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ABSTRACT

Machine learning methods often struggle with real-world applications in science and engineering due
to an insufficient amount or quality of training data. In this work, the example of subsurface porous
media flow is considered; this corresponds to advection-diffusion processes under heterogeneous flow
conditions, i.e., for spatially varying material parameters, and a large number of spatially distributed
source terms. This challenge comes at high computing costs for classical simulation methods due to
the required high spatio-temporal resolution and large domains. Machine learning-based surrogate
models seem to offer a computationally efficient alternative. However, faced with real-world data-
limitations, purely data-driven approaches face difficulties in predicting the advection process, which
is highly sensitive to input variations and involves long-range interactions. Therefore, in this work,
a Local-Global Convolutional Neural Network (LGCNN) approach is introduced, that combines a
lightweight numerical surrogate for the global transport process with convolutional neural networks
(CNNs) for the local processes. With the LGCNN, we model a city-wide subsurface temperature
field, involving a heterogeneous groundwater flow field and one hundred groundwater heat pump
injection points forming interacting heat plumes over long distances. In order to first systematically
analyze the method, random subsurface input fields are employed. Then, the model is trained on a
few cut-outs from a real-world subsurface map of the Munich region in Germany. Our model scales to
larger cut-outs without retraining by accounting for the global effects with numerical physics models.
All datasets, our code, and trained models are published for reproducibility.

1 INTRODUCTION

Many real-world systems, across environmental engineering, geoscience, and biomedicine, feature transport phenomena
governed by coupled advection—diffusion processes, e.g., pollutant transport through air or water, chemical reactions,
or heat transport in flowing media. In such settings, interactions can span large distances, long timescales and many
components.

Datasets based on physical measurements are often limited by cost, logistics, or experimental constraints. While
numerical simulations can address these limitations to some extent, they become impractically slow or computationally
expensive as domain size or resolution increases. Machine learning (ML) models offer fast predictions but typically
require large training datasets and often struggle to scale to larger domains. This trade-off underscores the need for
data-efficient surrogates that can capture both local and long-range interactions, and scale to arbitrary domain sizes
and numbers of interacting components. To this end, we introduce the Local-Global Convolutional Neural Network
(LGCNN), a scalable, physics-inspired approach that leverages the structure of advection—diffusion problems by
decoupling local and global transport processes.

We apply this approach to the climate change-relevant application of modeling city-wide subsurface temperature fields
driven by heat and mass injections of dozens of open-loop groundwater heat pumps (GWHP) (Pophillat et al., [2020;
Department-of Energyl |2023; |Hihnlein et al., 2013)) in the region of Munich, Germany (Zosseder et al., 2022). A
city-wide optimization of the positions of all GWHPs requires calling a prediction model dozens of times with slightly
adapted GWHP positions to minimize negative interactions between different heat plumes and pumps. For this scenario,
our model should predict the temperature field 7" in an arbitrarily large domain based on the inputs of the subsurface
parameters of a hydraulic pressure gradient Vp and a heterogeneous subsurface permeability field &, and arbitrary heat
pump locations ¢. Labels are generated by expensive simulations, but only for a small number of cases and entirely
offline.
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As sketched in Figure[I] the LGCNN uses CNNs where they excel, and simple numerical surrogates where CNNs
struggle: a first CNN predicts the velocities ¥ from local relations of the inputs p, k& and ¢ (Step 1); a fast numerical
component calculates the streamlines 5 based on this (Step 2); a second CNN calculates the temperature distribution
T in the whole domain based on all prior inputs and outputs (Step 3). Since Step 2 covers all non-local effects, Step
3 can again take advantage of CNNs to learn local patterns. We outline related work in Section [2| then define our
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Figure 1: Left: Map of k of whole region of Munich. Right: Schematics of our Local-Global CNN-based approach (LGCNN) with
3 physics-inspired steps: CNN (pki — ), simplified solver (0 — §), CNN (pkivs — T)).

datasets and metrics in Section[3| In Section 4] we benchmark purely data-driven models and show their performance
and limitations on this low-data challenge. To address data scarcity, we introduce LGCNN in Section[5] Section [f]
emphasizes generalization and scalability from a single datapoint, while Section[7|demonstrates transfer to real-world
subsurface parameters extracted from measurement maps such as in Figure

Contributions Our method strongly reduces data requirements for modeling complex scenarios, increases reliability,
and ensures scalability to larger domains by a domain-specific modular design of physics-aided machine learning for an
input-sensitive scenario with long-distance effects. Subsurface temperature prediction serves as our example application,
with the approach expected to generalize to related domains.

Limitations The approach is best suited for systems where temperature-induced flow changes are small or spatially
confined. It is currently restricted to two-dimensional and steady-state datasets. While the underlying methodology
readily generalizes to three-dimensional and transient scenarios, such extensions are not yet implemented due to the
absence of appropriate training data.

2 RELATED WORK

Deep learning surrogates in scientific modeling can be broadly categorized into purely data-driven architectures,
physics-informed or domain-structured models, and highly problem-specific hybrid approaches. In this section, we
summarize the developments in each category and existing efforts in GWHP modeling.

Convolutional Neural Networks (CNNs), particularly UNet (Ronneberger et al., 2015a) variants, are widely used for
spatial prediction tasks due to their locality-aware architecture of moving-window-like kernels. Applications include
flow around airfoils (Thuerey et al.,2020) and various engineering systems (Jhaveri et al.|,[2022). For general reviews on
ML in scientific and real-world engineering contexts, see [Sharma et al.|(2021); [Sarker| (2021)); |/Angra & Ahujal (2017)).

To improve generalization and reduce data requirements, domain-structured models embed physical priors or symmetries
into their architecture. This includes Fourier Neural Operators (FNOs) for efficient multi-scale modeling (L1 et al.,
2020; |Choit et al.,2024), thermodynamics-preserving networks (Hernandez et al.,|2021)), and rotation-equivariant CNNs
(ECNNs) (Weiler et al.l [2023). Physics-Informed Neural Networks (PINNs) go further by replacing data loss with
physics-based constraints, allowing for training without labeled data (Raissi et al.,|2019; |(Cuomo et al.| 2022), and have
been applied to fluid dynamics and inverse problems (Rao et al.,2020; |Sun et al.| [2020; |Cai et al., 2021)).
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Hybrid approaches combine architectures and integrate domain or physics knowledge to improve general models, for
instance, in low-data regimes. Examples include staged CNNs for atmospheric plume dispersion (Fernandez-Godino
et al.| 2024), physics-informed FNOs for traffic flow (Thodi et al., 2024)), CNN-MLP hybrids for optimizing positions
of oil wells (Yousefzadeh et al.,2025)), and physics-guided CNNs for seismic response prediction (Zhang et al., 2020).

Deep Learning for GWHP Modeling In the context of groundwater modeling with heat transport, recent work
focuses on isolated or pairwise interacting GWHPs. Most use UNet-based architectures, optionally with physics-loss
terms (Davis et al., [2023; |Pelzer & Schulte, 2024; [Scheurer, 2021). Although effective in simple, homogeneous aquifers,
these models rely on large training datasets or simulated inputs and have not been scaled to city-wide domains with
many pumps. UNets are the dominant architecture because of their strong performance on spatial data, making them
the baseline for comparison.

We briefly evaluated PINNs and FNOs as alternatives. PINNs, while promising for low-data fluid dynamics tasks (Rao
et al.,2020;|Sun et al., |2020; Cai1 et al.} 2021} [Takamoto et al.,[2022]), struggled with complex scenarios (cf.|Krishnapriyan
et al.|(2021)) such as heterogeneous media and discontinuous source terms in preliminary tests. Specifically, we tested
PINNS in three simplified single-plume settings: on a homogeneous 2D aquifer, a heterogeneous 2D aquifer, and a
homogeneous 3D aquifer. In all cases, PINNs failed to outperform standard CNNs, even when the physics loss was
only used as a regularization term. The most pronounced discrepancies occurred near injection points, likely due to
discontinuities in the governing equations. FNOs, though capable of modeling local and global dependencies, struggled
with large domain sizes due to high memory requirements. Additionally, they performed poorly in the presence of
multiple sources, consistent with [Liu-Schiaffini et al.| (2024).

3 DATASETS AND METRICS

Datasets Inputs for the neural networks consist of a heterogeneous permeability field k, an initial hydraulic pressure
field p, and a one-hot-encoded field of heat pump positions i. The (interim) labels of velocity v and temperature
T fields are simulated, in our case with Pflotran (Lichtner et al.| |2015a), until a quasi-steady state is reached after
~227.5 years simulated time (Umweltministerium Baden-Wiirttemberg, [2009). All data are normalized to [0, 1], and
stored in PyTorch format for training.

We generate two types of datasets, one is based on synthetic, the other on real permeability fields k. Both cover a
12.8 x 12.8 km? domain with 2560 x 2 560 cells. The baseline dataset uses Perlin noise (Perlin| |1985) to generate
random, heterogeneous k. Three simulations (3dp) with different fields for ¢ and k are run, generating one datapoint
each for training, validation, and testing, plus a simulation 4 x larger to assess scalability. For training vanilla neural
networks in Section[d] we generate an additional dataset of 101 datapoints (10/dp), split into 73:18:10 for train:val:test.
Runtimes are ~27 hours per simulation and 123 hours for the larger domain.

The more realistic dataset builds on k fields cut from maps of borehole measurements in the Munich region (Bayerisches
Landesamt fiir Umwelt, [2015). This dataset consists of four simulations (three for training and one for validation)
and one larger simulation for testing scalability. Due to constraints of the available measurements, see Figure[I] the
large-scale simulation extends only in length, resulting in a rectangular domain twice the length. Runtimes range from
38 to 91 hours (average 58 hours), and 134 hours for the scaling-test domain. Variation across the dataset stems from
different heat pump placements in ¢ and from the specific regions where k is extract from the available measurement
domain.

For detailed information on simulation procedures and hydro-geological parameters, see Appendix [A.T}, for hardware
specifications see Appendix

Performance Metrics We evaluate model accuracy per output dimension (v, vy, T') separately using Mean Absolute
Error (MAE) (Naser & Alavi, 2023)), Mean Squared Error (MSE) (Naser & Alavi,[2023)), Maximum Absolute Error (L)
Structural Similarity Index Measure (SSIM) (Wang et al.| 2004), and application-driven metrics of Percentage Above
Threshold (PAT) and Visual Assessment. PAT measures the percentage of cells where the absolute error of the predicted
temperature exceeds the threshold of 0.1 °C, corresponding to measurement precision (UKB System Technology), and
is only applicable to temperature predictions. All metrics other than SSIM are applied after re-normalization to the
original data ranges to obtain physically meaningful results in [°C] or [meters/year].
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4  APPLICATION OF PURELY DATA-DRIVEN APPROACHES

In this section, we present the performance of two purely data-driven approaches for predicting 7" from inputs of p, k, 4:
a UNet (Ronneberger et al.,|2015a)) and the domain-decomposition-based UNet variant, called DDUNet (Verburg et al.}
2025).

Methods The fully convolutional vanilla UNet has an encoder-decoder architecture with skip connections between
layers of equal spatial dimensions. Convolutional networks excel in extracting local dependencies from spatial data
with locally repeating patterns. Hence, in theory, one datapoint covering a large domain could be enough to generalize,
if only local dependencies occur. Global patterns would require a large receptive field and, hence, more data. The
DDUNet is designed to handle large-scale domains under GPU memory constraints. It combines a UNet architecture
with domain decomposition principles by partitioning the spatial domain into subdomains that are distributed across
multiple GPUs. We use a decomposition into 2 x 2 subdomainsﬂ Global context is communicated between subdomains
via coarse feature maps through a learned communication network, maintaining spatial consistency and providing a
large receptive field while reducing memory demands. The hyperparameters of the models are optimized according to

Appendix [A.2.1]

Experiments Experiments for the vanilla UNet are conducted on the baseline datasets with 3dp and 101dp, those
with DDUNet directly on the /0/dp dataset, see Appendix [A.3] Both models are applied to the test of 3dp and to the
scaling datapoint, for direct comparability to LGCNN. UNet exhibits poor performance when trained on the limited
3dp dataset (UNetsq),), as demonstrated in both Figure E| and Table m Similar performance would be expected for the
DDUNet when applied to this sparse dataset. When trained on /01dp, however, both demonstrate robust predictive and
scaling capabilities. The advantage of DDUNet over vanilla UNet is a reduction of memory usage and runtime, see

appendix [A.3]
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Figure 2: pki — T (baseline dataset (3dp), test). 1st column: Label 7" and input k. 2nd-4th column: LGCNNj3y,
(isolated Step 3 and full pipeline, see Sections[5]and [6), vanilla UNet and DDUNet on 3dp and 101dp (Section ).

5 METHODOLOGY

In data-scarce settings, performance can improve when the structure of a model reflects the underlying physics,
cf. Section 2} This section hence outlines the relevant physical processes, motivates our LGCNN method, and discusses
a few details of LGCNN’s individual components.

! Conceptually, DDUNet reduces to a standard UNet when trained with a single subdomain.
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Table 1: Performance metrics for predicting T from pki with UNet and DDUNet. Errors in [°C], MSE in [°C?], PAT in
[%], and SSIM unitless. Inferred on the test of 3dp and the scaling datapoint.

Model Test Scaling

L., MAE MSE PAT SSIM| L, MAE MSE PAT SSIM
UNetsgp, 4.8642 0.1314 0.0492 39.05 0.5794 - - - - -
UNeti014dp 4.3985 0.0473 0.0100 13.63 0.9827 | 4.3426 0.0202 0.0033 4.33 0.9955
2 x 2-DDUNetyg14p,  3.4257 0.0548 0.0128 17.42 0.9804 | 4.1806 0.0235 0.0052 6.11 0.9940

Physics of Groundwater Flow with Heat Transport Transport of heat induced by heat injections of GWHPs in the
subsurface is an advection—diffusion process. Since the Péclet number, i.e., the advection-diffusion ratio, is high in our
application (Pe>>1, more in Appendix [A.T)), the system is advection-dominated. Advection is largely governed by the
global hydraulic pressure gradient, driving flow from higher to lower regions. Locally, the flow paths are influenced by
the spatial distribution of permeability %, cf. Figure[2} As a result, small changes in % can lead to significant differences
in flow paths further downstream, demonstrating high input sensitivity.

One-Way Coupled Approach: Local-Global CNN (LGCNN) In a fully coupled physical model, flow field
computation and heat transport along streamlines (NASA) starting at heat pumps (advection) and their widening
(diffusion) must be solved monolithically. By splitting effects into local and global and working with steady-state
simulated ¢’ during training, we can reduce the coupling to one direction without significant loss in accuracy. Our
simplified physical pipeline consists of three steps: (1) compute a steady-state flow field ' from initial subsurface
parameters p and k, with ¢ encoding mass influx around GWHPs; (2) transport injected heat along streamlines governed
by ¥ until quasi-steady state (Umweltministerium Baden-Wiirttemberg, 2009); and (3) apply plume widening to these
heat paths, informed by soil diffusivity and v, to approximate diffusion effects. The resulting one-way coupled LGCNN
approach (see Figure|l) can formally be described as:

Step 1 Velocities (local) We employ a CNN to predict the velocity field &' = (vg, v, ) from p, k, and
CNN (p, k,i) = 0. €))

Step 2 Streamlines (global) Based on the predicted velocities ¢ from Step 1, we compute streamlines § originating
from all pump locations in ¢ with an initial value problem (IVP) solver:

IVP (i,7) = 5. 2)

Step 3 Temperature (local) A second CNN predicts the temperature field 7' from the initial inputs p, k, i, the
predicted velocities ¥ of Step 1 and streamlines § calculated in Step 2:

CNN (p, k,i,7,5) = T. 3)

The model outputs the steady-state temperature field 7" and, using the same inputs p, k, and ¢ as a simulation, serves as
its direct surrogate.

CNN Models in the Local Steps The local Steps 1 and 3 are approximated by a UNet (Ronneberger et al.,[2015a}
Pelzer & Schulte] 2024), see Appendix [A.2]for details of our architecture. It is beneficial to omit zero-padding to enforce
shift invariance and reliance on purely local information; this approach is also validated by [Islam et al.|(2020). Due to
the input sensitivity of the entire problem, each step is trained independently on simulated input data. In particular, the
CNN in Step 3 is trained on the simulated velocities Uy, and streamlines based on these fields. Only during inference,
all steps are applied sequentially, i.e., Step 3 uses the outputs of Steps 1 and 2, including the predicted g as inputs.

The training is accelerated by partitioning the data into overlapping patches, which increases the effective number
of datapoints while reducing their spatial size. Combined with the streamlines’ embedding and localizing of global
flow patterns for the fully convolutional (locally) acting CNN, this training data enrichment allows the model to train
effectively on very little data, sometimes as little as a single simulation run, while generalizing to unseen and even
to larger domains. Validation and testing are conducted on independent simulation runs, with the full domain being
processed as a whole instead of patches during inference.

The architecture, input choices, and training hyperparameters — including the patch size and overlap in the datapoint
partitioning — were optimized through a combination of manual and automated tree-based search using Optuna (Akiba
et al.,2019); see Appendix for details.
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Streamline Calculation and 2D-Embedding in the Global Step Streamlines are calculated by solving the initial
value problem (IVP)

d . .
di; = 0(y), with y(to) = yo, )
with a lightweight numerical solver for each heat pump, where y, represents the location of a heat pump in 7. We
employ the solve_ivp function from SciPy (sci, [a) with an implicit fifth-order Runge-Kutta method (sci, b) and
10000 time steps of one day, corresponding to the simulation time of forming a heat plume.

The computed streamlines y represent a sequence of positions in 2D, that a particle - injected at a heat pump’s location -
would traverse based on ¥/. The corresponding grid cells are assigned values that fade linearly from 1 to 0, reflecting the
time it takes to reach each position, similar to a soft one-hot encoding.

To address the sensitivity of this process with respect to k£ and ¢, we calculate a set of outer streamlines s,. For this,
we perturb each heat pump’s location yy by 10 cells orthogonal to the global flow direction, i.e., Vp, and compute
the corresponding streamlines. By incorporating § = (s, s,), the subsequent Step 3 obtains a spatial, localized
representation of flow paths. In future work, we aim to explore probabilistic perturbations to compute the mean and
standard deviation of streamlines, which, while being computationally more expensive, could be efficiently parallelized
on GPUs.

6 RESULTS ON SYNTHETIC PERMEABILITY FIELDS

This section evaluates our model’s performance on the baseline dataset 3dp and on a scaling test datapoint; cf. Section[3]
In Section[6.1] we present metrics for isolated velocity (Step 1) and temperature (Step 3) predictions, and for the full
pipeline, demonstrating the potential of our approach. In ablation studies (Section[6.2), we motivate model design
choices. Additional metrics and visualizations can be found in Appendix[A.3]

Table 2: Metrics for predicting ¥prq in Step 1 and in Table 3: Metrics for predicting 7" in Step 3, in the full
ablation studies of Step 1 on test and on scaling data from pipeline, and in ablations studies of Step 3 on test and on
our baseline 3dp dataset with random k. In [m/y], except scaling data from our baseline 3dp dataset with random

for MSE in [m2/y2], SSIM unitless. k. In [°C], except for MSE in [°C2], PAT in [%], SSIM
Output Case Loo MAE MSE  SSIM unitless,
Swep 1 Case L. MAE MSE PAT SSIM
Z v test 190.8046 223178 972.5668 0.9911 Step 3, i.e., test on Tsim
S vy test 256.2519 32.7444 20313357 0.9812 , st 28990 00347 0.0041 7.54 09304
= vy scaling  294.0457 24.9261 1204.1154 0.9911 4 _scaling 3.0250 0.0168 00014 2.05 09510
vy scaling 367.6891 26.2795 1463.8218 0.9820 S Pipeline, i.e., test on Tprea
Train without data partitioning test 42120 0.0905 0.0307 28.92 0.7637
Vs test 202.6397 23.8584 1144.4479 0.9913 scaling 4.9366 0.0413 0.0141 10.87 0.8654
vy test 332.9557 35.9249 2490.4104 0.9789 Train in sequence
Replace Step 1 with UNetyorg, test  4.0804 0.0901 0.02890 29.44 0.7553
Z Vs test 1047.8464 127036  896.2758 0.9016 Include zero-padding
2 v, test  2594.9504 143878 2317.6863 0.9903 _ est 23391 0.0418 00048 9.19 0.8838
g scaling 659.8430 52152  79.2508  0.9699 T Train without data partitioning
§ vy scaling 456.1904 57492  83.9735  0.9948 § test  3.6420 0.0351 0.0043 7.41 0.9245
< Replace Step 1 with 2 x 2-DDUNet/org, £ Replace Step 3 with UNetsorqp
Ve test  2453.5881 13.6735 1367.9061 0.9325 % test 44638 0.0416 0.0067 11.69 0.9835
vy test  2029.0269 15.1332 2221.4226 0.9919 scaling 4.3489 0.0176 0.0022 3.07 0.9954
Ve scaling 4214186 8.1184 1259511 0.9314 Replace Step 3 with 2 x 2-DDUNet;o14p
vy scaling 4002490 74200 1357929 0.9955 test  4.2772 0.0376 0.0058 10.96 0.9915

scaling 3.9946 0.0192 0.0025 4.73 0.9968

6.1 PERFORMANCE OF LGCNN

Isolated Steps 1 and 3 Performance metrics for Step 1 are shown in Table |2} for Step 3 (trained and tested on
simulated Uy;y,) in Table The combination of quantitative (MAE of (22.3, 32.7) m/y and 0.03 °C) and qualitative
results through a visual assessment of Figure [3|demonstrate a strong performance with heat plumes forming according
to k.
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Figure 3: pkiSvgsm — T (baseline dataset (3dp), test). 1st column: Label 7. 2nd-3rd column: LGCNN Step 3, trained
without and with zero-padding.

Full Pipeline Testing the full pipeline, i.e., Steps 2 and 3 are based on g, results in a higher test MAE of 0.09 °C
compared to an isolated Step 3 (see Table[3). This was expected as the isolated Step 3 uses the true, simulated velocity
fields U as inputs. Visual assessment of representative predictions in Figurereveals physically plausible heat plumes
in terms of shape, extent, and heat magnitude. Deviations in streamlines arise from smaller errors in the velocity
predictions from Step 1 ¥q, highlighting the input sensitivity, especially near bifurcations, where small perturbations
in ¥ can lead to an alternative path around a clay lens in k. Compared to fully data-driven models trained on /01dp
(see Table[I)), our model achieves a similar accuracy while training on only 1 versus 73 training datapoints, which
strongly reduces computation time (see Table[T6]for details).

Scaling Test We can already expect that our model is able to scale to larger domains, as we train only on local
patches of the spatial domain and achieve high test accuracies on the full domain during validation and testing; see
also Section [6.2] Partitioning Training Data for more details. To further demonstrate the scaling, we test our model
on a domain of 4x the size of the training domain with the same number of heat pumps, hence with a lower density
of GWHPs/km?; cf. Figure 4| We obtain a comparable MAE of 0.02 °C for Step 3, and an MAE of 0.04 °C for the
full pipeline, see Table[3] A visual assessment of Figure[d]yields similar qualitative behavior as the previous results
in Figure 2]

6.2 ABLATION STUDY

Training in Sequence For training Step 3, we can either employ simulated Uiy, or predicted velocities Upreq as inputs.
As illustrated in Figure 2] training on ¥4 leads to physically implausible temperature fields with noisy artifacts and
fragmented plumes. This likely stems from local misalignments between the streamline inputs § and the corresponding
temperature label 7', which strongly complicates localized training. Although loss values in Table 3]appear similar,
the resulting temperature fields are less physically consistent and resemble those produced by end-to-end inference of
UNetz, in Section In contrast, training with simulated velocities ¥, yields streamlines consistent with temperature
fields, providing informative gradients and enabling stable learning.

Zero-Padding Removing zero-padding from all convolutional layers yields smaller but cleaner output fields, as shown
in Figure[3] As a result, we obtain improved performance, reflected in lower PAT and higher SSIM scores in Table 3]

Partitioning Training Data Hyperparameter search shows the best performance for partitioning the domain during
training into 20 736 overlapping patches of 256256 cells for Step 1 and 82 944 patches for Step 3. Although this
increases per-epoch compute time compared to full-domain training, it significantly reduces the number of epochs
needed to reach comparable test performance (cf. Tables [2]and 3)), resulting in an overall training time reduction of
67-90% (cf. Table [T3).

Replacing Isolated Steps with UNet;9;4, and 2 x 2-DDUNet;g;4, We individually replace each of the three steps
with an optimized (cf. Appendix [A:21)) vanilla approach, i.e., UNet or DDUNet trained on /01dp. For Step 2, both fail
completely; results for Steps 1 and 3 are summarized in Tables [2Jand[3] In Step 1, UNet slightly outperforms DDUNet,
while the reverse holds for Step 3. A visual comparison of the scaling datapoint in Figure ] reveals that increasing
training data from 3dp to 101dp has minimal impact on the performance in Step 3.
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Figure 4: pki — T (baseline dataset (3dp), scaling). 1st column: Label 7" and input k. 2nd-3rd column: Comparison of
LGCNN (isolated Step 3 and full pipeline) and vanilla data-driven architectures (UNet;o;4, and 2 x 2-DDUNet;g;4p).

Modifying Streamline Inputs of Step 3 We evaluate the influence of Step 3’s inputs, focusing on the effect of
modifying or omitting individual components of the streamlines § = (s, s,). When both the central streamlines s
and offset streamlines s, are excluded, predicted plumes fail to follow flow paths beyond the CNN’s receptive field.
Omitting only s, results in overly narrow plumes, whereas excluding only s produces overly smeared temperature
fields. Including both but removing the fading of values along the streamlines leads to diffuse background temperatures
and less localized plumes. Overall, the Huber validation loss increases by 32-132%, depending on the experiment. For
visual, quantitative, and extended results, we refer to Appendix @

7 DOMAIN TRANSFER TO REAL PERMEABILITY FIELDS

Finally, we investigate whether our approach transfers to the realistic dataset in Section [3] which is based on real-world
permeability fields % that are cut from geological maps of Munich. Since these maps cover a limited area, the number of
potential datapoints is very small. We compare performance for temperature prediction of Step 3 and the full pipeline on
the validation and scaling datapoints. Results are presented in Tables ] and [5} additional metrics are in Appendix [A3]

Table 5: Metrics for predicting 7" in Step 3 and in the full
pipeline on validation and scaling data from our realistic
dataset. In [°C], except for MSE in [°C?], PAT in [%],

Table 4: Metrics for predicting Upreq in Step 1 on valida-
tion and scaling data from our realistic dataset. In [m/y],
except for MSE in [m2/y2], SSIM unitless.

Output Case Loo MAE MSE  SSIM SSIM unitless.

Case L., MAE MSE PAT SSIM
Step 1
Vs val 106.8607 15.4095  380.3762  0.9939 Step 3, i.e., test on Tsim
’Uy val 74.5570 10.6605 148.2475 0.9993 val 0.8222 0.0175 1.01e-3 2.18 0.9672
Ve scaling 459.1620 110.0078 13570.0000 0.9462 scaling 0.8052 0.0189 8.21e-4 0.92 0.9497
vy scaling 240.9406 17.6051  616.5186 0.9965 Full pipeline, i.e., test on Tprea

val 2.3194 0.0841 2.75e-2 27.79 0.7510
scaling 2.0511 0.0394 4.42e-3 10.02 0.8708
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Methodological Adaptations Slight adjustments to chunk size, overlap, data split, and architecture yield better
performance compared to those used on the baseline dataset, see Appendix [A.2.T]for details. Visual inspection of
input % in Figure [5|reveals fewer but larger-scale features. Therefore, training can benefit from a larger spatial context,
which requires more training data. We increase the number of training samples by using three out of the four available
datapoints for training and one for validation. For the streamlines computation, we switch to an explicit fourth-order
Runge—Kutta scheme, which proved stable and sufficient for training and inference due to the lower frequency in k.

Performance and Scaling Tests In Step 3, we reach an even lower maximum absolute error L, of 0.82 °C compared
to 2.90 °C of our initial model on the baseline dataset (Section [f)). Other metrics confirm a similar performance;
see Table[3] In the scaling test, most errors are comparable too. For the full pipeline, errors are slightly higher on the
validation and scaling data compared to an isolated Step 3, consistent with our observations on the baseline dataset
(Table[3). Physical consistency, which is our primary objective, remains strong: Shape, magnitude, and connectivity of
the predicted heat plumes are well preserved, even in the scaling test (Figure[3). Local deviations are primarily due to
differences between iy and Upreq, as evident from the discrepancy between Step 3 and full pipeline outputs.
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Figure 5: pki — T (realistic dataset, scaling). 1st & 2nd column: Label 7" and input k. 3rd-4th column: LGCNN
(isolated Step 3 and full pipeline).

8 CONCLUSIONS AND FUTURE WORK

In real-world scientific applications, data is often very limited. At the same time, models are expected to generalize and
scale to large domain sizes, pushing standard data-driven models to their limits. To address this issue, we proposed
the LGCNN model, a hybrid, physics-inspired CNN approach. In the prediction of groundwater temperature fields
under arbitrary heat pump configurations and real permeability data, we identify long-range interactions driven by
advection as the problematic process for classical deep learning models, such as vanilla CNNs. We replace this part of
the prediction with a simple numerical solver, resulting in a sequence (CNN 1 — numerical solver — CNN 2). While this
setup is specific to groundwater heat transport, the general approach should be applied to a wider range of applications.
Finally, we stress that traditional error metrics can obscure effects like input sensitivity; therefore, we additionally rely
on visual assessments and problem-specific metrics such as PAT. In future work, we will address limitations through
dataset and respective code extensions to 3D and transient states, investigate input sensitivity, and accelerate streamline
computation.
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A APPENDIX

A.1 SIMULATION SETUP AND TRANSPORT REGIME

In Section[3] we describe how the two datasets are generated using the subsurface simulation software Pflotran (Lichtner;
et al., [2015a)), which solves the coupled mass and energy conservation equations. Here, we provide additional technical
details and modeling assumptions relevant for reproducibility. Furthermore, we show that for the selected parameters,
the heat transport in our system is dominated by advection by a theoretical analysis.

Hydro-geological, Operational and Simulation Parameters Our data was generated on 12.8kmx 12.8kmx5m with
a cell size of Smx5mx5m for the baseline simulations. To test scalability, we also simulate a domain that is twice as
large in both z- and y-dimension for the baseline dataset, but only twice as large in y-dimension for the more realistic
dataset due to dimension restrictions of the available input data.

The baseline dataset uses a constant hydraulic pressure gradient Vp of 0.003 (Pelzer & Schultel 2024; geol [2022);
permeability field & is generated using Perlin noise (Perlin, |1985) within (1.02E-11, 5.10E-9) m?, and 100 randomly
placed heat pumps, which are all operating with a 5 i.e., C injection temperature difference compared to the surrounding
groundwater and an injection rate of 0.00024 m®/s. All values are based on realistic parameter ranges in the region of
Munich(geol 2022; Zosseder et al., 2022).

For the realistic dataset, instead of random permeability fields k, we use permeability field data that is derived from
borehole measurements in the Munich region(Bayerisches Landesamt fiir Umwelt, |2015)). Furthermore, based on
subsurface measurements, we set Vp = 0.0025 for these simulations. All other simulation parameters remain identical
to the baseline. Other subsurface and operational parameters are taken directly from |Pelzer & Schulte| (2024), which
also includes additional information about solver setup and boundaries. For mathematical details of the governing
equations, we refer the reader to |Lichtner et al.| (2015b); |]Anderson| (2007)); Delleur| (2016)).

Simplifications For simplifications, we refer to the (hydraulic) pressure field p throughout the paper. In our paper,
this field is the initial pressure field defined through the measured hydraulic head and is not the true pressure field at
quasi-steady state with spatial details resulting from permeability k variations in the domain and mass injections at the
heat pump positions. The true pressure field is only available after simulation (which we are avoiding for our approach)
and strongly interacts with the velocity field.

Péclet Number To quantify whether heat transport in our system is dominated by advection or diffusion, we compute
the dimensionless Péclet number (Rappl 2017), which is defined as
L-v

Pe ,
@

with the characteristic length L, the local velocity v, and the thermal diffusivity «, defined as

with k the thermal conductivity, p the density, and c, the specific heat capacity. We take the parameters of the solid
phase of our simulation inputs of

* Thermal conductivity: k = 0.65 W/(m - K)

* Density: p = 2800 kg/m?

* Specific heat capacity: ¢, = 2000J/(kg - K)

This yields a thermal diffusivity of:

0.65

=———— ~1.16x 107 m?/s
@ = 2800 2000 ~ A6 107w/
The velocity values are derived by simulations, taken in the direction of flow (longitudinal) from the realistic k-dataset:

e Maximum: 1200 m/year ~ 3.8 x 10> m/s
* Minimum: 44 m/year ~ 1.4 x 10~ %m/s
e Mean: 330 m/year ~ 1.04 x 10~°m/s
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With a characteristic length determined by the heat plume length of 2000-6000 m and mean x-velocity, we get:

L
o«

Pe ~L-10% ~10°

The interpretation of the Peclet number is given by the following:

* Pe < 1: Diffusion dominates
* Pe = 1: Diffusion and advection similarly dominate
* Pe > 1: Advection dominates

Therefore, Pe ~ 10° indicates that in the simulations, the heat transport is advection-dominated at larger scales.

A.2 NEURAL NETWORKS, HYPERPARAMETERS AND TRAINING DETAILS

This section provides implementation and training details for all neural network models used in this work. We begin
with a description of the baseline UNet architecture, which also forms the foundation of both LGCNN and DDU-Net.
Then, we outline the hyperparameter optimization process and present the final configurations per model and dataset.
All models are trained using PyTorch (Paszke et al.,[2017).

UNet Architecture The UNet architecture used in this work is based on the original design presented by [Ronneberger
et al. (2015b), with several modifications to tailor it to the specific needs of our task of predicting temperature fields. In
this section, we introduce the key concepts that define the architecture and explain how they contribute to the model’s
design. These concepts will be employed in the hyperparameter search to identify the most suitable configuration,
taking into account memory and data limitations.

The UNet architecture essentially consists of a series of UNet blocks. Each block consists of the layers of "Convolution -
Activation - Convolution - Norm - Activation - Convolution - Activation" with convolutional layers, a batch normalization
layer, and activation functions. After each block, either an upsampling or a downsampling operation is applied via "Max
Pooling 2D" or "Transposed Convolution 2D" with stride 2. The depth of the UNet refers to the number of UNet blocks
in both the encoder and decoder. The number of initial features refers to the number of feature maps generated by the
first downsampling block. Each downsampling block produces twice as many output feature maps as input feature
maps, while each upsampling block reduces the number of feature maps by half. The number of convolutions per block
denotes how many convolutional layers are applied within each block, while kernel size specifies the size of the kernels
used in the convolutional operations. Additionally, we explore different activation functions (ReLU, tanh, sigmoid, and
LeakyReLU) and various normalization strategies (batch normalization, group normalization, and no normalization).
The UNet block exists in 2 variants, depending on the hyperparameter repeat inner: If repeat inner = False, the block
looks like this "Convolution - Norm - Activation", if it is True, the block looks as described above.

The training process also involves several hyperparameters. The learning rate controls how quickly the model adjusts
its parameters during training. The weight decay parameter helps prevent overfitting by penalizing large weights in
the model. Furthermore, the Adam optimizer (Kingma, |2014) is employed as optimizer. For the realistic permeability
field, we additionally introduce the optimizable hyperparameter optimizer switch, which, when enabled, switches the
optimizer to LBFGS after 90 epochs.

During inference, each datapoint is processed as a whole, but during training, they are loaded in smaller patches cut out
from the datapoint. Optimized hyperparameters include their overlap, i.e., inverse of skip per direction, and their size,
called box length. The data split is untouched by this, i.e. one simulation run per train / val / test separately. This is
important to not overlap test patches with training ones.

A.2.1 HYPERPARAMETERS AND HYPERPARAMETER OPTIMIZATION

We optimize the hyperparameters of our architecture, training process and data loading in several rounds with Op-
tuna (Akiba et al.;[2019) and additional manual tweaking. Optuna performs optimization using a tree-structured Parzen
estimator algorithm. An overlook of all considered hyperparameters, their ranges and our final choice, as well as the
hyperparameters fixed during optimization is provided per used model architecture and dataset, e.g., purely data-driven
approaches, LGCNN on individual steps or the full pipeline, on datasets of random k versus realistic k.

Vanilla UNet The vanilla UNets,, trained using the following hyperparameters: a batch size of 20, kernel size of 5,
and a network depth of 3. The number of initial features was set to 32, with a stride and dilation of 1. We used the ReLU
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activation function in combination with batch normalization. The inner block was not repeated (repeat_inner =
False). No cutouts are applied during training (bool_cutouts = False),i.e., the model is trained on the whole
datapoint at once.

The inputs to the model are pki (pressure field, permeability field, and location of heat pumps). For training, the Mean
Absolute Error (MAE) loss function was used, and optimized with the Adam optimizer. The learning rate is set to
1 x 1072, The model is trained for 10,000 epochs.

Hyperparameters for purely data-driven approaches The values considered during hyperparameter optimization
for the UNet and DDUNet, trained on 73 datapoints and performed using Optuna (Akiba et al.|[2019)), along with the
best settings found, are listed in Table[6} Certain hyperparameters were fixed: we set the number of epochs to 750,
with an early stopping criterion based on validation loss and a patience of 80 epochs. Additionally, we note that some
hyperparameter combinations (e.g., 32 initial features, depth 6, and 3 convolutions per layer with a kernel size of 7)
caused memory issues, leading to their exclusion from the hyperparameter search.

Table 6: Overview of used hyperparameters for the UNetjg14, and 2 x 2 DDUNety¢14;, their search ranges (if
applicable), and best values across training stages. Note that the number of communicated feature maps in the vanilla
UNet is simply an extra convolution layer in the coarsest part of the UNet (without communication).

Hyperparameter Range pki = vvy (Step 1) kivyvyss, — T (Step 3) pki — T (Full)
UNetjg1qp 2 x 2DDUNetyg14, UNetigrqp 2 X 2DDUNetyg1q,  UNetygrqp 2 x 2DDUNetyg14p
Dataset
Batch size (train) 4,6,8 4 6 6 4 6 6
Include pressure field True, False False False - - False False

Encoder-decoder properties

Depth 4,5,6 6 5 6 6 5 5
No. initial features 8, 16, 32 8 16 8 8 8 16
No. convs. per block 1,2,3 1 1 3 3 3 3
Kernel size 3,5,7 7 7 3 5 7 7
Communication Network
No. comm. feature maps 64, 128, 256 64 128 256 64 256 256
Training
Learning rate [le-5, le-3] 0.00024 0.00100 0.00017 0.00030 0.00024 0.00024
Weight decay 0.0, 0.001 0.0 0.0 0.0 0.0 0.0 0.0
Train loss MSE, L1 MSE MSE L1 MSE MSE MSE

After the hyperparameter search, the values corresponding to the best-performing model (based on Huber loss for the
validation dataset) were selected. With these values fixed, five models were trained using different randomly sampled
initializations to evaluate sensitivity to random initialization, for these values see Tables[T0|and [T1]

LGCNN Hyperparameters - on Random Permeability The values considered during hyperparameter optimization
with Optuna (Akiba et al.,|2019) and the best settings found for both steps of LGCNN are listed in Table[/] Although
the optimization was originally run for 100 epochs, the optimum was consistently found within the first 25 epochs.
Therefore, to reduce computation cost, we therefore conservatively lowered the maximum number of epochs to 50.
This adjustment does not affect any of the reported metrics in the paper.

Fixed parameters for this hyperparameter search are the learning rate (fixed at 10~%), ReLU as activation function,
the batch size of 20, and the use of a batch normalization layer within the inner blocks of the UNet architeture. The
validation loss used for selecting the optimal model is the MAE.

LGCNN Hyperparameters - on Real Permeability The values considered during hyperparameter optimization on
the dataset with a more realistic permeability field were selected using Optuna (Akiba et al.,2019), and are summarized
in Table|8] along with the best configurations found for both steps of the LGCNN. The optimization was run for up
to 100 epochs. For more background on the network architecture and the various hyperparameters, cf.[A.2] Several
hyperparameters were fixed during this process. These include a constant learning rate schedule, an Adam optimizer
with a weight decay of 10~*, and, when enabled, a switch to LBFGS after 90 epochs. Fixed architectural parameters
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Table 7: LGCNN-Random k: Hyperparameter optimization: Parameter ranges and best configurations.

Parameter Range Iststep  3rd step

Parameters of the Dataset
v (p,isk)

inputs pik WU, 8Sok
14,8, 16,32, 64
skip per direction Y 16 8
T:8,16,32,64
box length 64, 128, 256, 512 256 256
Parameters of Training
loss function (training) MAE, MSE MSE MAE
optimizer Adam, SGD Adam Adam
Parameters of the Network
No. initial features 8, 16,32, 64, 128 32 32
kernel size 3,4,5 5 4
:1,2,3,4
depth viha 4 4
T:1,2,3

include a convolutional stride and dilation of 1. During training, the inputs were cut out from the full datapoints. For
model comparison, the validation loss was consistently computed using the Huber loss.

A.3 ADDITIONAL EXPERIMENTAL RESULTS

This section provides additional experimental results. While the main results section focused only on the test and
scaling datasets, we also include here the metric values on the training and validation datasets. For completeness and
easier comparison, the test and scaling metrics are re-listed as well.

Purely data-driven UNet, DDU-Net: Metrics of training and ablation study Table[9 presents all the metrics for
predicting the temperature field directly from the inputs pki using a data-driven approach, evaluated on the training,
validation, and test datasets. The results are provided for several models: (1) UNet trained on only 1 datapoint and
tested and validated on 2 additional datapoints, (2) a UNet trained on 73 datapoints (73-18-10 train-validation-test split),
and (3) a DDUNet trained on the same 73 datapoints dataset, operating on 2 x 2 subdomains. Furthermore, to assess
the model’s sensitivity to random initialization, the training of the same architecture was repeated five times for the
most relevant models. Based on these repetitions, the mean and standard deviation of the performance metrics were
computed using the following equations:

i=1 i=1

where x; denotes the metric value from the i-th training run, and n = 5 is the number of runs. These results are
summarized in Table[I0]and Table[IT] The choice of n = 5 was made empirically to balance computational effort and
statistical reliability. The standard deviations in Tables[I0]and[IT|were used as validation: they are neither excessively
large (indicating instability) nor unrealistically small (indicating insufficient sampling).

In addition to testing the UNet and DDUNet trained on 73 datapoints on the 1014, test dataset, we also evaluate these
models on the same datapoint used to test the UNetspp.

LGCNN: Metrics of training and ablation study The results of the LGCNN and DDU-Net, evaluated on both
synthetic and realistic permeability fields, for the training, validation, testing, and scaling datasets are shown in Table
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Table 8: LGCNN-Real k: Hyperparameter optimization: Parameter ranges and best configurations.

Parameter Range model ¥ model T’

Parameters of the Dataset

inputs v : ki, pik, gik, gk, pk pik
T :ivgvyssok W50y 880k
batch size 2,4,8,16 8 8
skip per direction 256, 128, 64, 32, 16, 8 8 8
box length 1280, 640 1280 1280
Parameters of Training
loss function (training) MSE, MAE MSE MSE
optimizer switch True, False False False
learning rate le-3, S5e-4, 1e-4, 5e-5 le-4 le-4
Parameters of the Network
No. initial features 8, 16, 32 16 16
kernel size 3,5 5 5
depth 4,5,6 6 6
repeat inner True, False False False
activation function relu, tanh, sigmoid, leakyrelu relu relu
layer norm batch-, group-, None batch- batch-

Table 9: Performance metrics for predicting 1" with different models and datasets. Errors in [°C], MSE in [°C], PATs in
[%] and SSIM unitless. The LGCNN-test dataset corresponds to the 1 datapoint used for testing the LGCNN approach.

Model Data Case Huber L., MAE MSE PAT SSIM
train 0.0020 2.4954 0.0404 0.0040 6.43 0.8281

UNetzpp randomK3 val 0.0269 5.2901 0.1365 0.0574 38.82 0.5717
test 0.0235 4.8642 0.1314 0.0492 39.05 0.5794

_ train 0.0010 4.2443 0.0172 0.0021 2.34 0.9960

= E val 0.0051 4.1972 0.0441 0.0106 12.68 0.9859
% h test 0.0050 4.2140 0.0426 0.0104 11.90 0.9869
* LGCNN-test 0.0048 4.3985 0.0473 0.0100 13.63 0.9827

* scaling 0.0016 4.3426 0.0202 0.0033 4.33 0.9955

- _ train 0.0018 3.8100 0.0236 0.0038 4.47 0.9940
% E val 0.0079 4.0084 0.0550 0.0165 17.03 0.9825
8 = test 0.0076 3.7006 0.0549 0.0159 17.14 0.9835
‘;2 * LGCNN-test 0.0063 3.4257 0.0548 0.0128 17.42 0.9804
o * scaling 0.0025 4.1806 0.0235 0.0052 6.11 0.9940
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Table 10: Statistics for predicting 7" with different models and datasets. Errors in [°C], MSE in [°C], PATs in [%] and
SSIM unitless. The LGCNN-test dataset corresponds to the 1 datapoint used for testing the LGCNN approach. Mean +
standard deviation reported.

Model Data Case Huber Loo MAE MSE PAT SSIM

& & train 0.0025 4+ 0.0024 4.69 +0.17 0.0155 £ 0.0071 0.0063 +0.0062 1.92+1.16 0.981 +0.012
§ _§ val 0.0219 4+ 0.0008 4.89 +0.07 0.1114 £0.0023 0.0474 £ 0.0019 34.76 £0.99 0.696 + 0.006
=] § test 0.0176 4+ 0.0006 4.85+0.09 0.1043 £ 0.0018 0.0368 £ 0.0015 34.76 £0.76 0.703 4 0.006

_ train 0.0011 +0.0002 4.37 +0.20 0.0182 £ 0.0020 0.0023 £ 0.0004  2.45 £ 0.27 0.995 % 0.002
§ E val 0.0055 4+ 0.0003 4.36 £0.16 0.0454 £ 0.0019 0.0114 £ 0.0006 12.96 £+ 0.55 0.984 4+ 0.002
,§ h test 0.0052 4+ 0.0003 4.35+ 0.23 0.0441 £0.0019 0.0110 £ 0.0006 12.49 £+ 0.48 0.985 % 0.002
% * LGCNN-test 0.0049 + 0.0002 4.30 £0.16 0.0470 £ 0.0010 0.0102 4+ 0.0004 13.51 £0.59 0.983 %+ 0.002

* scaling 0.0017 +0.0001 4.48 +0.15 0.0208 £0.0014 0.0035 £+ 0.0002  4.38 £0.17 0.995 + 0.001
§ _ train 0.0014 4+ 0.0003 4.11 +0.25 0.0203 £ 0.0026 0.00300 £ 0.0007 3.24 £ 0.68 0.995 %+ 0.001
g E val 0.0079 4+ 0.0002 4.20 + 0.25 0.0564 £ 0.0008 0.01648 £ 0.0005 17.32+0.22 0.981 + 0.002
% h test 0.0075 4+ 0.0001 4.05 + 0.22 0.0552 £ 0.0008 0.01580 £ 0.0002 16.94 £0.36 0.982 % 0.001
8 * LGCNN-test 0.0057 4 0.0003 4.00 & 0.20 0.0526 £ 0.0015 0.01171 4+ 0.0006 16.44 4+ 0.63 0.981 £ 0.002
(;"( * scaling 0.0025 4+ 0.0001 4.04 +0.20 0.0251 £ 0.0007 0.00514 £ 0.0002 6.39 £0.17 0.994 + 0.001
- - train 0.0001 4+ 0.0001 2.64 £ 0.18 0.0064 £ 0.0008 0.0003 £ 0.0001  0.29 £0.08 0.996 4+ 0.001
% %5 T val 0.0032 4+ 0.0001 2.49 +0.29 0.0413 £0.0008 0.0065 4+ 0.0003 10.88 £0.35 0.912 % 0.003
§ é % test 0.0025 4+ 0.0000 2.74 +0.33 0.0382 £ 0.0006 0.0049 £+ 0.0001  9.44 £+ 0.35 0.918 + 0.003

- scaling 0.0008 4+ 0.0000 3.03+0.31 0.0179 £0.0006 0.0016 +0.0001  2.54 £0.14 0.946 + 0.005

Table 11: Statistics for predicting ¢ with the randomK dataset. Errors in [m/y], MSE in [m?/y?], SSIM unitless. Mean
=+ standard deviation reported.

Model Data Output Case Huber Lo MAE MSE SSIM

[ train  14.11 & 11.52  96.63 +-23.29 14.60 & 11.53  380.19 £ 529.31 0.997 + 0.002

Vy train 1430 £7.10 13526 £20.36 14.80 = 7.11 361.61 £ 296.21 0.991 + 0.006

- Vg val 2823+ 776 445.13 43550 28.724+7.77 1601.10 £ 587.80 0.989 4 0.003

% E Vy val 27.33 £2.25 34335 +26.80 27.82+225 1587.57 +252.10 0.982 + 0.002
3 ':% [ test 2694 +599 216.74 +18.92 2744 +5.99 1368.52 £ 431.48 0.990 £ 0.002
- Vy test  30.38 & 6.18 249.11 4= 11.37 30.88 - 6.18 1848.47 £ 637.10 0.982 =+ 0.005

Vg scaling 27.89 + 6.53 286.08 +22.96 28.38 4+ 6.53 1486.23 £ 451.52 0.990 £ 0.002

Vy scaling 27.60 + 2.43 328.80 +24.95 28.09 +2.43 1578.87 £ 258.66 0.979 £ 0.003

Vg train  29.66 + 2.29 592.17 +37.66 30.16 2.29 2326.33 £ 327.11 0.988 4 0.005

Vy train  28.93 £547 397.09 £72.78 29.43 + 547 1778.28 +551.97 0.997 + 0.009

% 4 Vg val 2217 +£224 17047 £9.75 22.66 2.24  909.39 + 139.94  0.988 £ 0.002
§ § Vy val  20.20 +=4.07 113.33 4+ 12.37 20.70 =4.08 645.11 = 221.50 0.997 % 0.001

Vg scaling 79.33 = 21.80 532.35 4 140.50 79.83 £ 21.80 9404.62 £ 4048.09 0.953 + 0.014
Vy scaling 53.39 4+ 12.64 602.41 4 128.79 53.89 £ 12.64 4621.25 + 1755.50 0.980 % 0.006
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(for Step 1 - predict Upreq) and Table (for Step 3 - predict T'). The column "data" refers to the dataset that a model was
trained on and applied to, i.e., "randomK" stands for the baseline dataset 3dp, "randomK101" for /01dp. An asterisk
indicates that the model was evaluated on a dataset different from the one it was trained on. Mostly relevant for the
vanilla approaches that are trained on /0/dp and applied to scaling and test of 3dp.

Table 12: Performance metrics for predicting @ with different models and datasets. Errors in [m/y], MSE in [m?/y?],

SSIM unitless.

Model Data Output Case Huber Lo MAE MSE SSIM
1st Step
Vg train 9.4732  132.6672 9.9620  171.0032 0.9972
Vy train 11.4005 223.4601 11.8902  275.6190 0.9937
E Vg val 222241 3439907 227179 1102.3721 0.9905
% -55 Uy val 26.6078 274.8036 27.1026 1524.5099 0.9841
3 Vg test 21.8237 190.8046 223178  972.5668 0.9911
Uy test 32.2488 256.2519 32.7444 2031.3357 0.9812
* Vg scaling 244314  294.0457 249261 1204.1154 0.9911
* Vy scaling 25.7847 367.6891 262795 1463.8218 0.9820
Experiment: trained on full image
Vg train 3.1983  39.9380  3.6714 21.5058  0.9993
Uy train 3.0496 439018  3.5177 21.4905  0.9988
% E Vg val 252418 417.1447 257367 1421.6547 0.9896
§ g Vy val 29.6294  276.8029 30.1247 1827.3134 0.9824
Vg test 233646 202.6397 23.8584 1144.4479 0.9913
Vy test 35.4289 3329557 35.9249 2490.4104 0.9789
Replace with UNet-101dp, i.e., 1 X 1 subdomain-DDUNet, trained on 101 datapoints
Vg train 3.5468 678.7761 4.0134 86.6731  0.9767
S Uy train 4.1030  690.1506  4.5816  100.2767 0.9934
é Vg val 3.8368 647.1833  4.3058 90.3292  0.9739
-~ S Uy val 43649  685.6656  4.8433 102.8601  0.9931
%0 § Vg test 3.6643  584.8119  4.1325 83.4062  0.9731
g Uy test 4.1355 547.8865 4.6131 87.7819  0.9924
® Vg LGCNN-test 12.2161 1047.8464 12.7036  896.2758 0.9016
* Vy LGCNN-test 13.9033 2594.9504 14.3878 2317.6863 0.9903
® Vg scaling 47412 659.8439 5.2152 79.2508  0.9699
* Vy scaling 52686 456.1904  5.7492 83.9735  0.9948
Replace with 2x2-DDUNet-101dp, i.e.,2 X 2 subdomains
Vg train 53928  422.4526  5.8815 57.6045  0.9580
S @y train 4.0476  696.2919 45116 58.8457  0.9972
é Vg val 5.7663  471.6309  6.2545 76.4372  0.9552
. £ Uy val 45085 644.1844 49751 71.5679  0.9973
%0 E Vg test 5.5847 319.9844  6.0735 59.2501  0.9526
8 Uy test 42292 535.0656  4.6948 54.5020  0.9972
* Vg LGCNN-test 13.1829 2453.5881 13.6735 1367.9061 0.9325
* Uy LGCNN-test 14.6481 2029.0269 15.1332 2221.4226 0.9919
* Vg scaling 7.6311 4214186 8.1184 1259511 0.9314
* Uy scaling 6.9406 400.2490  7.4200  135.7929 0.9955
Domain Transfer, i.e., to more realistic data
Vg train 13.6890 122.7981 14.1819  340.6713 0.9973
X Vy train 9.0680 712576  9.5619 126.7222  0.9991
% § Vg val 149187 106.8607 15.4095  380.3762 0.9939
8 Wy val 10.1675  74.5570  10.6605  148.2475 0.9993
* Vg scaling 109.5079 459.1620 110.0078 13570.0000 0.9462
* Vy scaling 17.1118  240.9406 17.6051  616.5186 0.9965

LGCNN+random k: Performance of Step 1 The model generally obtains good results in Figure 3] even for cells

that are far away from injection points.
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Table 13: Performance metrics for predicting 7" with different models and datasets.

in [%], SSIM unitless.

Errors in [°C], MSE in [°C?], PATs

Model Data Case Huber L., MAE MSE PAT SSIM
3rd Step: trained and applied to vs;m,
X train 1.87e-5 2.2536 0.0014 3.95¢-5 0.03 0.9997
% .5 § val 0.0027 2.8857 0.0369 0.0054 8.61 0.9283
§ Eg test 0.0021 2.8990 0.0347 0.0041 7.54 0.9304
® scaling 0.0007 3.0250 0.0168 0.0014 2.05 0.9510
Full Pipeline, i.e., Step 3 trained on vs;m , but applied to vpreq
é'ﬁ train 0.0121 5.1006 0.0642 0.0272 18.17 0.8700
% .§§ val 0.0188 4.2264 0.0967 0.0411 28.96 0.7625
8 = test 0.0147 4.2120 0.0905 0.0307 28.92 0.7637
* scaling 0.0065 4.9366 0.0413 0.0141 10.87 0.8654
Experiments on 3rd Step
Trained in sequence, i.e., trained on vprcq
% é"ﬁ train 0.0032 4.0750 0.0198 0.0068 3.73 0.9794
8 ég val 0.0195 3.8178 0.1003 0.0423 30.46 0.7442
= €7 test 0.0139 4.0804 0.0901 0.0289 29.44 0.7553
Trained with zero-padding
z, M train 0.0002 1.8465 0.0140 0.0004 0.33 0.9518
é _§§ val 0.0032 2.9051 0.0465 0.0064 11.31 0.8686
—~ 5, test 0.0024 2.3391 0.0418 0.0048 9.19 0.8838
Trained on full image
% é . train 0.0002 3.5648 0.0022 0.0004 0.09 0.9992
8 .§§ val 0.0027 3.5088 0.0375 0.0055 8.81 0.9217
~ s test 0.0021 3.6420 0.0351 0.0043 7.41 0.9245
Replace with UNet-101dp: Step 3 trained and applied on vgm
_ train 0.0019 3.8491 0.0283 0.0038 5.35 0.9911
3 E val 0.0027 3.9381 0.0350 0.0055 8.89 0.9895
é = test 0.0025 3.7999 0.0343 0.0052 8.50 0.9903
Ao LGCNN-test 0.0032 4.4658 0.0416 0.0067 11.69 0.9835
® scaling 0.0010 4.3489 0.0176 0.0022 3.07 0.9954
Replace with 2x2-DDUNet-101dp: Step 3 trained and applied on vg;m
_ train 0.0015 4.0624 0.0200 0.0032 3.44 0.9952
25 E val 0.0040 4.1863 0.0410 0.0083 12.54 0.9904
8 = test 0.0039 4.0807 0.0411 0.0081 12.67 0.9910
Ao LGCNN-test 0.0029 4.2772 0.0376 0.0058 10.96 0.9915
* scaling 0.0012 3.9946 0.0192 0.0025 4.73 0.9968
Domain Transfer, i.e. to more realistic data
3rd Step
Z M £ train 0.0002 0.7704 0.0139 0.0005 0.43 2.9107
é Ea; val 0.0005 0.8222 0.0175 0.0010 2.18 0.9672
= scaling 0.0004 0.8052 0.0189 0.0008 0.92 0.9497
Full Pipeline
z M T train 0.0049 2.5437 0.0534 0.0100 17.58 2.4923
§ @5 val 0.0137 2.3194 0.0841 0.0275 27.79 0.7510
- scaling 0.0022 2.0511 0.0394 0.0044 10.02 0.8708
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Figure 6: Prediction of ¥ with LGCNN. Left: Test datapoint with labels v, and vy. Middle: Step 1 prediction for v, vy. Right:
Error of the v,, v, prediction.

LGCNN+random k: Experiment on Inputs to Step 3 Additional tests show that excluding other inputs, either
1 alone or both ¢ and k, raises prediction error by 58—121%. We also evaluated alternative time-stepping schemes
for solving the IVP. Replacing the Sth-order implicit Runge—Kutta method with explicit 2nd- or 4th-order schemes
accelerates computation, but increases prediction error by 16-23%—a moderate degradation compared to the complete
removal of streamline inputs. Nonetheless, we retain the implicit scheme for its superior accuracy and stability.
Quantitative and qualitative results for the predictions are shown in Figure [7]and Table [T4]

Table 14: Experiment on 3rd step: Test metrics for predicting 7" with different input combinations. Errors in [°C], MSE
in [°C?], PAT in [%], SSIM unitless.

Inputs Huber L., MAE MSE PAT SSIM
1kvg vy 0.0070 2.2990 0.0712 0.0139 25.55 0.7662
ikvzvy s 0.0041 1.8674 0.0545 0.0083 20.56 0.8368
kv Vy 50 0.0057 2.6623 0.0598 0.0114 20.64 0.8423
ikvzvy 55, (not faded) 0.0072 2.3039 0.0744 0.0144 21.40 0.7837
tkvgvyssh 0.0031 1.8364 0.0442 0.0062 12.97 0.8828
Vg Uy 580 0.0066 2.1301 0.0647 0.0132 20.64 0.8681
kvgvy 85, 0.0049 2.0925 0.0587 0.0097 20.32 0.8732

explicit RK, order 4 0.0038 3.2636 0.0486 0.0076 15.80 0.8871
explicit RK, order 2 0.0036 2.2034 0.0463 0.0072 13.75 0.8830
? new run to be comparable to the others in this experiment: trained

with Huber validation loss, hence the results differ slightly wrt. to Table

LGCNN-+realistic k: Performance of 3rd step and full pipeline The qualitative performance is observable in
Figure[8] where we see coherent streamlines and plume structures for both the isolated 3rd step and the full pipeline.

Training and inference times Table @ summarizes the training and inference times, number of epochs, and dataset
splits (train:val:test) for each of the three steps in our pipeline, both for the LGCNN trained on partitioned and full

22



Under review as a conference paper at ICLR 2026

Label T Predicted T - Inputs ikvyvy, Predicted T - Inputs ikvxvys

2500 rede ‘
& \/ L Lg\ & (5 l ( s Wl 1\ \ \ \ \ . ’\)y”\{ M \ '\(\ ( (\ “ .
2000+ \ff" ﬂ/()& Y/ /| \/ J\ ) COY SN G

H s) | \ | —
el 0L ) é( Bl NPT QYA
: LA : g V(1 )/ DT e
&l 5 ) 13?; { 13§ iy ‘/( {\‘ ) ‘ﬁﬂ \‘ 13§
> 1000 ‘2( E ) ‘ g | ' ‘I’U v\\f(/( {f\/' \} g
2" (@ \ ) 12" “‘ ! [ \ ) ) e

500 ( ? /';l( 1 /| "},;,\( |\ ) /‘ (

0
Predicted T - Inputs ikvyvys, Predicted T - Inputs ikvyvyss, (not faded) Predicted T - ikvxvyss,

!

TS T I AT T VY
2000 ( l(,‘.&_,‘w}!‘” "y k?}\ é}(‘&
1500 (\ b ) Y [J Ly / 1“3 ‘ ,‘ { ‘I‘
’ v', A ‘-" 13 \\/}'\' :/\‘
‘.“t./ (kl\w
s I I

Q‘(b)/

-

=

y [cells]
=

- \\/\
S
S =
S
_ A
e
— ~
= =
) kN
Temperature [° C]

Temperature [* C]
=
W
Temperature [° C]

/-\_
I
e
=
—
_— <

.

1000 r\]rf‘
2 | \«/Xg,
11 ‘> }” /S

2500

2000

14
1500

y [cells]

1000

,_.
w
Temperature [° C]
—
]
Temperature [° C]
Temperature [° C]

12 12

50

S

H
Hiﬁ

2500 10 10
2000 | 08 08
9 9 )
5 15001 | 06y 06y ‘v
3 ) E] E E
A o I o
> 1000] | 048 0ad g
T E £ £
e & e
500 0.2 02
o 0.0 0.0
Abs. error T - ikvxvyss,
2500 pe v , 10 10
‘1 / (Q (’ ])
2000 il \‘ 08 08
(
| ‘/ ) (\j\)(\\u (I G G c
& 1500 (O \' (A1 ( 065 065 =
Z I\ ¢ w‘ " () 1 2 2 2
g VAW ( // W [) 8 8 g
- ( ¢
1000 W ¢ ? ( 042 04 g g
S’)g\l,‘//g‘< i ) ”\ N e e 2
RACLT \ " 44 S
5001 | ¢ ) ‘) o ) 02 02
V! )
) {
' r A\ )
o 0.0 0.0 .0
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
x [cells] x [cells] x [cells]

Figure 7: 1st Column: Label, input &, 2nd-5th: Without (s, s,), (So), (s), not-faded streamlines (s, s,), 6th: include all inputs,
7th-8th: Without (i, k), (i). Absolute errors capped at 1°C for better visualizations. Maximum errors are listed in Table[T4]
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Figure 8: 1st Column: Label, input k. 2nd Column: 3rd step prediction of 7" and error with respect to the label. 3rd Column:
Predicted 7" and error of the full pipeline.

datasets. Although both approaches exhibit similar inference times, they show significant differences in training time,
with the partitioned approach yielding better results.

Table 15: Training measurements on the randomK dataset.
Data Points Epochs® Training Time” Inference Time

(train:val:test)

1st Step (partitioned)  20,736:1:1 19 9.5 min 0.02s
1st Step (full) 1:1:1 9,688 92.6 min 0.02s
2nd Step 1:1:1 - - 9.82s
3rd Step (partitioned)  82,944:1:1 14 31.5 min 0.03s
3rd Step (full) 1:1:1 9,671 92.1 min 0.02s

“Early stopping: measurements until best validation loss.

In Table|16] the number of epochs and the total training time for the data-driven approaches are shown. For Step 1, both
the UNet and DDUNet need many epochs and comparable training time to converge; however, for the third step and the
full pipeline, the DDUNet significantly reduces both the number of epochs and the total training time required to reach

convergence.

A.4 HARDWARE SPECIFICATIONS

The 2x2 DDU-Net¢14, and UNet;¢;4, models, trained on the large data-driven dataset of 101 samples, were trained
and evaluated on a server using NVIDIA V100 GPUs with 32 GB memory. All training was conducted using PyTorch

2.1.0 with CUDA 11.6 acceleration.

Training and evaluation of the LGCNN model were performed on a single NVIDIA A100-SXM4 GPU. Data generation
was carried out on a dual-socket system equipped with AMD EPYC 9274F CPUs.
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Table 16: Training measurements for the data-driven approaches trained on the /0/dp dataset

DDUNetj()]dp .
Epochs® Training Time®

1st Step

UNet1o1dp 738 5.497 hours
2x2 DDUNety914p 735 4.787 hours
3rd Step

UNet101dp 726 8.343 hours
2x2 DDUNety014p 303 3.508 hours
Full Pipeline

UNet1o1dp 267 3.680 hours
2x2 DDUNet1014p 97 1.222 hours

“Early stopping: measurements until best validation loss.

A.5 GLOSSARY

A list of the most relevant physical properties used in our paper is provided in Table[T7]

Table 17: Glossary of Abbreviations.

Abbr. | Parameter
t | time
X (to) | property X at initial time
X (tena) | property X at quasi steady-state
Xprea | predicted property X
¢ | positions of heat pumps
Qinj | injected mass rate
AT;y; | injected temperature difference
k | permeability
p | hydraulic pressure
g = Vp | hydraulic pressure gradient
U= (vg,vy) | flow velocity
§ | both streamline fields
s | central streamlines after all ¢
So | streamlines with transversal offset to i
T | temperature
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SUPPLEMENTARY MATERIAL

The supplementary material contains the raw datasets, the most important trained models and the code basis for preparing
the raw data to train on, separate training routines and evaluation protocols for LGCNN (on real or synthetic/random
permeability fields), UNets,,, experiments with 3dp; and on the other hand everything with /0/dp: DDUNet;9;4p,
UNet 14y, experiments with 101dp.

Raw datasets:

* Dataset of random permeability with 3+1 datapoints (3dp + 1dp)
 Dataset of random permeability with 101 datapoints (/01dp)
 Dataset of real permeability with 4+1 datapoints

Trained models (including hyperparameters):

« vanilla approaches trained on random permeability fields, 3dp: UNets,,

* vanilla approaches trained on random permeability fields, /0/dp: DDUNet;9;4,, UNet;o14,
* LGCNN on random permeability fields, 3dp

* LGCNN experiment: replace isolated steps 1 and 3 with DDUNet;9;4,, UNet;o14,

* LGCNN on real permeability fields, 4dp

Code (including training and evaluation routines):

* Repository of 101dp-vanilla approaches (DDUNet;;4,, UNet;¢;4,, also experiment "replace isolated steps")

* Repository LGCNN + UNetsy, (including preparation script for datasets to prepare datasets, for all models
and approaches)

All  supplementary  material can  be  accessed via  SURFDrive, through  this  link:
https://surfdrive.surf.nl/files/index.php/s/f30qg3ufir9T9LL.

26


https://surfdrive.surf.nl/files/index.php/s/f3Oqg3ufir9T9LL

	Introduction
	Related Work
	Datasets and Metrics
	Application of Purely Data-Driven Approaches
	Methodology
	Results on Synthetic Permeability Fields
	Performance of LGCNN
	Ablation Study

	Domain Transfer to Real Permeability Fields
	Conclusions and Future Work
	Appendix
	Simulation Setup and Transport Regime
	Neural Networks, Hyperparameters and Training Details
	Hyperparameters and Hyperparameter Optimization

	Additional Experimental Results
	Hardware Specifications
	Glossary


