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ABSTRACT

In light of a growing crisis of rigor in empirical machine learning research, this
paper provides a blueprint for conducting more meticulous science. We present a
detailed case study of “Turning Up the Heat: Min-P Sampling for Creative and Co-
herent LLM Outputs” (Nguyen et al., 2024), a high-visibility ICLR 2025 Oral paper
that introduced a new method for sampling from language models called min-p.
The original work claimed that min-p sampling achieves superior quality and
diversity over established methods. However, our comprehensive re-examination
of the original paper’s four main lines of evidence demonstrates that its conclusions
are invalidated by its own data. Our re-analysis reveals that: (1) The original
human evaluations omitted one-third of the collected data, applied statistical tests
incorrectly, and inaccurately described qualitative feedback; a correct analysis
shows min-p did not outperform baselines. (2) Extensive hyperparameter sweeps
on NLP benchmarks show min-p’s claimed superiority vanishes when controlling
for the volume of hyperparameter tuning. (3) The LLM-as-a-Judge evaluations
suffered from methodological ambiguity and appear to have reported results incon-
sistently, favoring min-p. (4) Claims of widespread community adoption were
found to be unsubstantiated and were retracted. From this case study, we derive a
blueprint for more rigorous research. Key lessons include the critical need to com-
pare methods fairly by controlling for hyperparameter tuning, to apply statistical
tests transparently and correctly (e.g., correcting for multiple comparisons), to prac-
tice full data transparency, and to scrutinize qualitative summaries, methodological
clarity, and potentially selective reporting. Adhering to these principles is essential
for ensuring the validity of scientific claims and fostering genuine progress in the
field of machine learning research.

1 INTRODUCTION

Machine learning research is currently experiencing crises on multiple fronts (Kim et al., 2025;
Schaeffer et al., 2025b): The number of submissions to each conference is skyrocketing (Paper Copilot,
2025), reproducibility concerns are giving rise to a standalone machine learning reproducibility
conference (Pineau et al., 2017; Sinha et al., 2023), and scandals concerning prominent publications
are proliferating, e.g., (Carlini, 2020; Agarwal et al., 2021; Carlini et al., 2021; 2022; Kirsch, 2022;
Schaeffer et al., 2022; Orabona, 2023; Schaeffer et al., 2023; Gerstgrasser et al., 2024; Kirsch, 2024;
Markov, 2024; Schaeffer et al., 2024; Chandak et al., 2025; Golechha et al., 2025; Ivanova et al.,
2025; Kazdan et al., 2025; Maini & Suri, 2025; Zhang et al., 2025; Schaeffer et al., 2025a).

In this work, we push back against these trends by providing a blueprint for performing more
meticulous and rigorous science in empirical machine learning research. Our blueprint is based on
a detailed case study of a high-visibility publication: “Turning Up the Heat: Min-P Sampling for
Creative and Coherent LLM Outputs” (Nguyen et al., 2024). This publication introduced a method
for sampling from language models called min-p sampling, claiming min-p produces higher
quality and more diverse outputs than existing sampling methods such as top-k (Fan et al., 2018) or
top-p (Holtzman et al., 2020) sampling. The paper ranked as the 18th highest-scoring submission
to ICLR 2025 and was selected for an Oral presentation. Given the potential impact of improving
both quality and diversity of language model outputs, we carefully scrutinized the methodologies,
data, analyses, code and conclusions presented in support of min-p across the authors’ four lines of
evidence: (1) human evaluations, (2) natural language processing (NLP) benchmark evaluations, (3)
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Figure 1: Visualizing Human Evaluators’ Scores from Nguyen et al. (2024)’s Data Demonstrates
Min-p Does Not “Consistently" Outperform Other Samplers. Rather, the original paper’s data
suggest min-p is largely indistinguishable from other samplers based on 95% confidence intervals.

LLM-As-A-Judge evaluations and (4) community adoption metrics. Our re-analyses of the evidence
lead us to conclude that the paper’s own evidence invalidates its central claim: min-p sampling
improves neither quality, nor diversity, nor the trade-off between quality and diversity.

Although Nguyen et al. (2024) presents a high-visibility example of scientific mistakes, the errors
made in evaluating min-p are common in empirical machine learning research. Towards promoting
rigorous science across the field, this case study offers several general lessons for researchers and
reviewers alike. First, we develop a novel methodology for fairly comparing methods that require
extensive hyperparameter tuning, which can also be used to detect potential cherry-picking. Second,
we highlight best practices for statistical testing in human evaluations, particularly concerning the
need to correct for multiple comparisons. Third, we demonstrate the critical role of data transparency
and exploratory data analysis in uncovering flaws like omitted data and mischaracterized feedback.
Ultimately, we argue that by establishing and adhering to robust methodologies, the field can better
rein in questionable claims and ensure scientific progress advances.

2 RE-ANALYZING MIN-P’S HUMAN EVALUATIONS

We begin our case study by analyzing Nguyen et al. (2024)’s human evaluations, since human
judgments are widely considered the gold standard for assessing language models (Van Der Lee et al.,
2019; Roller et al., 2020; Howcroft et al., 2020; Clark et al., 2021; Liang et al., 2022; Khashabi et al.,
2022; Chiang et al., 2024; Biderman et al., 2024; Schaeffer et al., 2025d). Prior work has exhaustively
demonstrate human evaluations of language models frequently are laden with flaws Freitag et al.
(2021); Belz et al. (2021); Thomson et al. (2024): We identified four issues.

2.1 HUMAN EVALUATORS’ SCORES FOR ONE OF TWO BASELINE SAMPLERS WERE OMITTED

Section 6 of Nguyen et al. (2024) states human participants evaluated min-p against a single
baseline sampler, top-p, and their Table 4 presents results only these two samplers. However,
when examining the paper’s data, we discovered that scores for a second baseline sampler (basic
sampling) were excluded from the methodology, the analysis and the results without mention or
justification. We publicly confirmed with the authors. These omitted scores comprised 1/3rd of the
total collected scores. After we raised the issue, the omitted data were added to the Camera Ready’s
Table 4, but the methodology, the results and the conclusions were not correspondingly updated. As
we shall show, the omitted human evaluations data change the paper’s conclusions.

2.2 VISUALIZATIONS AND STATISTICAL TESTS FAIL TO SUPPORT CLAIM THAT MIN-P
OUTPERFORMS OTHER SAMPLERS

Based on the human evaluators’ scores, Section 6 of Nguyen et al. (2024) concluded that min-p
“consistently" outperformed top-p “across all settings":
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Metric Alt. Hyp. Temperature

τ = 1.0 τ = 2.0 τ = 3.0

t p t p t p

Quality Min-p > Basic 0.33 .370 0.65 .260 3.13∗∗∗† .001
Min-p > Top-p 2.05∗ .023 1.18 .121 2.02∗ .025

Diversity Min-p > Basic 0.31 .378 1.86∗ .034 0.85 .201
Min-p > Top-p 2.64∗∗ .006 1.44 .078 0.87 .195

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, † Significant after Bonferroni correction for 12 comparisons.

Note: All tests were paired t-tests with df = 52, one-sided (alternative = "greater")

Table 1: Hypothesis Testing of Human Evaluators’ Scores Fails to Support Claim that Min-p
Consistently Outperforms Other Samplers. To test whether evidence supports the claim that
min-p “consistently outperforms" other samplers, we conducted one-sided paired t-tests using the
authors’ published data. Without correcting for multiple comparisons, evidence supports min-p’s
superiority in 5 of 12 comparisons at α = 0.05 and 2 of 12 comparisons at α = 0.01. After applying
a Bonferroni correcting for multiple comparisons, evidence supports min-p’s superiority in 1 of 12
comparisons at α = 0.05 and 0 of 12 comparisons at α = 0.01. For details, see Sec. 2.3.

“Overall, min-p sampling consistently scored higher than top-p sampling across
all settings [...] A paired t-test confirmed that the differences in scores between
min-p and top-p sampling were statistically significant (p < 0.05).”

However, both visualizations and statistical hypothesis tests of the original human evaluation
data suggest min-p is indistinguishable from the baselines in almost all settings.

To briefly explain the human evaluation methodology, three samplers (basic, top-p and min-p)
were compared in six conditions: three temperatures (1.0, 2.0, 3.0) and two diversity settings (“high"
and “low") corresponding to different p hyperparameters. Humans were asked to score the generated
outputs under two metrics: quality and diversity. Participants were excluded if they failed attention
checks. For more information, please see the original manuscript.

We focused on the “high" diversity setting for three reasons: (1) The claimed advantage of min-p
is that it provides both high quality and high diversity, whereas other samplers typically trade one
against the other. (2) The authors publicly told us to focus on the high diversity setting, writing, “the
low [diversity] settings were quite experimental.” (3) We believe top-p’s p hyperparameter in the
low diversity setting was poorly chosen; indeed, after we raised said concerns, the authors ran a new
human evaluation (more in Sec. 2.4) which changed the low diversity top-p p from 0.1 → 0.9.

Using the original paper’s data, Fig. 1 reveals that the three samplers provide similar quality
and similar diversity, with 95% confidence intervals frequently overlapping. To more rigorously
assess the claim that min-p consistently outperforms other samplers, we conducted 12 one-sided
paired t-tests for each metric (quality or diversity), temperature (1.0, 2.0, 3.0) and baseline sampler
(min-p versus basic, min-p versus top-p). In each test, the null hypothesis is min-p’s score
is less than or equal to the other sampler’s score, and the alternative hypothesis is min-p’s score
is greater than the other sampler’s score. Statistical test results are displayed in Table 1. Without
correcting for multiple comparisons, we found evidence to reject the null hypotheses in 5 of 12 tests
at α = 0.05 and 2 of 12 tests at α = 0.01. After applying a Bonferroni correction for multiple
comparisons, we found evidence to reject the null hypothesis in 1 of 12 tests at α = 0.05 and 0 of
12 tests at α = 0.01. Furthermore, given that the original paper claims that min-p “consistently"
scores higher, an Intersection-Union Test (IUT) may be the appropriate statistical test, where the
alternative hypothesis is that min-p is better in all 12 comparisons and the null hypothesis is the
set complement. Since the largest p-value of the 12 comparisons is 0.378, under the IUT, we again
find insufficient evidence to reject the null hypothesis at both α = 0.05 and α = 0.01. Based on the
original paper’s data, there is insufficient evidence to support the claim that min-p consistently
outperforms baseline samplers across all settings.

The original paper’s statistical analysis reached an incorrect conclusion due to a combination of
two factors: First, despite claiming that min-p “consistently scored higher" “across all settings"
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Figure 2: Manual Annotation of Human Evaluators’ Qualitative Responses Fail to Support
Claim that Min-P Was the Preferred Sampler. We manually annotated responses from human
annotators regarding their preferred sampler(s) at the end of the original paper’s study. The responses
suggest min-p was not the most preferred sampler. Example responses are provided in Appendix. B.

(metric, temperature, and diversity), the paper pooled data across all settings and performed a single
t-test, which tests whether min-p scored higher on average. Second, pooling over all settings was
misleading because top-p’s hyperparameter p was poorly chosen in the “low” diversity condition in
a way that pulled top-p down significantly; the authors said publicly to ignore this particular low
diversity condition and subsequently changed p in their new human experiment (Sec. 2.4).

2.3 HUMAN EVALUATORS’ QUALITATIVE RESPONSES FAIL TO SUPPORT CLAIM THAT MIN-P
IS PREFERRED OVER OTHER SAMPLERS

At the end of the human evaluation study, the original paper asked human participants to qualitatively
describe which sampler(s) they preferred. The paper claimed that human evaluators’ qualitative
responses support min-p over top-p:

“Participants frequently noted that outputs generated with min-p sampling were
more coherent and creative, especially at higher temperatures.”

However, we believe that the paper’s qualitative human responses contradict this. We manu-
ally annotated the qualitative responses, then visualized our annotations of the humans’ expressed
preferences (Fig. 2) and publicly posted our annotations in the same format. We found two results:
(1) more human evaluators explicitly preferred basic sampling than preferred min-p sampling,
which was not immediately obvious because the basic sampling data were previously excluded
(Sec. 2.1), and (2) min-p was only slightly preferred over top-p. We provide quotations from
human evaluators favoring basic sampling in Appendix B.

2.4 NEW HUMAN EVALUATION STUDY SHOWS MIN-P DOES NOT OUTPERFORM BASELINES
IN QUALITY, IN DIVERSITY, OR IN A TRADEOFF BETWEEN QUALITY AND DIVERSITY

In response to our feedback, the authors conducted and added a new human evaluation study to
Appendix C.2. Their new study made multiple methodological changes:

• Different sampler implementation: switched from applying temperature after truncation to
applying temperature before truncation.

• Different distribution of human participants from Prolific.

• Different hyperparameters for top-p: switched from 0.1 and 0.9 to 0.9 and 0.95.

• Different hyperparameters for min-p: switched from 0.2 and 0.05 to 0.1 and 0.05.

• Different allotted reading time: increased from 30 minutes to 45 minutes.
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Figure 3: New Human Evaluation Study Suggests Min-p Does Not Outperform Baselines in
Quality, in Diversity or in a Pareto-Optimal Tradeoff Between Quality and Diversity. Visualiza-
tion of scores from Nguyen et al. (2024)’s second human experiment. For researchers or practitioners
seeking maximal quality and maximal diversity, these human evaluation results suggest that min-p
offers no apparent advantage over basic sampling or top-p sampling.

• Different sampled text: 3 short paragraphs were replaced with a single complete story.
• Different rubric for human participants to evaluate sampled outputs.

Regarding the new human evaluation data and results, we share two discoveries here: First, more
generally, the data show again that min-p does not outperform baseline sampling methods in quality,
in diversity or in a favorable tradeoff between quality and diversity (Fig. 3). Second, we believe
one value is incorrectly reported: in Nguyen et al. (2024)’s Table 15, the average score of min-p
at p = 0.05 and temperature T = 2 is reported as 7.80, but based on the authors’ publicly posted
data, we believe the correct numerical value should be 5.80. For anyone seeking higher quality or
diversity, min-p offers no apparent advantage over previously existing samplers.

3 EXTENDING MIN-P’S NLP BENCHMARK EVALUATIONS

We next turned to the original paper’s NLP benchmark evaluations of several models on GSM8K with
Chain-of-Thought (Cobbe et al., 2021) and GPQA (5-shot) (Rein et al., 2023), which concluded that:

“Min-p sampling achieves superior performance across benchmarks and temperatures.”

3.1 THOROUGH HYPERPARAMETER SWEEP ON GSM8K CONTRADICTS CLAIM OF MIN-P’S
SUPERIORITY

Verifying whether min-p achieves superior performance was difficult because it was not clear
whether sampling methods were compared equally. To test this, we used the authors’ code to conduct
an extensive sweep on GSM8K CoTover the following models, samplers and hyperparameters:

• 9 Models: Qwen 2.5 (Qwen et al., 2025) 0.5B, 1.5B, 3B and 7B; Mistral 7Bv0.1 (Jiang
et al., 2023); Llama (Grattafiori et al., 2024) 3.1 8B and 3.2 3B; Gemma 2 (Team et al.,
2024) 2B and 9B.

• 2 Model Stages: Pre-trained (“Base") and Post-Trained (“Instruct").
• 4 Samplers: basic, top-p, top-k, min-p.
• 31 Temperatures: 0.0 (“greedy") to 3.0 in increments of 0.1.
• 6 Hyperparameters Per Sampler: We chose 6 hyperparameters per sampler, except for
basic which has no hyperparameter beyond temperature. The values were taken from the
original paper; some were lightly edited to make them more evenly distributed:

– basic: No hyperparameters other than temperature.
– top-k: k ∈ {10, 30, 50, 100, 150, 200}.
– top-p: p ∈ {0.99, 0.98, 0.95, 0.9, 0.8, 0.7}.
– min-p: p ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.3}.
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Figure 4: Min-P Does Not Consistently Outperform Other Samplers on GSM8K When Con-
trolling For Hyperparameter Volume. In our first analysis, we measured how the maximum Exact
Match (Strict) for each sampler improves as the number of hyperparameters increases. Basic
sampling has only a temperature hyperparameter, and is thus swept to a lesser extent.

• 3 Random Seeds for Sampling: {0, 1, 2}

Due to our compute budget, we only evaluated GSM8K CoT (albeit under two prompt formats, for
reasons explained below). This sweep and the sweep below required ∼ 6000 Nvidia A100-hours.

To evaluate how performant each sampler is, we first averaged over the three sampling seeds and then
conducted two complementary analyses:

1. For each sampler, we subsampled an equal number of hyperparameters ranging from N = 1
to N = 100 and computed the maximum Exact Match (Strict) score achieved by the sampled
subset of size N . We repeated this process 150 times, averaging over the subsampled subsets’
scores. This “Best-of-N" analysis (Nakano et al., 2021; Stiennon et al., 2020; Hughes et al.,
2024; Schaeffer et al., 2025c) tells us the best possible performance each sampler will likely
obtain as its hyperparameter space increases.

2. For N = 1 to N = 100, we subsampled N hyperparameters per sampler and computed
the difference of the maximum Exact Match (Strict) score achieved by min-p minus
the maximum score achieved by any other sampler. We repeated this process 150 times,
averaging over the subsampled subsets. This tells us by how much min-p outperforms all
other samplers, controlling for the size of hyperparameter space of each sampler.
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Figure 5: Min-P Does Not Consistently Outperform Other Samplers on GSM8K When Con-
trolling For Hyperparameter Volume. In our second analysis, we measured how the difference
between min-p’s highest score and the best non-min-p sampler’s highest score changes as the
number of swept hyperparameters increases. Min-p matches or underperforms other samplers.

Both analyses reached consistent results: min-p does not outperform other samplers when
equalizing the volume of hyperparameter space. Fig. 4 and Fig. 5 respectively demonstrate that
min-p is largely indistinguishable from other samplers. After we showed these results to the authors,
they informed us that their code default used the incorrect benchmark prompt formatting. We reran
the experiments using standard formatting of GSM8K CoT prompts. The results were nearly identical
(Appendix C), with one small difference: min-p does produce higher scores for 2 of 12 language
models. Min-p does not outperform other samplers when controlling for hyperparameter volume.

4 INVESTIGATING MIN-P’S LLM-AS-A-JUDGE EVALUATIONS

We next turned to the original paper’s LLM-as-a-Judge evaluations (Zheng et al., 2023), specifically
AlpacaEval creative writing evaluations (Dubois et al., 2023).

4.1 UNDER-SPECIFIED AND INDIRECT METHODOLOGY HINDERS REPRODUCTION AND
INTERPRETATION

The methodology in the manuscript was under-specified in several ways: There is no mention which
model(s) were sampled from, which model(s) served as the judge(s), or how hyperparameters were
chosen or swept. Additionally, there is no description of uncertainty for reported win rates, meaning
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Figure 6: Nguyen et al. (2024)’s LLM-As-A-Judge Evaluations Suggest Min-p Typically
Matches Other Samplers Despite 2× to 10× More Hyperparameter Tuning. Left: Nguyen
et al. (2024) swept min-p with more than twice as many hyperparameters as top-p and more than
ten times as many hyperparameters as basic. Right: Pairwise comparisons show min-p typically
performs on-par with other samplers. Data were obtained from a public GitHub repository.

win rates may be indistinguishable from chance (50.00%). Furthermore, the experiment seems
designed in a manner that introduces a confounder. As context, AlpacaEval reports win rates between
pairwise comparisons. Instead of directly comparing min-p against other samplers, the authors
compared each sampler against a common fixed sampler: basic(τ = 1.0). This comparison strategy
is indirect; comparing directly against min-p would offer a clearer assessment of its superiority
while using the same number of comparisons. The experimental design is additionally concerning
because LLM-judge preferences are not transitive, as shown by recent research (Xu et al., 2025).
Therefore, comparing all methods to basic(τ = 1.0) provides no reliable inference about min-p’s
performance relative to top-p or basic at other temperatures. These under-specified aspects of
the methodology and the indirect experimental design make drawing conclusions difficult.

4.2 MIN-P RECEIVED MORE HYPERPARAMETER TUNING YET FREQUENTLY FAILS TO WIN

Closely scrutinizing (ongoing work to publish) the data revealed two more insights: (1) min-p
received ∼ 2× more hyperparameter tuning than top-p sampling and ∼ 10× more tuning than
basic sampling (Fig. 6, left), potentially tilting the scales in its favor. (2) the win-rates show that
min-p frequently fails to outperform top-p and basic sampling, especially when accounting
for confidence intervals; we visualized the new data with 95% confidence intervals (with horizontal
offsets added for visibility) (Fig. 6, right).

4.3 TABLE 3(B) REPORTED THE HIGHER OF TWO SCORES FOR MIN-P BUT THE LOWER OF
TWO SCORES FOR TOP-P

As evidence for the LLM-As-A-Judge evaluation scores in the original paper’s Table 3(b), the first
author publicly shared a Telegram link that showed the higher of two scores was reported for min-p
(the reported win rate of 52.01 corresponds to p = 0.05, but p = 0.01 yields a lower win rate of
50.14) but the lower of two score was reported for top-p (the reported win rate of 50.07 corresponds
to p = 0.9, but p = 0.98 yields a higher win rate of 50.43).

5 MIN-P’S CLAIMED GITHUB REPOSITORIES & STARS WERE
UNSUBSTANTIATED AND RETRACTED

Nguyen et al. (2024) included specific claims about min-p’s widespread adoption:
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“Community Adoption: Min-p sampling has been rapidly adopted by the open-
source community, with over 54,000 GitHub repositories using it, amassing a
cumulative 1.1 million stars across these projects."

We attempted to verify these numbers through analysis of major GitHub language modeling reposito-
ries. Per our calculations, the combined GitHub stars of leading LM repositories (transformers,
ollama, llama.cpp, vLLM, Unsloth, mamba, SGLang, llama-cpp-python) sum to 453k
stars as of March 2025, less than half the 1.1M stars claimed by min-p alone. We could not substanti-
ate either 49k GitHub repositories or 1.1M GitHub stars. When we inquired how these numbers were
calculated, the authors publicly stated that GitHub was searched for “min-p”, which yields many false
positives. The authors retracted both the 54k GitHub repository claim and the 1.1M GitHub
stars claim from the ICLR 2025 Camera Ready manuscript. We highlight this point because 3 of
4 ICLR 2025 reviewers and the Area Chair identified these retracted community adoption numbers as
the main justification for their strong endorsement. The ICLR 2025 Camera Ready manuscript has a
different statement of community adoption, which we believe remains misleading.

6 DISCUSSION AND LIMITATIONS

Scientific Conclusions: Our case study led us to conclude that the four lines of evidence presented by
Nguyen et al. (2024) – (1) human evaluations, (2) NLP benchmark evaluations, (3) LLM-as-a-Judge
evaluations, (4) community adoption – do not support min-p’s claimed superiority. While min-p
is useful as another method to try, the original paper’s data and our extensions of the original paper’s
data suggest that samplers perform approximately equally if given equal hyperparameter tuning.

Key Limitation: Our manuscript re-analyzes the evidence presented by Nguyen et al. (2024) and
additional evidence created using the original paper’s code. Conclusions here are based on that
evidence. We emphasize that new evidence might lead to different conclusions.

General Lessons for Reviewers and Researchers: This case study of min-p reveals several
general lessons for more rigorous science in empirical machine learning research:

1. Compare methods fairly by controlling for hyperparameter volume. As demonstrated
in the NLP benchmark analysis, a method’s advantage may disappear when the volume of
hyperparameter space being searched is equalized across all contenders. Our "Best-of-N"
analysis is an effective way to control for this and detect potential cherry-picking.

2. Apply statistical tests rigorously and transparently. The re-analysis of human evalu-
ation data reveals how incorrect statistical practices can lead to false conclusions. This
includes inappropriately pooling data across different experimental conditions, and, failing
to correct for multiple comparisons when testing multiple hypotheses. Visualizing data with
appropriate uncertainty estimates is another crucial step to prevent misinterpretation.

3. Demand and practice full data transparency. A key finding was that the original study
omitted one-third of its human evaluation data without justification, and the inclusion of this
data changed the paper’s conclusions. To allow for independent verification, researchers
should release all collected data, annotations, and analysis code.

4. Scrutinize qualitative summaries and unrealistic claims. The original paper’s summary
of qualitative feedback did not align with a direct reading of the evaluators’ responses. Fur-
thermore, bold claims regarding community adoption were unsubstantiated, yet they heavily
influenced the original reviewers’ assessments Such claims must be carefully verified.

5. Ensure methodological clarity for full reproducibility. The LLM-as-a-Judge evaluations
lacked crucial details hindering interpretation and reproduction. Empirical papers must
provide enough detail for other researchers to faithfully replicate the work.

6. Watch for inconsistent or selective reporting. In the LLM-as-a-Judge results, the higher
of two scores was reported for min-p, while the lower of two was reported for a baseline
method. This selective reporting creates a misleading picture of the method’s performance.
All results must be reported using a consistent methodology to avoid bias.
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A LANGUAGE MODEL USAGE

Language models were used by the authors to aid or polish the writing of the paper. Authors take full
responsibility for the content.
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B EXAMPLES OF HUMAN QUALITATIVE RESPONSES FAVORING BASIC
SAMPLING OVER MIN-P SAMPLING

In Section 2.3, we described how qualitative responses from many human participants in the original
paper’s study favored basic sampling. Direct quotes from human evaluators favoring basic
sampling are provided below. In the study, basic sampling was called “Model A”; for clarity, we
substituted the pseudonyms for the actual sampling methods):

• “[basic sampling] on Temp 3.0 - High Diversity setting. The stories where [sic] more
interenting [sic], felt more different compared to the others, which felt like the same ideia
[sic] just in a different format.”

• “I felt like [basic sampling] was most diverse and most interesting with it’s [sic] descrip-
tions of the characters and the setting. It appealed to me most and seemed to have less
’broken’ sentences that didn’t make sense. Descriptions were painterly [sic] and elaborate.”

• “[basic sampling] was more engaging, it aroused my curiosity.”
• “[basic sampling] provided more depth and easy to read for me and there was more

diversity.”
• “[basic sampling], they presented creative storytelling”
• “[basic sampling]. From the very beginning the verbiage and descriptions were very

creative and vivid. And each story was unique”
• “I believe that [basic sampling] has provided stories with more differentiation overall than

the other two models. From the point of view of creativity, all three models are more or less
equivalent as they almost always talk about stories set in extraterrestrial worlds both from a
physical and mental (dreams) point of view"

• “[Basic sampling]: Sample 2: Temperature Setting F (Temp 3.0 - High Diversity). The
story was captivating, it took inside the mystical land and walked you right besides all
the characters, you can even draw the characters from just th descriptions provided by the
prompt. you Could even smell them, smell the setting and be at one with the setting."

• “I personally preferred [basic sampling] on the setting of creative, descriptive storytelling.
I enjoyed how the writing was creative, showing imagination and a strong use of language.
The stories were quite evocative, with intriguing settings and characters that helped to draw
the reader in. I also appreciated the diversity of themes that were explored, from night
weavers to dream manipulation and mysterious libraries, which kept the stories engaging
and interesting."

• “Temporature setting C on [basic sampling] was the best. The story was fascinating and
very engaging. I wanted to read more."

• “I prefered the first [basic sampling]. Tho [basic sampling] and C seem to be very head
to head. But something about [basic sampling] seemed different in quality about it to me."

More quotes are in the original paper’s data. We urge readers to draw their own conclusions.
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C GSM8K CHAIN-OF-THOUGHT SCORES WITH “STANDARD" FORMATTING

At the request of Nguyen et al. (2024), we reran our GSM8K Chain-of-Thought sweeps using “stan-
dard" formatting instead of “Llama" formatting. Both analyses reached consistent results: min-p
does not consistently outperform other samplers when controlling the volume of hyperparame-
ter space.

0.1

0.2

0.3

E
xa

ct
M

at
ch

(S
tr

ic
t)

Qwen 2.5 0.5B

0.1

0.2

0.3

Qwen 2.5 0.5B Instruct

0.2

0.4

0.6

Qwen 2.5 1.5B

0.2

0.3

0.4

Qwen 2.5 1.5B Instruct

0.2

0.4

0.6

E
xa

ct
M

at
ch

(S
tr

ic
t)

Qwen 2.5 3B

0.03

0.04

0.05

0.06

Qwen 2.5 3B Instruct

0.4

0.6

0.8

Qwen 2.5 7B

0.20

0.25

0.30

Qwen 2.5 7B Instruct

0.1

0.2

0.3

0.4

E
xa

ct
M

at
ch

(S
tr

ic
t)

Mistral 7Bv0.1

0.1

0.2

0.3

Mistral 7Bv0.1 Instruct

0.1

0.2

0.3
Llama 3.2 3B

0.2

0.4

0.6

Llama 3.2 3B Instruct

0.2

0.3

0.4

0.5

E
xa

ct
M

at
ch

(S
tr

ic
t)

Llama 3.1 8B

0.4

0.6

0.8
Llama 3.1 8B Instruct

0 50 100
Number of Hyperparameters Swept

0.05

0.10

0.15

0.20

0.25

Gemma 2 2B

0 50 100
Number of Hyperparameters Swept

0.01

0.02

0.03

Gemma 2 2B Instruct

0 50 100
Number of Hyperparameters Swept

0.2

0.4

0.6

E
xa

ct
M

at
ch

(S
tr

ic
t)

Gemma 2 9B

0 50 100
Number of Hyperparameters Swept

0.075

0.100

0.125

0.150

Gemma 2 9B Instruct

Sampler

Basic

Top-p

Top-k

Min-p

Model Type

Base

Instruct

Figure 7: Min-P Does Not Consistently Outperform Other Samplers on GSM8K When Con-
trolling For Hyperparameter Volume. We reran our GSM8K sweep using “standard" formatting
rather than “Llama" formatting and observed qualitatively similar data.
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Figure 8: Min-P Does Not Consistently Outperform Other Samplers on GSM8K When Con-
trolling For Hyperparameter Volume. We reran our GSM8K sweep using “standard" formatting
rather than “Llama" formatting and observed qualitatively similar data.
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Figure 9: GSM8K Scores By Model, Sampler and Sampler Hyperparameters. Many models
achieve their highest scores at low temperatures across samplers.
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