
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RESOLVING EXTREME DATA SCARCITY
BY EXPLICIT PHYSICS INTEGRATION:
AN APPLICATION TO GROUNDWATER HEAT TRANSPORT

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning methods often struggle with real-world applications in science and engineering due
to an insufficient amount or quality of training data. In this work, the example of subsurface porous
media flow is considered; this corresponds to advection-diffusion processes under heterogeneous flow
conditions, i.e., for spatially varying material parameters, and a large number of spatially distributed
source terms. This challenge comes at high computing costs for classical simulation methods due to
the required high spatio-temporal resolution and large domains. Machine learning-based surrogate
models seem to offer a computationally efficient alternative. However, faced with real-world data-
limitations, purely data-driven approaches face difficulties in predicting the advection process, which
is highly sensitive to input variations and involves long-range interactions. Therefore, in this work,
a Local-Global Convolutional Neural Network (LGCNN) approach is introduced, that combines a
lightweight numerical surrogate for the global transport process with convolutional neural networks
(CNNs) for the local processes. With the LGCNN, we model a city-wide subsurface temperature
field, involving a heterogeneous groundwater flow field and one hundred groundwater heat pump
injection points forming interacting heat plumes over long distances. In order to first systematically
analyze the method, random subsurface input fields are employed. Then, the model is trained on a
few cut-outs from a real-world subsurface map of the Munich region in Germany. Our model scales to
larger cut-outs without retraining by accounting for the global effects with numerical physics models.
All datasets, our code, and trained models are published for reproducibility.

1 INTRODUCTION

Many real-world systems, across environmental engineering, geoscience, and biomedicine, feature transport phenomena
governed by coupled advection–diffusion processes, e.g., pollutant transport through air or water, chemical reactions,
or heat transport in flowing media. In such settings, interactions can span large distances, long timescales and many
components.

Datasets based on physical measurements are often limited by cost, logistics, or experimental constraints. While
numerical simulations can address these limitations to some extent, they become impractically slow or computationally
expensive as domain size or resolution increases. Machine learning (ML) models offer fast predictions but typically
require large training datasets and often struggle to scale to larger domains. This trade-off underscores the need for
data-efficient surrogates that can capture both local and long-range interactions, and scale to arbitrary domain sizes
and numbers of interacting components. To this end, we introduce the Local–Global Convolutional Neural Network
(LGCNN), a scalable, physics-inspired approach that leverages the structure of advection–diffusion problems by
decoupling local and global transport processes.

We apply this approach to the climate change-relevant application of modeling city-wide subsurface temperature fields
driven by heat and mass injections of dozens of open-loop groundwater heat pumps (GWHP) (Pophillat et al., 2020;
Department-of Energy, 2023; Hähnlein et al., 2013) in the region of Munich, Germany (Zosseder et al., 2022). A
city-wide optimization of the positions of all GWHPs requires calling a prediction model dozens of times with slightly
adapted GWHP positions to minimize negative interactions between different heat plumes and pumps. For this scenario,
our model should predict the temperature field T in an arbitrarily large domain based on the inputs of the subsurface
parameters of a hydraulic pressure gradient ∇p and a heterogeneous subsurface permeability field k, and arbitrary heat
pump locations i. Labels are generated by expensive simulations, but only for a small number of cases and entirely
offline.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

As sketched in Figure 1, the LGCNN uses CNNs where they excel, and simple numerical surrogates where CNNs
struggle: a first CNN predicts the velocities v⃗ from local relations of the inputs p, k and i (Step 1); a fast numerical
component calculates the streamlines s⃗ based on this (Step 2); a second CNN calculates the temperature distribution
T in the whole domain based on all prior inputs and outputs (Step 3). Since Step 2 covers all non-local effects, Step
3 can again take advantage of CNNs to learn local patterns. We outline related work in Section 2, then define our

Figure 1: Left: Map of k of whole region of Munich. Right: Schematics of our Local-Global CNN-based approach (LGCNN) with
3 physics-inspired steps: CNN (pki → v⃗), simplified solver (iv⃗ → s⃗), CNN (pkiv⃗s⃗ → T ).

datasets and metrics in Section 3. In Section 4, we benchmark purely data-driven models and show their performance
and limitations on this low-data challenge. To address data scarcity, we introduce LGCNN in Section 5. Section 6
emphasizes generalization and scalability from a single datapoint, while Section 7 demonstrates transfer to real-world
subsurface parameters extracted from measurement maps such as in Figure 1.

Contributions Our method strongly reduces data requirements for modeling complex scenarios, increases reliability,
and ensures scalability to larger domains by a domain-specific modular design of physics-aided machine learning for an
input-sensitive scenario with long-distance effects. Subsurface temperature prediction serves as our example application,
with the approach expected to generalize to related domains.
Limitations The approach is best suited for systems where temperature-induced flow changes are small or spatially
confined. It is currently restricted to two-dimensional and steady-state datasets. While the underlying methodology
readily generalizes to three-dimensional and transient scenarios, such extensions are not yet implemented due to the
absence of appropriate training data.

2 RELATED WORK

Deep learning surrogates in scientific modeling can be broadly categorized into purely data-driven architectures,
physics-informed or domain-structured models, and highly problem-specific hybrid approaches. In this section, we
summarize the developments in each category and existing efforts in GWHP modeling.

Convolutional Neural Networks (CNNs), particularly UNet (Ronneberger et al., 2015a) variants, are widely used for
spatial prediction tasks due to their locality-aware architecture of moving-window-like kernels. Applications include
flow around airfoils (Thuerey et al., 2020) and various engineering systems (Jhaveri et al., 2022). For general reviews on
ML in scientific and real-world engineering contexts, see Sharma et al. (2021); Sarker (2021); Angra & Ahuja (2017).

To improve generalization and reduce data requirements, domain-structured models embed physical priors or symmetries
into their architecture. This includes Fourier Neural Operators (FNOs) for efficient multi-scale modeling (Li et al.,
2020; Choi et al., 2024), thermodynamics-preserving networks (Hernández et al., 2021), and rotation-equivariant CNNs
(ECNNs) (Weiler et al., 2023). Physics-Informed Neural Networks (PINNs) go further by replacing data loss with
physics-based constraints, allowing for training without labeled data (Raissi et al., 2019; Cuomo et al., 2022), and have
been applied to fluid dynamics and inverse problems (Rao et al., 2020; Sun et al., 2020; Cai et al., 2021).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Hybrid approaches combine architectures and integrate domain or physics knowledge to improve general models, for
instance, in low-data regimes. Examples include staged CNNs for atmospheric plume dispersion (Fernández-Godino
et al., 2024), physics-informed FNOs for traffic flow (Thodi et al., 2024), CNN–MLP hybrids for optimizing positions
of oil wells (Yousefzadeh et al., 2025), and physics-guided CNNs for seismic response prediction (Zhang et al., 2020).

Deep Learning for GWHP Modeling In the context of groundwater modeling with heat transport, recent work
focuses on isolated or pairwise interacting GWHPs. Most use UNet-based architectures, optionally with physics-loss
terms (Davis et al., 2023; Pelzer & Schulte, 2024; Scheurer, 2021). Although effective in simple, homogeneous aquifers,
these models rely on large training datasets or simulated inputs and have not been scaled to city-wide domains with
many pumps. UNets are the dominant architecture because of their strong performance on spatial data, making them
the baseline for comparison.

We briefly evaluated PINNs and FNOs as alternatives. PINNs, while promising for low-data fluid dynamics tasks (Rao
et al., 2020; Sun et al., 2020; Cai et al., 2021; Takamoto et al., 2022), struggled with complex scenarios (cf. Krishnapriyan
et al. (2021)) such as heterogeneous media and discontinuous source terms in preliminary tests. Specifically, we tested
PINNs in three simplified single-plume settings: on a homogeneous 2D aquifer, a heterogeneous 2D aquifer, and a
homogeneous 3D aquifer. In all cases, PINNs failed to outperform standard CNNs, even when the physics loss was
only used as a regularization term. The most pronounced discrepancies occurred near injection points, likely due to
discontinuities in the governing equations. FNOs, though capable of modeling local and global dependencies, struggled
with large domain sizes due to high memory requirements. Additionally, they performed poorly in the presence of
multiple sources, consistent with Liu-Schiaffini et al. (2024).

3 DATASETS AND METRICS

Datasets Inputs for the neural networks consist of a heterogeneous permeability field k, an initial hydraulic pressure
field p, and a one-hot-encoded field of heat pump positions i. The (interim) labels of velocity v⃗ and temperature
T fields are simulated, in our case with Pflotran (Lichtner et al., 2015a), until a quasi-steady state is reached after
≈27.5 years simulated time (Umweltministerium Baden-Württemberg, 2009). All data are normalized to [0, 1], and
stored in PyTorch format for training.

We generate two types of datasets, one is based on synthetic, the other on real permeability fields k. Both cover a
12.8× 12.8 km2 domain with 2 560× 2 560 cells. The baseline dataset uses Perlin noise (Perlin, 1985) to generate
random, heterogeneous k. Three simulations (3dp) with different fields for i and k are run, generating one datapoint
each for training, validation, and testing, plus a simulation 4× larger to assess scalability. For training vanilla neural
networks in Section 4, we generate an additional dataset of 101 datapoints (101dp), split into 73:18:10 for train:val:test.
Runtimes are ≈27 hours per simulation and 123 hours for the larger domain.

The more realistic dataset builds on k fields cut from maps of borehole measurements in the Munich region (Bayerisches
Landesamt für Umwelt, 2015). This dataset consists of four simulations (three for training and one for validation)
and one larger simulation for testing scalability. Due to constraints of the available measurements, see Figure 1, the
large-scale simulation extends only in length, resulting in a rectangular domain twice the length. Runtimes range from
38 to 91 hours (average 58 hours), and 134 hours for the scaling-test domain. Variation across the dataset stems from
different heat pump placements in i and from the specific regions where k is extract from the available measurement
domain.

For detailed information on simulation procedures and hydro-geological parameters, see Appendix A.1; for hardware
specifications see Appendix A.4.

Performance Metrics We evaluate model accuracy per output dimension (vx, vy, T ) separately using Mean Absolute
Error (MAE) (Naser & Alavi, 2023), Mean Squared Error (MSE) (Naser & Alavi, 2023), Maximum Absolute Error (L∞)
Structural Similarity Index Measure (SSIM) (Wang et al., 2004), and application-driven metrics of Percentage Above
Threshold (PAT) and Visual Assessment. PAT measures the percentage of cells where the absolute error of the predicted
temperature exceeds the threshold of 0.1 ◦C, corresponding to measurement precision (UKB System Technology), and
is only applicable to temperature predictions. All metrics other than SSIM are applied after re-normalization to the
original data ranges to obtain physically meaningful results in [◦C] or [meters/year].

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 APPLICATION OF PURELY DATA-DRIVEN APPROACHES

In this section, we present the performance of two purely data-driven approaches for predicting T from inputs of p, k, i:
a UNet (Ronneberger et al., 2015a) and the domain-decomposition-based UNet variant, called DDUNet (Verburg et al.,
2025).

Methods The fully convolutional vanilla UNet has an encoder-decoder architecture with skip connections between
layers of equal spatial dimensions. Convolutional networks excel in extracting local dependencies from spatial data
with locally repeating patterns. Hence, in theory, one datapoint covering a large domain could be enough to generalize,
if only local dependencies occur. Global patterns would require a large receptive field and, hence, more data. The
DDUNet is designed to handle large-scale domains under GPU memory constraints. It combines a UNet architecture
with domain decomposition principles by partitioning the spatial domain into subdomains that are distributed across
multiple GPUs. We use a decomposition into 2× 2 subdomains.1 Global context is communicated between subdomains
via coarse feature maps through a learned communication network, maintaining spatial consistency and providing a
large receptive field while reducing memory demands. The hyperparameters of the models are optimized according to
Appendix A.2.1.

Experiments Experiments for the vanilla UNet are conducted on the baseline datasets with 3dp and 101dp, those
with DDUNet directly on the 101dp dataset, see Appendix A.3. Both models are applied to the test of 3dp and to the
scaling datapoint, for direct comparability to LGCNN. UNet exhibits poor performance when trained on the limited
3dp dataset (UNet3dp), as demonstrated in both Figure 4 and Table 1. Similar performance would be expected for the
DDUNet when applied to this sparse dataset. When trained on 101dp, however, both demonstrate robust predictive and
scaling capabilities. The advantage of DDUNet over vanilla UNet is a reduction of memory usage and runtime, see
appendix A.3.

Figure 2: pki → T (baseline dataset (3dp), test). 1st column: Label T and input k. 2nd-4th column: LGCNN3dp
(isolated Step 3 and full pipeline, see Sections 5 and 6), vanilla UNet and DDUNet on 3dp and 101dp (Section 4).

5 METHODOLOGY

In data-scarce settings, performance can improve when the structure of a model reflects the underlying physics,
cf. Section 2. This section hence outlines the relevant physical processes, motivates our LGCNN method, and discusses
a few details of LGCNN’s individual components.

1Conceptually, DDUNet reduces to a standard UNet when trained with a single subdomain.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Performance metrics for predicting T from pki with UNet and DDUNet. Errors in [◦C], MSE in [◦C2], PAT in
[%], and SSIM unitless. Inferred on the test of 3dp and the scaling datapoint.

Model Test Scaling

L∞ MAE MSE PAT SSIM L∞ MAE MSE PAT SSIM

UNet3dp 4.8642 0.1314 0.0492 39.05 0.5794 – – – – –

UNet101dp 4.3985 0.0473 0.0100 13.63 0.9827 4.3426 0.0202 0.0033 4.33 0.9955

2× 2-DDUNet101dp 3.4257 0.0548 0.0128 17.42 0.9804 4.1806 0.0235 0.0052 6.11 0.9940

Physics of Groundwater Flow with Heat Transport Transport of heat induced by heat injections of GWHPs in the
subsurface is an advection–diffusion process. Since the Péclet number, i.e., the advection-diffusion ratio, is high in our
application (Pe≫1, more in Appendix A.1), the system is advection-dominated. Advection is largely governed by the
global hydraulic pressure gradient, driving flow from higher to lower regions. Locally, the flow paths are influenced by
the spatial distribution of permeability k, cf. Figure 2. As a result, small changes in k can lead to significant differences
in flow paths further downstream, demonstrating high input sensitivity.

One-Way Coupled Approach: Local-Global CNN (LGCNN) In a fully coupled physical model, flow field
computation and heat transport along streamlines (NASA) starting at heat pumps (advection) and their widening
(diffusion) must be solved monolithically. By splitting effects into local and global and working with steady-state
simulated v⃗ during training, we can reduce the coupling to one direction without significant loss in accuracy. Our
simplified physical pipeline consists of three steps: (1) compute a steady-state flow field v⃗ from initial subsurface
parameters p and k, with i encoding mass influx around GWHPs; (2) transport injected heat along streamlines governed
by v⃗ until quasi-steady state (Umweltministerium Baden-Württemberg, 2009); and (3) apply plume widening to these
heat paths, informed by soil diffusivity and v⃗, to approximate diffusion effects. The resulting one-way coupled LGCNN
approach (see Figure 1) can formally be described as:

Step 1 Velocities (local) We employ a CNN to predict the velocity field v⃗ = (vx, vy) from p, k, and i:
CNN (p, k, i) = v⃗. (1)

Step 2 Streamlines (global) Based on the predicted velocities v⃗ from Step 1, we compute streamlines s⃗ originating
from all pump locations in i with an initial value problem (IVP) solver:

IVP (i, v⃗) = s⃗. (2)

Step 3 Temperature (local) A second CNN predicts the temperature field T from the initial inputs p, k, i, the
predicted velocities v⃗ of Step 1 and streamlines s⃗ calculated in Step 2:

CNN (p, k, i, v⃗, s⃗) = T. (3)

The model outputs the steady-state temperature field T and, using the same inputs p, k, and i as a simulation, serves as
its direct surrogate.

CNN Models in the Local Steps The local Steps 1 and 3 are approximated by a UNet (Ronneberger et al., 2015a;
Pelzer & Schulte, 2024), see Appendix A.2 for details of our architecture. It is beneficial to omit zero-padding to enforce
shift invariance and reliance on purely local information; this approach is also validated by Islam et al. (2020). Due to
the input sensitivity of the entire problem, each step is trained independently on simulated input data. In particular, the
CNN in Step 3 is trained on the simulated velocities v⃗sim and streamlines based on these fields. Only during inference,
all steps are applied sequentially, i.e., Step 3 uses the outputs of Steps 1 and 2, including the predicted v⃗pred as inputs.

The training is accelerated by partitioning the data into overlapping patches, which increases the effective number
of datapoints while reducing their spatial size. Combined with the streamlines’ embedding and localizing of global
flow patterns for the fully convolutional (locally) acting CNN, this training data enrichment allows the model to train
effectively on very little data, sometimes as little as a single simulation run, while generalizing to unseen and even
to larger domains. Validation and testing are conducted on independent simulation runs, with the full domain being
processed as a whole instead of patches during inference.

The architecture, input choices, and training hyperparameters — including the patch size and overlap in the datapoint
partitioning — were optimized through a combination of manual and automated tree-based search using Optuna (Akiba
et al., 2019); see Appendix A.2.1 for details.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Streamline Calculation and 2D-Embedding in the Global Step Streamlines are calculated by solving the initial
value problem (IVP)

dy

dt
= v⃗(y), with y(t0) = y0, (4)

with a lightweight numerical solver for each heat pump, where y0 represents the location of a heat pump in i. We
employ the solve_ivp function from SciPy (sci, a) with an implicit fifth-order Runge-Kutta method (sci, b) and
10 000 time steps of one day, corresponding to the simulation time of forming a heat plume.

The computed streamlines y represent a sequence of positions in 2D, that a particle - injected at a heat pump’s location -
would traverse based on v⃗. The corresponding grid cells are assigned values that fade linearly from 1 to 0, reflecting the
time it takes to reach each position, similar to a soft one-hot encoding.

To address the sensitivity of this process with respect to k and v⃗, we calculate a set of outer streamlines so. For this,
we perturb each heat pump’s location y0 by 10 cells orthogonal to the global flow direction, i.e., ∇p, and compute
the corresponding streamlines. By incorporating s⃗ = (s, so), the subsequent Step 3 obtains a spatial, localized
representation of flow paths. In future work, we aim to explore probabilistic perturbations to compute the mean and
standard deviation of streamlines, which, while being computationally more expensive, could be efficiently parallelized
on GPUs.

6 RESULTS ON SYNTHETIC PERMEABILITY FIELDS

This section evaluates our model’s performance on the baseline dataset 3dp and on a scaling test datapoint; cf. Section 3.
In Section 6.1, we present metrics for isolated velocity (Step 1) and temperature (Step 3) predictions, and for the full
pipeline, demonstrating the potential of our approach. In ablation studies (Section 6.2), we motivate model design
choices. Additional metrics and visualizations can be found in Appendix A.3.

Table 2: Metrics for predicting v⃗pred in Step 1 and in
ablation studies of Step 1 on test and on scaling data from
our baseline 3dp dataset with random k. In [m/y], except
for MSE in [m2/y2], SSIM unitless.

Output Case L∞ MAE MSE SSIM

L
G

C
N

N

Step 1
vx test 190.8046 22.3178 972.5668 0.9911

vy test 256.2519 32.7444 2031.3357 0.9812

vx scaling 294.0457 24.9261 1204.1154 0.9911

vy scaling 367.6891 26.2795 1463.8218 0.9820

A
bl

at
io

n
st

ud
y

Train without data partitioning

vx test 202.6397 23.8584 1144.4479 0.9913

vy test 332.9557 35.9249 2490.4104 0.9789

Replace Step 1 with UNet101dp

vx test 1047.8464 12.7036 896.2758 0.9016

vy test 2594.9504 14.3878 2317.6863 0.9903

vx scaling 659.8439 5.2152 79.2508 0.9699

vy scaling 456.1904 5.7492 83.9735 0.9948

Replace Step 1 with 2 × 2-DDUNet101dp

vx test 2453.5881 13.6735 1367.9061 0.9325

vy test 2029.0269 15.1332 2221.4226 0.9919

vx scaling 421.4186 8.1184 125.9511 0.9314

vy scaling 400.2490 7.4200 135.7929 0.9955

Table 3: Metrics for predicting T in Step 3, in the full
pipeline, and in ablations studies of Step 3 on test and on
scaling data from our baseline 3dp dataset with random
k. In [◦C], except for MSE in [◦C2], PAT in [%], SSIM
unitless.

Case L∞ MAE MSE PAT SSIM

L
G

C
N

N

Step 3, i.e., test on v⃗sim

test 2.8990 0.0347 0.0041 7.54 0.9304

scaling 3.0250 0.0168 0.0014 2.05 0.9510

Pipeline, i.e., test on v⃗pred

test 4.2120 0.0905 0.0307 28.92 0.7637

scaling 4.9366 0.0413 0.0141 10.87 0.8654

A
bl

at
io

n
st

ud
y

Train in sequence

test 4.0804 0.0901 0.0289 29.44 0.7553

Include zero-padding

test 2.3391 0.0418 0.0048 9.19 0.8838

Train without data partitioning

test 3.6420 0.0351 0.0043 7.41 0.9245

Replace Step 3 with UNet101dp

test 4.4658 0.0416 0.0067 11.69 0.9835

scaling 4.3489 0.0176 0.0022 3.07 0.9954

Replace Step 3 with 2 × 2-DDUNet101dp

test 4.2772 0.0376 0.0058 10.96 0.9915

scaling 3.9946 0.0192 0.0025 4.73 0.9968

6.1 PERFORMANCE OF LGCNN

Isolated Steps 1 and 3 Performance metrics for Step 1 are shown in Table 2, for Step 3 (trained and tested on
simulated v⃗sim) in Table 3. The combination of quantitative (MAE of (22.3, 32.7) m/y and 0.03 ◦C) and qualitative
results through a visual assessment of Figure 3 demonstrate a strong performance with heat plumes forming according
to k.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: pkis⃗v⃗sim → T (baseline dataset (3dp), test). 1st column: Label T . 2nd-3rd column: LGCNN Step 3, trained
without and with zero-padding.

Full Pipeline Testing the full pipeline, i.e., Steps 2 and 3 are based on v⃗pred, results in a higher test MAE of 0.09 ◦C
compared to an isolated Step 3 (see Table 3). This was expected as the isolated Step 3 uses the true, simulated velocity
fields v⃗sim as inputs. Visual assessment of representative predictions in Figure 2 reveals physically plausible heat plumes
in terms of shape, extent, and heat magnitude. Deviations in streamlines arise from smaller errors in the velocity
predictions from Step 1 v⃗pred, highlighting the input sensitivity, especially near bifurcations, where small perturbations
in v⃗ can lead to an alternative path around a clay lens in k. Compared to fully data-driven models trained on 101dp
(see Table 1), our model achieves a similar accuracy while training on only 1 versus 73 training datapoints, which
strongly reduces computation time (see Table 16 for details).

Scaling Test We can already expect that our model is able to scale to larger domains, as we train only on local
patches of the spatial domain and achieve high test accuracies on the full domain during validation and testing; see
also Section 6.2 Partitioning Training Data for more details. To further demonstrate the scaling, we test our model
on a domain of 4× the size of the training domain with the same number of heat pumps, hence with a lower density
of GWHPs/km2; cf. Figure 4. We obtain a comparable MAE of 0.02 ◦C for Step 3, and an MAE of 0.04 ◦C for the
full pipeline, see Table 3. A visual assessment of Figure 4 yields similar qualitative behavior as the previous results
in Figure 2.

6.2 ABLATION STUDY

Training in Sequence For training Step 3, we can either employ simulated v⃗sim or predicted velocities v⃗pred as inputs.
As illustrated in Figure 2, training on v⃗pred leads to physically implausible temperature fields with noisy artifacts and
fragmented plumes. This likely stems from local misalignments between the streamline inputs s⃗ and the corresponding
temperature label T , which strongly complicates localized training. Although loss values in Table 3 appear similar,
the resulting temperature fields are less physically consistent and resemble those produced by end-to-end inference of
UNet3dp in Section 4. In contrast, training with simulated velocities v⃗sim yields streamlines consistent with temperature
fields, providing informative gradients and enabling stable learning.

Zero-Padding Removing zero-padding from all convolutional layers yields smaller but cleaner output fields, as shown
in Figure 3. As a result, we obtain improved performance, reflected in lower PAT and higher SSIM scores in Table 3.

Partitioning Training Data Hyperparameter search shows the best performance for partitioning the domain during
training into 20 736 overlapping patches of 256×256 cells for Step 1 and 82 944 patches for Step 3. Although this
increases per-epoch compute time compared to full-domain training, it significantly reduces the number of epochs
needed to reach comparable test performance (cf. Tables 2 and 3), resulting in an overall training time reduction of
67–90% (cf. Table 15).

Replacing Isolated Steps with UNet101dp and 2× 2-DDUNet101dp We individually replace each of the three steps
with an optimized (cf. Appendix A.2.1) vanilla approach, i.e., UNet or DDUNet trained on 101dp. For Step 2, both fail
completely; results for Steps 1 and 3 are summarized in Tables 2 and 3. In Step 1, UNet slightly outperforms DDUNet,
while the reverse holds for Step 3. A visual comparison of the scaling datapoint in Figure 4 reveals that increasing
training data from 3dp to 101dp has minimal impact on the performance in Step 3.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: pki → T (baseline dataset (3dp), scaling). 1st column: Label T and input k. 2nd-3rd column: Comparison of
LGCNN (isolated Step 3 and full pipeline) and vanilla data-driven architectures (UNet101dp and 2× 2-DDUNet101dp).

Modifying Streamline Inputs of Step 3 We evaluate the influence of Step 3’s inputs, focusing on the effect of
modifying or omitting individual components of the streamlines s⃗ = (s, so). When both the central streamlines s
and offset streamlines so are excluded, predicted plumes fail to follow flow paths beyond the CNN’s receptive field.
Omitting only so results in overly narrow plumes, whereas excluding only s produces overly smeared temperature
fields. Including both but removing the fading of values along the streamlines leads to diffuse background temperatures
and less localized plumes. Overall, the Huber validation loss increases by 32–132%, depending on the experiment. For
visual, quantitative, and extended results, we refer to Appendix A.3.

7 DOMAIN TRANSFER TO REAL PERMEABILITY FIELDS

Finally, we investigate whether our approach transfers to the realistic dataset in Section 3, which is based on real-world
permeability fields k that are cut from geological maps of Munich. Since these maps cover a limited area, the number of
potential datapoints is very small. We compare performance for temperature prediction of Step 3 and the full pipeline on
the validation and scaling datapoints. Results are presented in Tables 4 and 5; additional metrics are in Appendix A.3.

Table 4: Metrics for predicting v⃗pred in Step 1 on valida-
tion and scaling data from our realistic dataset. In [m/y],
except for MSE in [m2/y2], SSIM unitless.

Output Case L∞ MAE MSE SSIM

Step 1
vx val 106.8607 15.4095 380.3762 0.9939

vy val 74.5570 10.6605 148.2475 0.9993

vx scaling 459.1620 110.0078 13570.0000 0.9462

vy scaling 240.9406 17.6051 616.5186 0.9965

Table 5: Metrics for predicting T in Step 3 and in the full
pipeline on validation and scaling data from our realistic
dataset. In [◦C], except for MSE in [◦C2], PAT in [%],
SSIM unitless.

Case L∞ MAE MSE PAT SSIM

Step 3, i.e., test on v⃗sim

val 0.8222 0.0175 1.01e-3 2.18 0.9672

scaling 0.8052 0.0189 8.21e-4 0.92 0.9497

Full pipeline, i.e., test on v⃗pred

val 2.3194 0.0841 2.75e-2 27.79 0.7510

scaling 2.0511 0.0394 4.42e-3 10.02 0.8708

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Methodological Adaptations Slight adjustments to chunk size, overlap, data split, and architecture yield better
performance compared to those used on the baseline dataset, see Appendix A.2.1 for details. Visual inspection of
input k in Figure 5 reveals fewer but larger-scale features. Therefore, training can benefit from a larger spatial context,
which requires more training data. We increase the number of training samples by using three out of the four available
datapoints for training and one for validation. For the streamlines computation, we switch to an explicit fourth-order
Runge–Kutta scheme, which proved stable and sufficient for training and inference due to the lower frequency in k.

Performance and Scaling Tests In Step 3, we reach an even lower maximum absolute error L∞ of 0.82 ◦C compared
to 2.90 ◦C of our initial model on the baseline dataset (Section 6). Other metrics confirm a similar performance;
see Table 3. In the scaling test, most errors are comparable too. For the full pipeline, errors are slightly higher on the
validation and scaling data compared to an isolated Step 3, consistent with our observations on the baseline dataset
(Table 3). Physical consistency, which is our primary objective, remains strong: Shape, magnitude, and connectivity of
the predicted heat plumes are well preserved, even in the scaling test (Figure 5). Local deviations are primarily due to
differences between v⃗sim and v⃗pred, as evident from the discrepancy between Step 3 and full pipeline outputs.

Figure 5: pki → T (realistic dataset, scaling). 1st & 2nd column: Label T and input k. 3rd-4th column: LGCNN
(isolated Step 3 and full pipeline).

8 CONCLUSIONS AND FUTURE WORK

In real-world scientific applications, data is often very limited. At the same time, models are expected to generalize and
scale to large domain sizes, pushing standard data-driven models to their limits. To address this issue, we proposed
the LGCNN model, a hybrid, physics-inspired CNN approach. In the prediction of groundwater temperature fields
under arbitrary heat pump configurations and real permeability data, we identify long-range interactions driven by
advection as the problematic process for classical deep learning models, such as vanilla CNNs. We replace this part of
the prediction with a simple numerical solver, resulting in a sequence (CNN 1 – numerical solver – CNN 2). While this
setup is specific to groundwater heat transport, the general approach should be applied to a wider range of applications.
Finally, we stress that traditional error metrics can obscure effects like input sensitivity; therefore, we additionally rely
on visual assessments and problem-specific metrics such as PAT. In future work, we will address limitations through
dataset and respective code extensions to 3D and transient states, investigate input sensitivity, and accelerate streamline
computation.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ACKNOWLEDGMENTS

Acknowledgments will be included in the final version after double-blind peer review.

REPRODUCIBILITY

To ensure reproducibility, our code to train and evaluate models, the trained and evaluated models themselves, and the
datasets used for training and testing are included in the supplementary material and will be published on Github and
Dataverses after the review process.

USE OF LARGE LANGUAGE MODELS (LLMS)

The methods and research presented in the paper do not involve the use of LLMs; only for writing, editing, or formatting
purposes.

DATA AND CODE ACCESSIBILITY

Links will be included in the final version after double-blind peer review.

REFERENCES

solve_ivp — SciPy v1.14.1 Manual. https://docs.scipy.org/doc/scipy/reference/generated/
scipy.integrate.solve_ivp.html, a. accessed on Aug 30, 2024.

Radau – SciPy v1.15.3 Manual. https://docs.scipy.org/doc/scipy/reference/generated/
scipy.integrate.Radau.html, b. [Accessed 12-05-2025].

Geologica bavarica band 122: Die hydraulischen grundwasserverhältnisse des quartären und des oberflächennahen
tertiären grundwasserleiters im großraum münchen. https://www.bestellen.bayern.de/shoplink/
91122.htm, 2022.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-generation
hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2019.

Mary P Anderson. Introducing groundwater physics. Physics today, 60(5):42–47, 2007.

Sheena Angra and Sachin Ahuja. Machine learning and its applications: A review. In 2017 international conference on
big data analytics and computational intelligence (ICBDAC), pp. 57–60. IEEE, 2017.

Bayerisches Landesamt für Umwelt. Geologische Daten: Geologisches Fachinformationssystem (GEPO). https:
//www.lfu.bayern.de/geologie/gepo/index.htm, 2015. Accessed: 2025-05-14.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-informed neural
networks (PINNs) for fluid mechanics: A review, May 2021. URL http://arxiv.org/abs/2105.09506.
arXiv:2105.09506 [physics].

Byoung-Ju Choi, Hong Sung Jin, and Bataa Lkhagvasuren. Applications of the fourier neural operator in a regional
ocean modeling and prediction. Frontiers in Marine Science, 11:1383997, 2024.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi, and Francesco
Piccialli. Scientific machine learning through physics–informed neural networks: Where we are and what’s next.
Journal of Scientific Computing, 92(3):88, 2022.

Kyle Davis, Raphael Leiteritz, Dirk Pflüger, and Miriam Schulte. Deep learning based surrogate modeling for thermal
plume prediction of groundwater heat pumps, 2023.

Jacques W Delleur. Elementary groundwater flow and transport processes. In The handbook of groundwater engineering,
pp. 91–120. CRC press, 2016.

US Department-of Energy. Geothermal heat pumps – energy saver. https://www.energy.gov/energysaver/
geothermal-heat-pumps, 2023. Accessed: 2023-09-19.

10

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.Radau.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.Radau.html
https://www.bestellen.bayern.de/shoplink/91122.htm
https://www.bestellen.bayern.de/shoplink/91122.htm
https://www.lfu.bayern.de/geologie/gepo/index.htm
https://www.lfu.bayern.de/geologie/gepo/index.htm
http://arxiv.org/abs/2105.09506
https://www.energy.gov/energysaver/geothermal-heat-pumps
https://www.energy.gov/energysaver/geothermal-heat-pumps


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

M Giselle Fernández-Godino, Wai Tong Chung, Akshay A Gowardhan, Matthias Ihme, Qingkai Kong, Donald D Lucas,
and Stephen C Myers. A staged deep learning approach to spatial refinement in 3d temporal atmospheric transport.
arXiv preprint arXiv:2412.10945, 2024.

Stefanie Hähnlein, Peter Bayer, Grant Ferguson, and Philipp Blum. Sustainability and policy for the thermal use of
shallow geothermal energy. Energy Policy, 59:914–925, 2013.

Quercus Hernández, Alberto Badías, David González, Francisco Chinesta, and Elías Cueto. Structure-preserving neural
networks. Journal of Computational Physics, 426:109950, 2021.

Md Amirul Islam, Sen Jia, and Neil D. B. Bruce. How much position information do convolutional neural networks
encode? In International Conference on Learning Representations, 2020. URL https://openreview.net/
forum?id=rJeB36NKvB.

R. Jhaveri, A. Revathi, K. Ramana, R. Raut, and Rajesh Kumar Dhanaraj. A review on machine learning strategies for
real-world engineering applications. Mobile Information Systems, 2022. doi: 10.1155/2022/1833507.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Characterizing possible
failure modes in physics-informed neural networks. Advances in neural information processing systems, 34:26548–
26560, 2021.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and Anima
Anandkumar. Fourier neural operator for parametric partial differential equations. arXiv preprint arXiv:2010.08895,
2020.

Peter C Lichtner, Glenn E Hammond, Chuan Lu, Satish Karra, Gautam Bisht, Benjamin Andre, Richard Mills, and
Jitendra Kumar. Pflotran user manual: A massively parallel reactive flow and transport model for describing surface
and subsurface processes. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States);
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States); Lawrence Berkeley National Lab.(LBNL),
Berkeley, CA (United States); Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States); OFM Research,
Redmond, WA (United States), 2015a. Accessed: 2023-09-19.

Peter C Lichtner, Glenn E Hammond, Chuan Lu, Satish Karra, Gautam Bisht, Benjamin Andre, Richard Mills, and
Jitendra Kumar. Pflotran - theory guide - thermal-hydrologic mode - governing equations. Technical report, Los
Alamos National Lab.(LANL), Los Alamos, NM (United States); Sandia National Lab.(SNL-NM), Albuquerque,
NM (United States); Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States); Oak Ridge National
Lab.(ORNL), Oak Ridge, TN (United States); OFM Research, Redmond, WA (United States), 2015b. Accessed:
2025-03-12.

Miguel Liu-Schiaffini, Julius Berner, Boris Bonev, Thorsten Kurth, Kamyar Azizzadenesheli, and Anima Anandkumar.
Neural operators with localized integral and differential kernels. arXiv preprint arXiv:2402.16845, 2024.

NASA. Definition of streamlines. https://www.grc.nasa.gov/www/k-12/VirtualAero/
BottleRocket/airplane/stream.html. accessed on Aug 21, 2024.

MZ Naser and Amir H Alavi. Error metrics and performance fitness indicators for artificial intelligence and machine
learning in engineering and sciences. Architecture, Structures and Construction, 3(4):499–517, 2023.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In NIPS-W, 2017.

Julia Pelzer and Miriam Schulte. Efficient two-stage modeling of heat plume interactions of geothermal heat pumps in
shallow aquifers using convolutional neural networks. Geoenergy Science and Engineering, 237:212788, 2024.

Ken Perlin. An image synthesizer. ACM Siggraph Computer Graphics, 19(3):287–296, 1985.

William Pophillat, Peter Bayer, Esther Teyssier, Philipp Blum, and Guillaume Attard. Impact of groundwater heat
pump systems on subsurface temperature under variable advection, conduction and dispersion. Geothermics, 83:
101721, 2020.

11

https://openreview.net/forum?id=rJeB36NKvB
https://openreview.net/forum?id=rJeB36NKvB
https://www.grc.nasa.gov/www/k-12/VirtualAero/BottleRocket/airplane/ stream.html
https://www.grc.nasa.gov/www/k-12/VirtualAero/BottleRocket/airplane/ stream.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational
Physics, 378:686–707, 2019. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.10.045. URL https:
//www.sciencedirect.com/science/article/pii/S0021999118307125.

Chengping Rao, Hao Sun, and Yang Liu. Physics-informed deep learning for incompressible laminar flows. Theoretical
and Applied Mechanics Letters, 10(3):207–212, 2020.

Bastian E. Rapp. Péclet Number, chapter 9.9.7. Elsevier, 2017. URL https://www.sciencedirect.com/
topics/chemical-engineering/peclet-number.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmenta-
tion. CoRR, abs/1505.04597, 2015a. URL http://arxiv.org/abs/1505.04597.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmenta-
tion. In Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference,
Munich, Germany, October 5-9, 2015, proceedings, part III 18, pp. 234–241. Springer, 2015b.

Iqbal H Sarker. Machine learning: Algorithms, real-world applications and research directions. SN computer science, 2
(3):160, 2021.

Stefania Scheurer. A deep learning approach for large–scale groundwater heat pump temperature prediction, 2021.

Neha Sharma, Reecha Sharma, and Neeru Jindal. Machine learning and deep learning applications-a vision. Global
Transitions Proceedings, 2(1):24–28, 2021.

Luning Sun, Han Gao, Shaowu Pan, and Jian-Xun Wang. Surrogate modeling for fluid flows based on physics-
constrained deep learning without simulation data. Computer Methods in Applied Mechanics and Engineering, 361:
112732, 2020.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk Pflüger, and
Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning. Advances in Neural Information
Processing Systems, 35:1596–1611, 2022.

Bilal Thonnam Thodi, Sai Venkata Ramana Ambadipudi, and Saif Eddin Jabari. Fourier neural operator for learning
solutions to macroscopic traffic flow models: Application to the forward and inverse problems. Transportation
research part C: emerging technologies, 160:104500, 2024.

Nils Thuerey, Konstantin Weißenow, Lukas Prantl, and Xiangyu Hu. Deep learning methods for reynolds-averaged
navier-stokes simulations of airfoil flows. AIAA Journal, 58(1):25–36, 2020.

UKB System Technology. Kabellichtlot typ 120 - ltc elektrische leitfähigkeit bis 100m. https://
geotechnik-shop.de/Kabellichtlot-Typ-120-LTC-elektrische-Leitfaehigkeit-bis-100m.
accessed on Aug 28, 2024.

Umweltministerium Baden-Württemberg. Arbeitshilfe zum leitfaden zur nutzung von erdwärme mit grund-
wasserwärmepumpen für ein- und zweifamilienhäuser oder anlagen mit energieentzug bis zirka 45.000 kwh
pro jahr, October 2009. URL https://um.baden-wuerttemberg.de/fileadmin/redaktion/
m-um/intern/Dateien/Dokumente/5_Energie/Erneuerbare_Energien/Geothermie/4_
Arbeitshilfe_zum_Leitfaden.pdf. Accessed: 2023-03-13.

Corné Verburg, Alexander Heinlein, and Eric C. Cyr. Ddu-net: A domain decomposition-based cnn for high-resolution
image segmentation on multiple gpus. IEEE Access, 13:66967–66983, 2025. doi: 10.1109/ACCESS.2025.3561033.

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing, 13(4):600–612, 2004. doi: 10.1109/TIP.2003.819861.

Maurice Weiler, Patrick Forré, Erik Verlinde, and Max Welling. Equivariant and Coordinate Indepen-
dent Convolutional Networks. 2023. URL https://maurice-weiler.gitlab.io/cnn_book/
EquivariantAndCoordinateIndependentCNNs.pdf.

Reza Yousefzadeh, Alireza Kazemi, Rami Al-Hmouz, and Iyad Al-Moosawi. Determination of optimal oil well
placement using deep learning under geological uncertainty. Geoenergy Science and Engineering, 246:213621, 2025.

12

https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/topics/chemical-engineering/peclet-number
https://www.sciencedirect.com/topics/chemical-engineering/peclet-number
http://arxiv.org/abs/1505.04597
https://geotechnik-shop.de/Kabellichtlot-Typ-120-LTC-elektrische-Leitfaehigkeit-bis-100m
https://geotechnik-shop.de/Kabellichtlot-Typ-120-LTC-elektrische-Leitfaehigkeit-bis-100m
https://um.baden-wuerttemberg.de/fileadmin/redaktion/m-um/intern/Dateien/Dokumente/5_Energie/Erneuerbare_Energien/Geothermie/4_Arbeitshilfe_zum_Leitfaden.pdf
https://um.baden-wuerttemberg.de/fileadmin/redaktion/m-um/intern/Dateien/Dokumente/5_Energie/Erneuerbare_Energien/Geothermie/4_Arbeitshilfe_zum_Leitfaden.pdf
https://um.baden-wuerttemberg.de/fileadmin/redaktion/m-um/intern/Dateien/Dokumente/5_Energie/Erneuerbare_Energien/Geothermie/4_Arbeitshilfe_zum_Leitfaden.pdf
https://maurice-weiler.gitlab.io/cnn_book/EquivariantAndCoordinateIndependentCNNs.pdf
https://maurice-weiler.gitlab.io/cnn_book/EquivariantAndCoordinateIndependentCNNs.pdf


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ruiyang Zhang, Yang Liu, and Hao Sun. Physics-guided convolutional neural network (phycnn) for data-driven seismic
response modeling. Engineering Structures, 215:110704, 2020.

Kai Zosseder, Fabian Böttcher, Kyle Davis, Christine Haas, Smajil Halilovic, Thomas Hamacher, Helmut Heller,
Leonhard Odersky, Viktoria Pauw, Thilo Schramm, and Miriam Schulte. Schlussbericht zum verbundprojekt geo-kw.
Technical report, Bundesministerium für Wirtschaft und Klimaschutz, 2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 SIMULATION SETUP AND TRANSPORT REGIME

In Section 3, we describe how the two datasets are generated using the subsurface simulation software Pflotran (Lichtner
et al., 2015a), which solves the coupled mass and energy conservation equations. Here, we provide additional technical
details and modeling assumptions relevant for reproducibility. Furthermore, we show that for the selected parameters,
the heat transport in our system is dominated by advection by a theoretical analysis.

Hydro-geological, Operational and Simulation Parameters Our data was generated on 12.8km×12.8km×5m with
a cell size of 5m×5m×5m for the baseline simulations. To test scalability, we also simulate a domain that is twice as
large in both x- and y-dimension for the baseline dataset, but only twice as large in y-dimension for the more realistic
dataset due to dimension restrictions of the available input data.

The baseline dataset uses a constant hydraulic pressure gradient ∇p of 0.003 (Pelzer & Schulte, 2024; geo, 2022);
permeability field k is generated using Perlin noise (Perlin, 1985) within (1.02E-11, 5.10E-9) m2, and 100 randomly
placed heat pumps, which are all operating with a 5 i.e., C injection temperature difference compared to the surrounding
groundwater and an injection rate of 0.00024 m3/s. All values are based on realistic parameter ranges in the region of
Munich(geo, 2022; Zosseder et al., 2022).

For the realistic dataset, instead of random permeability fields k, we use permeability field data that is derived from
borehole measurements in the Munich region(Bayerisches Landesamt für Umwelt, 2015). Furthermore, based on
subsurface measurements, we set ∇p = 0.0025 for these simulations. All other simulation parameters remain identical
to the baseline. Other subsurface and operational parameters are taken directly from Pelzer & Schulte (2024), which
also includes additional information about solver setup and boundaries. For mathematical details of the governing
equations, we refer the reader to Lichtner et al. (2015b); Anderson (2007); Delleur (2016).

Simplifications For simplifications, we refer to the (hydraulic) pressure field p throughout the paper. In our paper,
this field is the initial pressure field defined through the measured hydraulic head and is not the true pressure field at
quasi-steady state with spatial details resulting from permeability k variations in the domain and mass injections at the
heat pump positions. The true pressure field is only available after simulation (which we are avoiding for our approach)
and strongly interacts with the velocity field.

Péclet Number To quantify whether heat transport in our system is dominated by advection or diffusion, we compute
the dimensionless Péclet number (Rapp, 2017), which is defined as

Pe =
L · v
α

,

with the characteristic length L, the local velocity v, and the thermal diffusivity α, defined as

α =
k

ρcp
,

with k the thermal conductivity, ρ the density, and cp the specific heat capacity. We take the parameters of the solid
phase of our simulation inputs of

• Thermal conductivity: k = 0.65W/(m ·K)

• Density: ρ = 2800 kg/m3

• Specific heat capacity: cp = 2000 J/(kg ·K)

This yields a thermal diffusivity of:

α =
0.65

2800 · 2000
≈ 1.16× 10−7 m2/s

The velocity values are derived by simulations, taken in the direction of flow (longitudinal) from the realistic k-dataset:

• Maximum: 1200m/year ≈ 3.8× 10−5 m/s

• Minimum: 44m/year ≈ 1.4× 10−6 m/s

• Mean: 330m/year ≈ 1.04× 10−5 m/s

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

With a characteristic length determined by the heat plume length of 2000–6000m and mean x-velocity, we get:

Pe =
L · v
α

≈ L · 102 ≈ 105

The interpretation of the Peclet number is given by the following:

• Pe ≪ 1: Diffusion dominates
• Pe ≈ 1: Diffusion and advection similarly dominate
• Pe ≫ 1: Advection dominates

Therefore, Pe ≈ 105 indicates that in the simulations, the heat transport is advection-dominated at larger scales.

A.2 NEURAL NETWORKS, HYPERPARAMETERS AND TRAINING DETAILS

This section provides implementation and training details for all neural network models used in this work. We begin
with a description of the baseline UNet architecture, which also forms the foundation of both LGCNN and DDU-Net.
Then, we outline the hyperparameter optimization process and present the final configurations per model and dataset.
All models are trained using PyTorch (Paszke et al., 2017).

UNet Architecture The UNet architecture used in this work is based on the original design presented by Ronneberger
et al. (2015b), with several modifications to tailor it to the specific needs of our task of predicting temperature fields. In
this section, we introduce the key concepts that define the architecture and explain how they contribute to the model’s
design. These concepts will be employed in the hyperparameter search to identify the most suitable configuration,
taking into account memory and data limitations.

The UNet architecture essentially consists of a series of UNet blocks. Each block consists of the layers of "Convolution -
Activation - Convolution - Norm - Activation - Convolution - Activation" with convolutional layers, a batch normalization
layer, and activation functions. After each block, either an upsampling or a downsampling operation is applied via "Max
Pooling 2D" or "Transposed Convolution 2D" with stride 2. The depth of the UNet refers to the number of UNet blocks
in both the encoder and decoder. The number of initial features refers to the number of feature maps generated by the
first downsampling block. Each downsampling block produces twice as many output feature maps as input feature
maps, while each upsampling block reduces the number of feature maps by half. The number of convolutions per block
denotes how many convolutional layers are applied within each block, while kernel size specifies the size of the kernels
used in the convolutional operations. Additionally, we explore different activation functions (ReLU, tanh, sigmoid, and
LeakyReLU) and various normalization strategies (batch normalization, group normalization, and no normalization).
The UNet block exists in 2 variants, depending on the hyperparameter repeat inner: If repeat inner = False, the block
looks like this "Convolution - Norm - Activation", if it is True, the block looks as described above.

The training process also involves several hyperparameters. The learning rate controls how quickly the model adjusts
its parameters during training. The weight decay parameter helps prevent overfitting by penalizing large weights in
the model. Furthermore, the Adam optimizer (Kingma, 2014) is employed as optimizer. For the realistic permeability
field, we additionally introduce the optimizable hyperparameter optimizer switch, which, when enabled, switches the
optimizer to LBFGS after 90 epochs.

During inference, each datapoint is processed as a whole, but during training, they are loaded in smaller patches cut out
from the datapoint. Optimized hyperparameters include their overlap, i.e., inverse of skip per direction, and their size,
called box length. The data split is untouched by this, i.e. one simulation run per train / val / test separately. This is
important to not overlap test patches with training ones.

A.2.1 HYPERPARAMETERS AND HYPERPARAMETER OPTIMIZATION

We optimize the hyperparameters of our architecture, training process and data loading in several rounds with Op-
tuna (Akiba et al., 2019) and additional manual tweaking. Optuna performs optimization using a tree-structured Parzen
estimator algorithm. An overlook of all considered hyperparameters, their ranges and our final choice, as well as the
hyperparameters fixed during optimization is provided per used model architecture and dataset, e.g., purely data-driven
approaches, LGCNN on individual steps or the full pipeline, on datasets of random k versus realistic k.

Vanilla UNet The vanilla UNet3dp trained using the following hyperparameters: a batch size of 20, kernel size of 5,
and a network depth of 3. The number of initial features was set to 32, with a stride and dilation of 1. We used the ReLU

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

activation function in combination with batch normalization. The inner block was not repeated (repeat_inner =
False). No cutouts are applied during training (bool_cutouts = False), i.e., the model is trained on the whole
datapoint at once.

The inputs to the model are pki (pressure field, permeability field, and location of heat pumps). For training, the Mean
Absolute Error (MAE) loss function was used, and optimized with the Adam optimizer. The learning rate is set to
1× 10−5. The model is trained for 10,000 epochs.

Hyperparameters for purely data-driven approaches The values considered during hyperparameter optimization
for the UNet and DDUNet, trained on 73 datapoints and performed using Optuna (Akiba et al., 2019), along with the
best settings found, are listed in Table 6. Certain hyperparameters were fixed: we set the number of epochs to 750,
with an early stopping criterion based on validation loss and a patience of 80 epochs. Additionally, we note that some
hyperparameter combinations (e.g., 32 initial features, depth 6, and 3 convolutions per layer with a kernel size of 7)
caused memory issues, leading to their exclusion from the hyperparameter search.

Table 6: Overview of used hyperparameters for the UNet101dp and 2× 2 DDUNet101dp their search ranges (if
applicable), and best values across training stages. Note that the number of communicated feature maps in the vanilla
UNet is simply an extra convolution layer in the coarsest part of the UNet (without communication).

Hyperparameter Range pki → vxvy (Step 1) kivxvysso → T (Step 3) pki → T (Full)

UNet101dp 2× 2DDUNet101dp UNet101dp 2× 2DDUNet101dp UNet101dp 2× 2DDUNet101dp
Dataset

Batch size (train) 4, 6, 8 4 6 6 4 6 6

Include pressure field True, False False False - - False False

Encoder-decoder properties

Depth 4, 5, 6 6 5 6 6 5 5

No. initial features 8, 16, 32 8 16 8 8 8 16

No. convs. per block 1, 2, 3 1 1 3 3 3 3

Kernel size 3, 5, 7 7 7 3 5 7 7

Communication Network

No. comm. feature maps 64, 128, 256 64 128 256 64 256 256

Training

Learning rate [1e-5, 1e-3] 0.00024 0.00100 0.00017 0.00030 0.00024 0.00024

Weight decay 0.0, 0.001 0.0 0.0 0.0 0.0 0.0 0.0

Train loss MSE, L1 MSE MSE L1 MSE MSE MSE

After the hyperparameter search, the values corresponding to the best-performing model (based on Huber loss for the
validation dataset) were selected. With these values fixed, five models were trained using different randomly sampled
initializations to evaluate sensitivity to random initialization, for these values see Tables 10 and 11.

LGCNN Hyperparameters - on Random Permeability The values considered during hyperparameter optimization
with Optuna (Akiba et al., 2019) and the best settings found for both steps of LGCNN are listed in Table 7. Although
the optimization was originally run for 100 epochs, the optimum was consistently found within the first 25 epochs.
Therefore, to reduce computation cost, we therefore conservatively lowered the maximum number of epochs to 50.
This adjustment does not affect any of the reported metrics in the paper.

Fixed parameters for this hyperparameter search are the learning rate (fixed at 10−4), ReLU as activation function,
the batch size of 20, and the use of a batch normalization layer within the inner blocks of the UNet architeture. The
validation loss used for selecting the optimal model is the MAE.

LGCNN Hyperparameters - on Real Permeability The values considered during hyperparameter optimization on
the dataset with a more realistic permeability field were selected using Optuna (Akiba et al., 2019), and are summarized
in Table 8, along with the best configurations found for both steps of the LGCNN. The optimization was run for up
to 100 epochs. For more background on the network architecture and the various hyperparameters, cf. A.2. Several
hyperparameters were fixed during this process. These include a constant learning rate schedule, an Adam optimizer
with a weight decay of 10−4, and, when enabled, a switch to LBFGS after 90 epochs. Fixed architectural parameters

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: LGCNN-Random k: Hyperparameter optimization: Parameter ranges and best configurations.

Parameter Range 1st step 3rd step

Parameters of the Dataset

inputs
v : (p, i, k)

pik ivxvyssok
T : (i, vx, vy, s, so, k)

skip per direction
v : 4, 8, 16, 32, 64

16 8
T : 8, 16, 32, 64

box length 64, 128, 256, 512 256 256

Parameters of Training

loss function (training) MAE, MSE MSE MAE

optimizer Adam, SGD Adam Adam

Parameters of the Network

No. initial features 8, 16, 32, 64, 128 32 32

kernel size 3, 4, 5 5 4

depth
v : 1, 2, 3, 4

4 4
T : 1, 2, 3

include a convolutional stride and dilation of 1. During training, the inputs were cut out from the full datapoints. For
model comparison, the validation loss was consistently computed using the Huber loss.

A.3 ADDITIONAL EXPERIMENTAL RESULTS

This section provides additional experimental results. While the main results section focused only on the test and
scaling datasets, we also include here the metric values on the training and validation datasets. For completeness and
easier comparison, the test and scaling metrics are re-listed as well.

Purely data-driven UNet, DDU-Net: Metrics of training and ablation study Table 9 presents all the metrics for
predicting the temperature field directly from the inputs pki using a data-driven approach, evaluated on the training,
validation, and test datasets. The results are provided for several models: (1) UNet trained on only 1 datapoint and
tested and validated on 2 additional datapoints, (2) a UNet trained on 73 datapoints (73-18-10 train-validation-test split),
and (3) a DDUNet trained on the same 73 datapoints dataset, operating on 2× 2 subdomains. Furthermore, to assess
the model’s sensitivity to random initialization, the training of the same architecture was repeated five times for the
most relevant models. Based on these repetitions, the mean and standard deviation of the performance metrics were
computed using the following equations:

x̄ =
1

n

n∑
i=1

xi and σ =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2

where xi denotes the metric value from the i-th training run, and n = 5 is the number of runs. These results are
summarized in Table 10 and Table 11. The choice of n = 5 was made empirically to balance computational effort and
statistical reliability. The standard deviations in Tables 10 and 11 were used as validation: they are neither excessively
large (indicating instability) nor unrealistically small (indicating insufficient sampling).

In addition to testing the UNet and DDUNet trained on 73 datapoints on the 101dp test dataset, we also evaluate these
models on the same datapoint used to test the UNet3DP .

LGCNN: Metrics of training and ablation study The results of the LGCNN and DDU-Net, evaluated on both
synthetic and realistic permeability fields, for the training, validation, testing, and scaling datasets are shown in Table 12

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: LGCNN-Real k: Hyperparameter optimization: Parameter ranges and best configurations.

Parameter Range model v⃗ model T

Parameters of the Dataset

inputs
v : ki, pik, gik, gk, pk pik

T : ivxvyssok ivxvyssok

batch size 2, 4, 8, 16 8 8

skip per direction 256, 128, 64, 32, 16, 8 8 8

box length 1280, 640 1280 1280

Parameters of Training

loss function (training) MSE, MAE MSE MSE

optimizer switch True, False False False

learning rate 1e-3, 5e-4, 1e-4, 5e-5 1e-4 1e-4

Parameters of the Network

No. initial features 8, 16, 32 16 16

kernel size 3, 5 5 5

depth 4, 5, 6 6 6

repeat inner True, False False False

activation function relu, tanh, sigmoid, leakyrelu relu relu

layer norm batch-, group-, None batch- batch-

Table 9: Performance metrics for predicting T with different models and datasets. Errors in [◦C], MSE in [◦C], PATs in
[%] and SSIM unitless. The LGCNN-test dataset corresponds to the 1 datapoint used for testing the LGCNN approach.

Model Data Case Huber L∞ MAE MSE PAT SSIM

UNet3DP randomK3

train 0.0020 2.4954 0.0404 0.0040 6.43 0.8281

val 0.0269 5.2901 0.1365 0.0574 38.82 0.5717

test 0.0235 4.8642 0.1314 0.0492 39.05 0.5794

U
N

et rK
10

1 train 0.0010 4.2443 0.0172 0.0021 2.34 0.9960

val 0.0051 4.1972 0.0441 0.0106 12.68 0.9859

test 0.0050 4.2140 0.0426 0.0104 11.90 0.9869

* LGCNN-test 0.0048 4.3985 0.0473 0.0100 13.63 0.9827

* scaling 0.0016 4.3426 0.0202 0.0033 4.33 0.9955

2×
2-

D
D

U
N

et

rK
10

1 train 0.0018 3.8100 0.0236 0.0038 4.47 0.9940

val 0.0079 4.0084 0.0550 0.0165 17.03 0.9825

test 0.0076 3.7006 0.0549 0.0159 17.14 0.9835

* LGCNN-test 0.0063 3.4257 0.0548 0.0128 17.42 0.9804

* scaling 0.0025 4.1806 0.0235 0.0052 6.11 0.9940

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 10: Statistics for predicting T with different models and datasets. Errors in [◦C], MSE in [◦C], PATs in [%] and
SSIM unitless. The LGCNN-test dataset corresponds to the 1 datapoint used for testing the LGCNN approach. Mean ±
standard deviation reported.

Model Data Case Huber L∞ MAE MSE PAT SSIM

U
N

et
3
d
p

ra
nd

om
K

3 train 0.0025 ± 0.0024 4.69 ± 0.17 0.0155 ± 0.0071 0.0063 ± 0.0062 1.92 ± 1.16 0.981 ± 0.012

val 0.0219 ± 0.0008 4.89 ± 0.07 0.1114 ± 0.0023 0.0474 ± 0.0019 34.76 ± 0.99 0.696 ± 0.006

test 0.0176 ± 0.0006 4.85 ± 0.09 0.1043 ± 0.0018 0.0368 ± 0.0015 34.76 ± 0.76 0.703 ± 0.006

U
N

et
1
0
1
d
p

rK
10

1 train 0.0011 ± 0.0002 4.37 ± 0.20 0.0182 ± 0.0020 0.0023 ± 0.0004 2.45 ± 0.27 0.995 ± 0.002

val 0.0055 ± 0.0003 4.36 ± 0.16 0.0454 ± 0.0019 0.0114 ± 0.0006 12.96 ± 0.55 0.984 ± 0.002

test 0.0052 ± 0.0003 4.35 ± 0.23 0.0441 ± 0.0019 0.0110 ± 0.0006 12.49 ± 0.48 0.985 ± 0.002

* LGCNN-test 0.0049 ± 0.0002 4.30 ± 0.16 0.0470 ± 0.0010 0.0102 ± 0.0004 13.51 ± 0.59 0.983 ± 0.002

* scaling 0.0017 ± 0.0001 4.48 ± 0.15 0.0208 ± 0.0014 0.0035 ± 0.0002 4.38 ± 0.17 0.995 ± 0.001

2×
2-

D
D

U
N

et
1
0
1
d
p

rK
10

1 train 0.0014 ± 0.0003 4.11 ± 0.25 0.0203 ± 0.0026 0.00300 ± 0.0007 3.24 ± 0.68 0.995 ± 0.001

val 0.0079 ± 0.0002 4.20 ± 0.25 0.0564 ± 0.0008 0.01648 ± 0.0005 17.32 ± 0.22 0.981 ± 0.002

test 0.0075 ± 0.0001 4.05 ± 0.22 0.0552 ± 0.0008 0.01580 ± 0.0002 16.94 ± 0.36 0.982 ± 0.001

* LGCNN-test 0.0057 ± 0.0003 4.00 ± 0.20 0.0526 ± 0.0015 0.01171 ± 0.0006 16.44 ± 0.63 0.981 ± 0.002

* scaling 0.0025 ± 0.0001 4.04 ± 0.20 0.0251 ± 0.0007 0.00514 ± 0.0002 6.39 ± 0.17 0.994 ± 0.001

L
G

C
N

N

ra
nd

om
K

3
St

ep
3

train 0.0001 ± 0.0001 2.64 ± 0.18 0.0064 ± 0.0008 0.0003 ± 0.0001 0.29 ± 0.08 0.996 ± 0.001

val 0.0032 ± 0.0001 2.49 ± 0.29 0.0413 ± 0.0008 0.0065 ± 0.0003 10.88 ± 0.35 0.912 ± 0.003

test 0.0025 ± 0.0000 2.74 ± 0.33 0.0382 ± 0.0006 0.0049 ± 0.0001 9.44 ± 0.35 0.918 ± 0.003

scaling 0.0008 ± 0.0000 3.03 ± 0.31 0.0179 ± 0.0006 0.0016 ± 0.0001 2.54 ± 0.14 0.946 ± 0.005

Table 11: Statistics for predicting v⃗ with the randomK dataset. Errors in [m/y], MSE in [m2/y2], SSIM unitless. Mean
± standard deviation reported.

Model Data Output Case Huber L∞ MAE MSE SSIM

L
G

C
N

N

ra
nd

om
K

3

vx train 14.11 ± 11.52 96.63 ± 23.29 14.60 ± 11.53 380.19 ± 529.31 0.997 ± 0.002

vy train 14.30 ± 7.10 135.26 ± 20.36 14.80 ± 7.11 361.61 ± 296.21 0.991 ± 0.006

vx val 28.23 ± 7.76 445.13 ± 35.50 28.72 ± 7.77 1601.10 ± 587.80 0.989 ± 0.003

vy val 27.33 ± 2.25 343.35 ± 26.80 27.82 ± 2.25 1587.57 ± 252.10 0.982 ± 0.002

vx test 26.94 ± 5.99 216.74 ± 18.92 27.44 ± 5.99 1368.52 ± 431.48 0.990 ± 0.002

vy test 30.38 ± 6.18 249.11 ± 11.37 30.88 ± 6.18 1848.47 ± 637.10 0.982 ± 0.005

vx scaling 27.89 ± 6.53 286.08 ± 22.96 28.38 ± 6.53 1486.23 ± 451.52 0.990 ± 0.002

vy scaling 27.60 ± 2.43 328.80 ± 24.95 28.09 ± 2.43 1578.87 ± 258.66 0.979 ± 0.003

L
G

C
N

N

re
al

K

vx train 29.66 ± 2.29 592.17 ± 37.66 30.16 ± 2.29 2326.33 ± 327.11 0.988 ± 0.005

vy train 28.93 ± 5.47 397.09 ± 72.78 29.43 ± 5.47 1778.28 ± 551.97 0.997 ± 0.009

vx val 22.17 ± 2.24 170.47 ± 9.75 22.66 ± 2.24 909.39 ± 139.94 0.988 ± 0.002

vy val 20.20 ± 4.07 113.33 ± 12.37 20.70 ± 4.08 645.11 ± 221.50 0.997 ± 0.001

vx scaling 79.33 ± 21.80 532.35 ± 140.50 79.83 ± 21.80 9404.62 ± 4048.09 0.953 ± 0.014

vy scaling 53.39 ± 12.64 602.41 ± 128.79 53.89 ± 12.64 4621.25 ± 1755.50 0.980 ± 0.006

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(for Step 1 - predict v⃗pred) and Table 13 (for Step 3 - predict T ). The column "data" refers to the dataset that a model was
trained on and applied to, i.e., "randomK" stands for the baseline dataset 3dp, "randomK101" for 101dp. An asterisk
indicates that the model was evaluated on a dataset different from the one it was trained on. Mostly relevant for the
vanilla approaches that are trained on 101dp and applied to scaling and test of 3dp.

Table 12: Performance metrics for predicting v⃗ with different models and datasets. Errors in [m/y], MSE in [m2/y2],
SSIM unitless.

Model Data Output Case Huber L∞ MAE MSE SSIM

1st Step
L

G
C

N
N

ra
nd

om
K

vx train 9.4732 132.6672 9.9620 171.0032 0.9972

vy train 11.4005 223.4601 11.8902 275.6190 0.9937

vx val 22.2241 343.9907 22.7179 1102.3721 0.9905

vy val 26.6078 274.8036 27.1026 1524.5099 0.9841

vx test 21.8237 190.8046 22.3178 972.5668 0.9911

vy test 32.2488 256.2519 32.7444 2031.3357 0.9812

* vx scaling 24.4314 294.0457 24.9261 1204.1154 0.9911

* vy scaling 25.7847 367.6891 26.2795 1463.8218 0.9820

Experiment: trained on full image

L
G

C
N

N

ra
nd

om
K

vx train 3.1983 39.9380 3.6714 21.5058 0.9993

vy train 3.0496 43.9018 3.5177 21.4905 0.9988

vx val 25.2418 417.1447 25.7367 1421.6547 0.9896

vy val 29.6294 276.8029 30.1247 1827.3134 0.9824

vx test 23.3646 202.6397 23.8584 1144.4479 0.9913

vy test 35.4289 332.9557 35.9249 2490.4104 0.9789

Replace with UNet-101dp, i.e., 1 × 1 subdomain-DDUNet, trained on 101 datapoints

D
D

U
N

et ra
nd

om
K

10
1

vx train 3.5468 678.7761 4.0134 86.6731 0.9767

vy train 4.1030 690.1506 4.5816 100.2767 0.9934

vx val 3.8368 647.1833 4.3058 90.3292 0.9739

vy val 4.3649 685.6656 4.8433 102.8601 0.9931

vx test 3.6643 584.8119 4.1325 83.4062 0.9731

vy test 4.1355 547.8865 4.6131 87.7819 0.9924

* vx LGCNN-test 12.2161 1047.8464 12.7036 896.2758 0.9016

* vy LGCNN-test 13.9033 2594.9504 14.3878 2317.6863 0.9903

* vx scaling 4.7412 659.8439 5.2152 79.2508 0.9699

* vy scaling 5.2686 456.1904 5.7492 83.9735 0.9948

Replace with 2x2-DDUNet-101dp, i.e.,2 × 2 subdomains

D
D

U
N

et ra
nd

om
K

10
1

vx train 5.3928 422.4526 5.8815 57.6045 0.9580

vy train 4.0476 696.2919 4.5116 58.8457 0.9972

vx val 5.7663 471.6309 6.2545 76.4372 0.9552

vy val 4.5085 644.1844 4.9751 71.5679 0.9973

vx test 5.5847 319.9844 6.0735 59.2501 0.9526

vy test 4.2292 535.0656 4.6948 54.5020 0.9972

* vx LGCNN-test 13.1829 2453.5881 13.6735 1367.9061 0.9325

* vy LGCNN-test 14.6481 2029.0269 15.1332 2221.4226 0.9919

* vx scaling 7.6311 421.4186 8.1184 125.9511 0.9314

* vy scaling 6.9406 400.2490 7.4200 135.7929 0.9955

Domain Transfer, i.e., to more realistic data

L
G

C
N

N re
al

K

vx train 13.6890 122.7981 14.1819 340.6713 0.9973

vy train 9.0680 71.2576 9.5619 126.7222 0.9991

vx val 14.9187 106.8607 15.4095 380.3762 0.9939

vy val 10.1675 74.5570 10.6605 148.2475 0.9993

* vx scaling 109.5079 459.1620 110.0078 13570.0000 0.9462

* vy scaling 17.1118 240.9406 17.6051 616.5186 0.9965

LGCNN+random k: Performance of Step 1 The model generally obtains good results in Figure 3, even for cells
that are far away from injection points.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 13: Performance metrics for predicting T with different models and datasets. Errors in [◦C], MSE in [◦C2], PATs
in [%], SSIM unitless.

Model Data Case Huber L∞ MAE MSE PAT SSIM

3rd Step: trained and applied to vsim

L
G

C
N

N

ra
nd

om
K

v
s
i
m

train 1.87e-5 2.2536 0.0014 3.95e-5 0.03 0.9997

val 0.0027 2.8857 0.0369 0.0054 8.61 0.9283

test 0.0021 2.8990 0.0347 0.0041 7.54 0.9304

* scaling 0.0007 3.0250 0.0168 0.0014 2.05 0.9510

Full Pipeline, i.e., Step 3 trained on vsim, but applied to vpred

L
G

C
N

N

ra
nd

om
K

v
p
r
e
d

train 0.0121 5.1006 0.0642 0.0272 18.17 0.8700

val 0.0188 4.2264 0.0967 0.0411 28.96 0.7625

test 0.0147 4.2120 0.0905 0.0307 28.92 0.7637

* scaling 0.0065 4.9366 0.0413 0.0141 10.87 0.8654

Experiments on 3rd Step
Trained in sequence, i.e., trained on vpred

L
G

C
N

N

ra
nd

om
K

v
p
r
e
d

train 0.0032 4.0750 0.0198 0.0068 3.73 0.9794

val 0.0195 3.8178 0.1003 0.0423 30.46 0.7442

test 0.0139 4.0804 0.0901 0.0289 29.44 0.7553

Trained with zero-padding

L
G

C
N

N

ra
nd

om
K

v
s
i
m

train 0.0002 1.8465 0.0140 0.0004 0.33 0.9518

val 0.0032 2.9051 0.0465 0.0064 11.31 0.8686

test 0.0024 2.3391 0.0418 0.0048 9.19 0.8838

Trained on full image

L
G

C
N

N

ra
nd

om
K

v
s
i
m

train 0.0002 3.5648 0.0022 0.0004 0.09 0.9992

val 0.0027 3.5088 0.0375 0.0055 8.81 0.9217

test 0.0021 3.6420 0.0351 0.0043 7.41 0.9245

Replace with UNet-101dp: Step 3 trained and applied on vsim

D
D

U
N

et

rK
10

1 train 0.0019 3.8491 0.0283 0.0038 5.35 0.9911

val 0.0027 3.9381 0.0350 0.0055 8.89 0.9895

test 0.0025 3.7999 0.0343 0.0052 8.50 0.9903

* LGCNN-test 0.0032 4.4658 0.0416 0.0067 11.69 0.9835

* scaling 0.0010 4.3489 0.0176 0.0022 3.07 0.9954

Replace with 2x2-DDUNet-101dp: Step 3 trained and applied on vsim

D
D

U
N

et

rK
10

1 train 0.0015 4.0624 0.0200 0.0032 3.44 0.9952

val 0.0040 4.1863 0.0410 0.0083 12.54 0.9904

test 0.0039 4.0807 0.0411 0.0081 12.67 0.9910

* LGCNN-test 0.0029 4.2772 0.0376 0.0058 10.96 0.9915

* scaling 0.0012 3.9946 0.0192 0.0025 4.73 0.9968

Domain Transfer, i.e. to more realistic data

3rd Step

L
G

C
N

N

re
al

K
v
s
i
m train 0.0002 0.7704 0.0139 0.0005 0.43 2.9107

val 0.0005 0.8222 0.0175 0.0010 2.18 0.9672

* scaling 0.0004 0.8052 0.0189 0.0008 0.92 0.9497

Full Pipeline

L
G

C
N

N

re
al

K
v
p
r
e
d train 0.0049 2.5437 0.0534 0.0100 17.58 2.4923

val 0.0137 2.3194 0.0841 0.0275 27.79 0.7510

* scaling 0.0022 2.0511 0.0394 0.0044 10.02 0.8708

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 6: Prediction of v⃗ with LGCNN. Left: Test datapoint with labels vx and vy . Middle: Step 1 prediction for vx, vy . Right:
Error of the vx, vy prediction.

LGCNN+random k: Experiment on Inputs to Step 3 Additional tests show that excluding other inputs, either
i alone or both i and k, raises prediction error by 58–121%. We also evaluated alternative time-stepping schemes
for solving the IVP. Replacing the 5th-order implicit Runge–Kutta method with explicit 2nd- or 4th-order schemes
accelerates computation, but increases prediction error by 16–23%—a moderate degradation compared to the complete
removal of streamline inputs. Nonetheless, we retain the implicit scheme for its superior accuracy and stability.
Quantitative and qualitative results for the predictions are shown in Figure 7 and Table 14.

Table 14: Experiment on 3rd step: Test metrics for predicting T with different input combinations. Errors in [◦C], MSE
in [◦C2], PAT in [%], SSIM unitless.

Inputs Huber L∞ MAE MSE PAT SSIM

ikvxvy 0.0070 2.2990 0.0712 0.0139 25.55 0.7662

ikvxvys 0.0041 1.8674 0.0545 0.0083 20.56 0.8368

ikvxvyso 0.0057 2.6623 0.0598 0.0114 20.64 0.8423

ikvxvysso (not faded) 0.0072 2.3039 0.0744 0.0144 21.40 0.7837

ikvxvyss
a
o 0.0031 1.8364 0.0442 0.0062 12.97 0.8828

vxvysso 0.0066 2.1301 0.0647 0.0132 20.64 0.8681

kvxvysso 0.0049 2.0925 0.0587 0.0097 20.32 0.8732

explicit RK, order 4 0.0038 3.2636 0.0486 0.0076 15.80 0.8871

explicit RK, order 2 0.0036 2.2034 0.0463 0.0072 13.75 0.8830
a new run to be comparable to the others in this experiment: trained

with Huber validation loss, hence the results differ slightly wrt. to Table 3.

LGCNN+realistic k: Performance of 3rd step and full pipeline The qualitative performance is observable in
Figure 8, where we see coherent streamlines and plume structures for both the isolated 3rd step and the full pipeline.

Training and inference times Table 15 summarizes the training and inference times, number of epochs, and dataset
splits (train:val:test) for each of the three steps in our pipeline, both for the LGCNN trained on partitioned and full

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 7: 1st Column: Label, input k, 2nd-5th: Without (s, so), (so), (s), not-faded streamlines (s, so), 6th: include all inputs,
7th-8th: Without (i, k), (i). Absolute errors capped at 1◦C for better visualizations. Maximum errors are listed in Table 14.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 8: 1st Column: Label, input k. 2nd Column: 3rd step prediction of T and error with respect to the label. 3rd Column:
Predicted T and error of the full pipeline.

datasets. Although both approaches exhibit similar inference times, they show significant differences in training time,
with the partitioned approach yielding better results.

Table 15: Training measurements on the randomK dataset.
Data Points Epochsa Training Timea Inference Time

(train:val:test)

1st Step (partitioned) 20,736:1:1 19 9.5 min 0.02 s

1st Step (full) 1:1:1 9,688 92.6 min 0.02 s

2nd Step 1:1:1 - - 9.82 s

3rd Step (partitioned) 82,944:1:1 14 31.5 min 0.03 s

3rd Step (full) 1:1:1 9,671 92.1 min 0.02 s
aEarly stopping: measurements until best validation loss.

In Table 16, the number of epochs and the total training time for the data-driven approaches are shown. For Step 1, both
the UNet and DDUNet need many epochs and comparable training time to converge; however, for the third step and the
full pipeline, the DDUNet significantly reduces both the number of epochs and the total training time required to reach
convergence.

A.4 HARDWARE SPECIFICATIONS

The 2×2 DDU-Net101dp and UNet101dp models, trained on the large data-driven dataset of 101 samples, were trained
and evaluated on a server using NVIDIA V100 GPUs with 32 GB memory. All training was conducted using PyTorch
2.1.0 with CUDA 11.6 acceleration.

Training and evaluation of the LGCNN model were performed on a single NVIDIA A100-SXM4 GPU. Data generation
was carried out on a dual-socket system equipped with AMD EPYC 9274F CPUs.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 16: Training measurements for the data-driven approaches trained on the 101dp dataset: UNet101dp and 2×2
DDUNet101dp.

Epochsa Training Timea

1st Step
UNet101dp 738 5.497 hours

2×2 DDUNet101dp 735 4.787 hours

3rd Step
UNet101dp 726 8.343 hours

2×2 DDUNet101dp 303 3.508 hours

Full Pipeline
UNet101dp 267 3.680 hours

2×2 DDUNet101dp 97 1.222 hours
aEarly stopping: measurements until best validation loss.

A.5 GLOSSARY

A list of the most relevant physical properties used in our paper is provided in Table 17.

Table 17: Glossary of Abbreviations.

Abbr. Parameter
t time

X(t0) property X at initial time

X(tend) property X at quasi steady-state

Xpred predicted property X

i positions of heat pumps

Qinj injected mass rate

∆Tinj injected temperature difference

k permeability

p hydraulic pressure

g = ∇p hydraulic pressure gradient

v⃗ = (vx, vy) flow velocity

s⃗ both streamline fields

s central streamlines after all i

so streamlines with transversal offset to i

T temperature

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

SUPPLEMENTARY MATERIAL

The supplementary material contains the raw datasets, the most important trained models and the code basis for preparing
the raw data to train on, separate training routines and evaluation protocols for LGCNN (on real or synthetic/random
permeability fields), UNet3dp, experiments with 3dp; and on the other hand everything with 101dp: DDUNet101dp,
UNet101dp, experiments with 101dp.

Raw datasets:

• Dataset of random permeability with 3+1 datapoints (3dp + 1dp)
• Dataset of random permeability with 101 datapoints (101dp)
• Dataset of real permeability with 4+1 datapoints

Trained models (including hyperparameters):

• vanilla approaches trained on random permeability fields, 3dp: UNet3dp

• vanilla approaches trained on random permeability fields, 101dp: DDUNet101dp, UNet101dp

• LGCNN on random permeability fields, 3dp

• LGCNN experiment: replace isolated steps 1 and 3 with DDUNet101dp, UNet101dp

• LGCNN on real permeability fields, 4dp

Code (including training and evaluation routines):

• Repository of 101dp-vanilla approaches (DDUNet101dp, UNet101dp, also experiment "replace isolated steps")
• Repository LGCNN + UNet3dp (including preparation script for datasets to prepare datasets, for all models

and approaches)

All supplementary material can be accessed via SURFDrive, through this link:
https://surfdrive.surf.nl/files/index.php/s/f3Oqg3ufir9T9LL.

26

https://surfdrive.surf.nl/files/index.php/s/f3Oqg3ufir9T9LL

	Introduction
	Related Work
	Datasets and Metrics
	Application of Purely Data-Driven Approaches
	Methodology
	Results on Synthetic Permeability Fields
	Performance of LGCNN
	Ablation Study

	Domain Transfer to Real Permeability Fields
	Conclusions and Future Work
	Appendix
	Simulation Setup and Transport Regime
	Neural Networks, Hyperparameters and Training Details
	Hyperparameters and Hyperparameter Optimization

	Additional Experimental Results
	Hardware Specifications
	Glossary


