
Under review as a conference paper at ICLR 2023

SMOOTH MATHEMATICAL FUNCTION FROM COMPACT
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

This is paper for the smooth function approximation by neural networks (NN).
Mathematical or physical functions can be replaced by NN models through regres-
sion. In this study, we get NNs that generate highly accurate and highly smooth
function, which only comprised of a few weight parameters, through discussing
a few topics about regression. First, we reinterpret inside of NNs for regression;
consequently, we propose a new activation function–integrated sigmoid linear unit
(ISLU). Then special charateristics of metadata for regression, which is different
from other data like image or sound, is discussed for improving the performance
of neural networks. Finally, the one of a simple hierarchical NN that generate
models substituting mathematical function is presented, and the new batch con-
cept “meta-batch" which improves the performance of NN several times more is
introduced. The new activation function, meta-batch method, features of numerical
data, meta-augmentation with metaparameters, and a structure of NN generating a
compact multi-layer perceptron(MLP) are essential in this study.

1 INTRODUCTION

In many fields, such as astronomy, physics, and economics, someone may want to obtain a general
function that satisfies a dataset through regression from numerical data, which are fairly accurate
(Ferrari & Stengel (2005); Czarnecki et al. (2017); Raissi et al. (2019); Langer (2021)). The problem
of smoothly approximating and inferring general functions using neural networks (NNs) has been
considered in the some literature. However, there is insufficient research on using NNs to completely
replace the ideal mathematical functions of highly smooth levels, which are sufficiently precise to
be problem-free when a simulation is performed. This study aims to completely replace such ideal
mathematical functions.

Assuming a model M(X) was developed by regression on a dataset using an NN. M(X) for input
X can be thought of as a replacement of a mathematical function f(X). In this study, such NN is
called “neural function(NF)" as a mathematical function created by an NN. The components of an
analytic mathematical function can be analyzed using a series expansion or other methods, whereas it
is difficult for a NF.

In this study, we created “highly accurate" and “highly smooth" NFs with a “few parameters"
using metadata. Particularly, we combined a new activation function, a meta-batch method, and
weight-generating network (WGN) to realize the desired performances.

The major contributions of this study can be summarized as follows.

• We dissected and interpreted the middle layers of NNs. The outputs of each layer are
considered basis functions for the next layer; from this interpretation, we proposed a new
activation function–integrated sigmoid linear unit (ISLU)-suitable for regression.

• The characteristics and advantages of metadata for regression problems were investigated. A
training technique with fictious metaparameters and data augmentation, which significantly
improves performance, was introduced. It was also shown that for regression problems,
the function values at specific locations could be used as metaparameters representing the
characteristics of a task.

1

Under review as a conference paper at ICLR 2023

• NN structures that could generate compact1 NFs for each task from metaparameters were
investigated, and a new batch concept– ‘meta-batch’–that could be used in the NFs was
introduced.

2 NNS FOR REGRESSION

Let’s talk about an easy but non-common interpretation about regression with a multi-
layer perceptron (MLP). What do the outputs of each layer of an MLP mean? They
can be seen as basis functions that determine the function to be input to the next layer.

Figure 1: Perspective on MLP

The input xi+1 of the (i+ 1)th layer can be expressed as follows:

xi+1
j =

∑
k

wi
j,k ∗M i

k(x0) + bj , (1)

where x0 denotes the input of the first layer, wi
j,k denotes the

weight that connects the kth node of the ith layer to jth node of
the (i+ 1)th layer, and M i

k denotes a model comprising the 0th to
ith layers and having the kth node of the ith layer as the output.
This is similar to the expression f(x) =

∑
j wjϕj(x) + b of the

radial basis function(RBF) kernel method. Clearly, the outputs
of each layer act as basis functions for the next layer. Figure 2
shows the outputs of each layer of an MLP that learned the dataset
D = {(xi, yi)|y = 0.2(x − 1)x(x + 1.5), x ∈ [−2, 2]} with the
exponential linear unit (ELU) activation function.

Figure 2: The output graphs of each layer, trained with an MLP, where the nodes of each layer are
[1,30,30,30,5,1].

Figure 3: The graphs of ELU and ISLU(α = 0.5,
β = 1)

To efficiently extract the final function, the out-
put functions of the intermediate layers must
be well-developed. If the output functions of
each layer are well-developed, the desired final
NF can be compact. In addition, for the final
function of NN to be infinitely differentiable,
the output functions of the intermediate layers
should also be infinitely differentiable.

If the activation function is a rectified linear
unit(ReLU), the output function bends sharply
after every layer. If a one-dimensional regres-
sion problem is modeled with a simple MLP

that has (k+1) layers with nodes [N0, N1, N2..Nk], the output function will bend more than
N0 ∗N1...Nk. The ELU activation function weakens such bending but does not smoothen it for the

1Comprising few parameters

2

Under review as a conference paper at ICLR 2023

(a) MLP (b) MLP with fictitious metadata (c) WGN4

Figure 4: Scores. The numerical score table is shown in Appendix E.

Figure 5: Comparison of ELU and ISLU when training with WGN. From left to right, the 0th, 1st,
and 2nd derivatives of the curves with respect to time t in a task in the given metadatasets. Blue lines:
WGN_(4L,64N)_ELU_MB, Red lines: WGN_(4L,64N)_ISLU[1]a_MB

first derivative. Moreover, apt attention is required when using the hyperbolic tangent function for all
layers in a regression problem because the output function bends in two places after each layer.

Thus, the question is which activation function can develop the intermediate basis functions well? If
the activation function starts as a linear function and bends at an appropriate curvature after each layer,
the final result will be good. Therefore, we propose an activation function suitable for regression,
called "integrated sigmoid linear unit(ISLU)".

log(α+ exp(βx))/β − log(1 + α)/β, (2)

where α and β are positive numbers.

Our experiment shows that ISLU performs sufficiently well and is worth further research. It can
improve the accuracy and smoothness of our experimental data. 2 Mathematically, ISLU for α = 1 is
a translated SoftPlus that passes the origin, but ISLU absolutely differs from SoftPlus. The purposes
of their production differ, and there is a significant difference in their results.3

The experimental results are shown in Figure 4.5 6 7 By default, a model structure is represented in the
form “[the name of the model structure]_([the number of layers]L, [the number of nodes of all hidden
layers)N]_[activation function]_[further information (option)].” The experimental metadataset is
described in Appendix A <1>, which has B, k, and m as metaparameters and the corresponding task

2Numerical score discussion for smoothness is presented in Appendix F.
3A detailed explanation of this is presented in Appendix C.
4With SoftPlus[1], WGN could not be trained due to the divergence of loss.
5In our experiment, the Swish activation function was also tested, and its performance was comparable to that

of ISLU. However, for consistency, we do not discuss it in the main text; the details are presented in Appendix B.
6All box plots in this study are arranged in order of small scores from the top, and items wherein the box is

invisible have a larger score than the shown graph range.
7All experimental conditions of NNs in this study are shown in Appendix D

3

Under review as a conference paper at ICLR 2023

dataset for L,t,ϕ. 8 The average of the “sum of error squares" for eight tasks among the experimental
metadatasets is considered a score.

In Figure 4a, we consider a basic MLP structure trained on one task; WGN and fMLP, which will
be introduced hereinafter, in Figure 4b,4c are models trained using metadata. Considering ISLU[0],
what is in [] represents a degree of freedom in which the activation function’s shape can be changed.
ISLU[0] is trained with α = 0.5 and β = 1, ISLU[1]a is trained with α = 0.5 and β = var, and
ISLU[1]b is trained with α = 0.5 and β = 1 + var, where var are trainable parameters. Because
variables tend to be learned in a distribution with a mean near zero when training with an NN,
ISLU[1]a bends slightly after each layer and ISLU[1]b bends to a certain amount and additionally
adjusts its degree. 9

Considering the experimental results in Figure 4, the following is observed.

• (1) There is a significant difference in performance between SoftPlus and ISLU.

• (2) Considering an MLP, there is not much difference in performance between ISLU and ELU
(Figure 4a). However, in all models trained with metadata, ISLU significantly outperforms
ELU (Figure 4b,4c).

• (3) In Figure 4b, when the number of nodes is high(64N), ISLU[0] outperforms ISLU[1],
whereas when the number of nodes is low(15N,16N), ISLU[1] outperforms ISLU[0].

• (4) In Figure 4c, ISLU[1]b always outperforms ISLU[0].

• (5) As shown in ISLU[1]a and ISLU[1]b, there are slight differences in performance depend-
ing on what the shape of ISLU is based on.

The reason for (2) can be explained as follows: setting an activation function parameter entails giving
a certain bias. When given well, it considerably helps in predicting results; otherwise, it may interfere.
When using metadata, the performance is improved because biases are determined by referring to
various data.

We now discuss the reasons for (3) and (4). In Figure 4b, fMLP indicates an MLP structure trained
with fictitious metadata10 for only one task. If an MLP has a lots of nodes, even if the curvature
functions of all activations are set to be the same, several functions can be added and combined to
produce curves with the desired shapes. Meanwhile, when the nodes are few, desired curves may not
be obtained well without adjusting the curvatures of the activation functions. In Figure 4c, WGN is a
network structure 11 that learns the entire metadata at once. In this case, using ISLU[1] allows the
activation shape to change between tasks, yielding better results than the fixed-shaped ISLU[0].

The ISLU presented in this study is an example of an activation function for creating desired curves;
a better activation function can be studied.

2.1 PERSPECTIVES OF METADATA

Figure 6: Metadata structure.

In this study, metadata are the data of datasets that are
sometimes the sets of task datasets, metafeatures are
features of a task dataset, and metalabels or metapa-
rameters are parameters representing metafeatures. Con-
sider a case where a physical system has the relation
y = f(x1, x2..) and the function f depends on the vari-
ables a1, a2.... For example, a pendulum’s kinetic energy
E is E = f(θ), where θ denotes the angle between the
string and gravitational field direction, and the function f
depends on the string’s length l or pendulum’s mass m.

In this case, the kinetic energy E can be viewed not
only as f(θ, l,m..) but also as fl,m(θ). The dataset D =

8Most of the experiments in this study are done with this experimental dataset.
9The smaller the β value, the closer ISLU is to a straight line.

10described in 2.2
11described in 3.1

4

Under review as a conference paper at ICLR 2023

Figure 7: The NN learns the
sine curves even if all the
task dataset’s x values for any
A,p,ϕ are only at x=0.26, 1.54,
2.30, 3.84, 7.69, 8.97.

Figure 8: Meta-augmentations
with fictitious metalabels. The
meta-augmentations of the y-
axis are displayed.

Figure 9: Performance improve-
ment when using fictitious meta-
parameters. “fMLP" indicates
MLP trained with using fictitious
metaparameters.

{(li,mi, θi, Ei)|Ei = f(θi, li,mi..)} = {(li,mi, Di)|Di = Dmi,li(θ)} is metadataset and the
numerical value l,m can be considered as metaparameters.

One might want to interpret the kinetic energy as E = fl,θ(m). This cannot be said to be wrong, and
there may be various perspectives and interpretations for a numerical dataset used for regression.

2.2 ADVANTAGES OF TRAINING WITH METADATA AND META-AUGMENTATION

Consider an experiment performed with the following metadata Dk = {(xi, yi)|yi = Ak ∗ sin(pk ∗
xi + ϕk), x ∈ [0, 10], Ak ∈ [−1.5, 1.5], pk ∈ [0.5, 1.5], ϕk ∈ [0, 2π]}. It can be seen from the
perspective that the tasks D = {(xi, yi)|yi = A ∗ sin(p ∗ xi + ϕ)} are given according to the
metaparameters of A, p, and ϕ. In this case, if not only x but also A, p, and ϕ were trained as training
inputs, a curve could be created with zero shot just by setting A, p, and ϕ. 12 Consequently, if metadata
are used to learn, the accuracy of each task increases.

Taking a hint from the fact that metadata improve inference accuracy for each task, it can be thought
that even in a situation where only one task is given, fictitious metadata with fictitious metalabels (or
metaparameters) can be generated to learn curves. If only fictitious metalabels are used and the data
remain the same, curves would be learned in the direction of ignoring the metalabels; therefore, some
data modifications are required. For the experiment, fictitious metadata comprising 10 tasks with the
metaparameter a were created by moving the yi value in parallel ±0.05 for every a = ±0.02 with
the original data of a = 0 for a given task D = {(xi, yi)}. As a result of using fictitious metadata, the
score improved significantly (Figure 9). The performance improvement was similar even when the
fictitious metadata were generated by moving xi instead of yi according to the fictitious metalabel.

We reiterate that data augmentation including ficitous meta-parameters is required to achieve signif-
icant performance improvement, otherwise there is little performance improvement. In this study,
only the experimental results using MLP with fictitious metaparameters added to inputs are shown;
however, further experiments show that the performance improvement due to fictitious metadata
occurs independent of the model structure.

2.3 LEARNING FUNCTION WITH RESTRICTED METADATA

The regression task for the numerical dataset D = {(xi, yi)|i = 0, 1, 2..} can have a significant
advantage different from the image problems, i.e., yi values at particular locations can be metapa-
rameters that represent the entire task dataset. For the set of images, if we know the RGB values at
specific positions of pixels, it does not help to distinguish the features of images. However, for a set of
mathematical functions f(x)s such as fifth degree polynomial or sine curve sets, just knowing f(x) at

12MLP with inputs A, p, ϕ, θ and the WGN in 3.1 were used for the experiment.

5

Under review as a conference paper at ICLR 2023

Figure 10: WGN structure and training with meta-
batch, where z denotes a metaparameter, X denotes
the input, Y denotes the output, and w denotes the
weight of main Network.

Figure 11: Another example of function-
generating networks where meta-batch can
be used.

specific x positions can let us distinguish the functions well. This can be shown in the experiments
with sine curve datasets. For the tasks Dk = {(xi, yi)|yi = Ak ∗ sin(pk ∗xi+ϕk), x ∈ [0, 10], Ak ∈
[−1.5, 1.5], pk ∈ [0.5, 1.5], ϕk ∈ [0, 2π]} that are not given metaparameters A, p, and ϕ, it is possible
to learn the sine curves just using the function values yi at six points of xi as metaparameters (Figure
7). In other words, it is possible to perform few-shot learning simply without metalabels.

In addition, the relationship between the six y points and A, p, and ϕ can be learned with a simple MLP
that has six-dimensional inputs and three-dimensional outputs, indicating that the metaparameters A,
p, and ϕ can be completely extracted to generate a sine curve using on the six points.

3 FUNCTION-GENERATING NETWORKS

3.1 WGN

When learning metadata in a regression problem, one can think of an hierarchical NN structure
in which a NF corresponding to each task is generated from corresponding meta parameters. The
structure in which a model is generated from variables has been studied extensively (Rusu et al.
(2018); Sun et al. (2019)). We consider the one of the structure of a function-generating network called
weight generating network(WGN) in this study. As shown in Figure 6, WGN generates parameters
such as the weight and bias of main network through a simple MLP called weight generator from
metaparameters. If there are trainable parameters of the activation function on the main network, can
also be generated from metaparameters.

WGN is expected to generate NFs comprising a few parameters corresponding to each task through
the weight generator.This is because enormous data and weight generators carefully generate the
parameters of the main network. Experiments showed that WGN is effective in creating the main
network with excellent performance, although it comprises only a few parameters.

What are the advantages of creating a NF with only a few parameters? First, because the number of
times that a linear input function can be bent is reduced, it may have a regulation effect or help create
a smooth function. Second, it may be helpful in interpreting and analyzing the network by directly
adjusting the parameters. Third, because the number of weights is small and the inference speed is
fast, it can be advantageous when a fast interference speed is required, such as a simulation.

3.2 META-BATCH

When training a function-generating network, such as WGN, ‘one’ metalabel (or metaparameter) zi is
usually placed on the weight generator’s input, and it is updated with the batch of the corresponding
task on the main network. However, in this case, it becomes training with batch-size=1 for the
metaparameters, and when it is updated with backpropagation at once, the metacorrelation between
tasks is not used well. From these problems, the meta-batch concept is proposed. To distinguish the

6

Under review as a conference paper at ICLR 2023

Figure 12: Comparison between using meta-
batch and not using meta-batch

Figure 13: Scores for each task of metadata from
different models.

meta-batch from the conventional batch, the batch of each task corresponding to one zi is called “task
batch." “Meta-batch" refers to both the batch of metaparameters and the corresponding batch of the
tasks. The training method for WGN using the meta-batch is as follows.

Suppose a training metadataset D = {(Dk, zk)|k ∈ {1..K}} comprising task training datasets
Dk = {(xk

i , y
k
i)}

Nk
i=1 are given, where Nk is the number of datapoints of Dk task. For index sets

M ⊂ {1, , ,K}, Tk ⊂ {1, , , Nk} that determines meta-batch and task batch, select the batch
XM = {(Dm, zm)|m ∈ M} and XM

T = {(xm
t , ymt)|t ∈ Tm,m ∈ M}.

We denote the dimensions of xi, yi, and zi as N [x], N [y], and N [z], respectively. wl
ij denotes

the weight between the lth and (l + 1)th layers of the WGN’s main network, which has a shape
(N [wl], N [wl+1]), where N [wi] denotes the number of nodes at the i-th layer . The inputs XM

T of
the main network are rank-3 tensors in the form of (MB,TB,N [x]), where MB and TB denote the
sizes of M and T , respectively.

If zm enters to weight generator as inputs in the form of (MB,N [z]), G[wl
ij](zm) generates a tensor in

the form (MB,N [wl] ∗N [wl+1]) and it is reshaped as (MB,N [wl], N [wl+1]), where G[wl
ij] denotes

a generator that generates wl
ij . The outputs of the l-th layer of the main network, which has the shape

(MB,TB,N [wl]), are matrix-producted with the weights in the form (MB,N [wl], N [wl+1]), and
then it becomes a tensor in the form (MB,TB,N [wl+1]).13 Finally, the outputs of the main network
with shape (MB,TB,N [y]) and ymt are used to calculate the loss of the entire network. Conceptually,
it is simple as shown in Figure 10.

As a result of the experiment, Figure 12 14 shows a significant difference in performance between
using and not using meta-batch, where “MB" means using meta-batch, and “ST" means training by
inputting metaparameters individually without using meta-batch. Figure 12 also shows the difference
between using WGN and just using a simple MLP.

Meta-batch can be used in any function-generating network structure that generates models from
variables; another example is shown in Figure 11. The outputs of generators concatenate with the
layers of the main network. As a result of experimenting with ISLU[1] in the structure shown in
Figure 11, there was a performance difference of more than four times between using and not using
meta-batch.

13All other parameters in the main network can be generated from weigh generators using a similar method
14For a WGN, an MLP with three hidden layers and 40 nodes was used as the weight generator.

7

Under review as a conference paper at ICLR 2023

Figure 14: Experimental results with another
metadata Appendix A <2> related to atmo-
spheric pressure.

Figure 15: Experimental results with metadata
Appendix A <3> comprising sine and cosine
functions

Figure 13 shows the results of using WGN and meta-batch compared with those of using only MLP.
“sWGN" indicates a WGN trained with metaparameters that are the function values at 10 points
of (L, t, ϕ) without using original metaparameters “B, k, and m." “mMLP" indicates an MLP that
trained with a six-dimensional input combined with “L, t, and ϕ" and the original metaparameters.
“MLP" indicates a trained model for each task with just inputs “L, t, and ϕ." This figure shows that
using meta-batch, WGN outperformed MLP with fewer parameters. This also shows that WGN
excels at learning all metadata and using them with only a few parameters.

Figures 14 and 15 shows the results of other metadatasets, which are described in Appendix A. The
combinations of ISLU, meta-batch, and WGN give much better performance than MLP in terms of
accuracy and compactness.

4 CONCLUSION

In this study, we focus on creating mathematical functions with desired shapes using an NN with
a few parameters. Irregular and numerous parameters are helpful for generalizations because of
randomness; however, this sometimes makes it difficult to interpret the network and reduces the
smoothness of the functions.

In this study, we dissected NNs for regression; consequently, we proposed a new activation function.
We looked at the special features of regression-related metadata, such as the possibilities to extract
meta-parameters immediately, and how, given only one task, we could create ficitious meta-parameters
and metadata to increase performance by more than a few times.

In addition, the network structures generating NFs from metaparameters were discussed and the
meta-batch method was introduced and tested for the structure called WGN. WGN makes it possible
to provide smooth and desired-shaped NFs comprised of a few parameters because it carefully
generates different parameters and shapes of activation functions for each task.

The findings of this study, as well as the insights obtained in the process, are significant for earning
smooth and accurate functions from NNs. One of them is the perspective of obtaining desired output
functions at intermediate layers from enormous data. Regarding regression problems, it will help
elucidate how to find the metafeature of each task and map to the corresponding metaparameter as
well as how to get a smooth and compact NF of a desired shape.

8

Under review as a conference paper at ICLR 2023

REFERENCES

Villèvo Adanhounmè, Théophile K Dagba, and Sèmiyou A Adédjouma. Neural smooth function
approximation and prediction with adaptive learning rate. In Transactions on Computational
Collective Intelligence VII, pp. 103–118. Springer, 2012.

Youngmin Cho. Kernel methods for deep learning. University of California, San Diego, 2012.

Wojciech M Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz, and Razvan Pascanu.
Sobolev training for neural networks. Advances in Neural Information Processing Systems, 30,
2017.

Silvia Ferrari and Robert F Stengel. Smooth function approximation using neural networks. IEEE
Transactions on Neural Networks, 16(1):24–38, 2005.

Gianni Franchi, Andrei Bursuc, Emanuel Aldea, Séverine Dubuisson, and Isabelle Bloch. Tradi:
Tracking deep neural network weight distributions. In European Conference on Computer Vision,
pp. 105–121. Springer, 2020.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. arXiv preprint arXiv:1806.07572, 2018.

Siddharth Krishna Kumar. On weight initialization in deep neural networks. arXiv preprint
arXiv:1704.08863, 2017.

Sophie Langer. Approximating smooth functions by deep neural networks with sigmoid activation
function. Journal of Multivariate Analysis, 182:104696, 2021.

Stéphane Lathuilière, Pablo Mesejo, Xavier Alameda-Pineda, and Radu Horaud. A comprehensive
analysis of deep regression. IEEE transactions on pattern analysis and machine intelligence, 42
(9):2065–2081, 2019.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Deep neural networks as gaussian processes. arXiv preprint arXiv:1711.00165,
2017.

Yi Loo, Swee Kiat Lim, Gemma Roig, and Ngai-Man Cheung. Few-shot regression via learned basis
functions. 2019.

Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall. Activation functions:
Comparison of trends in practice and research for deep learning. arXiv preprint arXiv:1811.03378,
2018.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Janarthanan Rajendran, Alex Irpan, and Eric Jang. Meta-learning requires meta-augmentation. arXiv
preprint arXiv:2007.05549, 2020.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osin-
dero, and Raia Hadsell. Meta-learning with latent embedding optimization. arXiv preprint
arXiv:1807.05960, 2018.

Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. Meta-transfer learning for few-shot
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 403–412, 2019.

Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial
intelligence review, 18(2):77–95, 2002.

Tailin Wu, John Peurifoy, Isaac L Chuang, and Max Tegmark. Meta-learning autoencoders for
few-shot prediction. arXiv preprint arXiv:1807.09912, 2018.

9

Under review as a conference paper at ICLR 2023

APPENDIX

A THE EXPERIMENTAL METADATASET

<1> The following dataset was generated from the formula in the physics book of a graduate school.15

The original problem and its answer are as follows.

——————————————————————————————————————–

“A spring is connected to a support at one end and has a mass m attached at the other, where the spring
constant is k and the rest length is L. Neglecting the spring’s mass, what is the angular position θ of
mass m under the gravitational field as a function of time t?”

=> answer : θ = B cos (
√

kg
kL+km t+ ϕ), where B,ϕ are constants of integration.

——————————————————————————————————————–

The formula θ = B cos (
√

kg
kL+km t+ ϕ) was slightly modified, and the following dataset is gener-

ated.

D ={(Bi, ki,mi, Li, ti, ϕi, θi)|θi =
√

Bi cos (

√
kig + (Bi − 0.3)2

kiLi + kimi
ti + ϕi), Bi ∈ [0.5, 1.5],

ki ∈ [2, 5], g = 9.8,mi ∈ [0.5, 2.5], Li ∈ [1, 4], ti ∈ [0.1, 2], ϕi ∈ [0, 0.78]}
∼ {(Bi, ki,mi,DBi,ki,mi)}

When it was trained, all input variables B, k,m,L, t, ϕ were normalized.

For each of B, k, and m, 10 points were uniformly selected to make 1,000 metaparameter sets
{(Bi, ki,mi)}, and for each metaparameter point, task datasets DBi,ki,mi

= {(Li, ti, ϕi, θi)} which
have 35,301 points were created by selecting 21, 41, and 41 uniform points of L, t, and ϕ, respectively.
Among them, 100 random metaparameters were selected, and 640 points were selected for each task
to be used as training metadata. The selected points are shown in Figure 16.

Figure 16: Points of training datasets.

<2> The dataset for Figure 14 is

D ={(Bi, ki,mi, Li, ti, ϕi, yi)|yi =
−mig

Biki
log

ti
ti −BiLi

+ log ϕi, Bi ∈ [1, 10],

ki ∈ [5, 20], g = 9.8,mi ∈ [1, 20], Li ∈ [1, 8], ti ∈ [100, 150], ϕi ∈ [2, 20]}
∼ {(Bi, ki,mi,DBi,ki,mi

)}

15Goldstein, H., Poole, C., & Safko, J. (2002). Classical mechanics.

10

Under review as a conference paper at ICLR 2023

<3> The dataset for Figure 15 is

D ={(Bi, ki,mi, Li, ti, ϕi, yi)|yi = Bi sin(kiti +Bi) +mi cos
2(ϕiLi +mi), Bi ∈ [−0.4, 0.4],

ki ∈ [1, 1.5], g = 9.8,mi ∈ [0.2, 1], Li ∈ [0, 1.4], ti ∈ [0, 1.4], ϕi ∈ [1, 1.5]}
∼ {(Bi, ki,mi,DBi,ki,mi)}

B ABOUT SWISH ACTIVATION FUNCTION

Figure 17: Swish. Figure 18: Scores of bMLP with
the amplified data.

Figure 19: Scores of fMLP with
errored data.

Swish showed similar or sometimes slightly better performance than ISLU in our given experimental
data. Perhaps the reason is that Swish is good for generalization, and our data fall within the smooth
range of Swish activation (−1, 1).

If the data targets are in the range of (−1, 1), Swish may have to be used in a range that includes two
bends (inflection points), which may result in a slightly worse performance. In actual experiments,
Swish underperformed ISLU when the experimental data targets had values significantly outside the
range of (−1, 1). Figure 18 shows the experimental results of data obtained by increasing the target
value by 20 times that of the data in Appendix A <1>, where bMLP means fMLP 16 with the new
data whose targets are amplified.

In addition, if the data are mixed with some errors, ISLU tends to slightly outperform Swish. Figure
19 shows the scores when training fMLP with the experimental data obtained by adding random
errors to the original data targets within 1%.17 This shows ISLU slightly outperforms Swish, possibly
because ISLU’s curve is simpler and gives a regularization effect.

C REASON FOR PERFORMANCE DIFFERENCE BETWEEN ISLU AND SOFTPLUS

Even when comparing ISLU[0] with α = 1 and β = 1 and SoftPlus, there are differences in
performance because the parameters try to follow a specific distribution when an NN is trained.

Particularly, for two activation functions AF and AF ′ = AF +b, when the parameter w is multiplied,
there is a difference in parallel movement by only w ∗ b because w ∗AF ′(x) = w ∗ (AF (x) + b) =
w ∗ AF (x) + w ∗ b. It may be thought that the bias parameter could be adjusted to produce the
same performance; however, there are differences in performance because the NN parameters prefer
a certain distribution. Further, because ISLU(x,β) = SoftPlus(x,β) + b(β), the differences widen
because β is entangled with the translation part.

16MLP with meta-augmentation in 2.2
17Data mixed with random errors were generated only once and applied in all cases.

11

Under review as a conference paper at ICLR 2023

D TRAINING CONDITIONS

The model with the structure denoted by (pL,qN) means the model where the number of hidden
layers, excluding the input and output layers, is p-1, and the total number of layers is p+1.

For WGN, all weight generators were configured separately for weight, bias, and activation function
parameters of the main networks, all of which were MLPs with 40 nodes and 2 hidden layers. The
activation function of the generator did not significantly affect the results of either ISLU[0], ISLU[1],
or Swish; all of them were set to Swish for consistency. The meta-batch size was 16, and the running
rate was 0.88 times for every 5,000 updates starting from 0.001, with a total of 350,000 updates.

For the model structure in Figure 11, all settings were the same as above except that the generators
only generate the inputs of each layer, which are concatenated with the other inputs of each layers of
the main network. Each eight-dimensional input of the main network was generated by the generators,
and experiments were performed with the (4L,16N) structure.

E SCORES FOR FIGURES

Table 1: Table for Figure 4a

Model Score
MLP_(4L,64N)_ISLU[1]b 0.0480
MLP_(4L,64N)_ISLU[0] 0.0650
MLP_(4L,64N)_TANH 0.0746
MLP_(4L,64N)_ELU 0.0949
MLP_(4L,64N)_ISLU[1]a 0.1087
MLP_(4L,16N)_TANH 0.1735
MLP_(4L,16N)_ELU 0.2674
MLP_(4L,16N)_ISLU[0] 0.3722
MLP_(4L,16N)_ISLU[1]a 0.3853
MLP_(4L,16N)_SoftPlus[0] 0.6513
MLP_(4L,16N)_SoftPlus[1] 1.5230
MLP_(4L,16N)_ISLU[1]b 14799.9304
MLP_(4L,64N)_SoftPlus[0] 314.3878
MLP_(4L,64N)_SoftPlus[1] 329.3784

Table 2: Table for Figure 4b

Model Score
fMLP_(4L,64N)_ISLU[0] 0.0055
fMLP_(4L,64N)_ISLU[1]a 0.0062
fMLP_(4L,16N)_ISLU[1]b 0.0103
fMLP_(4L,15N)_ISLU[1]b 0.0112
fMLP_(4L,16N)_ISLU[1]a 0.0181
fMLP_(4L,15N)_ISLU[1]a 0.0191
fMLP_(4L,16N)_ISLU[0] 0.0247
fMLP_(4L,64N)_SoftPlus[0] 0.0418
fMLP_(4L,64N)_SoftPlus[1] 0.0438
fMLP_(4L,64N)_ELU 0.0691
fMLP_(4L,16N)_ELU 0.0793
fMLP_(4L,16N)_SoftPlus[1] 0.1306
fMLP_(4L,16N)_SoftPlus[0] 230.7397

Table 3: Table for Figure 4c

Model Score
WGN_(4L,64N)_ISLU[1]b_MB 0.0024
WGN_(4L,64N)_ISLU[0]_MB 0.0024
WGN_(4L,64N)_ISLU[1]a_MB 0.0042
WGN_(4L,16N)_ISLU[1]b_MB 0.0058
WGN_(4L,15N)_ISLU[1]b_MB 0.0073
WGN_(4L,16N)_ISLU[0]_MB 0.0074
WGN_(4L,15N)_ISLU[1]a_MB 0.0078
WGN_(4L,16N)_TANH_MB 0.0097
WGN_(4L,16N)_ISLU[1]a_MB 0.0138
WGN_(4L,64N)_ELU_MB 0.0248
WGN_(4L,16N)_ELU_MB 0.0473

Table 4: Table for Figure 9

Model Score
fMLP_(4L,64N)_ISLU[0] 0.0055
fMLP_(4L,16N)_ISLU[1]b 0.0103
fMLP_(4L,15N)_ISLU[1]b 0.0112
fMLP_(4L,16N)_ISLU[0] 0.0247
MLP_(4L,64N)_ISLU[1]b 0.0479
MLP_(4L,64N)_ISLU[0] 0.0650
fMLP_(4L,64N)_ELU 0.0691
fMLP_(4L,16N)_ELU 0.0793
MLP_(4L,64N)_ELU 0.0949
MLP_(4L,16N)_ELU 0.2673
MLP_(4L,16N)_ISLU[0] 0.3721
MLP_(4L,16N)_ISLU[1]b 14799.9303

12

Under review as a conference paper at ICLR 2023

Table 5: Table for Figure 12

Model Score
WGN_(4L,64N)_ISLU[1]b_MB 0.0023
WGN_(4L,16N)_ISLU[1]b_MB 0.0057
WGN_(4L,15N)_ISLU[1]b_MB 0.0073
WGN_(4L,64N)_ELU_MB 0.0248
WGN_(4L,64N)_ISLU[1]b_ST 0.0330
WGN_(4L,16N)_ELU_MB 0.0472
WGN_(4L,64N)_ELU_ST 0.0487
WGN_(4L,16N)_ISLU[1]b_ST 0.2064
WGN_(4L,16N)_ELU_ST 0.3642

Table 6: Table for Figure 13

Model Score
WGN_(4L,16N)_ISLU[1]b_MB 0.0057
WGN_(4L,16N)_ISLU[0]_MB 0.0073
WGN_(4L,16N)_ISLU[1]a_MB 0.0137
sWGN_(4L,16N)_ISLU[1]b_MB 0.0161
WGN_(4L,16N)_ELU_MB 0.0472
MLP_(4L,64N)_ISLU[1]b 0.0479
MLP_(4L,64N)_ISLU[0] 0.0650
sWGN_(4L,16N)_ELU_MB 0.0656
MLP_(4L,64N)_ELU 0.0949
MLP_(4L,64N)_ISLU[1]a 0.1086
mMLP_(4L,16N)_ISLU[1]b 0.2243
MLP_(4L,16N)_ELU 0.2673
MLP_(4L,16N)_ISLU[0] 0.3721
mMLP_(4L,16N)_ISLU[0] 0.3780
MLP_(4L,16N)_ISLU[1]a 0.3852
mMLP_(4L,16N)_ISLU[1]a 0.5812
mMLP_(4L,16N)_ELU 0.8616
MLP_(4L,16N)_ISLU[1]b 14799.9303

Table 7: Table for Figure 14

Model Score
WGN_(4L,16N)_ISLU[1]a_MB 0.0005
WGN_(4L,16N)_TANH_MB 0.0008
WGN_(4L,16N)_ELU_MB 0.0009
MLP_(4L,64N)_ISLU[1]a 0.0010
MLP_(4L,64N)_ELU 0.0013
MLP_(4L,16N)_ISLU[1]a 0.0021
MLP_(4L,16N)_ELU 0.0031
MLP_(4L,64N)_TANH 0.0031
MLP_(4L,16N)_TANH 0.0052

Table 8: Table for Figure 15

Model Score
WGN_(4L,16N)_ISLU[1]b_MB 0.0032
MLP_(4L,64N)_TANH 0.0237
WGN_(4L,16N)_ELU_MB 0.0272
MLP_(4L,64N)_ELU 0.0475
MLP_(4L,64N)_ISLU[1]a 0.1189
WGN_(4L,16N)_TANH_MB 0.1217
MLP_(4L,16N)_TANH 0.1290
MLP_(4L,16N)_ELU 0.1387
MLP_(4L,16N)_ISLU[1]a 0.1903

F SMOOTHNESS SCORE

(a) (b) (c)

Figure 20: (a) shows the case where the degree of waviness in a given section can be checked.
Meanwhile, cases such as (b) and (c) cannot be checked well.

In this study, the smoothness score is defined as a temporary measure, and the smoothness of some
tested models is examined.

The smoothness score judges “how wavy." To determine this, the smoothness
of a particular period is first considered because there is a need for a stan-
dard to determine whether the case of Figure 21a or Figure 21b is smooth.

13

Under review as a conference paper at ICLR 2023

(a) The smoothness score of the 0th
derivative

(b) The smoothness score of the 1st
derivative

(c) The smoothness score of the 2nd
derivative

Figure 22: The smoothness scores with the period 0.007 in all directions for WGN models are shown.

(a)

(b)

Figure 21: Waviness

First, the function value y−2, y−1, y0, y1, y2 are selected for the uniform in-
terval x−2, x−1, x0, x1, x2. Let the path connecting (x−2, y−2) and (x2, y2)
be y = L(x). If the signs of y−1 − L(x−1) and y1 − L(x1) differ, the
path is nonsmooth. For A and B, |A|+ |B| − (A+B) is 0 if both AandB
have the same sign; otherwise, a positive number greater than 0 is obtained.
Therefore, using this, the degree of smoothness of the path is considered as
(|y−1 − L(x−1)| + |y1 − L(x1)| − (y−1 − L(x−1)) + y1 − L(x1))), and
its total sum is taken as the smoothness score. In a multidimensional case,
the sum of smoothness scores in all directions is the total smoothness score.

The disadvantage of this smoothness concept is that it cannot comprise the
cases where there is a peak and a sudden bend (Figures 20b and 20c), although such cases can be
checked by considering the differential of smoothness or smoothness of a smaller period.

This smoothness score has two parameters: the period, which determines the size of the section to be
checked, and the moving step interval. Figure 22 shows the smoothness for several WGN models
with period 0.007 and step 0.007. The figure shows the following two results: (1) ISLU is smoother
than ELU and (2) the fewer the parameters and layers, the lower the smoothness score.

14

	Introduction
	NNs for Regression
	Perspectives of Metadata
	Advantages of Training with Metadata and Meta-Augmentation
	Learning Function with Restricted Metadata

	Function-Generating Networks
	WGN
	Meta-batch

	Conclusion
	The Experimental Metadataset
	About Swish Activation Function
	Reason for Performance Difference between ISLU and SoftPlus
	Training Conditions
	Scores for Figures
	Smoothness Score

