ran-194

domly replaying several previous examples. Sev-195

eral works (Song et al., 2023; Wang et al., 2023)196

focus on CL methods with parameter-efficient tun-197

ing (Hu et al., 2021), largely alleviating the for-198

getting issue under limited training resources. For199

full fine-tuning, replay-based methods were pre-200

liminarily investigated (Yin et al., 2023), proving201

that replaying data based on diverse instructions202

can alleviate catastrophic forgetting and help better203

generalize to unseen tasks. However, there is still a204

lack of detailed analysis of replay strategies.205

In this work, we focus on the appropriate replay- 206

based method for LLMs’ full fine-tuning with in- 207

structions. Considering that instructions naturally 208

provide high-quality task-related descriptions, it is 209

necessary to fully utilize instruction information to 210

customize a replay strategy for instruction tuning. 211

3 Method 212

Continual Learning of LLMs focuses on adapting 213

an instruction-tuned model to handle a sequence 214

of tasks in a specific application scenario. This 215

approach accounts for consistently emerging ma- 216

terials while processing the tasks simultaneously. 217

We define n tasks to be learned as a sequence 218

D = {D1, . . . , Dn}. When LLMs are tuned with 219

i-th task, we form a replay dataset Rα
j by sampling 220

examples from Dj , where j ∈ [1, i− 1]. Formally, 221

the training data augmented with replay data is 222

defined as: 223

Dα
i = Di ∪

i−1∑
j=1

Rα
j

where α is the replay hyper-parameter, controlling 224

the sampling quantity from previous tasks. 225

3.1 Dynamic Replay 226

Prior works optimize CL methods based on the 227

similarity between previous tasks and the current 228

one (Mi et al., 2020; Xu et al., 2023b; Gogoulou 229

et al., 2023). As the similarity increases, it becomes 230

easier to retain knowledge from previous tasks. In- 231

spired by this, we propose a dynamic replay strat- 232

egy based on task similarity, replaying more data 233

from previous tasks with large differences. 234

The concept of task similarity is at the core of
various machine learning paradigms, such as do-
main adaptation and meta-learning. Optimal Trans-
port (Alvarez-Melis and Fusi, 2020; Torres et al.,
2021) offers a way to calculate the least amount
of cost for transferring between different distribu-
tion pairs. As the representative of the Optimal
Transport framework, Wasserstein Distance (Chen
et al., 2022; Liu et al., 2022) provides a metric for
calculating the similarity between two dataset dis-
tributions. The definition of Wasserstein Distance
is as follows:

W (µA, µB) = inf
π

(∫
R
d(xA, xB)dπ(xA, xB)

)
where π ∈

∏
(µA, µB) is meant to be the set of

all joint probabilities that exhibit µA and µB as

3



marginal distributions. The d denotes a metric for
calculating the cost matrix, and here we define it
as the cosine distance. For instruction tuning, NLP
tasks can be described via natural language instruc-
tions. We consider the instruction embeddings for
a task pair as xA and xB , and calculate the propor-
tion of instructions for each task as a probability
distribution. Consequently, we measure task sim-
ilarity by calculating their Wasserstein Distance.
When LLMs are fine-tuned on the current task Di,
the amount of dynamic replay data for the j-th
previous task is defined as:

α∗
j =

Wj,i∑i−1
k=1Wk,i

× α, j ∈ [1, i− 1]

where Wj,i denotes the Wasserstein Distance be-235

tween Dj and Di. We dynamically allocate the236

amount of previous data to replay according to its237

similarity with the current task. With the help of238

dynamic replay, LLMs selectively recall the corre-239

sponding knowledge.240

3.2 Instruction Information Metric241

It has been proven that a small amount of high-242

quality data can achieve a promising performance,243

demonstrating the rationality of careful data se-244

lection (de Masson D’Autume et al., 2019; Wang245

et al., 2020; Ke and Liu, 2022; Zhou et al., 2023).246

Inspired by this, we propose an Instruction Informa-247

tion Metric (InsInfo) to guide the sampling process,248

collecting high-quality replay data for continual249

instruction tuning.250

Considering complex and diverse instructions
induce impressive performance, a more compre-
hensive analysis of multiple intentions embedded
within instructions is necessary. High-performing
open-source LLMs demonstrate the ability to an-
notate queries with tag entities, and the precision
and consistency are proven through manual anno-
tation (Lu et al., 2023). Consequently, we em-
ploy GPT-4 (OpenAI, 2023) as an intention tag-
ger and clean the raw tags, representing instruc-
tions at a fine-grained entity level. The detailed
process of obtaining normalized tags is shown in
Appendix A.1. After obtaining fine-grained an-
notations for instructions, we utilize the number
and frequency of tags as quantifiable indicators of
diversity and complexity. Motivated by Inverse
Document Frequency (IDF), one of the most use-
ful and widely used concepts in information re-
trieval (Gupta et al., 2022; Tayal et al., 2023), we

Algorithm 1: InsInfo-guided sampling
Data: Dataset Dj , Instruction Pool Ii,

Replay Number α
Result: Replay dataset Rα

j

1 Initialize Empty Rα
j and InsInfo List Sj ;

2 Extract task j instruction set Ij from Ii;
3 for Query Ij,k ∈ Ij do
4 sj,k ← calculate InsInfo for Ij,k ;
5 Sj ← Sj ∪ sj,k;
6 end
7 for k = 1 to |Ij | do
8 β ← sj,k

sum(Sj)
× α ;

9 Dj,k ← {data in Dj with Ij,k} ;
10 Rα

j ← sample β data from Dj,k ;
11 end
12 return Rα

j

proposed InsInfo as follows to quantify instruction
information:

InsInfo =

T∑
t=1

log
N

ft

where N denotes the total amount of previous in- 251

structions. When tasks come into a stream, we 252

store all previous instructions in memory. For each 253

instruction, T denotes the number of tags, and ft 254

denotes the frequency of the t-th tag among the 255

instruction pool. Hence, instruction gets a large In- 256

sInfo when the number of individual tags increases, 257

quantifying complexity and diversity interpretably. 258

As shown in Algorithm 1, we follow the InsInfo- 259

guided sampling strategy to obtain the replay data. 260

Moreover, the strategy can be combined with dy- 261

namic replay by modifying α to α∗
j , as claimed in 262

Section 3.1, which forms our InsCL finally. 263

4 Experimental Setup 264

Data Collection. To facilitate our research, we 265

mainly utilize the SuperNI dataset (Wang et al., 266

2022b), a comprehensive benchmark focusing on 267

specific NLP tasks distilled from real-world de- 268

mands. SuperNI is annotated by NLP practition- 269

ers from GitHub and NLP courses, ensuring that 270

each instance is coupled with respective natural 271

language instructions. At the most comprehensive 272

level, we integrate 765 English tasks from SuperNI 273

into 16 categories, as shown in Figure 2. And 274

we demonstrate details of the data composition in 275

Appendix A.2. Following the setting of prior CL 276
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Figure 2: We obtain 16 categories by integrating English
tasks in the SuperNI dataset. And we conduct further
experiments based on 16 reallocated tasks.

studies (Scialom et al., 2022; Yin et al., 2023), we277

randomly hold out 20% instances on each task to278

evaluate LLMs on different training stages.279

Model and Training Details. Our work is most
related to the continual instruction tuning setting as
Continual-T0 (Scialom et al., 2022). We conduct
our task-incremental experiments with the popular
LLaMA-7B (Touvron et al., 2023), training each
task for 2 epochs with a batch size of 64. We
use the Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 2e-5 and utilize the standard
language modeling objective:

L = − 1

|y|

|y|∑
i=1

log pθ (yi | x, y<i)

where x denotes the combination of instruction and280

input, and y denotes the corresponding output.281

Evaluate Forgetting. Following the evaluation
metric proposed by Scialom et al. (2022), we lever-
age Relative Gain to focus on the forgetting issue.
We train expert LLM on each single task only and
test with their respective holdout data, taking the
results as upper bounds (Jang et al., 2023). The
Relative Gain in stage i can be defined as:

Relative Gaini =
1

i− 1

i−1∑
j=1

Ri
j

upper boundj
× 100%.

Here we utilize Rouge-L (Lin, 2004) to calculate282

Ri
j and the upper bound.283

5 Experiments284

We leverage LLaMA-7B to calculate sentence em-285

beddings and compare our InsCL with the follow-286

ing strategies: 287

• No Replay: Train LLMs incrementally with- 288

out any replay data. 289

• Random Replay: Sample α instances ran- 290

domly from each previous task as the replay 291

setting in Continual-T0. 292

• Prototype Data: To collect the most represen- 293

tative data, we cluster the training data embed- 294

ding space with k-means (Wang et al., 2021a). 295

For each previous task, we set the cluster num- 296

ber as the amount of instructions. We sort the 297

data in descending order according to cosine 298

distance from the corresponding center and 299

take the top-α as replay data. 300

• Prototype Instruction: We cluster instruc- 301

tions on previous tasks with the optimal sil- 302

houette coefficient (Dinh et al., 2019), taking 303

the closest instructions to their respective cen- 304

ters as the most representative. We randomly 305

select α data with prototypical instructions. 306

• Diverse Instruction: Following the optimal 307

replay strategy proposed by Yin et al. (2023), 308

we replay data with instructions diverging 309

most from the current task instructions. By 310

computing the cosine similarity matrix with 311

the current instruction embedding, we take the 312

most diverse instruction with the least column 313

sum and replay α corresponding data for each 314

previous task. 315

For fairness of comparison among different 316

methods, we note Mi = (i − 1) × α as the to- 317

tal amount of replay data when the task sequence 318

comes to stage i. Here we set α to 200. 319

5.1 Main Results 320

We train LLaMA-7B on 16 tasks continuously with 321

three different training orders. For each continual 322

instruction tuning stage, the average Relative Gain 323

results are shown in Figure 3. It can be observed 324

that our InsCL is effective in mitigating forgetting, 325

with a promising Relative Gain. When all tasks 326

have been trained, InsCL achieves performance 327

gains of 3.0 Relative Gain compared with Random 328

Replay, and 27.96 Relative Gain compared with 329

No Replay. InsCL sustainably maintains the perfor- 330

mance on previous tasks over 90%, exhibiting high 331

stability with a small fluctuation. Conversely, No 332

Replay’s Relative Gain shows a sharp decreasing 333

trend as the task increases, accompanied by signif- 334

icant performance fluctuations. After training the 335

8th task, No Replay’s performance remains at less 336
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Figure 3: Progressive Relative Gain results for LLaMA-7B in continual instruction tuning. We set Relative Gain to
100 for training on the first task, denoting the initial performance without forgetting. When it comes to stage i, we
plot the average score of corresponding Relative Gain with three different training orders. The closer the Relative
Gain is to 100, the better to alleviate catastrophic forgetting and preserve knowledge.

Reverse Random Curriculum
Method AVG STD AVG STD AVG STD
No Replay 73.83 182.87 81.07 121.9 87.63 51.30
Random Replay 87.96 18.85 92.90 10.84 95.18 4.80
Prototype Data 78.07 92.71 83.51 93.71 90.07 29.79
Prototype Instruction 88.29 15.73 93.01 18.75 93.91 7.44
Diverse Instruction 80.87 72.09 86.47 81.60 91.14 23.34
InsCL 90.50 9.32 94.43 7.62 96.20 2.81

Table 2: Results on different training orders. AVG indicates average Relative Gain on 16 tasks, and STD indicates
standard deviation (× e-4) on all the Relative Gain. Reverse denotes a converse training order with Curriculum. A
promising method is expected with a large AVG and a small STD, indicating good performance and high stability.
The best results are in bold, while the second-best are underlined.

than 80% and further drops to less than 65% upon337

finishing final training. No Replay setting severely338

suffers from catastrophic forgetting, demonstrating339

the necessity of replaying previous data.340

Moreover, we further analyze other replay-based341

methods. Despite being the optimal method in342

the previous work, Diverse Instruction underper-343

forms when compared with Random Replay and344

Prototype Instruction. For prototype-based meth-345

ods, Prototype Instruction outperforms Prototype346

Data. We find that clustering results of Prototype347

Data are significantly affected by instances with348

long instruction and short input, leading to prac-349

tically identical embeddings for this subset. The350

uneven distribution will cause a high semantic du-351

plicate selection, which has been proven to lead352

to a negative impact (Abbas et al., 2023). The353

data composed of instruction and input has a dif-354

ferent structure from traditional SFT, resulting in355

several traditional replay-based methods not be-356

ing directly applicable to instruction tuning. This357

observation also demonstrates the rationality of de- 358

signing instruction-based replay methods, proving 359

the consistency of our InsCL. 360

5.2 Training Order Analysis 361

To explore the impact of training order and ob- 362

tain universe conclusions, we conduct a detailed 363

analysis of all settings based on different task se- 364

quences. Inspired by Curriculum Learning (Wang 365

et al., 2021c), we train the model from easy task 366

to hard task by sorting the upper bounds in de- 367

scending order, as Classification → Text Qual- 368

ity Evaluation→ Code→ Detection→ Sentiment 369

Analysis→ Comprehension→ Closed QA→ Ex- 370

traction → Dialogue → Program Execution → 371

Rewriting→ Open QA→ Misc. → Generation→ 372

Summarization→ Mathematics. 373

As shown in Table 2, we report the average Rel- 374

ative Gain scores and the standard deviations on 375

16 tasks with different training orders. When we 376

utilize the "easy to hard" training strategy, Cur- 377
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Figure 4: We analyze the forgetting rate based on Curriculum training order. The results of all previous tasks are
reported when training is finished on the last task.

Method AVG STD
No Replay 80.84 118.69
Random Replay 92.01 11.50

+ Dynamic (Uniform) 93.14 8.67
+ Dynamic (Real) 93.25 8.57
+ InsInfo 93.52 17.90

InsCL 93.71 6.58

Table 3: Average results on three training orders. AVG
indicates average Relative Gain, and STD indicates stan-
dard deviation (× e-4) on all the Relative Gain. The best
results are in bold, while the second-best are underlined.

riculum outperforms other orders in all CL meth-378

ods. Under the No Replay setting, Curriculum379

achieves performance gains of 13.80 average Rel-380

ative Gain compared with Reverse and 6.56 com-381

pared with Random. Training tasks in Curriculum382

order demonstrates a more stable performance with383

a small standard deviation. Moreover, with our384

InsCL, Curriculum achieves performance gains of385

5.70 average Relative Gain compared with Reverse386

and 1.77 compared with Random. It can be ob-387

served that InsCL alleviates the impact of different388

training orders, outperforming all methods with a389

high Relative Gain and stability.390

5.3 Ablation Study391

To investigate the effectiveness of each component392

in InsCL, we further apply our dynamic replay and393

InsInfo-guided sampling based on the Random Re-394

play. Dynamic replay is determined by task similar-395

ity, calculated via Wasserstein distance. If the real396

distribution of instructions cannot be obtained, the397

uniform distribution assumption is generally used398

to obtain the Wasserstein distance. We evaluate the399

performance with average Relative Gain scores and 400

standard deviations on all training stages. 401

The average results over three different training 402

orders are reported in Table 3. It can be inferred 403

that dynamic replay and InsInfo-guided sampling 404

are both beneficial to mitigating catastrophic for- 405

getting. InsInfo-guided sampling brings greater im- 406

provement in Relative Gain, effectively improving 407

Relative Gain but lacking in stability. Instead, dy- 408

namic replay greatly reduces the standard deviation 409

of Relative Gain thus improving stability. And dy- 410

namic replay with real distribution brings better per- 411

formance compared with the uniform distribution 412

assumption. When we utilize InsCL combined with 413

dynamic replay and InsInfo-guided sampling, it 414

achieves the best performance and strongest stabil- 415

ity. Compared with Random Replay, InsCL deliv- 416

ers an improved average Relative Gain of 1.71 and 417

a reduced standard deviation of 4.92. Furthermore, 418

when compared with No Replay, InsCL achieves 419

an improved average Relative Gain of 12.87 and a 420

dramatic reduction of the standard deviation. The 421

results prove the effectiveness of each component 422

and demonstrate that InsCL leverages the strengths 423

of each. 424

5.4 Forgetting Analysis 425

Forgetting Rate. For a further catastrophic for-
getting analysis, several methods (Kemker et al.,
2018; Luo et al., 2023) quantify the forgetting issue
by evaluating performance decrease as training in-
crementally. Consequently, we propose a forgetting
rate defined as:

FGi =
R∗

i −R−1
i

R∗
i

× 100%
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Figure 5: The analysis of forgetting category. We divide forgetting instances into Instruction-Related and Instruction
Unrelated. After training on Curriculum order, the ratios of two categories in previous tasks are reported.

where R∗
i is the initial Rouge-L of task i after train-426

ing on the corresponding task, and R−1
i is the final427

Rouge-L of task i in the last training stage.428

We evaluate the forgetting rate with Curriculum429

training order and report the results of No Replay430

and InsCL in Figure 4. It can be inferred that there431

is no inevitable relationship between task order432

and forgetting rate. For tasks that require complex433

reasoning, Program Execution and Code severely434

suffer from forgetting with the No Replay setting.435

Additionally, a large training data scale does not436

necessarily lead to a small forgetting rate. For ex-437

ample, Classification and Generation are the top-2438

tasks with large training data and exhibit smaller439

forgetting rates, while Program Execution with the440

third largest dataset suffers from the largest forget-441

ting rate. With our InsCL, the forgetting rates of442

almost all tasks are below 20%, which means that443

most of the previous knowledge is preserved.444

Forgetting Category. When all the tasks have445

been trained under the No Replay setting, we col-446

lect previous tasks’ instances with a decreased447

Rouge-L, called forgetting instances. We randomly448

sampled 200 forgetting instances from each previ-449

ous task, manually analyzing the forgetting cate-450

gory for a detailed conclusion. We divide forgetting451

instances into two categories based on the instruc-452

tion’s following ability: (1) Instruction-Related:453

The output is relevant to the instruction, according454

to the space defined by the instruction. This cate-455

gory indicates LLMs do not forget the correspond-456

ing instruction following ability. (2) Instruction-457

Unrelated: The output is unrelated to the instruc-458

tion. We demonstrate representative cases and re-459

spective explanations in Appendix A.3.460

Figure 5 reports category ratios in the curricu- 461

lum training order. The forgotten instances of most 462

tasks are mainly Instruction-Related, while the for- 463

getting instances in 5 tasks are mainly Instruction- 464

Unrelated. Additionally, more than 80% of forget- 465

ting instances in Program Execution, Code, and 466

Comprehension tasks are Instruction-Unrelated. It 467

can be inferred that failure to understand instruc- 468

tions mainly leads to the performance decline of 469

complex reasoning tasks. 470

6 Conclusions 471

In this paper, we mainly discuss the efficient adap- 472

tation of LLMs to continual downstream tasks with 473

instructions. Replay-based CL methods do not re- 474

quire additional modifications to LLMs and fully 475

utilize previous data, mitigating catastrophic forget- 476

ting effectively. We proposed InsCL, an effective 477

data-efficient method to mitigate catastrophic for- 478

getting for LLMs instruction tuning. InsCL is a 479

model-agnostic and training-free method, indicat- 480

ing strong transferability. Different from existing 481

replay-based methods, we fully utilize instructions 482

as representative task descriptions to design the 483

replay strategy. InsCL leverages instruction em- 484

beddings and distributions to calculate Wasserstein 485

distance for task similarity, adjusting the replay 486

ratio dynamically. Then, with our InsInfo-guided 487

sampling, InsCL selects more high-quality data 488

with complex and diverse instructions. We conduct 489

extensive experiments over 16 tasks with different 490

training orders, observing consistent performance 491

improvements of InsCL. Additionally, we further 492

analyze the forgetting rate and forgetting category, 493

aiming to provide a guideline for future work. 494
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7 Limitations495

The promising performance demonstrated by In-496

sCL is dependent on high-quality instructions. In-497

stead, fuzzy instructions can affect the calculation498

of task similarity and the InsInfo-guided sampling,499

which may mislead our InsCL. However, if the500

instruction-based dataset is unsatisfied, the perfor-501

mance of tuned LLMs will also be greatly affected.502

Therefore, we tend to use our method after collect-503

ing high-quality instruction-based data to further504

mitigate catastrophic forgetting.505
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A Appendix814

A.1 InsTag Process815

Follow Lu et al. (2023), we use the prompt shown816

in Table 4 to employ GPT-4, providing fine-grained817

intention tags for given queries. To make the word818

format and granularity consistent, we filter the819

noise in raw tags as the following steps:820

• Rule Aggregation: We replace all special821

characters with spaces and transform words822

into lowercase. Then, we apply lemmatiza-823

tion via NLTK (Bird et al., 2009) to unify tag824

formats.825

• Semantic Aggregation: We obtain seman-826

tic embeddings of tags through PHRASE-827

BERT (Wang et al., 2021b), a BERT-based828

model designed for embedding phrases. Then,829

we cluster tags with semantic similarity via830

the DBSCAN algorithm (Hahsler et al., 2019).831

Here, we calculate the cosine similarity and832

set the cluster threshold to 0.1.833

You are a tagging system that provides useful
tags for instruction intentions to distinguish
instructions for a helpful AI assistant. Below
is an instruction:
[begin]
{instruction}
[end]
Please provide coarse-grained tags, such as
"Spelling and Grammar Check" and "Cos-
play", to identify main intentions of the above
instruction. Your answer should be a list in-
cluding titles of tags and a brief explanation of
each tag. Your response has to strictly follow
this JSON format: [{"tag": str, "explanation":
str}]. Please respond in English.

Table 4: Prompt template for annotating intention tags
of the given instruction.

A.2 Data Composition834

SuperNI (Wang et al., 2022b) collects diverse NLP835

tasks with instructions using the Apache-2.0 li-836

cense. The dataset curates task data in indepen-837

dent files, starting with a unique task ID (e.g.,838

task001_quoref_question_generation.json). We in-839

tegrate 765 English tasks from SuperNI into 16840

categories, representing corresponding task IDs for841

each category in Table 5.842

A.3 Forgetting Category Annotation 843

We invite 5 Chinese graduate students whose re- 844

search field is related to NLP as annotation volun- 845

teers, manually labeling forgetting instances with 846

Instruction-Related or Instruction-Unrelated. Addi- 847

tionally, we have procured approval from the anno- 848

tator for utilizing the data in scientific research. We 849

randomly sampled 3000 forgetting instances from 850

15 previous tasks for annotation (200 instances per 851

task). To better understand the forgetting category, 852

we demonstrate detailed cases and relevant expla- 853

nations in Table 6. 854

855

856

857
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Category Size Task ID
Classification 633k 20, 50, 65, 66, 69, 70, 109, 112, 114, 115, 116, 141, 142, 143,

145, 146, 147, 148, 149, 150, 155, 190, 199, 200, 201, 202,
226, 232, 233, 242, 274, 276, 280, 290, 291, 298, 340, 341,
342, 343, 345, 346, 347, 349, 350, 351, 364, 375, 379, 382,
391, 392, 393, 400, 428, 429, 430, 431, 457, 458, 459, 472,
495, 496, 514, 515, 516, 520, 521, 564, 566, 573, 575, 577,
583, 584, 590, 614, 617, 623, 625, 629, 630, 632, 633, 638,
640, 641, 642, 679, 681, 682, 738, 767, 827, 828, 848, 854,
855, 856, 890, 907, 908, 925, 935, 936, 937, 970, 1167, 1168,
1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205,
1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215,
1216, 1285, 1288, 1308, 1336, 1344, 1347, 1354, 1385, 1386,
1387, 1388, 1393, 1418, 1429, 1434, 1439, 1442, 1488, 1489,
1495, 1505, 1516, 1529, 1541, 1548, 1549, 1554, 1559, 1560,
1573, 1583, 1584, 1592, 1593, 1599, 1612, 1615, 1624, 1640,
1645, 1705, 1712

Generation 506k 1, 23, 25, 26, 59, 60, 67, 68, 71, 72, 74, 81, 82, 102, 103, 105,
166, 167, 182, 184, 191, 193, 219, 220, 246, 269, 270, 277,
278, 283, 287, 288, 294, 299, 300, 301, 303, 311, 381, 389,
405, 418, 453, 454, 455, 461, 470, 471, 489, 492, 500, 510,
547, 560, 563, 565, 568, 569, 574, 576, 581, 585, 592, 594,
599, 602, 610, 611, 619, 631, 639, 649, 672, 677, 739, 743,
760, 769, 821, 845, 847, 853, 857, 859, 860, 861, 871, 886,
897, 901, 917, 919, 927, 928, 957, 963, 964, 965, 967, 1152,
1153, 1154, 1155, 1156, 1157, 1158, 1159, 1161, 1217, 1325,
1326, 1339, 1342, 1356, 1358, 1359, 1360, 1379, 1381, 1383,
1398, 1400, 1407, 1409, 1508, 1509, 1519, 1540, 1566, 1567,
1580, 1582, 1585, 1586, 1590, 1594, 1598, 1600, 1602, 1603,
1609, 1631, 1657, 1659, 1660, 1665, 1703, 1704, 1711, 1713,
1714, 1728, 1729, 1730

Program Execution 433k 62, 63, 64, 78, 79, 91, 93, 94, 95, 96, 97, 98, 99, 100, 101, 113,
122, 123, 124, 125, 157, 158, 159, 160, 161, 162, 163, 205,
206, 207, 208, 243, 244, 245, 267, 365, 366, 367, 368, 369,
370, 371, 372, 373, 374, 376, 377, 378, 488, 497, 499, 504,
505, 506, 507, 509, 523, 600, 605, 606, 622, 636, 637, 755,
756, 850, 851, 852, 1087, 1088, 1089, 1148, 1150, 1151, 1188,
1189, 1190, 1194, 1315, 1316, 1331, 1404, 1405, 1406, 1443,
1444, 1445, 1446, 1542, 1551

Open QA 302k 2, 24, 28, 61, 75, 80, 83, 84, 144, 151, 152, 153, 154, 170, 194,
247, 302, 309, 310, 339, 344, 380, 390, 460, 469, 490, 491,
580, 582, 591, 595, 596, 597, 598, 615, 740, 741, 742, 745,
750, 751, 752, 753, 754, 820, 835, 849, 858, 861, 862, 863,
864, 865, 866, 867, 868, 870, 887, 898, 918, 1135, 1286, 1293,
1296, 1327, 1382, 1399, 1412, 1419, 1420, 1421, 1422, 1423,
1424, 1431, 1520, 1564, 1565, 1581, 1601, 1608, 1656, 1661,
1678, 1726, 1727, 1731
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Category Size Task ID
Sentiment Analysis 173k 195, 196, 284, 285, 293, 363, 397, 398, 399, 475, 476, 477,

478, 493, 494, 512, 517, 518, 586, 587, 588, 746, 761, 819,
823, 833, 843, 844, 875, 888, 889, 902, 903, 923, 929, 1292,
1310, 1311, 1312, 1313, 1338, 1361

Comprehension 149k 27, 33, 44, 46, 133, 168, 176, 192, 223, 227, 248, 249, 295,
304, 329, 330, 384, 401, 403, 462, 579, 593, 648, 673, 834,
846, 891, 892, 893, 899, 900, 966, 1289, 1294, 1328, 1366,
1369, 1390, 1391, 1664

Detection 147k 22, 88, 89, 108, 137, 209, 279, 286, 316, 317, 318, 319, 320,
321, 322, 323, 324, 325, 326, 327, 328, 333, 335, 337, 353,
354, 355, 356, 357, 358, 359, 386, 387, 513, 607, 608, 609,
904, 905, 1346, 1502, 1503, 1504, 1604, 1605, 1606, 1607,
1706, 1720, 1721, 1722, 1723, 1724, 1725

Rewriting 87k 34, 35, 45, 111, 121, 132, 177, 275, 402, 413, 442, 550, 626,
627, 628, 670, 671, 770, 933, 934, 955, 1195, 1340, 1345,
1364, 1368, 1401, 1557, 1562, 1622, 1669, 1670

Code 71k 76, 77, 107, 110, 126, 127, 128, 129, 130, 131, 210, 211, 212,
868, 869, 956

Closed QA 66k 47, 73, 104, 118, 119, 138, 139, 140, 156, 164, 165, 178, 228,
229, 268, 296, 297, 385, 664, 665, 666, 667, 685, 686, 687,
688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699,
700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711,
712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723,
724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735,
736, 737, 906, 909, 1378, 1380, 1389

Misc. 66k 43, 169, 183, 305, 306, 307, 308, 383, 567, 921, 922, 924,
1146, 1147, 1149, 1191, 1192, 1193, 1314, 1317, 1318, 1319,
1320, 1321, 1322, 1332, 1333, 1403, 1425, 1426, 1427, 1428,
1498, 1507, 1595, 1596

Extraction 59k 36, 39, 179, 180, 181, 281, 292, 388, 456, 578, 613, 620, 645,
683, 684, 874, 926, 1447, 1448, 1449, 1451, 1452, 1453, 1479,
1480, 1481, 1482, 1483, 1484, 1485, 1486, 1487, 1506, 1510,
1517, 1518, 1568

Summarization 40k 522, 589, 618, 668, 672, 1290, 1291, 1309, 1355, 1499, 1553,
1572

Dialogue 30k 362, 766, 879, 880, 1384, 1394, 1500, 1501, 1531, 1533, 1534

Mathematics 24k 85, 87, 90, 92

Text Quality Evaluation 20k 616, 674, 675, 1186, 1283, 1284, 1341

Table 5: We analyze the intention of instructions, reclassifying the task types into 16 categories. The task IDs
contained in each category are reported.
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Case Explanation
In this task, you are given a context tweet, a question and corre-
sponding answer of given question. Your task is to classify given
passage into two categories: (1) "Yes" if the given context is useful
in answering the question, and (2) "No" if the given context is not
useful. Context: . . .
Ground Truth: No
Instruction-Related Output: Yes
Instruction-Unrelated Output: None

For close-domain instruc-
tion, we consider output
within the specified range
as instruction-related and
vice versa as instruction-
unrelated.

Craft one correct answer to the question given in input. In your
answer, use as few words as possible from the given context. Use
a response that is uncommon/non-stereotypical so that it is less
predictable. Context: . . . , Question: . . .
Ground Truth: He is my boyfriend.

Instruction Related Output: We have a close relationship.

Instruction Unrelated Output: 10

For open-domain instruc-
tion, we consider output
that is relevant to the input
as instruction-related, and
vice versa as instruction-
unrelated.

Given a command in a limited form of natural language, provide
the correct sequence of actions that executes the command to thus
navigate an agent in its environment. A command can be broken
down into many different actions. . . . There are only six actions:
’I_LOOK’, ’I_WALK’, ’I_RUN’, ’I_JUMP’, ’I_TURN_LEFT’,
and ’I_TURN_RIGHT’.
jump opposite left and run opposite left.
Ground Truth: I_TURN_LEFT I_TURN_LEFT I_JUMP I_TU-
RN_LEFT I_TURN_LEFT I_RUN

Instruction Related Output: I_JUMP I_TURN_LEFT
Instruction Unrelated Output: turn left twice

For the instruction that
imposes restrictions on
the format (e.g., within
20 words / return in the
form of / should be sep-
arated with a new line /
. . . ), we consider output
with the specified format
as instruction-related, and
vice versa as instruction-
unrelated.

Given a factoid/trivia type question, generate the topic of the
question. The topic is the entity the question talks about.
For which paper was reporter Clark Kent/Superman employed?
Ground Truth: superman, clark kent
Instruction Related Output: paper

Instruction Unrelated Output: planet

For Comprehension and
Summarization tasks, we
consider output containing
the phrases extracted from
the context as instruction-
related, and vice versa as
instruction-unrelated.

In this task, you will be given a list of integers. You should find the
maximum absolute difference between 2 integers in the list. The
absolute difference is the absolute value of one integer subtracted
by another. The output should be a single integer which is the
largest possible absolute distance.
[-73, -93, -11, 79, -11, -17, -16, -52, -42, -28]
Ground Truth: 172
Instruction Related Output: 170
Instruction Unrelated Output: [-11, -17, -16] or 999999

For tasks involving math-
ematical operations, we
consider reasonable out-
put in the same format
as instruction-related, and
vice versa as instruction-
unrelated.

Table 6: We demonstrate representative cases of two categories for a better understanding.
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