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ABSTRACT

Generalization—the ability to perform well beyond the training context—is a
hallmark of biological and artificial intelligence, yet anticipating unseen fail-
ures remains a central challenge. Conventional approaches often take a bottom-
up mechanistic route by reverse-engineering interpretable features or circuits to
build explanatory models. However, they provide little top-down guidance such
as system-level measurements that predict and prevent failures. Here we propose
a complementary diagnostic paradigm for studying generalization failures. Rather
than mapping out detailed internal mechanisms, we use task-relevant measures to
probe structure–function links, identify prognostic indicators, and test predictions
in real-world settings. In image classification, we find that task-relevant geomet-
ric properties of in-distribution (ID) object manifolds consistently signal poor out-
of-distribution (OOD) generalization. In particular, reductions in two geometric
measures—effective manifold dimensionality and utility—predict weaker OOD
performance across diverse architectures, optimizers, and datasets. We apply this
finding to transfer learning with ImageNet-pretrained models, each available with
multiple weight variants. We consistently find that the same geometric patterns
predict OOD transfer performance more reliably than ID accuracy. This work
demonstrates that representational geometry can expose hidden vulnerabilities,
offering more robust guidance for model selection.

1 INTRODUCTION

Biomarkers—like blood pressure or cholesterol levels—are indispensable tools for anticipating
health risks before symptoms emerge. Throughout the history of medicine, physicians have of-
ten utilized these diagnostic measures effectively before figuring out all biological details. 1 This
pragmatic, top-down approach of correlating biomarkers with outcomes has thus driven medical
progress, while simultaneously providing the foundational insights for figuring out causal mecha-
nisms. In neuroscience, the same methodology has been fruitful: single-neuron and population-level
signatures have served as useful analysis units, revealing principles of coding and computation often
before a full mechanistic understanding (Rigotti et al., 2013; Barak et al., 2013; Mastrogiuseppe &
Ostojic, 2018; Stringer et al., 2019).

As deep neural networks (DNNs) become increasingly integrated into critical applications, a similar
challenge arises: how can we anticipate their unseen failures? This is particularly important under
distribution shifts where training and deployment environments differ (Sagawa et al., 2020a; Liu
et al., 2021; Yang et al., 2024). Current research often takes bottom-up, mechanistic approaches such
as mechanistic interpretability methods that aim to reverse-engineer DNNs’ internal computations
by identifying interpretable features (Olah et al., 2017; Yun et al., 2023; Cunningham et al., 2023),
functional circuits (Olah et al., 2020; Dunefsky et al., 2024), or causal structures (Mueller et al.,
2024; Geiger et al., 2025). While powerful, these methods typically yield insights at a microscopic
level (e.g., detailed features or circuits), yet they struggle to provide a macroscopic view of network
behavior that can guide the prediction and prevention of system-level failures.

1The lipid hypothesis, for instance, linked cholesterol to cardiovascular disease risk well before lipid path-
ways were mapped. Similarly, selective serotonin reuptake inhibitors treated depression, informed by the sero-
tonin hypothesis, decades before serotonin’s precise role in mood regulation was fully understood.
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Here we propose a complementary perspective inspired by the history of medicine: a diagnostic,
system-level paradigm for understanding neural networks. Rather than attempting to reconstruct
their internal mechanisms, we focus on developing task-relevant measurements—“biomarkers” for
AI models—that serve as reliable indicators of potential failure modes. Our methodology follows
a three-step cycle (Figure 1): (i) Marker Design: develop task-relevant measures to probe which
structures in neural networks (e.g., feature vectors, weights) relate to their function and perfor-
mance; (ii) Prognostic Discovery2: conduct medium-size “preclinical”3 experiments across diverse
architectures and hyperparameters, and identify patterns that serve as prognostic indicators of gen-
eralization failures; (iii) Real-world Application: apply these insights to practical settings, such as
predicting which pretrained models will transfer more robustly across datasets. We demonstrate this
research cycle by using in-distribution (ID) measures based on task-relevant representational geom-
etry to diagnose failure in out-of-distribution (OOD) generalization. Our framework points toward a
diagnostic science of AI models, offering tools to anticipate vulnerabilities and improve robustness
in safety-critical domains.

Figure 1: A diagnostic, system-level paradigm for studying generalization failures in DNNs, with
an example on image classification. See Section 1.1 for an overview.

1.1 OVERVIEW AND OUR CONTRIBUTIONS

In this work, we apply the proposed diagnostic, system-level paradigm to investigate failure
modes of OOD generalization in image classification. Our key finding is that feature over-
specialization—quantified by reduced effective dimensionality and utility of object manifolds—is
a reliable indicator of poor performance under class-level distribution shifts in transfer learning.
“Biomarker” design for image classification (Section 2). A central principle of our paradigm
is that indicators should be task-relevant: they should directly capture the computation of interest
rather than serve merely as generic descriptors. Common examples include train/test accuracy or
the neural tangent kernel (NTK) (Jacot et al., 2018). For image classification, we adopt the Ge-
ometry Linked to Untangling Efficiency (GLUE) framework (Chou et al., 2025a), which analyzes
object manifolds: point clouds of feature vectors from the same class (Figure 2a). Linear classifi-
cation then depends on how well these manifolds are untangled4 in the final layers of a network.
The key result in GLUE is an analytical connection between the degree of manifold untangling
and an anchor point distribution over object manifolds which assigns greater weight to points most
critical for downstream linear classification. From this, GLUE derives geometric measures of ob-
ject manifolds—effective dimension, radius, and utility—that are analytically tied to classification
performance, thereby connecting structure (representational geometry) with function (linear clas-
sification performance). These geometric measures also connect to concepts in feature learning,
providing useful intuitions for interpreting their values and results (Chou et al., 2025b).

2In medicine, diagnostics identify present conditions, while prognostics forecast future risks. Our frame-
work is termed “diagnostic” broadly, with Step 2 specified as “prognostic discovery” to emphasize prediction
of OOD failures from ID data.

3Here “preclinical” refers to exploratory experiments, akin to medicine’s preclinical trials that allow rapid,
low-risk iterations for discovering diagnoses or treatments before deployment to real-world settings.

4Manifold untangling is a concept from computational neuroscience (DiCarlo & Cox, 2007; Chou et al.,
2025a) that resembles manifold separation in an average-case sense; Figure 2b, see Section B.3 for details.
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Prognostic discovery of OOD generalization failures (Section 3). We conducted exploratory
“preclinical” experiments to investigate whether these metrics can predict failures in OOD gener-
alization. Specifically, we trained a broad class of deep networks on in-distribution (ID) data (e.g.,
CIFAR-10) and evaluated their OOD performance on datasets with disjoint classes (e.g., CIFAR-
100; Figure 3a,b). Our sweep spanned five architectures (e.g., ResNet, VGG), multiple depths,
two optimization algorithms (SGD, AdamW), and a grid of hyperparameters (learning rate, weight
decay). We found that different training hyperparameters can lead to markedly different OOD per-
formance, despite nearly identical ID train and test accuracy. Task-relevant geometric measures of
ID object manifolds correlated far more strongly with OOD performance than conventional perfor-
mance metrics (e.g., ID accuracy) or statistical measures (e.g., sparsity, covariance) (Figure 3c, top).
In particular, reductions in effective dimensionality and utility consistently served as prognostic in-
dicators of OOD failure (Figure 3c, bottom). Together with prior work linking representational ge-
ometry to feature learning (Chou et al., 2025b), these findings suggest that overspecialized features
undermine generalization performance, echoing previous accounts of shortcut learning (Geirhos
et al., 2020).

Applications to failure prediction in pretrained models (Section 4). Finally, we applied our
prognostic indicators to ImageNet-pretrained models from public repositories. In practice, when
selecting among multiple pretrained weights of the same architecture, the most common criterion
is test accuracy. Here, we measured the effective dimensionality and utility of ImageNet object
manifolds from 17 architectures available in PyTorch (e.g., RegNet, MobileNet, WideResNet), each
released with two weights (v1 and v2); by construction, v2 achieves higher ID accuracy. Unlike
our controlled prognostic studies, these pretrained weights were produced under distinct training
recipes, regularization schemes, and preprocessing pipelines, making them a much more heteroge-
neous testbed. Nevertheless, consistent with the predictions from our medium-scale experiments,
models where v1 exhibited higher manifold dimension and utility than v2 also achieved better OOD
performance under v1 weights—even though v1 had lower ID accuracy (Table 2). This demonstrates
that ID representational geometry can serve as an early diagnostic for OOD robustness.

Summary. Our work demonstrates a diagnostic, system-level paradigm that complements conven-
tional mechanistic interpretability by focusing on predictive indicators of model failure. Our results
highlight how task-relevant geometric measures of ID representations can serve as markers for di-
agnosing failure mode in OOD generalization, even when mechanistic details remain opaque.

1.2 RELATED WORK

A growing body of work suggests that properties of internal representations in DNNs can indicate
generalization performance. In the standard ID setting, both statistical features of activations—such
as sparsity, covariance, and inter-feature correlations (Morcos et al., 2018)—and geometric mea-
sures of object manifolds (Ansuini et al., 2019; Cohen et al., 2020; Chou et al., 2025b) have been
predictive. For example, networks that generalize well often exhibit low intrinsic dimensionality in
their final-layer representations, and such compactness correlates with test accuracy in image classi-
fication (Ansuini et al., 2019). A related phenomenon is neural collapse (Papyan et al., 2020), where
within-class variability of final hidden representations vanishes in the terminal phase of training.

The picture becomes more convoluted under distribution shifts. (Galanti et al., 2022) showed that
neural collapse can generalize to new data points and classes when trained on sufficiently many
classes with lots of samples. By contrast, (Zhu et al., 2023) found that encouraging diversity and
decorrelation among features improves OOD performance in image and video classification. Sim-
ilarly, in neuroscience, high-dimensional yet smooth population codes in mouse visual cortex have
been linked to generalization across stimulus conditions (Rigotti et al., 2013; Stringer et al., 2019).
These conflicting results call for more systematic study on how representational properties con-
nect to OOD generalization, and our findings—that OOD failures correlate with over-compression
of object manifolds—support these results on the advantage of high-dimensional representations.
However, most of these approaches rely on generic geometric or statistical descriptors that are not
explicitly tied to the computational task, whereas the GLUE measures we employ use the anchor
point distribution (Figure 2c and Section B.3) to directly link representational geometry to down-
stream linear classification performance.

Finally, research on OOD generalization have been primarily focus on detecting OOD samples (Yang
et al., 2024) or improving OOD performance (e.g., invariant risk minimization (Arjovsky et al.,
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2019), regularization method (Zhu et al., 2023)). Here we focus on diagnosing OOD failure using
only ID data and pretrained models, without needing to alter the training process or see OOD ex-
amples. This approach can be viewed as one step toward addressing the underspecification issue in
deep learning (D’Amour et al., 2022)—when standard training pipelines can produce many models
that are indistinguishable in their ID performance yet diverge in OOD behavior. Our proposed diag-
nostic approach complements existing OOD-generalization research by helping select models that
are not just accurate in-domain, but also more reliable under unseen shifts.

2 “BIOMARKERS” FOR IMAGE CLASSIFICATION

Given a neural network with parameters θ and an ID dataset DID, we define a marker as a
function that maps (θ,DID) to a scalar value indicative of potential failure modes in OOD gen-
eralization. Train and test accuracy are examples of such markers, but they are often non-
discriminative (D’Amour et al., 2022), propelling us to open the black box of DNNs and seek
measures that are both task-relevant and discriminative.

Among the many ways to peer inside a DNN, we focus on feature embeddings. Concretely, we
analyze penultimate-layer feature vectors {zi}Mi=1 (e.g., avgpool in ResNet, see Table 4) extracted
from the ID data. Each zi ∈ RN is an N -dimensional feature vector, and in image classification
these can be grouped by class: letting P denote the number of classes andMµ the number of samples
in class µ, we write {zµi }M

µ

i=1 so that {zi}Mi=1 =
⋃P

µ=1{z
µ
i }M

µ

i=1. In the remainder of this section, we
first introduce task-relevant geometric markers in Section 2.1 and then review conventional measures
in Section 2.2.

2.1 TASK-RELEVANT GEOMETRIC MEASURES

To obtain task-relevant indicators, we adopt the Geometry Linked to Untangling Efficiency (GLUE)
framework (Chou et al., 2025a), which builds on the theory of perceptron capacity for points (Gard-
ner & Derrida, 1988) and manifolds (Chung et al., 2018; Wakhloo et al., 2023; Mignacco et al., 2025;
Chou et al., 2025a) from statistical physics. Similar to support vector machine (SVM) theory (Cortes
& Vapnik, 1995), where the max-margin classifier can be expressed as a linear combination of sup-
port vectors, GLUE theory provides an analytic connection between the critical number of neurons
Ncrit and the geometry of object manifolds (Figure 2a) through an anchor point distribution over the
object manifolds (Figure 2c).

GLUE as an average-case analog of SVM. Consider classifying two object manifolds M1 =
Hull({z11, . . . , z1M}) and M2 = Hull({z21, . . . , z2M}) in RN , Ncrit is defined as the minimum Nproj
such that manifolds remain linearly separable with probability at least 0.5 after random projection to
an Nproj-dimensional subspace (Figure 2b).5 A lower value of Ncrit means that the object manifolds
are more separable on average. The key result in GLUE theory is a closed-form formula for Ncrit:

Ncrit = E
t∼N (0,IN )

[
max

s1(t)∈M1,s2(t)∈M2
∥projspan({s1(t),s2(t)})t∥22

]
(1)

where N (0, IN ) is the isotropic Gaussian distribution in RN , span(·) denotes linear span of a set,
and proj denotes orthogonal projection. Equation 1 naturally leads to defining anchor points as the
maximizers of the inner optimization problem. The anchor point distribution is a non-uniform mea-
sure over the manifolds and favor those points that are more important for downstream classification
(Figure 2c). Hence, GLUE theory can be thought of as an average-case analog of SVM theory.6

By exploiting symmetries in the equation, GLUE theory derives three effective geometric mea-
sures—effective dimension Deff, effective radius Reff, and effective utility Ψeff—and reorga-
nizes Equation 1 into a simple expression (see Section B.3 for details and derivations):

Ncrit =
P ·Deff

Ψeff · (1 +R−2
eff )

(2)

5Manifold capacity α is defined as P/Ncrit, where P is the number of manifolds.
6SVM considers the best-case scenario by exploiting the full feature space to assess separability. By con-

trast, GLUE probes separability under random projections, effectively averaging across many such subspaces.
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Figure 2: Object manifolds and task-relevant geometric measures. a, Object manifolds are the
per-class point clouds in the feature space. b, Critical dimension Ncrit quantifies the degree of
manifold untangling/separability in an average-case sense via random projection. c, Anchor point
distribution gives higher weight to points that are more important for linear classification.8d, The
degree of manifold separation (quantified by critical number of neurons Ncrit) is analytically linked
to three task-relevant geometric measures: effective dimension Deff, radius Reff and utility Ψeff.

where P is the number of manifolds. Intuitively, Equation 2 shows that Ncrit decreases (i.e., mani-
folds become more separable/untangled) with smaller Deff, smaller Reff, and larger Ψeff (Figure 2d).
Because the GLUE theory captures task-relevant structures in neural representations via the anchor
point distribution (as opposed to the uniform distribution, i.e., equiprobable sampling of points),
a recent work (Chou et al., 2025b) has shown that Ncrit and GLUE measures are much more dis-
criminative than conventional measures (e.g., kernel-based methods, weight changes) in the study of
feature learning. GLUE also defines additional measures (e.g., center, axis, center–axis alignment)
from the anchor point distribution, detailed in Section B.3 and omitted here for brevity. We provide
intuitions for the three effective geometric measures in Table 1 (see Table 5 for the full version).

Table 1: Intuitions for GLUE measures.

Deff ≥ 0 Reff ≥ 0 Ψeff ∈ [0, 1]

Geometric
intuition

Quantify the task-relevant
dimensionality of object
manifolds.

Quantify the task-relevant
spread within each mani-
fold relative to their centers.

Quantify the amount of
excessive compression of
untangling manifolds .

Effect on linear
separability

More separable when Deff
is small.

More separable when Reff
is small.

More separable when Ψeff
is large.

Example Deff equals the dimension
of uncor. random spheres

Reff equals the radius of un-
cor. random spheres

Collapsing manifolds to
points yields Ψeff → 0.

Interpretation
in feature
learning9

Low Deff indicates a
smaller set of feature
modes in use.

Low Reff indicates more
similar feature usage across
examples within a class.

Low Ψeff indicates in-
efficient compression of
within-class variability.

2.2 CONVENTIONAL MEASURES

We also examine low-order statistics of penultimate feature vectors. We consider several standard
statistics: activation sparsity, off-diagonal covariance magnitude, and mean pairwise distance/angle.
Each measure is applied both globally across {zi} and within each class {zµi }. Beyond coarse
statistical summaries, prior work has introduced geometric analysis of neural population activity,

7This figure is a schematic illustration of the non-uniform, task-relevant anchor point distribution. The
2D depiction is only intuitive and can be misleading, analogous to how in high dimensions Gaussian mass
concentrates on the sphere rather than at the origin.

8We follow a top-down view of feature learning (Chou et al., 2025b), where features are understood func-
tionally through their consequences for computation (e.g., enabling linear separability) rather than as specific
interpretable axes or neurons. This perspective emphasizes how representational geometry changes with feature
usage without requiring explicit identification of the features themselves. Moreover, by thinking of a direction
in the representation space as a feature (linear representation hypothesis (Park et al., 2024)), the effective geo-
metric measures offer interpretation in feature learning as listed in the table.
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including recent reviews (Chung & Abbott, 2021) and theoretical studies (Li et al., 2024). While
statistical metrics describe overall spread or pairwise correlations, these geometric measures char-
acterize manifold shape, alignment, curvature, etc., capturing higher-order structure. For example, a
widely used task-agnostic measure of manifold geometry is the participation ratio (PR) , which esti-
mates the dimensionality of each class manifold from the spectrum of its covariance matrix. Formal
definitions are provided in Appendix B.

3 DISCOVER PROGNOSTICS FOR FAILURE IN OOD GENERALIZATION

In biomedicine, model organisms such as mice are used as testbeds for discovering hypotheses that
can later be translated to humans. Analogously, we view experiments on tractable medium-scale
models as “preclinical”: systematic studies across architectures, datasets, and optimizers that reveal
hypotheses and prognostic indicators for failures in larger, real-world models.

Figure 3: “Preclinical” experiments for OOD generalization. a, We consider image classification
problem with an ID dataset and an OOD dataset with disjoint image classes. b, We trained DNNs
on the ID dataset and evaluated the OOD performance as linear probe accuracy. c, Conventional
performance and statistical measures on the ID dataset are weakly predictive of OOD performance,
while some task-relevant geometric measures can robustly predict failures in OOD generalization.

3.1 METHODS

We adopt an experimental design in (Chou et al., 2025b) where DNNs are trained on an ID image
dataset and OOD performance is evaluated on a different dataset with a disjoint set of classes.

Training procedure. We trained multiple DNN architectures (e.g., ResNet, VGG) from scratch
on CIFAR-10. For each architecture, we swept over four initial learning rates, four weight decay
values, and three random seeds, using both SGD and AdamW optimizers. In all cases, we ensured
that the training accuracy was above 99% and the test accuracy ranged from 88% to 95%.

OOD evaluation via linear probing. To assess the OOD generalization of learned representa-
tions, we adopt a linear probing framework (Alain & Bengio, 2016; Zhu et al., 2023; Chou et al.,
2025b). After ID training, the network’s feature extractor was frozen. A new linear classifier was
then trained on top of these features using the OOD dataset. The test accuracy of this linear probe
served as our measure of OOD performance (Figure 3b). See Appendix A for details.

3.2 RESULTS

We find that models trained with distinct hyperparameters can exhibit similar ID accuracy while
their OOD performance can be drastically different. This variation, however, is not random; we find
that OOD performance can be consistently predicted by geometric properties of ID representations.

Task-relevant geometric markers are predictive across architectures. First, we trained differ-
ent architectures (ResNet, VGG, etc) on CIFAR-10 and evaluated OOD performance on CIFAR-
100. As summarized in Figure 4, conventional metrics like ID accuracy and statistical measures like
sparsity showed weak and inconsistent correlations with OOD performance. In contrast, several ge-
ometric measures—particularly participation ratio, effective dimension and effective utility—were
strong predictors and consistently perform well across all architectures.

6
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Figure 4: All results on models trained on CIFAR-10, showing correlations between markers (x-
axis) and OOD performance across a hyperparameter sweep. Numbers indicate Pearson r; asterisks
denote significance (∗ : p ≤ 0.05; ∗∗ : p ≤ 0.01; ∗∗∗ : p ≤ 0.001; ∗∗∗∗ : p ≤ 0.0001).

Findings hold across model sizes, optimizers, and datasets. Next, we tested the generality of
our findings by varying model size (ResNet18/34/50), optimizer (SGD, AdamW), and the OOD
dataset (CIFAR-100, ImageNet). The results, shown in Figure 4, remained consistent. Across all
these settings, task-relevant geometric signatures of the ID data were systematically predictive of
OOD performance, while other metrics were not. Additional results are provided in Appendix C.

Task-relevant geometric markers from ID training data also show strong trends. While the
main figures report results using ID test or validation features, we find that the same geometric in-
dicators measured directly on the ID training data exhibit similarly strong correlations with OOD
performance (see Figure 5). This indicates that the predictive signal is not limited to held-out exam-
ples, but is already present in the geometry of the training representations themselves.

ID Test accuracy best predicts OOD performance on corrupted images. We also consider a
corrupted version (e.g., add noise, vary brightness, pixellate, etc.) of the original images as an OOD
dataset (e.g., CIFAR-10C (Hendrycks & Dietterich, 2018)). Since the class labels remain identical
to the ID dataset, OOD performance can be measured directly by the trained network, without
training an additional linear probe. In this setting, ID test accuracy is the strongest predictor of
performance on corrupted data (see Section C.3), although we note that it does not always work. We
also observe distinct geometric patterns across different corruption types. These results highlight
that the correlation between OOD accuracy and manifold compression (Figure 4) is non-trivial and
specific to class-level shifts, but does not extend to corruption-based shifts where the label space is
unchanged. Exploring robustness to corruption thus remains an interesting direction for future work.

3.3 DIAGNOSING FAILURES IN GENERALIZATION VIA DETECTING SHORTCUT FEATURES

Failures in generalization are often attributed to a model specializing to its training regime. A classic
example is overfitting, where high training accuracy but low validation accuracy indicates that the
model has memorized the training set rather than learned transferable patterns. Under distribution
shift, however, such straightforward indicators like validation accuracy are absent. Our findings
in Section 3.2 suggest using Deff and Ψeff measured on ID object manifolds as prognostics for
indicating potential failure in OOD datasets with new classes of images.

7
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Why do low values of Deff and Ψeff serve as good prognostic indicators of OOD failure? The
strength of DNNs lies in their ability to learn task-relevant features through training, and failures in
OOD generalization have been conceptualized as reliance on shortcut features (Geirhos et al., 2020)
or spurious features (Sagawa et al., 2020b; Singla & Feizi, 2021; Yang et al., 2022). For instance, a
network may correctly classify cows in typical training images, yet fail when cows appear in unusual
contexts such as beaches or mountains, suggesting that background cues like grass had been used
as unintended predictors of class identity (Beery et al., 2018). Features such as “grass” correspond
to microscopic details, whereas generalization performance is a macroscopic outcome. Effective
geometric measures act as mesoscopic descriptors, bridging how microscopic features are at play
and how efficiently they are used for macroscopic behavior, such as separability (Chou et al., 2025b)
(see also Table 5). For example, low Deff and Ψeff indicate that the model relies on a smaller set of
features, used inefficiently for separability, agreeing with the intuition that the learned features are
overspecialized to the ID task.

From this perspective,Deff and Ψeff can be viewed as top-down, task-relevant prognostics that quan-
tify the extent of shortcut learning without requiring the identification of specific features or access
to OOD data. This perspective deepens our understanding of representation learning and points to-
ward training strategies that avoid over-compressing object manifolds, thereby preventing shortcut
features. We leave such training strategies to future work and next test the proposed prognostics to
predict failure mode in OOD generalization on ImageNet-pretrained models.

4 APPLICATIONS TO PREDICTING PERFORMANCE OF TRANSFER LEARNING

A common scenario in applied machine learning involves selecting a pretrained model from a public
repository like PyTorch Hub or Hugging Face. For a given architecture, multiple sets of weights are
often available, each trained with different optimization recipes, regularization schemes, or data
preprocessing pipelines. The standard heuristic is to choose the model with the highest reported in-
distribution (ID) accuracy. However, it is unclear whether this metric reliably predicts performance
on other downstream tasks, especially under the distribution shifts inherent in transfer learning.

Here, we apply the prognostic indicators discovered in our exploratory experiments (Section 3) to
this practical challenge. Our findings suggest a clear guiding principle for model selection: when
faced with multiple weights for the same architecture, prefer the model that exhibits higher ef-
fective manifold dimensionality (Deff) and utility (Ψeff) on its ID data, as this signals a greater
potential for robust OOD generalization.

Table 2: Predict OOD transfer performance on ImageNet-pretrained models via Deff and Ψeff.
Training recipe OOD AccModel | Weight

Lbl smth.10 Warmup AutoAug11 Deff Ψeff
ID
Acc Places Flowers Cars

v1 ✓ 11.45 0.92 77.04 80.55 93.50 76.67RegNet X v2 ✓ ✓ ✓ 9.23 0.89 79.67 78.95 92.00 71.43
v1 ✓ 10.32 0.91 80.03 81.75 92.50 75.80RegNet Y v2 ✓ ✓ ✓ 8.78 0.89 82.83 80.50 92.50 74.85
v1 ✓ 13.03 0.94 74.04 78.20 94.00 75.15MobileNet v2 ✓ ✓ ✓ 9.82 0.92 75.27 77.85 93.00 74.20
v1 was not provided 9.13 0.90 78.47 79.10 88.50 70.61WideResNet v2 ✓ ✓ ✓ 10.60 0.91 81.60 80.70 90.25 72.07

Experimental procedure. To test this principle, we analyzed 17 popular architectures from Py-
Torch’s official repository, each released with two sets of weights (v1 and v2). By design, the v2
weights achieve higher accuracy on the ID ImageNet benchmark. However, the specific changes in
training procedure often opaque to the end-user (see Table 2 for key differences). This heterogeneity
makes for a challenging and realistic testbed for our diagnostic framework. For each v1/v2 pair, we
first measured the Deff and Ψeff of their ImageNet object manifolds. We then evaluated their OOD
transfer performance on three fine-grained image classification datasets: Flowers102 (Nilsback &
Zisserman, 2008), Stanford Cars (Krause et al., 2013), and Places365 (Zhou et al., 2017). For each

9Preventing overconfidence by replacing hard one-hot labels with soft labels (Müller et al., 2019).
10Applying data augmentation that has been optimized by Cubuk et al. (2019) through extensive search.
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OOD dataset, we randomly subsampled 20 classes (50 repetitions) and transfer performance was
assessed using the linear probing method described in Section 3.1.
Diagnosing transferability through ID effective manifold geometry. Consistent with the hy-
pothesis derived from our initial explorations, we found that models with higher Deff and Ψeff of-
ten demonstrated stronger OOD transfer performance, even when their ID ImageNet accuracy was
lower. As shown in Table 2, many v2 models exhibited more compressed object manifolds (lower
Deff and Ψeff) and, despite their higher ID accuracy, performed worse on downstream tasks. This
was not a universal rule; in some cases, like WideResNet, the v2 weights showed both superior
geometry and better transfer performance. The full results across all 17 architectures, presented in
Appendix D and Table 9, confirm this strong trend.
Revealing differences in fine-tuning dynamics. Finally, we explored whether these initial fea-
ture advantages persist during full-model fine-tuning. As expected from prior work showing that the
benefits of pretraining diminish with longer fine-tuning (Kornblith et al., 2019; He et al., 2018), both
v1 and v2 initializations ultimately converged to a similar performance level. However, we observed
a drastic difference in the early fine-tuning stages: models initialized with v1 weights sometimes ex-
hibited faster learning, hinting that their features may provide a more efficient transferrable starting
point (Figures 20, 21). These results show that test-relevant geometric measures can reveal differ-
ences in fine-tuning dynamics, motivating future directions to study their role in transfer learning.

5 DISCUSSION

We introduced a diagnostic, system-level paradigm for anticipating generalization failure in neural
networks. Instead of reconstructing detailed internal mechanisms, we treated task-relevant geomet-
ric “biomarkers” of ID representations as prognostic indicators. Through extensive “preclinical”
experiments, we discovered that over-compression of object manifold dimension consistently pre-
dicts failures in OOD generalization. Applied to ImageNet-pretrained models—a far more hetero-
geneous real-world setting—our prognostic measures predict which models transfer more robustly
across tasks. Together, these results demonstrate the power of a diagnostic framework for studying
generalization failures. This work opens up several future directions.

• Theoretical foundations. In Section 3.3, we link over-compression of object manifolds to over-
specialization of learned features. Strengthening the theoretical basis of this hypothesis is impor-
tant. A related question is whether incorrectly classified OOD examples share common traits that
can be explained by the overspecialization intuition.

• Causal mechanisms and interventions. Geometric indicators could inspire investigation into
underlying causal mechanisms and practical interventions, such as geometry-aware regularization,
early-stopping criteria, or model selection rules that prioritize robustness alongside accuracy.

• Extending the proposed diagnostic research framework. Expanding our proposed analysis
framework beyond vision to language, reinforcement learning, or multi-modal models remains an
open challenge. Another direction is to extend our findings into deployable protocols for diagnos-
ing OOD failures across a wider range of models and datasets.

• Linking diagnostics to parameter transfer. A future direction is to explore whether insights
from our controlled experiments can inform parameter transfer between models of different scales,
as in Net2Net (Chen et al., 2015). While our focus here is on diagnostics, connecting to weight
transfer could provide a complementary path for robust initialization.

• Parallels with neuroscience. High-dimensional yet structured codes in the brain have been linked
to generalization in neuroscience studies. Our hypothesis connecting manifold compression with
feature overspecialization may offer a framework for interpreting these findings and for exploring
common principles across biological and artificial systems.

Theoretical work on neural networks has long been influenced by mathematics and physics, with
an emphasis on bottom-up, mechanistic explanations. We suggest that the history of medicine
offers a complementary perspective: progress often relied on pragmatic biomarkers and diagnos-
tics—effective for anticipating risks and guiding treatment—well before underlying causal mech-
anisms were fully understood. Neural networks, as emergent, high-dimensional complex systems,
may likewise benefit from a diagnostic science that anticipates vulnerabilities, guides model design,
and ultimately informs future mechanistic understanding.
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A EXPERIMENTAL SETTINGS

In this section, we provide a complete description of our experimental setup to facilitate repro-
ducibility.

A.1 DATASETS

Our study utilized a range of standard image classification datasets, which served different roles:
either as in-distribution (ID) training sources or out-of-distribution (OOD) evaluation benchmarks
across two distinct experimental settings. Table 3 provides a summary of these roles. Below, we
describe each dataset and the specific preprocessing pipelines applied.

Table 3: Summary of dataset roles in our experiments.

Experimental Setting In-Distribution (ID)
Dataset

Out-of-Distribution
(OOD) Datasets

“Preclinical” Studies (Section 3) CIFAR-10 CIFAR-100
ImageNet-1k (resized to
32x32)

Transfer Learning Applications (Section 4) ImageNet-1k Flowers102
Stanford Cars
Places365

Datasets for “Preclinical” Studies. In our controlled medium-scale experiments, we trained mod-
els from scratch on a single ID dataset and evaluated their generalization to two different OOD
datasets with disjoint classes.

• CIFAR-10 (Krizhevsky et al., 2009) served as our primary in-distribution (ID) dataset for train-
ing. It contains 60,000 color images of 32 × 32 pixels, split into 50,000 training and 10,000
test images across 10 object categories. For training, we normalized images using a per-channel
mean of (0.4914, 0.4822, 0.4465) and a standard deviation of (0.2023, 0.1994, 0.2010). We also
applied standard data augmentation: padding with 4 pixels on each side, followed by a random
32× 32 crop and a random horizontal flip with 50% probability. For evaluating ID test accuracy,
augmentation was disabled.

• CIFAR-100 (Krizhevsky et al., 2009) was used as the primary out-of-distribution (OOD) bench-
mark. It has the same image format and size as CIFAR-10 but contains 100 distinct object classes
with no overlap. For OOD evaluation, images were only normalized using the CIFAR-10 statis-
tics; no data augmentation was applied to ensure a deterministic evaluation protocol.

• ImageNet-1k (Deng et al., 2009) was used as a second, more challenging OOD benchmark to
test generalization under a significant domain shift. This dataset contains over 1.2 million high-
resolution images from 1,000 categories. To maintain compatibility with our CIFAR-trained mod-
els, all ImageNet images were resized to 32 × 32 pixels using bicubic interpolation. They were
then normalized using the standard ImageNet per-channel mean (0.485, 0.456, 0.406) and stan-
dard deviation (0.229, 0.224, 0.225). No data augmentation was applied during evaluation.

Datasets for Transfer Learning Applications. In this setting, we analyzed publicly available
models pretrained on ImageNet-1k and evaluated their transferability to three downstream, fine-
grained classification tasks.

• ImageNet-1k served as the in-distribution (ID) dataset, as all models we analyzed were pre-
trained on it. For measuring the ID geometric markers, we used the official validation set. Images
were processed according to the standard pipeline for each model: resized to 256 × 256, center-
cropped to 224× 224, and normalized using the standard ImageNet mean and standard deviation.

• Flowers102 (Nilsback & Zisserman, 2008) is a fine-grained OOD dataset containing 8,189 images
of flowers belonging to 102 different categories.
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• Stanford Cars (Krause et al., 2013) is another fine-grained OOD dataset consisting of 16,185
images of cars, categorized by 196 classes (e.g., make, model, and year).

• Places365 (Zhou et al., 2017) is a large-scale scene-centric OOD dataset with over 1.8 million
images from 365 scene categories.

For all three OOD datasets in this setting, images were resized to 224 × 224 pixels using bicubic
interpolation and then normalized. During the OOD evaluation via linear probing no data augmenta-
tion was applied. For the full-model fine-tuning experiments (see Figure 20), data augmentation was
applied during the training phase, which included random horizontal flipping (with a 50% probabil-
ity) and color jitter. These augmentations were disabled during the evaluation of model checkpoints
on the OOD validation subsets.

A.2 MODEL ARCHITECTURES

A.2.1 MODELS FOR “PRECLINICAL STUDIES” (SECTION 3)

To ensure our findings generalize across different model design philosophies, our exploratory stud-
ies included a diverse set of convolutional neural network (CNN) architectures. All models were
adapted for CIFAR-scale (32×32 pixel) inputs and trained from random initialization, ensuring that
their learned representations were not influenced by prior pretraining:

• ResNet (He et al., 2016): A family of foundational deep residual networks that utilize skip con-
nections to enable effective training of very deep models. We used the ResNet-18, ResNet-34, and
ResNet-50 variants.

• VGG (Simonyan & Zisserman, 2015): Classic deep feedforward networks characterized by their
architectural simplicity and sequential stacking of small 3×3 convolutions. We included VGG-13,
VGG-16, and VGG-19, each augmented with batch normalization.

• MobileNetV1 (Howard et al., 2017): A lightweight architecture designed for computational effi-
ciency through the use of depthwise separable convolutions.

• EfficientNet-B0 (Tan & Le, 2019): A modern, highly efficient model that systematically scales
network depth, width, and resolution using a compound scaling method.

• DenseNet (Huang et al., 2017): An architecture designed to maximize feature reuse and improve
gradient flow by connecting each layer to every other subsequent layer within dense blocks.

This selection spans a wide architectural landscape, including canonical residual and feedforward
designs, modern efficient networks, and architectures with alternative connectivity patterns. This
diversity allows us to validate that our findings are a general property of deep representations, rather
than an artifact of a specific model family.

A.2.2 MODELS FOR TRANSFER LEARNING APPLICATIONS (SECTION 4)

For the experiments in Section 4, we shifted from training smaller-scale models from scratch across
a wide range of hyperparameters to analyzing publicly available, pretrained models to test our di-
agnostic framework in a realistic setting. Our primary selection criterion was the availability of
two official pretrained weight versions, typically labeled ”v1” and ”v2”, within the PyTorch model
repository.

This v1/v2 setup provides a unique opportunity for a controlled comparison. By design, the v2
weights offer higher in-distribution (ID) accuracy on ImageNet, often due to improved training
recipes, data augmentation (e.g., AutoAugment), or regularization (e.g., label smoothing). This
allows us to directly test our central hypothesis: whether ID geometric markers can identify cases
where higher ID accuracy masks a hidden vulnerability, leading to poorer out-of-distribution (OOD)
transferability.

Our final set of 17 architectures is highly diverse, spanning multiple design generations and prin-
ciples. In addition to deeper variants of models used in our control studies (ResNet-50/101/152,
MobileNetV2/V3, EfficientNet-B1), our selection also includes:

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• RegNet (Radosavovic et al., 2020): A family of networks (e.g., RegNetY-400MF, RegNetX-
32GF) whose structure is discovered by optimizing a data-driven design space, resulting in well-
performing models.

• ResNeXt (Xie et al., 2017): An evolution of ResNet that introduces a cardinality dimension,
increasing model capacity by aggregating a set of parallel transformations.

• Wide ResNet (Zagoruyko & Komodakis, 2016): A variant of ResNet that is wider but shal-
lower, demonstrating that width can be a more effective dimension for improving performance
than depth.

A.3 COMPUTING RESOURCES

All experiments were conducted on NVIDIA H100 (80GB) or A100 (80GB) GPUs, paired with a
128-core Rome CPU and 1 TB of RAM. Training each model for 200 epochs required approximately
1–3 hours, depending on the architecture and optimizer. Unless otherwise specified, all experiments
were run on a single GPU worker. These specifications, together with the full training configurations
described in earlier subsections, are provided to facilitate reproducibility.
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B DETAILS ON ID MEASURES

In this section, we define the performance, statistical, and geometric measures used in our analy-
sis. These are computed on the feature representations extracted from models using the ID training
dataset, unless stated otherwise. Our goal is to identify which properties of a model’s ID represen-
tations can serve as reliable indicators of its out-of-distribution (OOD) generalization capability.

The measures are grouped into three categories: performance measures that quantify classifica-
tion accuracy, statistical measures that summarize low-order distributional properties of features,
and geometric measures that characterize the structure of class-specific feature manifolds. A key
distinction is that while statistical metrics typically operate on pooled features, our primary geo-
metric measures are computed on object manifolds – the per-class point clouds in representation
space. This allows them to directly capture properties relevant to classification, such as manifold
size, shape, and correlation structure in the representational space.

We first describe how feature representations are extracted and then define each measure in detail.

B.1 REPRESENTATION EXTRACTION

All representational measures are computed on feature vectors extracted from the penultimate layer
of each network – the final layer before the classification head. This layer captures high-level, task-
specialized features that are not yet collapsed into class logits. For convolutional networks, the
feature vector is obtained via global average pooling. The exact layers used for each architecture are
listed in Table 4.

Table 4: Exact layer names used for extracting feature representations.

Architecture Layer name in PyTorch module

VGG13 features.34
VGG16 features.43
VGG19 features.52
ResNet avgpool
DenseNet121 avg pool2d
MobileNet avg pool2d
EfficientNetB0 adaptive avg pool2d
RegNet avgpool
ResNeXt avgpool
Wide ResNet avgpool

Given an ID dataset DID and a trained network fθ, let zi ∈ RN denote the N -dimensional feature
vector for the i-th input sample xi in DID, extracted from the layer listed in Table 4. All statistical
and geometric measures described in the following subsections are computed from the collection
{zi}Mi=1 of such feature vectors, where M is the total number of samples in DID.

For measures that require class-specific statistics (e.g., within-class covariance, manifold radius),
we further partition {zi} by ground-truth label into {zµi }M

µ

i=1 for each class µ ∈ {1, . . . , P}, where
Mµ is the number of samples in class µ.

B.2 STATISTICAL METRICS

We compute a set of statistical descriptors from the ID feature representations to quantify basic
structural properties of the learned embedding space. All metrics are computed from the collection
of penultimate-layer feature vectors {zi}Mi=1 extracted from the ID dataset (see Table 4).

Activation sparsity. The activation sparsity measures the proportion of non-zero entries across all
feature vectors,

sparsity =
1

MN

M∑
i=1

N∑
j=1

1(|zij | > ε) ,

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where N is the feature dimension and ε = 10−6 is a small threshold to account for numerical noise.
Higher sparsity indicates more silent units on average across the dataset.

Covariance magnitude. We compute the empirical covariance matrix Σ ∈ RN×N over features
and take the mean absolute value of its off-diagonal entries,

mean covariance =
2

N(N − 1)

∑
j<k

|Σjk|,

which reflects the average degree of linear correlation between distinct feature dimensions.

Pairwise distance. We compute the mean Euclidean distance between all pairs of feature vectors,

mean distance =
2

M(M − 1)

∑
i<j

∥zi − zj∥2,

providing a coarse measure of spread in the representation space.

Pairwise angle. After ℓ2-normalizing each feature vector, we compute cosine similarities and con-
vert them to angles in radians via θij = arccos(cos simij). The mean pairwise angle reflects the
typical directional separation between features.

All statistical metrics are computed on the raw feature vectors without centering unless required by
the measure (e.g., covariance).

B.3 GEOMETRIC MEASURES: PARTICIPATION RATIO AND GLUE-BASED TASK-RELEVANT
METRICS

Unlike the statistical measures described above, our geometric analysis operates on object mani-
folds—point clouds in feature space containing activations from the same class. This distinction is
important: geometric metrics explicitly quantify per-class representational structure, whereas most
statistical metrics aggregate across the entire dataset without regard to class boundaries.

Participation ratio (PR). As a conventional baseline for manifold dimensionality, we compute
the participation ratio (PR) of the penultimate-layer features for each class. Let {zµi }M

µ

i=1 denote the
Mµ feature vectors for the µ-th class, and λµi be the eigenvalues of their covariance matrix. The PR
of this class is defined as

Dµ
PR =

(
∑

i λ
µ
i )

2∑
i(λ

µ
i )

2
, (3)

which measures the effective number of principal components with substantial variance. In all
figures we present the average of PR over all classes, i.e., 1

P

∑
MµDµ

PR. While PR is widely used,
it is task-agnostic and does not incorporate information about class separability.

B.3.1 TASK-RELEVANT GEOMETRIC MEASURES FROM GLUE

To capture the aspects of representational geometry most relevant for classification, we employ the
effective geometric measures introduced in the Geometry Linked to Untangling Efficiency (GLUE)
framework (Chou et al., 2025a), grounded in manifold capacity theory (Chou et al., 2025a; Chung
et al., 2018). The theory has found wide applications in both neuroscience (Yao et al., 2023; Paraouty
et al., 2023; Kuoch et al., 2024; Hu et al., 2024) and machine learning (Cohen et al., 2020; Mamou
et al., 2020; Stephenson et al., 2021; Kirsanov et al., 2025; Chou et al., 2025b).

Analogous to support vector machine (SVM) theory—where an analytical connection between the
max-margin linear classifier and its support vectors is used to assess separability in the best-case
sense—GLUE establishes a similar analytical connection in an average-case sense, as follows.
Rather than analyzing the max-margin classifier directly in the originalN -dimensional feature space
RN , GLUE considers random projections to an N ′-dimensional subspace and evaluates whether the
representations remain linearly separable. Intuitively, if the data are highly separable in RN , they
will, with high probability, remain separable even after projection to a much lower N ′. Conversely,
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if the data are barely separable in RN , the probability of maintaining separability will rapidly drop
to zero as N ′ decreases.

Formally, following the modeling and notation in GLUE, each object manifold is modeled as the
convex hull of all representations corresponding to the µ-th class:

Mµ = conv
(
{zµi }

M
i=1

)
,

where {zµi } is the collection of M feature vectors of the µ-th class. A dichotomy vector y ∈
{−1, 1}P and a collection Y ⊂ {−1, 1}P are chosen by the analyst. Common choices are Y
being the set of all 1-vs-rest dichotomies (e.g., (1,−1,−1, . . . ,−1), (−1, 1,−1, . . . ,−1), . . . ,
(−1,−1,−1, . . . , 1)) or Y = {−1, 1}P .

The key quantity in GLUE for measuring the degree of (linear) separability of manifolds is the
critical dimension, defined as the smallest N ′ such that the probability of (linear) separability after
projection to a random N ′-dimensional subspace is at least 0.5:

Ncrit := min
p(N ′)≥0.5

N ′,

where
p(N ′) := Pr

Π:RN→RN′

[
∃w ∈ RN ′

s.t. yµ⟨w,xµ⟩ ≥ 0, ∀µ, xµ ∈ Mµ
]
.

By scaling Ncrit with the number of manifolds, we define the classification capacity α := P/Ncrit,
which intuitively captures the maximal load a network can handle. Larger α corresponds to more
separable manifolds in the average-case sense.

GLUE theory relates α to manifold structure through:

α = P ·

 E
y∼Y

t∼N (0,IN )

 max
λµ
i ≥0 ∀µ,i

 ⟨t,
∑

µ,i y
µλµi z

µ
i ⟩∥∥∥∑µ,i y

µλµi z
µ
i

∥∥∥
2

2



−1

. (4)

Equation 4 can be numerically estimated using a quadratic programming solver (see Algorithm 1
in (Chou et al., 2025a)).

Observe that one can view the optimal solution λµ(y, t) for the inner maximization problem as a
function of y, t. This naturally leads to the following definition of anchor point for class µ as:

sµ(y, t) :=

∑
i λ

µ
i (y, t)z

µ
i∑

i λ
µ
i (y, t)

,

and stacking them into a matrix S ∈ RP×N and let Sy := diag(y)S, GLUE yields an equivalent
form:

α = P ·

 E
y∼Y

t∼N (0,IN )

[
(Syt)

⊤(SyS
⊤
y )

†(Syt)
]

−1

, (5)

where † denotes the pseudoinverse. This parallels SVM theory, where the margin is linked to a
simple function on the support vectors.

Center–axis decomposition of anchor points. For each µ ∈ [P ], define the anchor center of the
µ-th manifold as:

sµ0 := Ey,t [s
µ(y, t)] ,

and for each (y, t), define the axis component of the µ-th anchor point as:

sµ1 (y, t) := sµ(y, t)− sµ0 .

Similar to Sy, we denote Sy,0,Sy,1(y, t) ∈ RP×N as the matrices containing yµsµ0 and yµsµ1 (y, t)
on their rows, respectively, i.e., Sy,0 := diag(y)S0 and Sy,1(y, t) := diag(y)S1(y, t) where S0

and S1(y, t) have sµ0 and sµ1 (y, t) stacked on their rows.
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With these, define:

a(y, t) = (Syt)
⊤(SyS

⊤
y )

†(Syt),

b(y, t) = (Sy,1(y, t)t)
⊤ (

Sy,1(y, t)Sy,1(y, t)
⊤)† (Sy,1(y, t)t),

c(y, t) = (Sy,1(y, t)t)
⊤ (

Sy,0S
⊤
y,0 + Sy,1(y, t)Sy,1(y, t)

⊤)† (Sy,1(y, t)t).

Note that α = P/Ey,t[a(y, t)].

Effective geometric measures. GLUE further decomposes α into three measures:

α = Ψeff ·
1 +R−2

eff

Deff
,

where:

• Effective dimension:

Deff :=
1

P
Ey,t[b(y, t)]

Intuitively, Deff measures the intrinsic dimensionality of the manifolds while incorporating
axis alignment between them. Lower Deff corresponds to more compact, better-aligned
manifolds, improving linear separability.

• Effective radius:

Reff :=

√
Ey,t[c(y, t)]

Ey,t[b(y, t)− c(y, t)]

Intuitively,Reff quantifies the scale of manifold variation relative to its center, incorporating
center alignment between classes. SmallerReff reflects tighter clustering of features around
class centers, reducing manifold overlap.

• Effective utility:

Ψeff :=
Ey,t[c(y, t)]

Ey,t[a(y, t)]

Intuitively, Ψeff measures the combined effect of signal-to-noise ratio (SNR) on separa-
bility. Higher Ψeff corresponds to manifolds that are both low-dimensional and compact
relative to inter-class distances.

For further derivations, illustrations, and examples, see the supplementary materials of (Chou et al.,
2025a). In all our experiments, for each manifold we subsample to 50 points, conduct GLUE analy-
sis on each manifold pair, and apply Gaussianization preprocessing (Wakhloo et al., 2023) to ensure
initial linear separability.

ρcµ,ν := |⟨sµ0 , sν0⟩|

ρaµ,ν := E
y,t

[|⟨sµ1 (y, t), sν1(y, t)⟩|]

ψµ,ν := E
y,t

[|⟨sµ0 , sν1(y, t)⟩|]

Intuitions for GLUE measures. The three task-relevant geometric measures—Deff, Reff, and
Ψeff—serve as markers that directly link geometric properties of object manifolds to classification
efficiency. As we show in later sections, they are substantially more predictive of OOD performance
than conventional measures. Here we summarize key properties, examples, and approximations of
GLUE measures in Table 5 for intuition-building.
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Table 5: Intuitions for GLUE measures.

Deff ≥ 0 Reff ≥ 0 Ψeff ∈ [0, 1]

Geometric
intuition

Quantify the task-relevant
dimensionality of object
manifolds.

Quantify the task-relevant
spread within each mani-
fold relative to their centers.

Quantify the amount of
wasteful compression of
untangling manifolds .

Effect on linear
separability

More separable when Deff
is small.

More separable when Reff
is small.

More separable when Ψeff
is large.

Example Deff equals the dimension
of uncor. random spheres

Reff equals the radius of un-
cor. random spheres

Collapsing manifolds to
points yields Ψeff → 0.

Formula for un-
correlated ran-
dom spheres12

1
P

∑
µ E

[(
⟨sµ1 (t),t⟩
∥sµ1 (t)∥2

)2
]

1
P

∑
µ

√
E
[(

∥sµ1 (t)∥2
∥sµ0 ∥2

)2
]

1
P

∑
µ E

[(
⟨sµ1 (t),t⟩
⟨sµ(t),t⟩

)2
]

Interaction
with correla-
tions among
manifolds

If within-manifold varia-
tions align along similar
directions, Deff decreases.

If manifold centers move
farther apart, Reff de-
creases.

If within-manifold varia-
tions reduce without im-
proving separability, Ψeff
decreases.

Interpretation
in feature learn-
ing13

Low Deff indicates a
smaller set of feature
modes in use.

Low Reff indicates more
similar feature usage across
examples within a class.

Low Ψeff indicates in-
efficient compression of
within-class variability.

13For the µ-th manifold, define its anchor center as sµ0 := Et[s
µ(t)] and the axis-part of the anchor point

as sµ1 (t) := sµ(t) − sµ0 . Intuitively, sµ0 is the mean representation for the µ-class, and sµ1 (t) corresponds
to the within-class variation/spread. ⟨·, ·⟩ denotes inner product and ∥ · ∥2 denotes ℓ2 norm. Formulas for
uncorrelated random spheres provide a useful mental picture: Deff resembles the Gaussian width, equal to the
sphere’s dimension (Vershynin, 2018); Reff reflects the ratio of within-manifold variation to mean response; and
Ψeff corresponds to the fraction of error (i.e., inner product with t) attributable to within-manifold variation.
We remark that the center of the manifold is defined as the average of the data points in (Chung et al., 2018) as
opposed to the average over anchor points in (Chou et al., 2025a).

14We follow a top-down view of feature learning (Chou et al., 2025b), where features are understood func-
tionally through their consequences for computation (e.g., enabling linear separability) rather than as specific
interpretable axes or neurons. This perspective emphasizes how representational geometry changes with feature
usage without requiring explicit identification of the features themselves. Moreover, by thinking of a direction
in the representation space as a feature (linear representation hypothesis (Park et al., 2024)), the effective geo-
metric measures offer interpretation in feature learning as listed in the table.
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C ADDITIONAL RESULTS FOR SECTION 3

C.1 IMPLEMENTATION DETAILS

During the initial exploration of how OOD performance varies across a wide range of final model
states, we trained all architectures from scratch on CIFAR-10. We used two optimizers: SGD with a
momentum of 0.9, and AdamW (Loshchilov & Hutter, 2019). We ran training for 200 epochs with a
cosine annealing learning rate schedule, which smoothly decays the learning rate to zero, stabilizing
late-stage representation geometry.

For each architecture and optimizer pair, we performed a systematic 4×4 grid search over the initial
learning rate (η0) and weight decay (λ). The specific values for each grid, which were tailored
to each architecture family based on empirical best practices, are detailed in Table 6 and Table 7.
This diverse grid was designed to produce models in various training regimes, from under- to over-
regularized, allowing us to find cases where ID performance is stable while OOD performance varies
— a key aspect of our analysis.

Table 6: Hyperparameter grid for SGD optimizer.

Architecture Initial learning rate list Weight decay list

VGG (13/16/19) [0.01000, 0.00333, 0.00111, 0.00037] [0.0010000, 0.0003333, 0.0001111, 0.0000370]
ResNet (18/34/50) [1.00000, 0.50000, 0.25000, 0.12500] [0.0002000, 0.0001000, 0.0000500, 0.0000250]
DenseNet121 [0.05000, 0.01667, 0.00556, 0.00185] [0.0005000, 0.0001667, 0.0000556, 0.0000185]
MobileNet [0.20000, 0.06667, 0.02222, 0.00741] [0.0001000, 0.0000333, 0.0000111, 0.0000037]
EfficientNetB0 [0.20000, 0.06667, 0.02222, 0.00741] [0.0001000, 0.0000333, 0.0000111, 0.0000037]

Table 7: Hyperparameter grid for AdamW optimizer.

Architecture Initial learning rate list Weight decay list

VGG (13/16/19) [0.02000, 0.00500, 0.00125, 0.00031] [0.0100000, 0.0033333, 0.0011111, 0]
ResNet (18/34/50) [0.10000, 0.02500, 0.00625, 0.00156] [0.0100000, 0.0050000, 0.0025000, 0]
DenseNet121 [0.05000, 0.02500, 0.01250, 0.00625] [0.0100000, 0.0033333, 0.0011111, 0]
MobileNet [0.02000, 0.00500, 0.00125, 0.04000] [0.0100000, 0.0033333, 0.0011111, 0]
EfficientNetB0 [0.10000, 0.05000, 0.01000, 0.00100] [0.0010000, 0.0003333, 0.0001111, 0]

C.2 DETAILS FOR FIGURE 4

In this section, we present supplementary figures that provide a more detailed view of the main
findings stated in Figure 4 from Section 3. Table 8 provides a list of content for this subsection.

Quantification of Relationships. We quantify the relationship between ID measures and OOD
performance by computing the Pearson correlation coefficient (r) and its associated p-value via
ordinary least-squares linear regression between the measure values and OOD accuracies. For all
figures with heatmaps, we annotate each r-value with significance asterisks based on its p-value:
p ≤ 0.0001 (∗∗∗∗), p ≤ 0.001 (∗∗∗), p ≤ 0.01 (∗∗), and p ≤ 0.05 (∗).

Data Splits for Measures. The terms “Test” and “Train” in the figure labels indicate whether the
representational measures were computed on the ID test set or the ID training set, respectively.
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Table 8: Organization of figures in Appendix C.

Figure label Model set Optimizer ID split OOD dataset

Figure 6 Five DNNs SGD Train CIFAR-100
Figure 7 Five DNNs SGD Test CIFAR-100
Figure 8 Five DNNs AdamW Train CIFAR-100
Figure 9 Five DNNs AdamW Test CIFAR-100
Figure 10 Three ResNets + Three VGGs SGD Train CIFAR-100
Figure 11 Three ResNets + Three VGGs SGD Test CIFAR-100
Figure 12 ResNet18 + VGG19 SGD Train ImageNet subset
Figure 13 ResNet18 + VGG19 SGD Test ImageNet subset

Figure 5: All results, measures computed on the ID train set.
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Figure 6: Five DNN architectures, trained with SGD, measures computed on the ID train set.

Figure 7: Five DNN architectures, trained with SGD, measures computed on the ID test set.
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Figure 8: Five DNN architectures, trained with AdamW, measures computed on the ID train set.

Figure 9: Five DNN architectures, trained with AdamW, measures computed on the ID test set.
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Figure 10: Three ResNet and three VGG architectures, trained with SGD, measures computed on
the ID train set.

Figure 11: Three ResNet and three VGG architectures, trained with SGD, measures computed on
the ID test set.
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Figure 12: ResNet18 and VGG19, trained with SGD, evaluated on ImageNet subset OOD, measures
computed on the ID train set.

Figure 13: ResNet18 and VGG19, trained with SGD, evaluated on ImageNet subset OOD, measures
computed on the ID test set.
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C.3 RESULTS ON CORRUPTED IMAGES AS OOD DATA

Here we provide results on 6 out of 19 corruption methods in CIFAR-10C.

Figure 14: Corruption type: gaussian noise. Five DNN architectures, trained with SGD, measures
computed on the ID test set.

Figure 15: Corruption type: fog. Five DNN architectures, trained with SGD, measures computed
on the ID test set.
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Figure 16: Corruption type: brightness. Five DNN architectures, trained with SGD, measures com-
puted on the ID test set.

Figure 17: Corruption type: contrast. Five DNN architectures, trained with SGD, measures com-
puted on the ID test set.
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Figure 18: Corruption type: pixelate. Five DNN architectures, trained with SGD, measures com-
puted on the ID test set.

Figure 19: Corruption type: jpeg compression. Five DNN architectures, trained with SGD, measures
computed on the ID test set.
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D DETAILS ON THE APPLICATIONS TO PRETRAINED MODELS

Here we provide implementation details and statistical procedures underlying the pretrained model
analysis in Section 4. This section accompanies the full results reported in Table 9 and Figures 20,
21.

D.1 MODEL SELECTION AND WEIGHTS

We evaluated 17 pretrained architectures available through the PyTorch model zoo, spanning fami-
lies such as RegNet, MobileNet, ResNet/ResNeXt, WideResNet, and EfficientNet. For each archi-
tecture, we included both the v1 and v2 weight releases. The two weight sets differ in training
recipes and regularization schemes, though exact details are not always disclosed, making them a
heterogeneous and realistic testbed. By design, the v2 models typically achieve higher ImageNet
top-1 accuracy, while v1 weights often exhibit higher manifold dimensionality.

D.2 REPRESENTATION EXTRACTION

For each model, we extracted feature representations from the penultimate layer (see Table 4 for
exact layer names). Input images were preprocessed by resizing to 224 × 224 pixels, converted to
tensors, and normalized with standard ImageNet statistics. For GLUE analysis, we subsampled 50
feature vectors per class, applied Gaussianization preprocessing, and computed effective geometric
measures (Deff, Reff,Ψeff) as described in Appendix B.

D.3 OOD EVALUATION VIA LINEAR PROBING

To evaluate the OOD generalization of the frozen feature extractor, we attached a linear classifier
to the penultimate feature representation of each pretrained model (see Table 4 for layer details).
Crucially, the pretrained backbone weights remained frozen throughout this process; only the pa-
rameters of the new classifier were trained. For each OOD dataset, we constructed class-balanced
transfer tasks by randomly sampling 20 target classes, using up to 100 images per class for training
and 50 for validation. This sampling procedure was repeated across multiple trials to ensure robust
evaluation. The linear classifier was trained for 50 epochs using the Adam optimizer with an initial
learning rate of 0.1 and a cross-entropy loss function.

D.4 FULL MODEL FINE-TUNING PROTOCOL

As a complementary evaluation, we also performed end-to-end fine-tuning. Models were initialized
with either the v1 or v2 pretrained weights, and a new task-specific classifier head was randomly ini-
tialized. Unlike the linear probe, all model parameters (both in the backbone and the new classifier)
were updated during training.

To simulate a realistic application scenario, we fine-tuned the models on the complete official train-
ing splits of Flowers102 (6,149 images) and Stanford Cars (8,144 images). Training was conducted
for 50 epochs with a batch size of 64. We used the AdamW optimizer (Loshchilov & Hutter, 2019)
with a weight decay of 10−6 and a cosine annealing learning rate scheduler with an initial learning
rate of 3× 10−4.

To monitor the learning dynamics, we evaluated the model’s performance on the validation set at 40
checkpoints, spaced logarithmically throughout the training process.

D.5 STATISTICAL ANALYSIS

We assessed the relationship between representational geometry and OOD accuracy using Pear-
son correlation coefficients between Deff, Ψeff, and transfer performance. Significance levels were
evaluated using ordinary least-squares regression and reported as p-values over 50 random repeti-
tions. In Table 9, ± values denote SEM, and asterisks mark significance thresholds (∗ : p ≤ 0.05,
∗∗ : p ≤ 0.01, ∗∗∗ : p ≤ 0.001, ∗∗∗∗ : p ≤ 0.0001).
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D.6 COMPREHENSIVE RESULTS

The full set of pretrained model results, including geometric indicators and OOD accuracies across
three benchmarks, is presented in Table 9. Summary statistics and illustrative examples are included
in the main text (Table 2).

Table 9: Application of the over-compression hypothesis to ImageNet-pretrained models.

Model | Weights Deff Ψeff ID Acc OOD Acc

Places 365 Flower 102 StanfordCars

RegNetX32GF v1 10.06 ± 0.20 0.901 ± 0.004 80.62 81.20 ± 0.48 93.25 ± 2.31 75.60 ± 0.52
v2 8.94 ± 0.27 0.884 ± 0.005 83.01 80.60 ± 0.49 92.00 ± 0.60 72.02 ± 0.66

RegNetX16GF v1 10.51 ± 0.19 0.898 ± 0.005 80.06 81.50 ± 0.47 93.25 ± 1.92 75.53 ± 0.60
v2 8.87 ± 0.27 0.893 ± 0.006 82.71 79.65 ± 0.50 92.00 ± 0.52 72.24 ± 0.64

RegNetY8GF v1 10.32 ± 0.20 0.905 ± 0.005 80.03 81.75 ± 0.50 92.50 ± 2.19 75.80 ± 0.60
v2 8.78 ± 0.29 0.895 ± 0.005 82.83 80.50 ± 0.51 92.50 ± 0.48 74.85 ± 0.60

MobileNetV3 Large v1 13.03 ± 0.21 0.943 ± 0.004 74.04 78.20 ± 0.54 94.00 ± 0.72 75.15 ± 0.55
v2 9.82 ± 0.22 0.918 ± 0.005 75.27 77.85 ± 0.53 93.00 ± 0.41 74.20 ± 0.63

RegNetX1 6GF v1 11.45 ± 0.20 0.916 ± 0.005 77.04 80.55 ± 0.50 93.50 ± 1.13 76.67 ± 0.60
v2 9.23 ± 0.25 0.887 ± 0.005 79.67 78.95 ± 0.49 92.00 ± 0.43 71.43 ± 0.56

RegNetY400MF v1 10.97 ± 0.20 0.908 ± 0.005 74.05 78.75 ± 0.50 91.00 ± 0.71 69.85 ± 0.59
v2 9.11 ± 0.22 0.898 ± 0.005 75.80 77.90 ± 0.51 88.50 ± 0.70 66.57 ± 0.65

RegNetY800MF v1 11.39 ± 0.20 0.923 ± 0.005 76.42 80.35 ± 0.50 92.50 ± 1.00 75.81 ± 0.55
v2 9.39 ± 0.24 0.900 ± 0.006 78.83 78.75 ± 0.50 90.00 ± 0.65 72.81 ± 0.56

RegNetY1 6GF v1 11.22 ± 0.20 0.906 ± 0.005 77.95 80.45 ± 0.52 93.50 ± 0.90 76.49 ± 0.52
v2 8.43 ± 0.23 0.894 ± 0.006 80.88 79.80 ± 0.49 90.00 ± 0.73 70.69 ± 0.67

EfficientNetB1 v1 13.66 ± 0.28 0.943 ± 0.004 78.64 77.55 ± 0.52 92.00 ± 0.51 73.47 ± 0.53
v2 12.68 ± 0.29 0.948 ± 0.005 79.84 80.40 ± 0.49 93.00 ± 0.44 76.06 ± 0.52

ResNeXt50 32X4D v1 10.30 ± 0.20 0.905 ± 0.004 77.62 79.20 ± 0.50 92.50 ± 1.97 71.08 ± 0.60
v2 9.68 ± 0.29 0.909 ± 0.006 81.20 79.20 ± 0.50 88.75 ± 0.69 69.60 ± 0.67

RegNetY16GF v1 9.84 ± 0.21 0.903 ± 0.006 80.42 81.80 ± 0.48 91.75 ± 2.58 75.74 ± 0.60
v2 9.45 ± 0.31 0.905 ± 0.006 82.89 81.55 ± 0.52 91.00 ± 0.61 70.45 ± 0.60

ResNet101 v1 9.79 ± 0.17 0.898 ± 0.006 77.37 80.15 ± 0.49 91.50 ± 2.00 71.98 ± 0.76
v2 9.56 ± 0.27 0.906 ± 0.005 81.89 80.05 ± 0.50 90.50 ± 0.65 71.21 ± 0.49

ResNet152 v1 9.51 ± 0.16 0.898 ± 0.005 78.31 80.05 ± 0.50 91.50 ± 2.37 72.59 ± 0.56
v2 9.15 ± 0.27 0.910 ± 0.005 82.28 80.50 ± 0.54 89.25 ± 0.53 69.70 ± 0.65

MobileNetV2 v1 12.54 ± 0.19 0.930 ± 0.004 71.88 77.50 ± 0.55 91.75 ± 0.88 72.81 ± 0.68
v2 12.85 ± 0.26 0.929 ± 0.005 72.15 76.85 ± 0.56 91.75 ± 0.82 69.00 ± 0.61

ResNeXt101 32X8D v1 9.88 ± 0.19 0.913 ± 0.006 79.31 80.60 ± 0.51 92.00 ± 2.51 73.33 ± 0.53
v2 10.32 ± 0.26 0.913 ± 0.004 82.83 80.40 ± 0.49 90.50 ± 0.52 67.47 ± 0.67

WideResNet50 2 v1 9.13 ± 0.14 0.901 ± 0.004 78.47 79.10 ± 0.36 88.50 ± 1.18 70.61 ± 0.43
v2 10.60 ± 0.20 0.911 ± 0.003 81.60 80.70 ± 0.37 90.25 ± 0.38 72.07 ± 0.42

ResNet50 v1 9.87 ± 0.18 0.904 ± 0.005 76.13 79.80 ± 0.49 90.75 ± 1.77 71.60 ± 0.59
v2 10.36 ± 0.27 0.926 ± 0.005 80.56 79.60 ± 0.53 91.00 ± 0.44 70.96 ± 0.61
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Figure 20: Fine-tuning dynamics of ImageNet-pretrained networks on Flowers102 dataset from v1
and v2 weights. Insets show ID measures at initialization
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Figure 21: Fine-tuning dynamics of ImageNet-pretrained networks on StanfordCars dataset from
v1 and v2 weights. Insets show ID measures at initialization

34


	Introduction
	Overview and our contributions
	Related work

	``Biomarkers'' for image classification
	Task-relevant geometric measures
	Conventional measures

	Discover Prognostics for Failure in OOD Generalization
	Methods
	Results
	Diagnosing failures in generalization via detecting shortcut features

	Applications to Predicting Performance of Transfer Learning
	Discussion
	Experimental Settings
	Datasets
	Model Architectures
	Models for ``Preclinical Studies'' (Section 3)
	Models for Transfer Learning Applications (Section 4)

	Computing resources

	Details on ID Measures
	Representation Extraction
	Statistical metrics
	Geometric measures: participation ratio and GLUE-based task-relevant metrics
	Task-relevant geometric measures from GLUE


	Additional Results for Section 3
	Implementation details
	Details for Figure 4
	Results on corrupted images as OOD data

	Details on the Applications to Pretrained models
	Model Selection and Weights
	Representation Extraction
	OOD Evaluation via Linear Probing
	Full model fine-tuning protocol
	Statistical Analysis
	Comprehensive Results


