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Abstract

Knowledge distillation, the technique of trans-001
ferring knowledge from large, complex models002
to smaller ones, marks a pivotal step towards003
efficient AI deployment. Distilling Step-by-004
Step (DSS), a novel method utilizing chain-of-005
thought (CoT) distillation, has demonstrated006
promise by imbuing smaller models with the007
superior reasoning capabilities of their larger008
counterparts. In DSS, the distilled model ac-009
quires the ability to generate rationales and pre-010
dict labels concurrently through a multi-task011
learning framework. However, DSS overlooks012
the intrinsic relationship between the two train-013
ing tasks, leading to ineffective integration of014
CoT knowledge with the task of label predic-015
tion. To this end, we investigate the mutual016
relationship of the two tasks from Information017
Bottleneck perspective and formulate it as max-018
imizing the mutual information of the represen-019
tation features of the two tasks. We propose020
a variational approach to solve this optimiza-021
tion problem using a learning-based method.022
Our experimental results across four datasets023
demonstrate that our method outperforms the024
state-of-the-art DSS. Our findings offer insight-025
ful guidance for future research on language026
model distillation as well as applications in-027
volving CoT. Code and models will be released028
soon.029

1 Introduction030

The capabilities of larger language models (LLMs)031

tend to scale with their model size, leading to a032

substantial demand for memory and compute re-033

sources (Chowdhery et al., 2023; Wei et al., 2022a).034

Distilling knowledge from larger LLMs to smaller035

LLMs has been crucial for the efficient deployment036

of AI (Hinton et al., 2015; Phuong and Lampert,037

2019). Chain-of-Thought (CoT) (Wei et al., 2022b)038

distillation represents a pivotal advance in the quest039

to endow smaller language models with the sophis-040

ticated reasoning capabilities of their larger coun-041

terparts. By distilling complex thought processes042

into more compact models, this approach aims to 043

democratize access to advanced natural language 044

understanding and reasoning across a wider array 045

of computational resources (Ma et al., 2023; Mag- 046

ister et al., 2023; Li et al., 2023). . 047

Distilling Step-by-Step (DSS) (Hsieh et al., 2023) 048

introduces a CoT distillation method that guides 049

smaller models using rationales from LLMs within 050

a multi-task learning (MTL) framework, training 051

them for both label prediction and rationale gen- 052

eration tasks. While DSS brings out the benefits 053

of reducing computational costs, it suffers from 054

the same problem as the conventional MTL frame- 055

work, that is the difficulty in effectively connecting 056

the prediction and generation tasks. The intrica- 057

cies inherent in training models within the MTL 058

framework can undermine the effectiveness and re- 059

liability of the DSS process (Wang et al., 2023b). 060

Despite the successful setup of an MTL frame- 061

work in DSS, where the tasks of label prediction 062

and rationale generation are intrinsically related, 063

the current configuration may not optimally cap- 064

ture and maximize the mutual knowledge between 065

these tasks. Furthermore, LLMs are prone to pro- 066

ducing hallucinations and inconsistent rationales, 067

which potentially mislead the student model to- 068

ward incorrect answers and cause conflicts in MTL 069

that destruct student model learning (Mueller et al., 070

2022). 071

To address this issue, we model the DSS us- 072

ing information bottleneck (IB) and investigate it 073

from an information-theoretic viewpoint (Tishby 074

and Zaslavsky, 2015). Subsequently, we formu- 075

late the DSS as an optimization problem to maxi- 076

mize mutual information (MI) of label prediction 077

and rationale generation tasks. However, estimat- 078

ing MI from finite data is a known difficult prob- 079

lem (McAllester and Stratos, 2020; Belghazi et al., 080

2018). In this study, we introduce a variational 081

method to estimate the MI. Recently, knowledge 082

distillation has been used for solving the challenge 083
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Figure 1: Overview of our approach: CoT distillation from an IB perspective and measurement of the intrinsic
relationship between the two tasks by MI. The DSS is an MTL framework pipeline comprising label prediction and
rationale generation tasks. H represents the entropy of representation features V and Z. Besides prediction loss and
explanation losses used in conventional DSS, we design an auxiliary loss module to maximize MI between the two
representation features. This process enhances CoT reasoning capacity through knowledge distillation.

of preserving task-specific training in MTL (Li084

and Bilen, 2020). Consequently, we propose a085

practical yet effective auxiliary loss to quantify086

the shared information between the prediction and087

the generation tasks, thereby enhancing the align-088

ment between the two tasks and facilitating the089

knowledge transfer from CoT. We conduct com-090

prehensive experiments with two smaller types of091

T5 models (Raffel et al., 2020), T5-base (220M)092

and T5-small (60M), on four popular datasets. Fur-093

thermore, we provide detailed analysis in Section 5.094

Our main contributions are summarized below:095

• We reframe the MTL framework of DSS as a096

MI estimation challenge, aiming to maximize097

the MI between label prediction and rationale098

generation tasks. To achieve this, we introduce099

a variational approach grounded in the IB prin-100

ciple for effective MI estimation. To the best of101

our knowledge, we present the first work of im-102

proving CoT distillation from an IB perspective.103

• Beyond establishing a theoretical foundation, we104

present a practical approach for MI estimation,105

incorporating a simple yet effective auxiliary106

loss to learning to maximize MI and enhance107

DSS.108

• Our methodology demonstrably outperforms ex-109

isting benchmarks across multiple datasets, evi-110

dencing the efficacy of our approach in enhanc-111

ing the reasoning capabilities of distilled models.112

• We conduct a systematic review of the relation-113

ship between predictive and explainable tasks114

under MTL training, presenting both qualitative115

and quantitative analysis results.116

With the theoretical proofs and experiment re-117

sults, we aim to provide stepping stones for future118

research on enhancing CoT distillation through an119

effective MTL framework, guided by principles 120

from information theory. 121

2 Related Work 122

We present an overview of previous work across 123

three areas related to our study: knowledge distil- 124

lation, multi-task learning and information bottle- 125

neck. 126

Knowledge Distillation (KD) While originally de- 127

signed for training small models by leveraging the 128

extensive knowledge of larger models (Hinton et al., 129

2015), KL has been extended to a variety of appli- 130

cations due to its effective transfer of knowledge 131

between models and tasks (Chen et al., 2021; Wang 132

and Yoon, 2021; Sanh et al., 2019; Jiao et al., 2020). 133

An crucial yet open challenge is how to effectively 134

transfer the knowledge. To address the issue, pre- 135

vious studies (Zhang et al., 2022b; Allen-Zhu and 136

Li, 2023; Zhang et al., 2021) extract different fea- 137

tures and design auxiliary loss functions to enhance 138

KL. Our work focus on improving the model by ac- 139

quiring mutual knowledge in addressing both label 140

prediction and rationale generation tasks. 141

Multi-Task Learning (MTL) Through exploiting 142

commonalities and differences of relevant tasks, 143

MTL can enhance improve learning efficiency and 144

prediction accuracy by learning multiple objectives 145

from a share representation (Caruana, 1997; Zhang 146

and Yang, 2021). In recent years, MLT has been 147

broadly applied to NLP tasks (Worsham and Kalita, 148

2020; Zhang et al., 2023; Liu et al., 2019). How- 149

ever, some works figure out that multiple tasks 150

trained simultaneously could conflict with each 151

other and it is challenging to optimize the perfor- 152

mance of all tasks simultaneously (Kendall et al., 153

2018; Lin et al., 2019). In recent years, KD has also 154
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been applied within MTL frameworks, achieving155

state-of-the-art results in various applications (Li156

and Bilen, 2020; Xu et al., 2023; Yang et al., 2022).157

Information Bottleneck (IB) IB (Tishby and Za-158

slavsky, 2015; Slonim, 2002) provides a powerful159

statistical tool to learn representation to preserve160

complex intrinsic correlation structures over high161

dimensional data. As a general measure of the162

dependence between two random variables, MI is163

also widely used in deep learning to effectively rep-164

resent the dependencies of features (Cover, 1999;165

Covert et al., 2023; Liu et al., 2009). MI estima-166

tion is known to be difficult, and recent progress167

has been made towards learning-based variational168

approaches (Tian et al., 2020; Covert et al., 2023;169

Bachman et al., 2019; Tschannen et al., 2019; Bel-170

ghazi et al., 2018). Another challenge associated171

with the IB principle is the optimization process,172

which involves a trade-off between achieving a173

concise representation and maintaining strong pre-174

dictive capabilities (Alemi et al., 2016; Wang et al.,175

2019). Consequently, optimizing IB becomes a176

complex task that heavily depends on the formula-177

tion of the problem and the provision of an effective178

optimization solution. Recent studies has applied179

IB to solve complex machine learning problems180

both in computer vision (Tian et al., 2021; Du et al.,181

2020; Wan et al., 2021) and NLP (Chen and Ji,182

2020; Zhang et al., 2022a; Paranjape et al., 2020).183

In this paper, we formulate our CoT distillation184

problem with MTL training pipeline using IB and185

provide a learning-based solution to IB optimiza-186

tion for our CoT distillation problem, as detailed in187

Section 3.188

3 Methodology189

This section starts with preliminaries of IB. Fol-190

lowing it, we formulate our CoT distillation idea191

within the IB and propose a learning approach to192

optimize MI.193

3.1 Preliminaries194

Under the DSS framework, a task prefix [PREDICT]195

and [EXPLAIN] will be pretended to the input text196

TEXT, corresponding to the label prediction and197

rational generation task, respectively. In the la-198

bel prediction task, given the input [PREDICT] +199

TEXT, and the predictive labels Y, a representation200

feature V,V ∈ Rd, is trained under Y. In the ra-201

tionale generation task, given the input [EXPLAIN]202

+ TEXT and rationale label R, a representation fea-203

ture Z,Z ∈ Rd, is trained under R. 204

Considered the limited CoT capacity of smaller 205

LLMs that are less than 10B parameters, our goal 206

is to distill CoT knowledge of larger LLMs to Z 207

which is also maximally informative to Y . In order 208

to achieve this goal, on the basis of IB (Tishby and 209

Zaslavsky, 2015; Zhang et al., 2022a; Wang et al., 210

2019), we can model the DSS as following: 211

I(Z;Y ) =

∫
p(z, y) log

p(z, y)

p(z)p(y)
dzdy. (1) 212

where sampling observations z ∼ Z and v ∼ V. 213

p(·) is probability distribution. 214

To encourage CoT distillation to focus on the 215

information represented in label Y, we propose IB 216

to enforce an upper bound Ic to the information 217

flow from the representation features V to the rep- 218

resentation features Z, achieved by maximizing the 219

following objective: 220

max I(Z;Y ) s.t. I(Z;V ) ≤ Ic. (2) 221

By using Lagrangian objective, IB allows Z to be 222

maximally expressive about Y while being maxi- 223

mally compressive about input data by: 224

CIB = I(Z;V )− βI(Z;Y ) (3) 225

where β is the Lagrange multiplier. It is obvi- 226

ous that Eq. 3 is the trade-off optimization be- 227

tween high mutual information and high compres- 228

sion (Zhang et al., 2022a; Alemi et al., 2016). In 229

our scenario, given a known small student model, 230

the compression ratio is fixed. Therefore, we for- 231

mulate the CoT distillation is an optimization prob- 232

lem as: 233

max I(Z;V ) (4) 234

Due to symmetric property of MI, I(Z;V ) = 235

I(V ;Z). COT distillation can also enhance ra- 236

tionale generation task with the label knowledge. 237

This is validated in Section 5. 238

3.2 Variational Bounds of MI 239

We rewrite MI I(Z;V ) of Equation 4 as: 240

I(Z;V ) = Ep(z,v)

[
log

p(v|z)
p(v)

]
(5) 241

According to (Poole et al., 2019; Covert et al., 242

2023), a tractable variational upper bound can be 243

built by introducing a variational approximation 244
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q(v) to the intractable marginal p(v), thus:245

I(Z;V ) = Ep(z,v)

[
log

p(v|z)q(v)
p(v)q(v)

]
= Ep(z,v)

[
log

p(v|z)
q(v)

]
−KL(p(v)||q(v))

(6)246

where KL[·||·] denotes Kullback-Leibler diver-247

gence. The bound is tight when q(v) = p(v). Then248

KL(p(v)||q(v)) = KL(p(v)||p(v)), and it is a249

constant. Therefore, we can obtain the following250

inequality:251

I(Z;V ) ≤ Ep(z,v)

[
log

p(z|v)
p(v)

]
(7)252

Then we can write the MI as the following:253

Ep(z,v)

[
log

p(z|v)
p(v)

]
=

∑
p(z, v) log

p(v|z)
p(v)

=
∑

p(z|v)p(v) log p(v|z)

−
∑

p(v)p(z|v) log p(v)
(8)

254

Assuming that p(v) is uniform distribution,255 ∑
p(v)p(z|v) log p(v) is a constant. Then maxi-256

mizing the I(Z;V ) can defined as:257

max I(Z;V ) ∝ max
∑

p(z|v) log p(v|z)

= max(−
∑

p(z|v) log 1

p(v|z)
)

= min(
∑

p(z|v) log 1

p(v|z)
)

= min(
∑

CE(z|v, v|z))
(9)

258

here CE represents cross entropy. Therefore,259

based on this equation, we propose a new MI loss,260

which minimizes cross entropy to learn to maxi-261

mize MI for CoT Distillation.262

3.3 Training Loss263

The training loss is given by264

Ltotal = α1Lprediction + α2Lgeneration + α3LCE

(10)265

where α1, α2 and α3 are regularization param-266

eters, all of which are non-negative. Lprediction267

represents the loss of the label prediction task, and268

Lgeneration represents the loss of the rationale gen-269

eration task. Both are general cross-entropy loss as270

defined in (Hsieh et al., 2023).271

According to the last line of Equation 9, we 272

define the our MI loss as 273

LCE = l(f(Z), f(V)) (11) 274

f represents our proposed MI loss module, and l 275

denotes cross-entropy loss. As shown in Figure 1, 276

the MI loss module module consists of softmax and 277

max reduction layers. The softmax layer aims to 278

generate an output distribution over representation 279

learning space, while the max reduction aims to 280

reduce the dimension of representation features of 281

the label prediction task Rm×d → R1×d and the di- 282

mension of representation features of the rationale 283

generation task Rn×d → R1×d . 284

4 Experiments 285

4.1 Experimental Setting 286

Datasets. We conducted extensive the experi- 287

ments on 4 widely-used benchmark datasets across 288

3 different NLP tasks: e-SNLI (Camburu et al., 289

2018) and ANLI (Nie et al., 2020) for natural lan- 290

guage inference; CQA (Talmor et al., 2018) for 291

commonsense question answering; SVAMP (Pa- 292

tel et al., 2021) for arithmetic math word problems. 293

We use rationale generated by PaLM 540B (Chowd- 294

hery et al., 2023) collected and open-sourced 295

by (Hsieh et al., 2023)1. 296

Setup. Based on CoT properties and comparative 297

experimental study in (Hsieh et al., 2023), our work 298

adopted T5-base (220 million) and T5-small (60 299

million) to the student models. α1 and α2 are set 300

as 0.5 and α3 is set as 0.1. We trained our models 301

on one A100 GPU with 80G memory. For T5 base 302

model, the training time on full-size four dataset 303

was about 14.4 hours. For T5 small model, the 304

training times was from 8.6 hours. 305

Baselines. We compare our work with the state- 306

of-the-art DSS (Hsieh et al., 2023) by running its 307

open-sourced code 1. We also compare with two 308

most common methods in learning task-specific 309

models: (1) Finetuning, which is the standard fine- 310

tuning with the prevailing pretrain-then-finetune 311

paradigm that finetunes a model with ground-truth 312

labels via standard label supervision (Howard and 313

Ruder, 2018). (2) Single-task, which the small 314

model is distilled to predict labels with the teacher 315

model’s predicted label. We run DSS, finetuning, 316

1Data and DSS code are from https://github.com/
google-research/distilling-step-by-step.

4

https://github.com/google-research/distilling-step-by-step
https://github.com/google-research/distilling-step-by-step


and single-task with the same settings as (Hsieh317

et al., 2023).318

Evaluation Settings. Following the DSS319

work (Hsieh et al., 2023), we adopt the accuracy320

as the performance metrics on all four datasets. A321

high accuracy indicates that the generated results322

are better. Besides it, we also adopt Expected323

Calibration Errors (ECE) and Average Confidence324

Scores to evaluate T5 calibration. Both higher325

scores indicate better. We adopt GPT-4 to evaluate326

Quality of CoT examples and subjective analysis.327

Please refer to our codes for more details.328

4.2 Results329

Experiments of T5-base Model.We present our330

experimental results of the T5-base model in Ta-331

ble 1. In single-task training, the rationale and label332

are concatenated into a single sequence, which is333

treated as the target in training models (Hsieh et al.,334

2023). Our proposed method consistently achieves335

better performance than standard fine-tuning and336

single-task methods on all datasets. Compared337

to DSS, our method outperforms DSS on ANLI,338

CQA, and SVAMP, and achieves nearly the same339

accuracy on e-SNLI340

Experiments of T5-small Model. The experimen-341

tal results of T5-small model are shown in Table 2.342

The patterns of the results are similar to those of T5-343

base. Our proposed method consistently achieves344

better performance than standard finetuning across345

all dataset. Compared to DSS, our method outper-346

forms DSS on ANLI, CQA and SVAMP, and is just347

0.2% less accuracy on e-SNLI.348

Distillation with LLM Labels. We conducted349

an experiment on e-SNLI and ANLI dataset with350

T5-base model to evaluate the effect of label qual-351

ity. We distilled the student models using labels352

generated by 540B PaLM instead of the ground353

truth. The results are shown in Table 3. Comparing354

Table 1 and Table 3, we observe the label qual-355

ity affects the distillation results in both methods.356

Even With the noisy LLM labels, our model still357

outperforms DSS on both datasets.358

Distillation with smaller datasets. To evaluate359

the performance of our models on smaller datasets,360

we distilled T5-base and T5-small models on var-361

ious sizes of four datasets and compared to DSS362

method. The results are shown in Figure. 2 and 3363

respectively.364

e-SNLI ANLI CQA SVAMP

Finetuning 88.38 43.58 62.19 62.63

Single-task 88.88 43.50 61.37 63.00

DSS 89.51 49.58 63.29 65.50

Ours 89.50 51.20 63.88 68.00

Table 1: CoT distillation results on T5-base model.

e-SNLI ANLI CQA SVAMP

Finetuning 82.90 42.00 43.16 45.00

DSS 83.43 42.90 43.24 48.00

Ours 83.23 43.70 43.90 52.50

Table 2: CoT distillation results on T5-small model.

Model e-SNLI ANLI

DSS 82.65 42.80
Ours 82.81 45.50

Table 3: Results on two dataset on T5-base model with
LLM generated labels.

4.3 Ablation Study 365

Effectiveness of Difference Dimension Reduc- 366

tion Method In our proposed MI loss module, 367

we employ maximum reduction to align the di- 368

mension of different features. Additionally, mean 369

reduction serves as an alternative method for di- 370

mension reduction. We hypothesize that important 371

features can represent better than average features. 372

In Table 4, we present the results of two different 373

layer of MI module. The results indicate the supe- 374

riority of the MI module with maximum reduction. 375

Comparison with KL Divergence The KL di- 376

vergence loss has been extensively utilized in KD 377

tasks, serving as KL a metric for assessing the sim- 378

ilarity between two data distributions (Hinton et al., 379

2015; Zhang et al., 2022b; Gou et al., 2021). While 380

KL divergence has found widespread application 381

in various KD scenarios, modeling DSS using IB 382

framework proves to be more accurate than using 383

similarity measures, as discussed in Section 3. To 384

validate our hypothesis, we conduct experiments on 385

T5-base model using all four datasets. As shown in 386

Table 5, our proposed method consistently outper- 387

forms the KL divergence approach, demonstrating 388

superior performance. 389
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Figure 3: Comparison with DSS with varying sizes of training datasets on T5-small model.

e-SNLI ANLI CQA SVAMP

Mean 89.34 51.40 63.88 66.50

Max 89.50 51.20 63.88 68.00

Table 4: Results of Mean Reduction Vs Maximum Re-
duction on T5-based model.

e-SNLI ANLI CQA SVAMP

KL Divergence 89.42 42.00 62.49 67.00

Ours 89.50 51.2 63.88 68.00

Table 5: Results of KD loss VS our proposed cross
entropy loss, on T5-base model.

5 Discussion390

5.1 Analysis on T5 Calibration391

Calibration measures the alignment between a392

model’s predicted accuracy and its confidence lev-393

els. Lee et al. (2022) introduced an innovative394

perspective on model distillation, positioning the395

teacher model not only as a source of knowledge396

but also as a tool for identifying mis-calibration dur-397

ing the training of the student model. This ability398

to maintain calibration and make reliable predic-399

tions is crucial for downstream applications and400

has been the focus of prior studies (Chen et al.,401

2023; Lee et al., 2022; Jiang et al., 2021). Here,402

we apply the Expected Calibration Errors (ECE) 403

and Average Confidence Scores to reflect the align- 404

ment between the model’s predicted probabilities 405

and the actual outcomes, thereby gauging the re- 406

liability and certainty of its predictions. Despite 407

the potential limitations inherent in these metrics, 408

we still employ ECE in our experiments due to its 409

simplicity and popularity, as in previous work on 410

investigating the calibration quality of T5 (Chen 411

et al., 2023; Lee et al., 2022). 412

We employ a 10-bin-based ECE metric and a 413

softmax-based approach to compute average confi- 414

dence scores from the test outputs across all four 415

datasets. Given that e-SNLI and ANLI essentially 416

represent the same task, we conduct an out-of- 417

domain experiment by testing the model check- 418

point trained on one dataset with the test set of the 419

other. This analysis gives us insights into how well 420

our model generalizes across similar tasks and the 421

robustness of its predictions in out-of-domain sce- 422

narios and to assess the calibration quality of the 423

model more comprehensively. 424

Table 6 presents the results of the distilled model 425

calibration evaluation. Overall, both models report 426

lower ECE and confidence scores on SVAMP and 427

e-SNLI, indicating that these two tasks are more 428

challenging and models are less certain about their 429

prediction. Lower ECE values from our MI-based 430
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Model SVAMP CQA e-SNLI ANLI e-SNLI (Out) ANLI (Out)
ECE Conf. ECE Conf. ECE Conf. ECE Conf. ECE Conf. ECE Conf.

DSS 11.81 32.56 11.75 42.79 8.54 34.33 11.12 42.72 9.81 38.01 12.78 41.69
Ours 18.92 36.81 13.65 41.17 4.35 30.06 6.94 35.90 6.61 38.08 12.27 42.35

Table 6: Comparisons of our model and DSS on the expected calibration errors (ECE) and average confidence
scores (Conf.).

distillation approach are presented for e-SNLI and431

ANLI, and their respective out-of-domain tests. No-432

tably, our method achieves an ECE of 4.35 in e-433

SNLI, significantly lower than DSS’s 8.54. How-434

ever, in SVAMP and CQA, our method records435

higher ECE, indicating potential areas for improve-436

ment in these domains. The trade-off in calibration437

accuracy in specific tasks like SVAMP and CQA438

compared to DSS suggests future directions for439

refining our approach.440

Regarding average confidence scores (Conf.),441

our method generally maintains competitive con-442

fidence levels, with notable improvements in e-443

SNLI and ANLI. In e-SNLI, the confidence is444

lower (30.06) compared to DSS (34.33), which,445

combined with a lower ECE, suggests a more re-446

alistic confidence estimation. Conversely, in the447

out-of-domain scenarios for e-SNLI and ANLI, our448

method shows marginally higher confidence scores449

than DSS, which, coupled with the lower ECE, in-450

dicates robustness in out-of-domain generalization.451

5.2 Analysis on CoT Output452

5.2.1 Quality of CoT Examples by GPT-4453

Evaluation454

We evaluate the quality of CoT examples using455

GPT-4, as it achieves the state-of-the-art human456

alignment performance and is used for text genera-457

tion evaluation in previous work (Liu et al., 2023;458

Hsu et al., 2023; Wang et al., 2023a). Inspired459

by (Wang et al., 2023a), we ask GPT-4 to evaluate460

the quality of the provided CoT examples based on461

their coherency and relevancy to the input questions462

and answers. We randomly sample 50 CoT exam-463

ples from the four datasets and ask GPT-4 to score464

based on a scale from 1 to 5, where 1 indicates com-465

pletely incoherent and irrelevant responses, and 5466

represents highly coherent, relevant, and helpful re-467

sponses. For each sample, we run the same sample468

for four times to obtain self-consistency to measure469

the reliability of the responses. Table 7 presents470

the prompt we use for GPT-4 evaluation, average471

scores and standard deviation on the scores ob-472

tained over the four datasets. We report the scores 473

on both provided CoT (“gold”) rationales and dis- 474

tilled model predicted rationales. 475

Prompt for GPT 4 Evaluation

Given an input pair of a question and an answer of a
taskname task, how good is the given Chain-of-thought
example? From 1-5, where 1 is completely incoherent and
irrelevant, 2 is somewhat incoherent and irrelevant, 3 is
coherent, relevant but not helpful, 4 is somewhat helpful,
and 5 is helpful and it explains the answer well.

Average Scores and Standard Deviation

Model SVAMP CQA e-SNLI ANLI

Gold 4.63±1.05 3.95±1.16 2.42±1.23 3.82±1.26
++ 4.43±1.18 4.11±1.40 3.49±1.35 4.01±1.10

DSS 2.50±1.42 3.60±1.61 3.24±1.27 3.48±1.40
++ 2.53±1.46 3.64±1.62 3.18±1.21 3.44±1.30

Ours 2.30±1.54 3.70±1.45 3.03±1.47 3.42±1.37
++ 2.72±1.45 3.63±1.60 3.17±1.17 3.34±1.21

Table 7: Prompt used and results of 50 randomly sam-
pled CoT examples from the four datasets evaluated
by GPT-4. We use ++ to denote the setting with self-
consistency evaluation.

Model SVAMP CQA e-SNLI ANLI

DSS 0.12 0.66 0.05 0.26
p > 0.05 p < 0.05 p > 0.05 p > 0.05

Ours 0.42 0.53 0.03 0.26
p < 0.05 p < 0.05 p > 0.05 p > 0.05

Table 8: Pearson correlation between CoT quality and
accuracy of label prediction on the 50 random samples
on the test set. We highlight the correlation with statisti-
cal significance (p < 0.05).

The effectiveness of our MI-based distillation 476

method is closely linked to the quality of CoT rea- 477

soning in the training data. When the CoT qual- 478

ity is high, as in SVAMP, a strong correlation is 479

observed between the model’s label prediction ac- 480

curacy and the quality of its generated CoT. How- 481

ever, this correlation weakens significantly when 482

the CoT quality is low (e-SNLI), suggesting that 483

the model struggles to align label prediction with 484

coherent rationale generation under poor training 485

conditions. Interestingly, with average-quality CoT 486
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Input
Question

DSS

Explain: "Julia played with 16 kids on monday. She 
played with 12 more kids on monday than on tuesday. 
So she played with 16 + 12 = 22 kids on tuesday."
Predict: The answer is: 22
GPT-4 Eval on DSS's CoT:
Score: 1
Reasoning: The chain-of-thought is incorrect. The statement says 
Julia played with 12 more kids on Monday than on Tuesday. The 
correct calculation should be 16 - 12 = 4. The chain-of-thought 
provided suggests that she played with 22 kids on Tuesday, which 
contradicts the given question. 
 

GPT-4 Eval on our CoT:
Score: 5
Reasoning: The chain-of-thought correctly identifies the 
comparison needed between the number of kids Julia played with 
on Monday and Tuesday. It then performs the simple subtraction 
required to find the difference, which is the answer to the question. 
The explanation is clear, relevant, and directly leads to the correct 
answer. 

Ours

Explain: "Julia played with 16 kids on monday. She 
played with 12 more kids on monday than on tuesday. 
So she played with 16 - 12 = 4 kids on tuesday."
Predict: The answer is: 4

Golden explain: 
"Julia played with 16 kids on monday. She played with 12 more 
kids on monday than on tuesday. So she played with 16 - 12 = 4 
kids on tuesday. "

Julia played tag with 9 kids on monday, 7 kids on 
tuesday and 96 kids on wednesday.How many more 
kids did she play with on monday than on tuesday?

Figure 4: A case study of the output rationale on
SVAMP.

Input
Question

DSS
Explain: "The kids are hugging one another."
Predict: The hypothesis is True (entailment) 
GPT-4 Eval on DSS's CoT:
Score: 3
Reasoning: The chain of thought is coherent and relevant as it 
paraphrases the hypothesis. However, it doesn't provide any 
extra explanation or reasoning to support the inference. It merely 
restates the hypothesis without connecting it to the premise. 

GPT-4 Eval on our CoT:
Score: 5
Reasoning: The chain-of-thought directly addresses the 
relationship between the premise and the hypothesis. The 
premise states that the children are "embracing one another", 
which is synonymous with "hugging", as stated in the 
hypothesis. Therefore, the chain-of-thought is really helpful and 
explains the answer, confirming that the hypothesis is a 
restatement of the premise in simpler terms. 

Ours
Explain: "The kids are embracing one another, so 
they are hugging."
Predict: The hypothesis is True (entailment)  

Premise: Two children, both wearing tan coats, are 
embracing one another.
Hypothesis: Two kids are hugging.
Golden explain: 
"The two children are kids. Embracing is hugging."

Figure 5: A case study of the output rationale on e-
SNLI.

data (ANLI), the performance gap between our MI-487

based distillation and DSS is minimal, suggesting488

that the effectiveness of our approach is particularly489

reliant on the presence of high-quality reasoning in490

the training data.491

5.2.2 Case Studies on the Output Rationale 492

We performed case studies on SVAMP and e-SNLI 493

as illustrated in Figure 4 and 5. In the SVAMP 494

example, the question asks the difference in the 495

number of kids Julia played with from Monday to 496

Tuesday, with specific numbers provided for Mon- 497

day, Tuesday, and Wednesday. DSS generates an 498

incorrect explanation, which contradicts the given 499

question, resulting in to a wrong answer. Con- 500

versely, our method correctly identifies the com- 501

parison needed between the number of kids Julia 502

played with on Monday and Tuesday, leading to the 503

correct answer. Notably, our generated CoT reason- 504

ing is identical to the golden one, demonstrating 505

that by precisely grasping the rationale, our ap- 506

proach effectively resolves the math problem. We 507

also show the evaluation results (score and reason- 508

ing) from GPT-4, where our method gains a top 509

score of 5 and DSS gains only a mere score of 510

1. This example showcases that the high-quality 511

CoT generated by our method enhances problem- 512

solving capabilities in math tasks like SVAMP. 513

Another example (Figure 5) is from e-SNLI, 514

where the task is to identify whether the hypothesis 515

is entailment, contradiction, or neutral, based on 516

the given premise and hypothesis. Although both 517

our method and DSS generate the correct label out- 518

put, it is worth noting that, the CoT of our method 519

points out the relationship between the premise 520

and the hypothesis, while DSS only restates the 521

hypothesis without providing any extra explanation 522

or connecting the hypothesis to the premise. Our 523

generated rationale also gains a higher score than 524

DSS. A higher-quality rationale tends to facilitate 525

more accurate label prediction, thereby enhancing 526

overall task performance. 527

6 Conclusion 528

In this paper, we re-investigate the DSS frame- 529

work from a information-theoretic perspective. We 530

model it using Information Bottleneck and propose 531

to strengthen it by maximizing the mutual informa- 532

tion between rationale generation and label predic- 533

tion tasks. The proposed learning-based method 534

can automatically optimize the CoT distillation and 535

bolster the reasoning ability of the distilled small 536

models. Our qualitative and quantitative analysis 537

demonstrate the rationale behind our method and 538

shed light on language model distillation and CoT 539

applications. 540
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7 Limitation541

Our comparative analysis primarily focuses on the542

Distilling Step-by-Step (DSS) framework, which543

serves as our main benchmark. This concentrated544

comparison, while valuable for a deep understand-545

ing of DSS’s nuances and our advancements over546

it, constitutes a limitation of our work. Specifically,547

our analysis does not extend to a broader range548

of knowledge distillation methods currently em-549

ployed in the field. This focus may overlook the550

potential insights and contrasts that could emerge551

from evaluating our approach against a wider array552

of distillation techniques. Future research could553

benefit from a more expansive comparative study,554

incorporating diverse methodologies to fully con-555

textualize our findings within the broader landscape556

of knowledge distillation practices. This broader557

comparison would not only validate the efficacy of558

our method in various settings but also illuminate559

areas for further refinement and innovation.560

However, it is important to note that our contribu-561

tion lies in providing an in-depth analysis from both562

theoretical and practical viewpoints to enhance the563

CoT distillation process. Our work delves into564

the intricacies of utilizing mutual information to565

improve distillation outcomes, offering significant566

advancements in understanding and applying CoT567

distillation techniques.568

8 Ethical Issues569

In this paper, we carefully considered the ethical570

implications in line with the ACL code of ethics.571

We evaluated the potential dual-use concerns, en-572

suring our research serves to benefit society and573

does not cause inadvertent harm. Our methodol-574

ogy and applications were thoroughly assessed for575

fairness, non-discrimination, and privacy, particu-576

larly in the context of data handling and model out-577

puts. We also ensured our study did not expose any578

negative impact on individuals and groups. More-579

over, we did not engage in academic dishonesty580

and adhered to high-quality processes and product581

standards in our professional work. We include582

this detailed discussion of these ethical consider-583

ations, affirming our commitment to responsible584

and beneficial computational linguistics research.585
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