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ABSTRACT

Generalization—the ability to perform well beyond the training context—is a
hallmark of biological and artificial intelligence, yet anticipating unseen fail-
ures remains a central challenge. Conventional approaches often take a bottom-
up mechanistic route by reverse-engineering interpretable features or circuits to
build explanatory models. However, they provide little top-down guidance such
as system-level measurements that predict and prevent failures. Here we propose
a complementary diagnostic paradigm for studying generalization failures. Rather
than mapping out detailed internal mechanisms, we use task-relevant measures to
probe structure—function links, identify prognostic indicators, and test predictions
in real-world settings. In image classification, we find that task-relevant geomet-
ric properties of in-distribution (ID) object manifolds consistently signal poor out-
of-distribution (OOD) generalization. In particular, reductions in two geometric
measures—effective manifold dimensionality and utility—predict weaker OOD
performance across diverse architectures, optimizers, and datasets. We apply this
finding to transfer learning with ImageNet-pretrained models, each available with
multiple weight variants. We consistently find that the same geometric patterns
predict OOD transfer performance more reliably than ID accuracy. This work
demonstrates that representational geometry can expose hidden vulnerabilities,
offering more robust guidance for model selection.

1 INTRODUCTION

Biomarkers—Ilike blood pressure or cholesterol levels—are indispensable tools for anticipating
health risks before symptoms emerge. Throughout the history of medicine, physicians have of-
ten utilized these diagnostic measures effectively before figuring out all the biological details. ' This
pragmatic, top-down approach of correlating biomarkers with outcomes has thus driven medical
progress, while simultaneously providing the foundational insights for figuring out causal mecha-
nisms. In neuroscience, the same methodology has been fruitful: single-neuron and population-level
signatures have served as useful analysis units, revealing principles of coding and computation often
before a full mechanistic understanding (Rigotti et al., 2013; Barak et al., 2013; Mastrogiuseppe &
Ostojic, 2018; Stringer et al., 2019).

As deep neural networks (DNNs) become increasingly integrated into critical applications, a similar
challenge arises: how can we anticipate their unseen failures? This is particularly important under
distribution shifts where training and deployment environments differ (Sagawa et al., 2020a; Liu
etal., 2021; Yang et al., 2024). Current research often takes bottom-up, mechanistic approaches such
as mechanistic interpretability methods that aim to reverse-engineer DNNs’ internal computations
by identifying interpretable features (Olah et al., 2017; Yun et al., 2023; Cunningham et al., 2023),
functional circuits (Olah et al., 2020; Dunefsky et al., 2024), or causal structures (Mueller et al.,
2024; Geiger et al., 2025). While powerful, these methods typically yield insights at a microscopic
level (e.g., detailed features or circuits), yet they struggle to provide a macroscopic view of network
behavior that can guide the prediction and prevention of system-level failures.

!"The lipid hypothesis, for instance, linked cholesterol to cardiovascular disease risk well before lipid path-
ways were mapped. Similarly, selective serotonin reuptake inhibitors treated depression, informed by the sero-
tonin hypothesis, decades before serotonin’s precise role in mood regulation was fully understood.
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Here we propose a complementary perspective inspired by the history of medicine: a diagnostic,
system-level paradigm for understanding neural networks. Rather than attempting to reconstruct
their internal mechanisms, we focus on developing task-relevant measurements—markers for Al
models—that serve as reliable indicators of potential failure modes. Our methodology follows a
three-step cycle (Figure 1): (i) Marker Design: develop task-relevant measures to probe which
structures in neural networks (e.g., feature vectors, weights) relate to their function and perfor-
mance; (ii) Prognostic Discovery?: conduct medium-size experiments across diverse architectures
and hyperparameters, and identify patterns that serve as prognostic indicators—signals present in
in-distribution (ID) properties that can forecast future generalization failures without requiring any
knowledge of the out-of-distribution (OOD) tasks; (iii) Real-world Application: apply these in-
sights to practical settings, such as predicting which pretrained models will transfer more robustly
across datasets. We demonstrate this research cycle by using in-distribution-32) ID measures based
on task-relevant representational geometry to diagnose failure in eut-ef-distribution(OODB) OOD
generalization. Our framework points toward a diagnostic science of Al models, offering tools to
anticipate vulnerabilities and improve robustness in safety-critical domains.
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Figure 1: A diagnostic, system-level paradigm for studying generalization failures in DNNs, with
an example on image classification. See Section 1.1 for an overview.

1.1 OVERVIEW AND OUR CONTRIBUTIONS

In this work, we apply the proposed diagnostic, system-level paradigm to investigate failure
modes of OOD generalization in image classification. Our key finding is that feature over-
specialization—quantified by reduced effective dimensionality and utility of object manifolds—is
a reliable indicator of poor performance under class-level distribution shifts in transfer learning.

Marker design for image classification (Section 2). A central step in our diagnostic framework
is selecting and designing markers—scalar quantities computed entirely from ID data—that capture
aspects of a pretrained model relevant for downstream generalization. In image classification, we
focus on penultimate-layer feature vectors, as the final classification decision is obtained by a linear
readout from this layer. Accordingly, we evaluate a broad family of candidate markers, including:
(1) accuracy- and logits-based quantities, (ii) low-order statistical summaries of representations (e.g.,
sparsity, covariance structure), and (iii) geometric measures of class-conditioned point-cloud mani-
folds—such as participation ratio, within-class spread, neural-collapse metrics (Papyan et al., 2020;
Harun et al., 2025), numerical rank (Masarczyk et al., 2023; Harun et al., 2024), and task-relevant
geometric measures from the GLUE framework (Chou et al., 2025a).

Prognostic discovery of OOD generalization failures (Section 3). We conducted exploratory
preelinteal medium-size experiments to investigate whether these metrics can predict failures in
OOD generalization. Specifically, we trained a broad class of deep networks on in-distribution
(ID) data (e.g., CIFAR-10) and evaluated their OOD performance on datasets with disjoint classes
(e.g., CIFAR-100; Figure 3a,b). Our sweep spanned five architectures (e.g., ResNet, VGG), multi-
ple depths, two optimization algorithms (SGD, AdamW), and a grid of hyperparameters (learning

’In medicine, diagnostics identify present conditions, while prognostics forecast future risks. Our frame-
work is termed “diagnostic” broadly, with Step 2 specified as “prognostic discovery” to emphasize prediction
of OOD failures from ID data.
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rate, weight decay). We found that different training hyperparameters can lead to markedly differ-
ent OOD performance, despite nearly identical ID train and test accuracy. Task-relevant geometric
measures of ID object manifolds correlated far more strongly with OOD performance than con-
ventional performance metrics (e.g., ID accuracy) or statistical measures (e.g., sparsity, covariance)
(Figure 3c, top). In particular, reductions in effective dimensionality and utility consistently served
as prognostic indicators of OOD failure (Figure 3c, bottom). Together with prior work linking
representational geometry to feature learning (Chou et al., 2025b), these findings suggest that over-
specialized features undermine generalization performance, echoing previous accounts of shortcut
learning (Geirhos et al., 2020).

Applications to failure prediction in pretrained models (Section 4). Finally, we applied our
prognostic indicators to ImageNet-pretrained models from public repositories. In practice, when
selecting among multiple pretrained weights of the same architecture, the most common criterion
is test accuracy. Here, we measured the effective dimensionality and utility of ImageNet object
manifolds from 20 architectures available in PyTorch (e.g., RegNet, MobileNet, WideResNet), each
released with two weights (vl and v2); by construction, v2 achieves higher ID accuracy. Unlike
our controlled prognostic studies, these pretrained weights were produced under distinct training
recipes, regularization schemes, and preprocessing pipelines, making them a much more heteroge-
neous testbed. Nevertheless, consistent with the predictions from our medium-scale experiments,
models where v1 exhibited higher manifold dimension and utility than v2 also achieved better OOD
performance under vl weights—even though v1 had lower ID accuracy (Figure 5). This demon-
strates that ID representational geometry can serve as an early diagnostic for OOD robustness.

Summary. Our work demonstrates a diagnostic, system-level paradigm that complements conven-
tional mechanistic interpretability by focusing on predictive indicators of model failure. Our results
highlight how task-relevant geometric measures of ID representations can serve as markers for di-
agnosing failures in OOD generalization, even when mechanistic details remain opaque.

1.2  RELATED WORK

Representational geometry and generalization. A growing body of work suggests that proper-
ties of internal representations in DNNs can indicate generalization performance. In the standard ID
setting, both statistical features of activations—such as sparsity, covariance, and inter-feature cor-
relations (Morcos et al., 2018)—and geometric measures of object manifolds (Ansuini et al., 2019;
Cohen et al., 2020; Chou et al., 2025b) have been predictive. For example, networks that gener-
alize well often exhibit low intrinsic dimensionality in their final-layer representations, and such
compactness correlates with test accuracy in image classification (Ansuini et al., 2019). A related
phenomenon is neural collapse (Papyan et al., 2020), where within-class variability of final hidden
representations vanishes in the terminal phase of training.

The picture becomes more convoluted under distribution shifts. (Galanti et al., 2022) showed that
neural collapse can generalize to new data points and classes when trained on sufficiently many
classes with lots of samples. By contrast, (Zhu et al., 2023) found that encouraging diversity and
decorrelation among features improves OOD performance in image and video classification. Sim-
ilarly, in neuroscience, high-dimensional yet smooth population codes in mouse visual cortex have
been linked to generalization across stimulus conditions (Rigotti et al., 2013; Stringer et al., 2019).
These conflicting results call for more systematic study on how representational properties con-
nect to OOD generalization, and our findings—that OOD failures correlate with over-compression
of object manifolds—support these results on the advantage of high-dimensional representations.
However, most of these approaches rely on generic geometric or statistical descriptors that are not
explicitly tied to the computational task, whereas the GLUE measures we employ use the anchor
point distribution (Figure 2¢ and Section B.3) to directly link representational geometry to down-
stream linear classification performance.

Distribution shift in ML: detection, transfer, and prior approaches. OOD detection methods
aim to distinguish OOD samples from ID samples by examining differences in their feature represen-
tations or logit distributions. These approaches typically operate under label-preserving distribution
shifts, where the input distribution changes but the class label space remains the same. In contrast,
class-level OOD generalization—also called transfer learning—is substantially more challenging,
since the OOD task contains entirely unseen class labels. Performance in this setting is usually as-
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sessed by training a linear probe (often on the penultimate-layer features) of a pretrained network.
Several works have studied how architectural or representational factors influence this probe-based
OOD performance. For example, the Tunnel Effect papers (Masarczyk et al., 2023; Harun et al.,
2024) showed that the drop in OOD linear-probe accuracy across layers correlates with a drop in the
numerical rank of OOD features. Similarly, Neural Collapse—based analyses (Harun et al., 2025)
have examined how the extent of collapse (e.g., the A'C1 metric (Papyan et al., 2020)) relates to
OOD generalization performance across layers.

In this work, we incorporate several of these ideas into our marker design. For OOD detection
methods, many algorithms require access to OOD samples in their scoring pipelines, making them
incompatible with our ID-only diagnostic setting. However, methods that rely solely on logit statis-
tics or feature-level summaries can be adapted into scalar markers and included in our evaluation.
For the Tunnel Effect and Neural Collapse lines of work, we directly implement their corresponding
measures—numerical rank and feature-collapse metrics (e.g., N'C1)—and compare them against
our GLUE-based markers in the prognostic analysis. It is worth noting that both the Tunnel Ef-
fect (Masarczyk et al., 2023; Harun et al., 2024) and Neural Collapse (Harun et al., 2025) studies
primarily analyze how their measures vary across layers within the same model, rather than across
different models or training configurations. Our focus, in contrast, is on comparing models trained
under different hyperparameters or initialization regimes, which is the setting relevant for model
selection and prognostic prediction.

2 MARKERS FOR IMAGE CLASSIFICATION

Given a neural network with parameters 6 and an ID dataset Djp, we define a marker as a
function that maps (6, Djp) to a scalar value indicative of potential failure modes in OOD gen-
eralization. Train and test accuracy are examples of such markers, but they are often non-
discriminative (D’Amour et al., 2022), propelling us to open the black box of DNNs and seek
measures that are both task-relevant and discriminative.

Among the many ways to peer inside a DNN, we focus on feature embeddings. Concretely, we an-
alyze penultimate-layer feature vectors {z;}£, (e.g., avgpool in ResNet, see Table 3) extracted
from the ID data. Each z; € RY is an N-dimensional feature vector, and in image classification
these can be grouped by class: letting P denote the number of classes and M* the number of

samples in class p1, we write {z/'}M so that {z;}}, = Ufj:l{zé‘ M In addition to geometric
markers derived from representational manifolds, we also consider conventional ID-only markers
inspired by prior OOD-detection methods. These include low-order statistical summaries of penul-
timate representations (e.g., sparsity, covariance structure, pairwise distances and angles) as well as

quantities computed directly from the logits distribution (e.g., averaged confidence).

In the remainder of this section, we first review the conventional statistical and logits-based markers
that serve as baselines in our analysis (Section 2.1), and then introduce task-relevant geometric
markers grounded in representational manifold theory (Section 2.2).

2.1 CONVENTIONAL MEASURES

We also examine low-order statistics of penultimate feature vectors. We consider several standard
statistics: activation sparsity, off-diagonal covariance magnitude, and mean pairwise distance/angle.
Each measure is applied both globally across {z;} and within each class {z!'}. These descriptors
summarize the distribution of representations but do not capture per-class manifold geometry, moti-
vating the measures introduced next. Formal definitions are given in Section B.2.

In addition to feature-level statistics, we incorporate several logit-based markers commonly used in
OOD-detection research and adapt them to our ID-only diagnostic setting, including averaged con-
fidence (AUROC) (Hendrycks & Dietterich, 2018), Entropy (Guillory et al., 2021), and Energy (Liu
et al., 2020). While these methods were originally designed to detect OOD inputs—and typically as-
sume access to shifted data—we evaluate them here as scalar markers derived solely from ID logits.

Beyond these statistical and logits-based summaries, prior work has also analyzed representational
geometry in neural populations (Chung & Abbott, 2021; Li et al., 2024). Whereas statistical met-
rics capture overall spread or pairwise correlations, geometric descriptors characterize manifold



Under review as a conference paper at ICLR 2026

o € Uniform distribution d P.D,

o || e ° i N = Dw
o ° proj Y- (14R, 2)

A_ o o

o

o

o o°° o
° § G‘e'f“‘\“g
° Mo

Enuq{ S

- L

euron/fealure 1

o
o
P

WBiom

°

< decreasm R J
Anchor point distribution g \r
o
9 °
Ncr
% 0

o

- o
©
L 0 0% e

y Ny N ° é’
i New o
(projected dimensionality)

Probability of linearly separable
°
o

°
o
Biom

o
°

Figure 2: Object manifolds and task-relevant geometric measures. a, Object manifolds are the
per-class point clouds in the feature space. b, Critical dimension N quantifies the degree of
manifold untangling/separability in an average-case sense via random projection. ¢, Anchor point
distribution gives higher weight to points that are more important for linear classification.*d, The
degree of manifold separation (quantified by critical number of neurons Ng;) is analytically linked
to three task-relevant geometric measures: effective dimension Dgg, radius Reg and utility Weg.

structure such as alignment, curvature, and class-specific variability. A widely used task-agnostic
geometric marker is the participation ratio (PR), which estimates the intrinsic dimensionality of each
class manifold from the spectrum of its covariance matrix. We also include Neural Collapse mea-
sures (Papyan et al., 2020; Ammar et al., 2023; Harun et al., 2025) and the numerical rank measure
from the Tunnel Effect hypothesis (Masarczyk et al., 2023; Harun et al., 2024). Formal definitions
for all markers are provided in Appendix B.

2.2 TASK-RELEVANT GEOMETRIC MEASURES

To obtain task-relevant indicators, we adopt the Geometry Linked to Untangling Efficiency (GLUE)
framework (Chou et al., 2025a), which builds on the theory of perceptron capacity for points (Gard-
ner & Derrida, 1988) and manifolds (Chung et al., 2018; Wakhloo et al., 2023; Mignacco et al., 2025;
Chou et al., 2025a) from statistical physics. Similar to support vector machine (SVM) theory (Cortes
& Vapnik, 1995), where the max-margin classifier can be expressed as a linear combination of sup-
port vectors, GLUE theory provides an analytic connection between the critical number of neurons
Neiit and the geometry of object manifolds (Figure 2a) through an anchor point distribution over the
object manifolds (Figure 2c).

GLUE as an average-case analog of SVM. Consider classifying two object manifolds M! =
Hull({z1,...,z},}) and M? = Hull({z3,...,2%,}) in RY, Ng is defined as the minimum Npy;
such that manifolds remain linearly separable with probability at least 0.5 after random projection
to an Nproj-dimensional subspace (Figure 2b). Manifold capacity « is defined as P/N¢it, where P
is the number of manifolds. A lower value of Ng;; (i.e., higher value of o) means that the object
manifolds are more separable on average. The key result in GLUE theory is a closed-form formula
for Nyit:

i 2

Ner = tNNI(EO,IN) sl(t)eMnlli)Z((t)eMz IPrOlspan((st (¢) 52ty tll2 M
where NV (0, Iv) is the isotropic Gaussian distribution in RY, span(-) denotes linear span of a set,
and proj denotes orthogonal projection. Equation 1 naturally leads to defining anchor points as
the maximizers of the inner optimization problem. The anchor point distribution is a non-uniform
measure over the manifolds and favors those points that are more important for downstream clas-
sification (Figure 2c). Hence, GLUE theory can be thought of as an average-case analog of SVM
theory: whereas SVM assesses separability in the best-case scenario by leveraging the full feature
space, GLUE evaluates separability under random projections, effectively averaging across many

This figure is a schematic illustration of the non-uniform, task-relevant anchor point distribution. The
2D depiction is only intuitive and can be misleading, analogous to how in high dimensions Gaussian mass
concentrates on the sphere rather than at the origin.
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such subspaces, and hence is able to capture more complex, heterogeneous, and nuisance structure
present in the data (Chou et al., 2025a;b).

By exploiting symmetries in the equation, GLUE theory derives three effective geometric mea-
sures—effective dimension Degg, effective radius Reg, and effective utility Weg—and reorga-
nizes Equation 1 into a simple expression (see Section B.3 for details and derivations):

P - Degt

—_— 2
Wetr - (1+ Ryyf)

crit —

where P is the number of manifolds. Intuitively, Equation 2 shows that N decreases (i.e., mani-
folds become more separable/untangled) with smaller D, smaller Regr, and larger Weg (Figure 2d).
Because the GLUE theory captures task-relevant structures in neural representations via the anchor
point distribution (as opposed to the uniform distribution, i.e., equiprobable sampling of points),
a recent work (Chou et al., 2025b) has shown that N and GLUE measures are much more dis-
criminative than conventional measures (e.g., kernel-based methods, weight changes) in the study of
feature learning. GLUE also defines additional measures (e.g., center, axis, center—axis alignment)
from the anchor point distribution, detailed in Section B.3 and omitted here for brevity. We provide
intuitions for the three effective geometric measures in Table 1 (see Table 4 for the full version).

Table 1: Intuitions for GLUE measures.

manifolds.

fold relative to their centers.

Dett > 0 Ret > 0 et € [0, 1]
Geometric Quantify the task-relevant | Quantify the task-relevant | Quantify the amount of
intuition dimensionality of object | spread within each mani- | excessive compression of

untangling manifolds .

Effect on linear

More separable when D¢

More separable when R

More separable when W

separability is small. is small. is large.

Example Desi equals the dimension | Res equals the radius of un- | Collapsing manifolds to
of uncor. random spheres | cor. random spheres points yields Wi — 0.

Interpretation Low D¢y indicates a | Low Rey indicates more | Low Wey indicates in-

in feature smaller set of feature | similar feature usage across | efficient compression of

learning® modes in use. examples within a class. within-class variability.

Connection to feature learning. We follow a top-down view of feature learning (Chou et al.,
2025b), where features are understood functionally through their consequences for computation
(e.g., enabling linear separability) rather than as specific interpretable axes or neurons. This per-
spective emphasizes how representational geometry changes with feature usage without requiring
explicit identification of the features themselves. Moreover, by thinking of a direction in the rep-
resentation space as a feature (linear representation hypothesis (Park et al., 2024)), the effective
geometric measures offer interpretation in feature learning as listed in the table.

3 DISCOVER PROGNOSTICS FOR FAILURE IN OOD GENERALIZATION

We study medium-scale models as a testbed for identifying prognostic indicators of failure modes.
Our goal is to detect ID signals that reliably predict how a model will behave under distribution
shift—without any access to OOD data. This departs from most existing OOD-detection methods,
which typically rely on information from the shifted distribution. Our diagnostic analysis use mark-
ers measured solely on ID properties and use them to anticipate vulnerabilities before deployment.

3.1 METHODS

We adopt an experimental design in (Chou et al., 2025b) where DNNs are trained on an ID image
dataset and OOD performance is evaluated on a different dataset with a disjoint set of classes.

Training procedure. We trained multiple DNN architectures (e.g., ResNet, VGG) from scratch
on CIFAR-10. For each architecture, we swept over four initial learning rates, four weight decay
values, and three random seeds, using both SGD and AdamW optimizers. In all cases, we ensured
that the training accuracy was above 99% and the test accuracy ranged from 88% to 95%.

6



Under review as a conference paper at ICLR 2026

a b : . C  Performance measures on the ID dataset
In-distribution (ID) Out-of-distribution (OOD) Experimental setup: are weakly predictive of OOD performance
dataset (e.g., CIFAR-10) | dataset (e.g., CIFAR-100) Varying network architecture, network size, —— o
optimization algorithm, dataset, etc. 8 ol
alrplane bird apple boy x gﬁ:g

Geometric measures on the ID dataset

@ DNNs are pre-trained / fine-tuned s ¥
hb’ ‘ Q on ID data 40 50 60 70 80
OOD Accuracy, %

castle dinosaur are strongly predictive of OOD performance

! m’ﬂ E LinearProbe

@ Probing classifiers are trained and

evaluated on OOD data 40 50 60 70 80
M oint image classes OOD Accuracy, % =

e
m.

AN o s oo

Reshotts
I

ID Effectiv
Manifold Di

)
)
)
2
)

Figure 3: Prognostic discovery for OOD generalization. a, We consider image classification
problem with an ID dataset and an OOD dataset with disjoint image classes. b, We trained DNNs
on the ID dataset and evaluated the OOD performance as linear probe accuracy. ¢, Conventional
performance and statistical measures on the ID dataset are weakly predictive of OOD performance,
while some task-relevant geometric measures can robustly predict failures in OOD generalization.

OOD evaluation via linear probing. To assess the OOD generalization of learned representa-
tions, we adopt a linear probing framework (Alain & Bengio, 2016; Zhu et al., 2023; Chou et al.,
2025b). After ID training, the network’s feature extractor was frozen. A new linear classifier was
then trained on top of these features using the OOD dataset. The test accuracy of this linear probe
served as our measure of OOD performance (Figure 3b). See Appendix A for details.

3.2 RESULTS

We find that models trained with distinct hyperparameters can exhibit similar ID accuracy while
their OOD performance can be drastically different. This variation, however, is not random; we find
that OOD performance can be consistently predicted by geometric properties of ID representations.

Task-relevant geometric markers are predictive across architectures. First, we trained differ-
ent architectures (ResNet, VGG, etc) on CIFAR-10 and evaluated OOD performance on CIFAR-
100. As summarized in Figure 4, conventional metrics like ID accuracy and statistical measures like
sparsity showed weak and inconsistent correlations with OOD performance. In contrast, several ge-
ometric measures—particularly participation ratio, effective dimension, and effective utility—were
strong predictors and consistently performed well across all architectures.

Findings hold across model sizes, optimizers, and datasets. Next, we tested the generality of our
findings by varying model size (ResNet18/34/50), optimizer (SGD, AdamW), and the OOD dataset
(CIFAR-100, ImageNet). The results, shown in Figure 4, remained consistent. Across all these
settings, task-relevant geometric signatures of the ID data were systematically predictive of OOD
performance, whereas alternative markers—including Neural Collapse (Harun et al., 2025), numer-
ical rank (Tunnel Effect (Masarczyk et al., 2023)), and logits-based OOD-detection scores—¢did-not
perform-asreliably showed statistically weaker or less consistently predictive trends across settings,
with numerical rank performing well in most but a few cases (e.g., VGG-19 using SGD).. We sus-
pect this is because the Neural Collapse and Tunnel Effect measures were designed primarily from
mathematical intuition rather than from task-relevant considerations; as a result, they may not cap-
ture the fine-grained structure of complex neural activity patterns across different models or training
regimes. Conversely, logits-based markers such as AUROC or entropy are task-relevant but appear
to discard too much of the rich information present in the internal representations, limiting their
predictive power in this setting. Additional results are provided in Appendix C.

Task-relevant geometric markers from ID training data also show strong trends. While the
main figures report results using ID test or validation features, we find that the same geometric in-
dicators measured directly on the ID training data exhibit similarly strong correlations with OOD
performance (see Figure 6). This indicates that the predictive signal is not limited to held-out exam-
ples, but is already present in the geometry of the training representations themselves.

ID Test accuracy best predicts OOD performance on corrupted images. We also consider a
corrupted version (e.g., add noise, vary brightness, pixellate, etc.) of the original images as an OOD
dataset (e.g., CIFAR-10C (Hendrycks & Dietterich, 2018)). Since the class labels remain identical
to the ID dataset, OOD performance can be measured directly by the trained network, without
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training an additional linear probe. In this setting, ID test accuracy is the strongest predictor of
performance on corrupted data (see Section C.3), although we note that it does not always work. We
also observe distinct geometric patterns across different corruption types. These results highlight
that the correlation between OOD accuracy and manifold compression (Figure 4) is non-trivial and
specific to class-level shifts, but does not extend to corruption-based shifts where the label space is
unchanged. Exploring robustness to corruption thus remains an interesting direction for future work.
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Figure 4: All results on models trained on CIFAR-10, showing correlations between markers (x-
axis) and OOD performance across a hyperparameter sweep. Numbers indicate Pearson r; asterisks
denote significance (* : p < 0.05; ** : p < 0.01; *** : p < 0.001; **** : p < 0.0001).

3.3 DIAGNOSING FAILURES IN GENERALIZATION VIA DETECTING SHORTCUT FEATURES

Failures in generalization are often attributed to a model specializing to its training regime. A classic
example is overfitting, where high training accuracy but low validation accuracy indicates that the
model has memorized the training set rather than learned transferable patterns. Under distribution
shift, however, such straightforward indicators like validation accuracy are absent. Our findings
in Section 3.2 suggest using Det and W measured on ID object manifolds as prognostics for
indicating potential failure in OOD datasets with new classes of images.

Failures in OOD generalization are often attributed to reliance on shortcut or spurious fea-
tures (Geirhos et al., 2020; Sagawa et al., 2020b; Singla & Feizi, 2021; Yang et al., 2022). A network
may correctly classify cows in typical training images, yet fail when cows appear in unusual con-
texts such as beaches or mountains, suggesting that background cues like grass had been used as
unintended predictors of class identity (Beery et al., 2018). Features such as “grass” correspond to
microscopic details, whereas generalization performance is a macroscopic outcome. Effective geo-
metric measures act as mesoscopic descriptors, bridging how microscopic features are at play and
how efficiently they are used for macroscopic behavior, such as separability (Chou et al., 2025b)
(see also Table 4). Low Deg¢ and W indicate that the model relies on a smaller set of features, used
inefficiently for separability, agreeing with shortcut-learning interpretations.

Finally, we remark that although untrained or randomly initialized networks also exhibit very high
manifold dimension and poor generalization (Chou et al., 2025b) (i.e., lazy learning, Figure 7), our
analysis concerns models with comparable ID validation accuracy—i.e., after meaningful feature
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learning has taken place. In this regime, larger Dgg and Wi reflect richer task-relevant variability,
whereas excessive compression signals overspecialization to the ID distribution.

4  APPLICATIONS TO PREDICTING PERFORMANCE OF TRANSFER LEARNING

A common scenario in applied machine learning involves selecting a pretrained model from a public
repository like PyTorch Hub or Hugging Face. For a given architecture, multiple sets of weights are
often available, each trained with different optimization recipes, regularization schemes, or data
preprocessing pipelines. The standard heuristic is to choose the model with the highest reported in-
distribution (ID) accuracy. However, it is unclear whether this metric reliably predicts performance
on other downstream tasks, especially under the distribution shifts inherent in transfer learning.

Here, we apply the prognostic indicators discovered in our exploratory experiments (Section 3) to
this practical challenge. Our findings suggest a clear guiding principle for model selection: when
faced with multiple weights for the same architecture, prefer the model that exhibits higher ef-
fective manifold dimensionality (Des) and utility (W) on its ID data, as this signals a greater
potential for robust OOD generalization.

Model Marker ID Acc 00D Acc (measured by a linear probe) 00D
Arch. Weight| D W, |ImageNet| Pet Flower Food Nat. Place Car Texture Aircraft Skin ';?g'
MobileNet | v1 [13.07 0.956| 74.04 |89.16 89.71 72.79 36.56 44.39 53.28 67.64 41.60 80.29
(V3_Large) v2 [10.06 0.924| 75.27 [91.05 8582 71.94 37.66 43.70 49.97 66.28 34.86 80.12
RegNet X| v1 |10.50 0.929| 80.06 [92.72 88.74 75.86 42.09 4572 56.13 70.96 41.77 82.65
(16GF) v2 8.78 0.899| 82.72 |93.13 85.88 74.95 38.84 46.02 4943 7230 28.01 80.49
RegNet X| v1 |[11.35 0.935| 77.04 |91.89 88.28 72.36 39.33 44.27 53.96 68.60 40.37 79.45
(1_6GF) v2 9.19 0.908| 79.67 [92.43 79.22 68.03 32.68 43.48 4046 67.06 22.99 78.26
RegNet X| v1 |[10.15 0.930| 80.62 [93.00 88.06 76.00 40.93 4572 54.86 71.67 38.54 82.68
(32GF) v2 8.81 0.905| 83.01 [93.38 8594 75.73 38.59 46.35 47.22 7041 26.42 81.19
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(16GF) v2 929 0.906| 82.89 |92.30 85.07 75.99 37.58 46.72 4863 7119 27.26 80.02
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(1_6GF) v2 8.60 0.909| 80.88 [93.13 79.46 69.61 31.87 43.67 40.58 65.11 25.86 77.56
RegNet_ Y| v1 [10.98 0.933| 74.05 |90.55 84.88 68.07 34.74 42.68 43.00 65.60 38.32 76.56 8o
(400MF) v2 9.16 0.914| 75.80 [91.06 76.81 63.61 27.75 40.77 33.52 63.71 22.36 75.92
RegNet Y| v1 [11.27 0.937| 76.42 |91.79 86.25 72.28 38.97 44.34 52.91 69.34 42.29 79.09 89
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Figure 5: Predict OOD transfer performance on ImageNet-pretrained models via Deg and W For
the first block of models, our prognostic indicators predicted that vl would outperform v2. For the
second block of models, our prognostic indicators predicted the other way around.

Experimental procedure. To test this principle, we analyzed 20 popular architectures from Py-
Torch’s official repository, each released with two sets of weights (vl and v2). By design, the v2
weights achieve higher accuracy on the ID ImageNet benchmark. However, the specific changes in
training procedure are often opaque to the end-user (see Table 5 for key differences). This hetero-
geneity makes for a challenging and realistic testbed for our diagnostic framework. For each v1/v2
pair, we first measured the Deggs and Wt of their ImageNet object manifolds. We then evaluated their
OOD transfer performance on 9 image classification datasets: Flowers102 (Nilsback & Zisserman,
2008), Stanford Cars (Krause et al., 2013), Places365 (Zhou et al., 2017), Food101 (Bossard et al.,
2014), Oxford-IIIT Pet (Parkhi et al., 2012), etc. For each OOD dataset, we train a linear probe
on the training set of the OOD dataset, and report the test accuracy (see Section 3.1 for details).
See Appendix D for more experimental details.

Diagnosing transferability through ID effective manifold geometry. Consistent with the hy-
pothesis derived from our initial explorations, we found that models with higher Dg and Weg of-
ten demonstrated stronger OOD transfer performance, even when their ID ImageNet accuracy was
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lower. As shown in Figure 5, across the 20 architectures we examined, our prognostic indicators
predicted that vl would outperform v2 on OOD transfer in 14 cases (despite v2 having higher ID
accuracy), that v2 would outperform v1 in 1 case, and yielded no clear verdict for the remainder.
Among these 15 models and 9 OOD datasets, our prediction accuracy is 73.02% (92 out of 126).
This is much higher than using ID test accuracy as a predictor for OOD performance (37.22%). We
remark that using some of the other markers (e.g., Neural Collapse, Participation Ratio) also yields
non-trivial prediction accuracy in OOD performance. See Section D.4 for more results.

Revealing differences in fine-tuning dynamics. Finally, we explored whether these initial fea-
ture advantages persist during full-model fine-tuning. As expected from prior work showing that
the benefits of pretraining diminish with longer fine-tuning (Kornblith et al., 2019; He et al., 2018),
both vl and v2 initializations ultimately converged to a similar performance level. However, we
observed a drastic difference in the early fine-tuning stages: models initialized with vl weights
sometimes exhibited faster learning, hinting that their features may provide a more efficient trans-
ferable starting point (Figures 22, 23). These results show that test-relevant geometric measures can
reveal differences in fine-tuning dynamics, motivating future study on their role in transfer learning.

5 DISCUSSION

We introduced a diagnostic, system-level paradigm for anticipating generalization failure in neural
networks. Instead of reconstructing detailed internal mechanisms, we treated task-relevant geomet-
ric markers of ID representations as prognostic indicators. Through dicovering prognostic markers
in medium-size experiments, we found that over-compression of object manifold dimension consis-
tently predicts failures in OOD generalization. Applied to ImageNet-pretrained models—a far more
heterogeneous real-world setting—our prognostic measures predict which models transfer more ro-
bustly across tasks. Together, these results demonstrate the power of a diagnostic framework for
studying generalization failures. This work opens up several future directions.

* Theoretical foundations. In Section 3.3, we link over-compression of object manifolds to over-
specialization of learned features. Strengthening the theoretical basis of this hypothesis is impor-
tant. A related question is whether incorrectly classified OOD examples share common traits that
can be explained by the overspecialization intuition.

* Causal mechanisms and interventions. Geometric indicators could inspire investigation into
underlying causal mechanisms and practical interventions, such as geometry-aware regularization,
early-stopping criteria, or model selection rules that prioritize robustness alongside accuracy.

» Extending the proposed diagnostic research framework. Expanding our proposed analysis
framework beyond vision to language, reinforcement learning, or multi-modal models remains an
open challenge. A natural starting point is to first identify and characterize the relevant failure
modes in each domain, and then examine how representational markers correlate with those fail-
ures. Another direction is to extend our findings into deployable protocols for diagnosing OOD
failures across a wider range of models and datasets.

* Linking diagnostics to parameter transfer. A future direction is to explore whether insights
from our controlled experiments can inform parameter transfer between models of different scales,
as in Net2Net (Chen et al., 2015). While our focus here is on diagnostics, connecting to weight
transfer could provide a complementary path for robust initialization.

* Parallels with neuroscience. High-dimensional yet structured codes in the brain have been linked
to generalization in neuroscience studies. Our hypothesis connecting manifold compression with
feature overspecialization may offer a framework for interpreting these findings and for exploring
common principles across biological and artificial systems.

Theoretical work on neural networks has long been shaped by mathematics and physics, with an
emphasis on bottom-up mechanistic explanations. We suggest that the history of medicine offers
a complementary perspective: effective diagnostics can anticipate risks and guide treatment well
before underlying causal mechanisms were fully understood. Neural networks, as emergent high-
dimensional systems, may likewise benefit from a diagnostic science that anticipates vulnerabilities
and guides future mechanistic insight.
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A  EXPERIMENTAL SETTINGS

In this section, we provide a complete description of our experimental setup to facilitate repro-
ducibility.

A.1 DATASETS

Our study utilized a range of standard image classification datasets, which served different roles:
either as in-distribution (ID) training sources or out-of-distribution (OOD) evaluation benchmarks
across two distinct experimental settings. Table 2 provides a summary of these roles. Below, we
describe each dataset and the specific preprocessing pipelines applied.

Table 2: Summary of dataset roles in our experiments.

Experimental Setting In-Distribution (ID) Out-of-Distribution
Dataset (OOD) Datasets

Prognostic discovery (Section 3) CIFAR-10 CIFAR-100
ImageNet-1k (resized to
32x32)

Transfer Learning Applications (Section 4) ImageNet-1k Flowers102
Stanford Cars
Places365
Oxford-IIIT Pets
Food-101
iNaturalist 2018
DTD
FGVC-Aircraft
HAM10000

Datasets for prognostic discovery. In our controlled medium-scale experiments, we trained mod-
els from scratch on a single ID dataset and evaluated their generalization to two different OOD
datasets with disjoint classes.

CIFAR-10 (Krizhevsky et al., 2009) served as our primary in-distribution (ID) dataset for train-
ing. It contains 60,000 color images of 32 x 32 pixels, split into 50,000 training and 10,000
test images across 10 object categories. For training, we normalized images using a per-channel
mean of (0.4914, 0.4822,0.4465) and a standard deviation of (0.2023,0.1994,0.2010). We also
applied standard data augmentation: padding with 4 pixels on each side, followed by a random
32 x 32 crop and a random horizontal flip with 50% probability. For evaluating ID test accuracy,
augmentation was disabled.

CIFAR-100 (Krizhevsky et al., 2009) was used as the primary out-of-distribution (OOD) bench-
mark. It has the same image format and size as CIFAR-10 but contains 100 distinct object classes
with no overlap. For OOD evaluation, images were only normalized using the CIFAR-10 statis-
tics; no data augmentation was applied to ensure a deterministic evaluation protocol.

ImageNet-1k (Deng et al., 2009) was used as a second, more challenging OOD benchmark to
test generalization under a significant domain shift. This dataset contains over 1.2 million high-
resolution images from 1,000 categories. To maintain compatibility with our CIFAR-trained mod-
els, all ImageNet images were resized to 32 x 32 pixels using bicubic interpolation. They were
then normalized using the standard ImageNet per-channel mean (0.485,0.456, 0.406) and stan-
dard deviation (0.229,0.224,0.225). No data augmentation was applied during evaluation.

Datasets for Transfer Learning Applications. In this setting, we analyzed publicly available
models pretrained on ImageNet-1k and evaluated their transferability to three downstream, fine-
grained classification tasks.

ImageNet-1k served as the in-distribution (ID) dataset, as all models we analyzed were pre-
trained on it. For measuring the ID geometric markers, we used the official validation set. Images
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were processed according to the standard pipeline for each model: resized to 256 x 256, center-
cropped to 224 x 224, and normalized using the standard ImageNet mean and standard deviation.

* Flowers102 (Nilsback & Zisserman, 2008) is a fine-grained OOD dataset containing 8,189 images
of flowers belonging to 102 different categories.

» Stanford Cars (Krause et al., 2013) is another fine-grained OOD dataset consisting of 16,185
images of cars, categorized by 196 classes (e.g., make, model, and year).

* Places365 (Zhou et al., 2017) is a large-scale scene-centric OOD dataset with over 1.8 million
images from 365 scene categories.

e Oxford-IIIT Pets (Parkhi et al., 2012) contains 37 category pet dataset with roughly 200 images
for each class.

* Food-101 (Bossard et al., 2014) includes 101,000 images of 101 food dishes (750 training and
250 test images per class). The dataset exhibits large variation in presentation, lighting, and style.

* iNaturalist 2018 (Van Horn et al., 2018) consists of over 450,000 training images from more
than 8,000 species of plants, animals, and fungi, collected and verified by citizen scientists on
the iNaturalist platform. The long-tailed distribution and diverse real-world conditions make this
dataset highly challenging for transfer evaluation.

* Describable Textures Dataset (DTD) (Cimpoi et al., 2014) contains 5,640 texture images anno-
tated with 47 describable texture attributes. Images span varied materials, lighting, and scales.

* FGVC-Aircraft (Maji et al., 2013) is a fine-grained visual classification dataset containing 10,000
images across 100 aircraft variants. Images differ in viewpoint, environment, and model-year
variations.

* HAM10000 (Tschandl et al., 2018) is a dermatology image dataset containing 10,015 dermato-
scopic images drawn from seven diagnostic categories (e.g., melanocytic nevi, melanoma, benign
keratosis, vascular lesions). The images exhibit substantial variation in acquisition conditions,
anatomical location, and lesion appearance, making HAM a visually and semantically distinct
OOD dataset relative to natural-image pretraining.

For all three OOD datasets in this setting, images were resized to 224 x 224 pixels using bicubic
interpolation and then normalized. During the OOD evaluation via linear probing no data augmenta-
tion was applied. For the full-model fine-tuning experiments (see Figure 22), data augmentation was
applied during the training phase, which included random horizontal flipping (with a 50% probabil-
ity) and color jitter. These augmentations were disabled during the evaluation of model checkpoints
on the OOD validation subsets.

A.2 MODEL ARCHITECTURES

A.2.1 MODELS FOR PROGNOSTIC DISCOVERY (SECTION 3)

To ensure our findings generalize across different model design philosophies, our exploratory stud-
ies included a diverse set of convolutional neural network (CNN) architectures. All models were
adapted for CIFAR-scale (32 x 32 pixel) inputs and trained from random initialization, ensuring that
their learned representations were not influenced by prior pretraining:

* ResNet (He et al., 2016): A family of foundational deep residual networks that utilize skip con-
nections to enable effective training of very deep models. We used the ResNet-18, ResNet-34, and
ResNet-50 variants.

* VGG (Simonyan & Zisserman, 2015): Classic deep feedforward networks characterized by their
architectural simplicity and sequential stacking of small 3 x 3 convolutions. We included VGG-13,
VGG-16, and VGG-19, each augmented with batch normalization.

* MobileNetV1 (Howard et al., 2017): A lightweight architecture designed for computational effi-
ciency through the use of depthwise separable convolutions.

* EfficientNet-B0 (Tan & Le, 2019): A modern, highly efficient model that systematically scales
network depth, width, and resolution using a compound scaling method.

* DenseNet (Huang et al., 2017): An architecture designed to maximize feature reuse and improve
gradient flow by connecting each layer to every other subsequent layer within dense blocks.
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This selection spans a wide architectural landscape, including canonical residual and feedforward
designs, modern efficient networks, and architectures with alternative connectivity patterns. This
diversity allows us to validate that our findings are a general property of deep representations, rather
than an artifact of a specific model family.

A.2.2 MODELS FOR TRANSFER LEARNING APPLICATIONS (SECTION 4)

For the experiments in Section 4, we shifted from training smaller-scale models from scratch across
a wide range of hyperparameters to analyzing publicly available, pretrained models to test our di-
agnostic framework in a realistic setting. Our primary selection criterion was the availability of
two official pretrained weight versions, typically labeled ”v1” and ”v2”, within the PyTorch model
repository.

This v1/v2 setup provides a unique opportunity for a controlled comparison. By design, the v2
weights offer higher in-distribution (ID) accuracy on ImageNet, often due to improved training
recipes, data augmentation (e.g., AutoAugment), or regularization (e.g., label smoothing). This
allows us to directly test our central hypothesis: whether ID geometric markers can identify cases
where higher ID accuracy masks a hidden vulnerability, leading to poorer out-of-distribution (OOD)
transferability.

Our final set of 20 architectures is highly diverse, spanning multiple design generations and prin-
ciples. In addition to deeper variants of models used in our control studies (ResNet-50/101/152,
MobileNetV2/V3, EfficientNet-B1), our selection also includes:

* RegNet (Radosavovic et al., 2020): A family of networks (e.g., RegNetY-400MF, RegNetX-
32GF) whose structure is discovered by optimizing a data-driven design space, resulting in well-
performing models.

* ResNeXt (Xie et al., 2017): An evolution of ResNet that introduces a cardinality dimension,
increasing model capacity by aggregating a set of parallel transformations.

* Wide ResNet (Zagoruyko & Komodakis, 2016): A variant of ResNet that is wider but shal-
lower, demonstrating that width can be a more effective dimension for improving performance
than depth.

A.3 COMPUTING RESOURCES

All experiments were conducted on NVIDIA H100 (80GB) or A100 (80GB) GPUs, paired with a
128-core Rome CPU and 1 TB of RAM. Training each model for 200 epochs required approximately
1-3 hours, depending on the architecture and optimizer. Unless otherwise specified, all experiments
were run on a single GPU worker. These specifications, together with the full training configurations
described in earlier subsections, are provided to facilitate reproducibility.
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B DETAILS ON ID MEASURES

In this section, we define the performance, statistical, and geometric measures used in our analy-
sis. These are computed on the feature representations extracted from models using the ID training
dataset, unless stated otherwise. Our goal is to identify which properties of a model’s ID represen-
tations can serve as reliable indicators of its out-of-distribution (OOD) generalization capability.

The measures are grouped into three categories: performance measures that quantify classifica-
tion accuracy, statistical measures that summarize low-order distributional properties of features,
and geometric measures that characterize the structure of class-specific feature manifolds. A key
distinction is that while statistical metrics typically operate on pooled features, our primary geo-
metric measures are computed on object manifolds — the per-class point clouds in representation
space. This allows them to directly capture properties relevant to classification, such as manifold
size, shape, and correlation structure in the representational space.

We first describe how feature representations are extracted and then define each measure in detail.

B.1 REPRESENTATION EXTRACTION

All representational measures are computed on feature vectors extracted from the penultimate layer
of each network — the final layer before the classification head. This layer captures high-level, task-
specialized features that are not yet collapsed into class logits. For convolutional networks, the
feature vector is obtained via global average pooling. The exact layers used for each architecture are
listed in Table 3.

Table 3: Exact layer names used for extracting feature representations.

Architecture Layer name in PyTorch module
VGG13 features.34

VGG16 features.43

VGGI19 features.52

ResNet avgpool

DenseNet121 avg_pool2d

MobileNet avg_pool2d

EfficientNetBO adaptive_avg_pool2d
RegNet avgpool

ResNeXt avgpool

Wide ResNet avgpool

Given an ID dataset Dyp and a trained network fy, let z; € RY denote the N-dimensional feature
vector for the i-th input sample x; in Djp, extracted from the layer listed in Table 3. All statistical
and geometric measures described in the following subsections are computed from the collection
{z;}M, of such feature vectors, where M is the total number of samples in Dip.

For measures that require class-specific statistics (e.g., within-class covariance, manifold radius),
we further partition {z;} by ground-truth label into {z}'} M for each class y € {1,..., P}, where
M* is the number of samples in class p.

B.2 STATISTICAL METRICS

We compute a set of statistical descriptors from the ID feature representations to quantify basic
structural properties of the learned embedding space. All metrics are computed from the collection
of penultimate-layer feature vectors {z;}}/, extracted from the ID dataset (see Table 3).

Activation sparsity. The activation sparsity measures the proportion of non-zero entries across all

feature vectors,
M N

. 1
sparsity = WN ZZ 1(|zi5] > €),

i=1 j=1
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where N is the feature dimension and € = 109 is a small threshold to account for numerical noise.
Higher sparsity indicates more silent units on average across the dataset.

Covariance magnitude. We compute the empirical covariance matrix 3 € RY*N over features
and take the mean absolute value of its off-diagonal entries,

2
mean_covariance = NN-T) Z |2k,

j<k

which reflects the average degree of linear correlation between distinct feature dimensions.

Pairwise distance. We compute the mean Euclidean distance between all pairs of feature vectors,

2
mean_distance = ——— Y ||z; — z;|2,
M(M —1) ; ’

providing a coarse measure of spread in the representation space.

Pairwise angle. After {5-normalizing each feature vector, we compute cosine similarities and con-
vert them to angles in radians via 6;; = arccos(cos _sim;;). The mean pairwise angle reflects the
typical directional separation between features.

All statistical metrics are computed on the raw feature vectors without centering unless required by
the measure (e.g., covariance).

B.3 GEOMETRIC MEASURES: PARTICIPATION RATIO AND GLUE-BASED TASK-RELEVANT
METRICS

Unlike the statistical measures described above, our geometric analysis operates on object mani-
folds—point clouds in feature space containing activations from the same class. This distinction is
important: geometric metrics explicitly quantify per-class representational structure, whereas most
statistical metrics aggregate across the entire dataset without regard to class boundaries.

Participation ratio (PR). As a conventional baseline for manifold dimensionality, we compute
the participation ratio (PR) of the penultimate-layer features for each class. Let {z!'} 2| denote the
M* feature vectors for the y-th class, and X! be the eigenvalues of their covariance matrix. The PR
of this class is defined as )
Dy = () .
>N
which measures the effective number of principal components with substantial variance. In all
figures we present the average of PR over all classes, i.e., % > M*Dpg. While PR is widely used,
it is task-agnostic and does not incorporate information about class separability.

Neural Collapse measure (NC1). In addition to per-class geometric descriptors, we also include a
global Neural Collapse—inspired measure that captures the degree of zero-collapse between within-
class and between-class structure (Papyan et al., 2020; Harun et al., 2025). Let Xy € RN*N
denote the pooled within-class covariance and X5 € RV*V the between-class covariance of the
penultimate-layer features (see Section B.2 for definitions), and let P be the number of classes. We
first form a truncated pseudo-inverse of ¥ g by eigendecomposition. Write

Y = UAUT, A=diag(\,..., \n), A\ >---> Ay >0,
and let A, = A1. We retain only eigen-directions with sufficiently large eigenvalues,
T ={i: N >TAmax }
with a small threshold 7 (we use 7 = 1073 in all experiments), and define the truncated pseudo-

inverse :
-1 T
Xp = E Ay,
ieT
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where u; denotes the i-th column of U. The NC1 (zero-collapse) score is then
1 i
NC1 = I tr(ZWZB).

Smaller values of NC1 indicate stronger collapse of within-class variability relative to the between-
class structure. We treat NC1 as a geometric marker and compare it with participation ratio, numer-
ical rank, and the GLUE-based task-relevant measures in our prognostic analysis.

Tunnel Effect: numerical rank. Inspired by recent studies on the Tunnel Effect hypothe-
sis (Masarczyk et al., 2023; Harun et al., 2024), we also compute the numerical rank of the feature
representations. For a given class y, let {z!'}| denote its feature vectors and let

MH

1 T
X = m2(Zf—CM)(Zf—CM)

be the corresponding empirical covariance matrix, where c,, is the class-mean representation (de-

fined above). Let Uf > aé‘ > --- denote the singular values of 3J,. Following prior work, the
numerical rank of class g is defined as
Rank” =~ = #{i: ol > ro'}, with 7=107%

The reported value is the average over all classes, Rank,ym = % 25:1 Rank’ . Lower numer-
ical rank indicates stronger compression of the class manifold. Prior work has shown that layers
exhibiting low rank often display degraded OOD linear-probe accuracy. We include numerical rank

as a baseline geometric marker for comparison against the task-relevant GLUE-based measures.

B.3.1 TASK-RELEVANT GEOMETRIC MEASURES FROM GLUE

To capture the aspects of representational geometry most relevant for classification, we employ the
effective geometric measures introduced in the Geometry Linked to Untangling Efficiency (GLUE)
framework (Chou et al., 2025a), grounded in manifold capacity theory (Chou et al., 2025a; Chung
etal., 2018). The theory has found wide applications in both neuroscience (Yao et al., 2023; Paraouty
et al., 2023; Kuoch et al., 2024; Hu et al., 2024) and machine learning (Cohen et al., 2020; Mamou
et al., 2020; Stephenson et al., 2021; Kirsanov et al., 2025; Chou et al., 2025b).

Analogous to support vector machine (SVM) theory—where an analytical connection between the
max-margin linear classifier and its support vectors is used to assess separability in the best-case
sense—GLUE establishes a similar analytical connection in an average-case sense, as follows.
Rather than analyzing the max-margin classifier directly in the original N-dimensional feature space
R, GLUE considers random projections to an N’-dimensional subspace and evaluates whether the
representations remain linearly separable. Intuitively, if the data are highly separable in R, they
will, with high probability, remain separable even after projection to a much lower N’. Conversely,
if the data are barely separable in R, the probability of maintaining separability will rapidly drop
to zero as N’ decreases.

Formally, following the modeling and notation in GLUE, each object manifold is modeled as the
convex hull of all representations corresponding to the p-th class:

M* = conv ({z!'},),

where {z!'} is the collection of M feature vectors of the yu-th class. A dichotomy vector y €
{~1,1}* and a collection ) C {—1,1}¥ are chosen by the analyst. Common choices are
being the set of all 1-vs-rest dichotomies (e.g., (1,—1,—1,...,-1), (-1,1,—-1,...,-1), ...,
(=1,-1,—1,...;1)or Y = {—1,1}7.

The key quantity in GLUE for measuring the degree of (linear) separability of manifolds is the
critical dimension, defined as the smallest N’ such that the probability of (linear) separability after
projection to a random N’-dimensional subspace is at least 0.5:

Nyt := min N/,
p(N')>0.5
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where

p(N'):= Pr Jw e RY sty (w,x") >0, Yy, x* € M“} .
ILRN RN’

By scaling N.,;; with the number of manifolds, we define the classification capacity o := P/Neyit,
which intuitively captures the maximal load a network can handle. Larger o corresponds to more
separable manifolds in the average-case sense.

GLUE theory relates o to manifold structure through:

57\ —1
a=P- E max —<t’ L V" NE) 4)
~ A0 Vi
L[5 ]

Equation 4 can be numerically estimated using a quadratic programming solver (see Algorithm 1
in (Chou et al., 2025a)).

Observe that one can view the optimal solution \*(y,t) for the inner maximization problem as a
function of y, t. This naturally leads to the following definition of anchor point for class y as:

ANy, t)zH
s'(y,t) = Lii (v, bz 1,(7 )2 ;
and stacking them into a matrix S € RP*Y and let Sy := diag(y)S, GLUE yields an equivalent

form:
-1

a=P- ]Ey [(Syt) " (SySy ) (Syt)] , (5)
tw./b\,f(O,IN)

where t denotes the pseudoinverse. This parallels SVM theory, where the margin is linked to a
simple function on the support vectors.

Center—axis decomposition of anchor points. For each 1 € [P], define the anchor center of the
p-th manifold as:
Sg =Kyt [SM(Y7 t)} )
and for each (y, t), define the axis component of the u-th anchor point as:
s (y,t) = s"(y, t) — s

Similar to Sy, we denote Sy ¢, Sy 1(y, t) € R*¥ as the matrices containing y*sl and y*s!'(y, t)
on their rows, respectively, i.e., Sy ¢ := diag(y)So and Sy 1(y,t) := diag(y)S1(y,t) where Sg
and S (y, t) have sfj and s} (y, t) stacked on their rows.

With these, define:

a(y,t) = (Syt) " (S,8y)7(Syt),

b(y.t) = (Sya(y,t)t) " (Sy1(y.£)Sya(y.t)")" (Sya(y. t)t),

c(y.t) = (Sy.a(y,6)t) T (Sy.0Sy 0 + Sy (y.)Sy1(y.t)") (Sya(y. t)t).
Note that « = P/Ey ¢[a(y, t)].

Effective geometric measures. GLUE further decomposes « into three measures:

1+ R2
o = Wt off_
Dyt
where:
¢ Effective dimension: 1
Dyt = 12 Ey+[b(y,t)]

Intuitively, Dgg measures the intrinsic dimensionality of the manifolds while incorporating
axis alignment between them. Lower Dgg corresponds to more compact, better-aligned
manifolds, improving linear separability.
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» Effective radius:

_ Eyo[c(y, t)
fen = \/ Ey by, t) — (v, b)]

Intuitively, R quantifies the scale of manifold variation relative to its center, incorporating
center alignment between classes. Smaller Ref reflects tighter clustering of features around
class centers, reducing manifold overlap.

 Effective utility:

Ey efe(y, t)]

Ey tla(y, t)]

Intuitively, Wqr measures the combined effect of signal-to-noise ratio (SNR) on separa-

bility. Higher Wi corresponds to manifolds that are both low-dimensional and compact
relative to inter-class distances.

Weff :=

For further derivations, illustrations, and examples, see the supplementary materials of (Chou et al.,
2025a). In all our experiments, for each manifold we subsample to 50 points, conduct GLUE analy-
sis on each manifold pair, and apply Gaussianization preprocessing (Wakhloo et al., 2023) to ensure
initial linear separability.

P = 1(80:50)]

Py = Et[|<sf(y7t)7slf(y7t)>\]

<

Y = El{sg,s7(y, )]

y,t

Implementation details. In all our experiments, we consider the following specific hyperparame-
ter choice for GLUE analysis. We randomly

Intuitions for GLUE measures. The three task-relevant geometric measures—Deggt, Refr, and
W —serve as markers that directly link geometric properties of object manifolds to classification
efficiency. As we show in later sections, they are substantially more predictive of OOD performance
than conventional measures. Here we summarize key properties, examples, and approximations of
GLUE measures in Table 4 for intuition-building.

For the p-th manifold, define its anchor center as sl := [E¢[s*(t)] and the axis-part of the anchor point
as si'(t) := s”(t) — sb. Intuitively, sf is the mean representation for the p-class, and s/ (t) corresponds
to the within-class variation/spread. (-,-) denotes inner product and || - ||2 denotes ¢ norm. Formulas for
uncorrelated random spheres provide a useful mental picture: Des resembles the Gaussian width, equal to the
sphere’s dimension (Vershynin, 2018); Re¢ reflects the ratio of within-manifold variation to mean response; and
W corresponds to the fraction of error (i.e., inner product with t) attributable to within-manifold variation.

4We follow a top-down view of feature learning (Chou et al., 2025b), where features are understood func-
tionally through their consequences for computation (e.g., enabling linear separability) rather than as specific
interpretable axes or neurons. This perspective emphasizes how representational geometry changes with feature
usage without requiring explicit identification of the features themselves. Moreover, by thinking of a direction
in the representation space as a feature (linear representation hypothesis (Park et al., 2024)), the effective geo-
metric measures offer interpretation in feature learning as listed in the table.
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Table 4: Intuitions for GLUE measures.

Dett > 0

Reffzo

et € [0, 1]

Geometric
intuition

Quantify the task-relevant
dimensionality of object
manifolds.

Quantify the task-relevant
spread within each mani-
fold relative to their centers.

Quantify the amount of
excessive compression of
untangling manifolds .

Effect on linear
separability

More separable when Deg
is small.

More separable when R
is small.

More separable when W
is large.

Example

Des equals the dimension
of uncor. random spheres

Rett equals the radius of un-
cor. random spheres

Collapsing manifolds to
points yields Weg — 0.

Formula for un-
correlated ran-
dom spheres®

s (£), >)
lIsh (£) 12

33, JE[(

1 HSf(t)HQ)Q
DM E{( T

L13,E [( ke >)}

Interaction If within-manifold varia- | If manifold centers move | If within-manifold varia-
with  correla- | tions align along similar | farther apart, Re de- | tions reduce without im-
tions among | directions, Deg decreases. | creases. proving separability, Wes
manifolds decreases.

Interpretation Low Degs indicates a | Low Re indicates more | Low W indicates in-

in feature learn-
ing’

smaller set of feature

modes in use.

similar feature usage across
examples within a class.

efficient compression of
within-class variability.
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C ADDITIONAL RESULTS FOR SECTION 3

C.1 IMPLEMENTATION DETAILS
During the initial exploration of how OOD performance varies across a wide range of final model
states, we trained all architectures from scratch on CIFAR-10. We used two optimizers: SGD with a
momentum of 0.9, and AdamW (Loshchilov & Hutter, 2019). We ran training for 200 epochs with a
cosine annealing learning rate schedule, which smoothly decays the learning rate to zero, stabilizing
late-stage representation geometry.

For each architecture and optimizer pair, we performed a systematic 4 x 4 grid search over the initial
learning rate (1) and weight decay (\). The specific values for each grid, which were tailored
to each architecture family based on empirical best practices, are detailed in Table 5 and Table 6.
This diverse grid was designed to produce models in various training regimes, from under- to over-
regularized, allowing us to find cases where ID performance is stable while OOD performance varies
— a key aspect of our analysis.

Table 5: Hyperparameter grid for SGD optimizer.

Architecture Initial learning rate list Weight decay list
VGG (13/16/19) [0.01000, 0.00333, 0.00111, 0.00037]  [0.0010000, 0.0003333, 0.0001111, 0.0000370]
ResNet (18/34/50)  [1.00000, 0.50000, 0.25000, 0.12500]  [0.0002000, 0.0001000, 0.0000500, 0.0000250]
DenseNet121 [0.05000, 0.01667, 0.00556, 0.00185]  [0.0005000, 0.0001667, 0.0000556, 0.0000185]
MobileNet [0.20000, 0.06667, 0.02222, 0.00741]  [0.0001000, 0.0000333, 0.0000111, 0.0000037]
EfficientNetB0 [0.20000, 0.06667, 0.02222, 0.00741]  [0.0001000, 0.0000333, 0.0000111, 0.0000037]
Table 6: Hyperparameter grid for AdamW optimizer.
Architecture Initial learning rate list Weight decay list
VGG (13/16/19) [0.02000, 0.00500, 0.00125, 0.00031]  [0.0100000, 0.0033333, 0.0011111, 0]
ResNet (18/34/50)  [0.10000, 0.02500, 0.00625, 0.00156]  [0.0100000, 0.0050000, 0.0025000, 0]
DenseNet121 [0.05000, 0.02500, 0.01250, 0.00625]  [0.0100000, 0.0033333, 0.0011111, 0]
MobileNet [0.02000, 0.00500, 0.00125, 0.04000]  [0.0100000, 0.0033333, 0.0011111, 0]
EfficientNetBO [0.10000, 0.05000, 0.01000, 0.00100]  [0.0010000, 0.0003333, 0.0001111, 0]

C.2 DETAILS FOR FIGURE 4

In this section, we present supplementary figures that provide a more detailed view of the main
findings stated in Figure 4 from Section 3. Table 7 provides a list of content for this subsection.

Quantification of Relationships. We quantify the relationship between ID measures and OOD
performance by computing the Pearson correlation coefficient (r) and its associated p-value via
ordinary least-squares linear regression between the measure values and OOD accuracies. For all
figures with heatmaps, we annotate each r-value with significance asterisks based on its p-value:

p < 0.0001 (****), p < 0.001 (***), p < 0.01 (**), and p < 0.05 (*).

Data Splits for Measures.

The terms “Test” and “Train” in the figure labels indicate whether the

representational measures were computed on the ID test set or the ID training set, respectively.
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Table 7: Organization of figures in Appendix C.

Figure label Model set Optimizer ID split OOD dataset
Figure 7 Five DNNs SGD Train CIFAR-100
Figure 8 Five DNNs SGD Test CIFAR-100
Figure 9 Five DNNs AdamW Train CIFAR-100
Figure 10 Five DNNs AdamW Test CIFAR-100
Figure 11 Three ResNets + Three VGGs SGD Train CIFAR-100
Figure 12 Three ResNets + Three VGGs  SGD Test CIFAR-100
Figure 13 ResNet18 + VGG19 SGD Train ImageNet subset
Figure 14 ResNet18 + VGG19 SGD Test ImageNet subset
Performance/Statistical/Geometrical Measures on In-Distribution Train Data
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Figure 6: All results, measures computed on the ID train set.
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1619 computed on the ID train set.
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C.3 RESULTS ON CORRUPTED IMAGES AS OOD DATA

Here we provide results on 6 out of 19 corruption methods in CIFAR-10C.

Corruption: gaussian_noise
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Figure 15: Corruption type:
computed on the ID test set.
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D DETAILS ON THE APPLICATIONS TO PRETRAINED MODELS

Here we provide implementation details and statistical procedures underlying the pretrained model
analysis in Section 4. This section accompanies the full results reported in Figure 21 and Figures
22,23.

D.1 MODEL SELECTION AND WEIGHTS

We evaluated 20 pretrained architectures available through the PyTorch model zoo, spanning fam-
ilies such as RegNet, MobileNet, ResNet/ResNeXt, WideResNet, EfficientNet, and Vision Trans-
former (ViT). For each architecture, we included both the v1 and v2 weight releases. The two
weight sets differ in training recipes and regularization schemes, though exact details are not always
disclosed, making them a heterogeneous and realistic testbed. By design, the v2 models typically
achieve higher ImageNet top-1 accuracy, while v1 weights often exhibit higher manifold dimen-
sionality.

We remark that for the ViT models, we treat IMAGENET1K_SWAG_LINEAR_V1 as v1 and
IMAGENET1K_SWAG_E2E_V1 as v2.

D.2 REPRESENTATION EXTRACTION

For each model, we extracted feature representations from the penultimate layer (see Table 3 for
exact layer names). Input images were preprocessed by resizing to 224 x 224 pixels, converted to
tensors, and normalized with standard ImageNet statistics. For GLUE analysis, we subsampled 2
classes and for each class we subsampled 50 feature vectors, applied Gaussianization preprocess-
ing, and computed effective geometric measures (Degr, Refr, Wefr) as described in Appendix B. We
repeated the above random subsampling for 100 times.

D.3 OOD EVALUATION VIA LINEAR PROBING

To evaluate the OOD generalization of the frozen feature extractor, we attached a linear classifier
to the penultimate feature representation of each pretrained model (see Table 3 for layer details).
Crucially, the pretrained backbone weights remained frozen throughout this process; only the pa-
rameters of the new classifier were trained. For each OOD dataset, we train linear classifiers on the
penultimate feature vectors for 50 epochs using the Adam optimizer with an initial learning rate of
0.1 and a cross-entropy loss function. In all the results, we report the average linear probe accuracy
over 3 repetitions on different random seeds.

D.4 PROGNOSTIC PREDICTION

For each model, after measuring the (Deggr, West) of v1 and v2 respectively . We use the following
criteria to make a prognostic prediction: if the Degt(z) — Dest(y) is greater than the sum of the
standard error of estimating Deg(2) and Deg(y), plus Wes () — Wett(y) is greater than the sum of
the standard error of estimating Wegt(x) and Weg(y), then we predict  is going to have better OOD
performance than y; otherwise we make no verdict (here z,y € {v1,v2}).

Recall that in Section 4 we applied our prognostic method to 20 ImageNet-pretrained models across
9 OOD datasets and achieved a prediction accuracy of 73.02% (compared to 37.22% when using ID
test accuracy as the marker). Here, we systematically evaluate other markers that showed reasonable
performance in Section 3.2. Specifically, we consider Dess and W as before, along with the Neural
Collapse metric, numerical rank, average within-class distance, and participation ratio (definitions
in Appendix B).

The prediction procedure follows the same criterion described earlier: for each marker, we compare
the two weight versions (v1 vs. v2) and issue a prediction only when the gap between their marker
values exceeds the sum of the standard errors of estimation. We evaluate both individual markers
and pairwise combinations.

The results, summarized in Figure 21, show that all these markers substantially outperform ID test
accuracy as prognostic indicators of OOD transfer performance.
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Remark on alternative markers and future directions. As shown in Fig. 21, several alternative
markers—or combinations of markers—also achieve strong prognostic performance, and in some
cases perform comparably to or slightly better than the specific pair (Deff, Ueff) used in the main
analysis. This is fully consistent with the broader message of our work: a wide range of manifold-
geometry—based quantities, both within and outside the GLUE family, contain significant predictive
signal for OOD transfer performance. A deeper understanding of why different markers succeed
on different subsets of architectures, and how these markers may complement one another, is an
exciting direction for future investigation.

It is important to emphasize that the goal of the present experiment is not to identify a single “opti-
mal” marker, but rather to demonstrate that geometric markers offer a substantial improvement over
the conventional practice of using ID test accuracy as a predictor of OOD performance. Indeed,
across all markers and marker-pairs we evaluated, the resulting prediction accuracies (ranging from
62% to 76%) consistently exceed that of ID test accuracy (37.22%) by a factor of approximately
two. This reinforces the central conclusion that geometry-based diagnostics provide a robust and
broadly effective alternative for prognostic prediction in transfer learning.

a oo b Prediction Accuracy (%) using Pairs of Markers
————— Prediction acc. of ID test accuracy
s prediction acc. of marker Effective Utility - 73.02 72.22 72.65 76.77 72.22

74
Effective Dimension - 70.63 65.36 70.94

70.09

804

Neural Collapse -

Numerical Rank - 70.37 62.70

Prediction Accuracy (%)

Within-Class Mean Distance - 70.83

Participation Ratio - -64

X 2 o 2
N < Na & &
. C\Q, <& K N & N &
& ~ § 2 B
& & o & S & &
& & @
< &

Figure 21: Prediction accuracy of OOD performance using different markers (or marker combina-
tions). a, Using single marker. b, Using a pair of markers.

D.5 FULL MODEL FINE-TUNING PROTOCOL

As a complementary evaluation, we also performed end-to-end fine-tuning. Models were initialized
with either the v1 or v2 pretrained weights, and a new task-specific classifier head was randomly ini-
tialized. Unlike the linear probe, all model parameters (both in the backbone and the new classifier)
were updated during training.

To simulate a realistic application scenario, we fine-tuned the models on the complete official train-
ing splits of Flowers102 (6,149 images) and Stanford Cars (8,144 images). Training was conducted
for 50 epochs with a batch size of 64. We used the AdamW optimizer (Loshchilov & Hutter, 2019)
with a weight decay of 1075 and a cosine annealing learning rate scheduler with an initial learning
rate of 3 x 1074,

To monitor the learning dynamics, we evaluated the model’s performance on the validation set at 40
checkpoints, spaced logarithmically throughout the training process.
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Figure 22: Fine-tuning dynamics of ImageNet-pretrained networks on Flowers102 dataset from v1

and v2 weights. Insets show ID measures at initialization
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Figure 23: Fine-tuning dynamics of ImageNet-pretrained networks on StanfordCars dataset from
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