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Abstract
Current Large Language Model (LLM) prefer-
ence optimization algorithms do not account
for temporal preference drift, which can lead to
severe misalignment. To address this limitation,
we propose Non-Stationary Direct Preference Op-
timisation (NS-DPO) that models time-dependent
reward functions with a Dynamic Bradley-Terry
model. NS-DPO proposes a computationally
efficient solution by introducing only a single
discount parameter in the loss function, which is
used for exponential weighting that proportionally
focuses learning on more time-relevant datapoints.
We theoretically analyze the convergence of NS-
DPO in a general setting where the exact nature
of the preference drift is not known, providing
upper bounds on the estimation error and regret
caused by non-stationary preferences. Finally, we
demonstrate the effectiveness of NS-DPO for fine-
tuning LLMs under drifting preferences. Using
scenarios where various levels of preference drift
is introduced, with popular LLM reward models
and datasets, we show that NS-DPO fine-tuned
LLMs remain robust under non-stationarity,
significantly outperforming baseline algorithms
that ignore temporal preference changes, without
sacrificing performance in stationary cases.

1. Introduction
The application of Reinforcement Learning from Human
Feedback (RLHF) to fine-tune Large Language Models
(LLMs) (Christiano et al., 2017; Stiennon et al., 2020;
Ziegler et al., 2019; Ouyang et al., 2022; Bai et al., 2022b)
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has led to more precise control over the behavior they ex-
hibit. This control is crucial when looking to safely deploy
models in the real world (Amodei et al., 2016; Hendrycks
& Mazeika, 2022). Human preference datasets enable the
training of proxy reward models (see, e.g., RewardBench
(Lambert et al., 2024)) that can evaluate complex human
behaviour. These reward models are used in conjunction
with RL to fine-tune the LLM. Recent works (Rafailov et al.,
2024; Azar et al., 2024; Hong et al., 2024) seek to improve
the efficiency and stability of these approaches (Chaudhari
et al., 2024) by training the LLM straight from human prefer-
ence data, avoiding the need to learn a proxy reward model.

A key assumption made in these preference optimization
algorithms is that human preferences are stationary, i.e.,
they do not change over time. However, a shift in prefer-
ences can occur due to new information becoming available
(Zafari et al., 2019; Johnson & Mayorga, 2020), social
influences, and cultural trends. As more preference datasets
are gathered over long periods of time, the chance of the
data containing varying preferences increases. In such cases,
algorithms that do not account for these changes, view
them as noise and treat outdated data as equally important
as fresh data, often leading to deteriorated performance.
An increasing body of evidence (Zhou et al., 2024; Chen
et al., 2024a) points to data quality as being a key factor
in fine-tuning performance, thus preference drift can greatly
affect the alignment of models (Carroll et al., 2024). The
development of preference optimization algorithms and
theory to handle preference drifts are therefore crucial.

In this work, we propose Non-Stationary Direct Preference
Optimization (NS-DPO), a novel approach that uses a
probabilistic Dynamic Bradley-Terry model (Cattelan et al.,
2013; Bong et al., 2020; Tian et al., 2024) to account for
non-stationary drift in human preferences with just a single
additional parameter. As we only assume knowledge of
the total preference drift and not which specific preferences
change over time, NS-DPO re-weights each training
datapoint, down-weighting older data with potentially
stale preferences and up-weighting more recent ones.
We empirically show the effectiveness and robustness of
NS-DPO compared to stationary approaches. Our approach
is summarized in Figure 1.
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Figure 1: Human preferences are dynamic and influenced by a variety of factors (e.g. environment change and societal
influence). However, standard preference optimization approaches (e.g., DPO and IPO (Rafailov et al., 2024; Azar et al.,
2024)) do not account for this non-stationarity. In contrast, NS-DPO robustly learns on non-stationary data by using a
Dynamic Bradley-Terry model, and adjusts the loss to discount older datapoints and concentrate learning on the latest data.

Related work. One of the primary applications of the RLHF
framework is fine-tuning large language models (LLMs)
(Christiano et al., 2017; Stiennon et al., 2020; Ziegler
et al., 2019; Ouyang et al., 2022; Bai et al., 2022b). A key
component of this is the Bradley-Terry model (Bradley
& Terry, 1952) which learns a reward signal from paired
human preferences. (Rafailov et al., 2024) propose Direct
Preference Optimization (DPO), which implicitly uses the
Bradley-Terry model, to fine-tune an LLM directly from
a preference dataset. A variety of alternatives to DPO have
been proposed which adapt or do not use the Bradley-Terry
model (Azar et al., 2024; Amini et al., 2024; Meng et al.,
2024; Cen et al., 2024; Xu et al., 2023). Other approaches
such as maximizing a utility function (Ethayarajh et al.,
2024), improving from the policy in the previous iteration
(Munos et al., 2024; Rosset et al., 2024; Tang et al., 2025),
and improving the response at inference-time (Mudgal
et al., 2024; Son et al., 2025) have been investigated. Our
work is the first to consider a direct preference algorithm
using a Dynamic Bradley-Terry model.

A variety of work has analyzed the RLHF problem from a
theoretical standpoint. (Xiong et al., 2024) provide subopti-
miality bounds of policies in the offline, online and hybrid
settings under linear rewards. They do not directly analyze
the performance of DPO, but propose it as a practical imple-
mentation of the oracle. (Zhu et al., 2023; Chowdhury et al.,
2024) analyse the offline preference learning and DPO set-
tings, respectively. (Chowdhury et al., 2024) address noisy
preferences with a modified version of the DPO algorithm,
presenting confidence bounds for neural policy classes and
suboptimality bounds for the setting with log-linear policies.

Parameter drift has been widely studied in the bandit
literature. (Cheung et al., 2019) propose using a sliding
window to estimate parameters with data points close to the

current timestep, whilst (Bogunovic et al., 2016; Zhao et al.,
2020) investigate a restarting strategy. Similarly to the
strategy of (Russac et al., 2019), we use an exponentially
weighted discounting term to re-weight points close to the
current timestep. (Faury et al., 2021; Wang et al., 2023)
apply this approach to the case of generalised linear bandits
first proposed by (Filippi et al., 2010). (Pacchiano et al.,
2021; Saha, 2021; Mehta et al., 2023) focus on the duelling
bandit setting, where only preference feedback between
two actions is provided by the environment. In this work,
we provide the first theoretical guarantees for the popular
offline setting where the true reward parameter (used to
label training data) is allowed to change over time.

Main contributions. We propose NS-DPO, a direct prefer-
ence optimization method that accounts for non-stationary
preferences in the dataset via a Dynamic Bradley-Terry
model. NS-DPO modifies the training loss with a single
exponential weighting parameter γ, and thus represents a
simple and computationally efficient extension of the popu-
lar DPO algorithm. We provide an upper bound on the regret
of NS-DPO for log-linear policies given standard data cov-
erage assumptions used in offline learning. To explore the
performance of NS-DPO, we construct non-stationary pref-
erence datasets from a variety of existing popular datasets;
including GlobalOpinionsQA (Durmus et al., 2024), Help-
ful & Harmless (Dai et al., 2023), and UltraFeedback (Cui
et al., 2023). We demonstrate that NS-DPO significantly
outperforms stationary DPO and other relevant baselines on
these non-stationary datasets with varying degrees of pref-
erence drift on Llama LLM models (Touvron et al., 2023;
Dubey et al., 2024).
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2. Preliminaries
Stationary RLHF. In the stationary RLHF setting (Ziegler
et al., 2019; Ouyang et al., 2022), the goal is to find a
suitable LLM policy π, whose response a, to a prompt x,
maximise a reward function r(x, a), i.e.,

J (π) = Ex∼X ,a∼π

[
r(x, a)− τDKL[π(·|x)∥πref(·|x)]

]
.

(1)

Here, the KL-divergence prevents the learnt policy from
deviating too far from some reference policy πref , that
has characteristics we wish to preserve in the final model.
This is controlled by the parameter τ > 0. In practical
settings, human feedback is too complex to capture in a
hand designed reward model, and we resort to learning a
model from human preference data.

Bradley-Terry Model. A human preference dataset
consists of prompts and two possible responses D =
{(xi, ai, a

′
i)}i∈[n], where ai is the response preferred to

a′i, and n is the number of datapoints. To learn a reward
model from this dataset, we assume the preferences are gen-
erated by a Bradley-Terry (BT) model (Bradley & Terry,
1952) where the probability that ai is preferred to a′i is

p(ai ≻ a′i|xi) = σ(r(xi, ai)− r(xi, a
′
i)). (2)

In Equation (2), σ(·) is the logistic sigmoid function and
r(x, a) is the reward model of human preferences we do not
have access to and wish to learn. We parameterise the re-
ward, typically as a single layer MLP on the last layer of the
reference policy model πref (Ziegler et al., 2019), and then
learn the parameters using a maximum likelihood estimator.
An LLM can then be fine-tuned on the objective in Equa-
tion (1) using Reinforcement Learning (RL). It is important
to note that the BT model captures many of the inherent
assumptions we make about our data, which include the
stationary nature of the underlying data generating process.

Direct Preference Optimization. Recent work by (Rafailov
et al., 2024) avoids the training of an explicit reward model
in the stationary RLHF process by optimizing the LLM
policy directly from human preference data. To do this,
the analytical solution to the stationary RLHF objective is
rearranged into Equation (1) to derive an implicit reward

r(x, a) = τ log
π(a|x)
πref(a|x)

+ τ logZ(x), (3)

where Z(x) is a normalisation constant. This is substituted
into the negative log likelihood of the Bradley-Terry
model (see Equation (2)) resulting in the direct preference
optimization (DPO) objective

L(π) =
∑

(x,a,a′)∈D

− log σ (τhπ(x, a, a
′)) , (4)

Where hπ(x, a, a
′) = log π(a|x)

πref (a|x) − log π(a′|x)
πref (a′|x) . All the

methods introduced in this section, including DPO, are all
stationary as they assume the reward model does not change
with time. However, this assumption does not hold when
training on real-world data. The changes in preferences
over time, captured in the dataset, appear as label noise to
the stationary methods.

3. Learning Under Preference Drift
To address the problem of preference drift, in datasets col-
lected over a period of time, we propose Non-Stationary
Direct Preference Optimization (NS-DPO). NS-DPO in-
corporates the Dynamic Bradley-Terry model, which in-
cludes a non-stationary reward model r(x, a, t). Here
t ∈ {1, . . . , T − 1} denotes a time step in the past, and
T ∈ N+ denotes the current time step, where we are evalu-
ating the trained policy. Under the Dynamic Bradley-Terry
model, the probability of response ai being preferred to a′i
is

p(ai ≻ a′i|xi, ti) = σ(hr(xi, ai, a
′
i, ti)), (5)

where hr(x, a, a
′, t) = r(x, a, t) − r(x, a′, t). We also as-

sume the dataset has temporal information about when the
human preference between the two responses is expressed,
D = {(xi, ai, a

′
i, ti}i∈[n]. For the ease of indexing data-

points, we assume ti ≤ tj if i < j.

Rather than making an explicit assumption on how the
reward function varies over time, we consider a setting
in which the degree the reward can change is upper
bounded. We denote this upper bound as BT . This is a mild
assumption on the temporal variation, and allows the reward
to vary drastically at any point in time over all T − 1 steps
in the training data. We formalise this in Assumption 1
(Section 4), and use it to show that the convergence of
NS-DPO depends upon BT . To learn given this drift, we
employ an exponentially weighted maximum likelihood
estimator (Faury et al., 2021; Russac et al., 2019; Wang
et al., 2023), where the datapoints are re-weighted such that
losses incurred at the most recent datapoints are prioritised.

To learn a suitable reward model in this setting, we define
the reward at time step T as r(x, a, T ) ∈ R, where R is the
space of reward values. We estimate the reward function at
timestep T , by maximising the exponentially weighted neg-
ative log-likelihood of the Dynamic Bradley-Terry model:

LDBT (r)

=
∑

(xi,ai,a′
i,ti)∈D

−γT−ti−1 log σ (hr(xi, ai, a
′
i, T )) . (6)

In Equation (6), γ ∈ (0, 1) controls the rate at which older
datapoints are discounted. The loss recovers the stationary
Bradley-Terry model as γ → 1. We show in Theorem 3 that
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the optimal value of γ can be obtained when we know BT ,
the details of which we provide in Appendix D.2.3.
Remark 1. We do not assume any knowledge of which
preferences change and which remain fixed as part of the
total preference drift. As a result, we down-weight all older
points in the dataset with the exponential scaling term, γ.

Offline Non-Stationary Direct Preference Optimization.
The derivation of NS-DPO follows as previously shown in
Section 2 for the stationary case. We first define the RLHF
objective at timestep T as

JT (π) = Ex∼X ,a∼π

[
r(x, a, T )−τDKL[π(·|x)∥πref(·|x)]

]
,

(7)
where we are interested in maximising the reward function
r(x, a, T ) that reflects human preferences in the present
(i.e., the current time step). We note the prompt distribution
X and the reference model πref do not vary with time. As
we consider the reward model at T , we derive an implicit
reward of the same form as Equation (3). This relates the
optimal policy and reward function of Equation (7) as

r(x, a, T ) = τ log
π∗
T (a|x)

πref(a|x)
+ τ logZ∗

T (x), (8)

where π∗
T is the optimal policy that optimises Equation (7)

and Z∗
T denotes the normalisation constant of π∗

T . We
then parameterise the policy π in Equation (7) using the
parameter θT , which enables expressing the implicit reward
with respect to the parameter as

rθT (x, a, T ) = τ log
πθT (a|x)
πref(a|x)

+ τ logZθT (x), (9)

where ZθT denotes the normalisation constant of πθT . We
apply Equation (9) into the exponentially weighted negative
log likelihood in Equation (6) to derive the NS-DPO
objective

LNS(θT )

=
∑

(xi,ai,a′
i,ti)∈D

−γT−ti−1 log σ
(
τhπθT

(xi, ai, a
′
i)
)
.

(10)

4. Theoretical Analysis of Offline
Non-stationary DPO

In this section, we analyse the performance of NS-DPO
in the offline setting. We assume the use of log-linear
policies, and present how the preference drift affects the
estimation error and regret bound of the algorithm. We
provide the sample complexity of the algorithm, which
recovers O(n−1/2) when the preferences are stationary.
See Appendix D for further details.

Policy Class. We use the policies parameterised by θ ∈
Θ ⊂ Rd of the following form

Π =

{
πθ(a|x) =

exp(fθ(x, a))∑
a′∈A exp(fθ(x, a′))

}
, (11)

where fθ(x, a) ∈ R is a differentiable function. For our
analysis, we consider the case of log-linear policies where
fθ is linear: fθ(x, a) = ϕ(x, a)⊺θ, and the feature map
ϕ(x, a) is a d-dimensional vector. This is motivated by the
reward model introduced in (Ziegler et al., 2019) where
the last hidden layer of the LLM is used as the feature
embedding function ϕ(x, a).

Loss Function with ℓ2 regulariser. For the analysis of
log-linear policies, we regularise the NS-DPO loss with
squared ℓ2-norm of θ, τ2 and a non-linearity coefficient
cσ,τ (explained in Appendix D):

LNS
reg(θ) =

1

n
LNS(θ) +

λcσ,ττ
2

2
∥θ∥2 . (12)

Performance measure and Optimal Policy. Let θ̃T ∈ Θ
denote the parameter that minimises the (regularised)
NS-DPO loss defined in Equation (12). We assess the
performance of the policy πθ̃T

, using the difference of
non-stationary RLHF objectives between πθ̃T

and π∗
T in

Equation (7):

Roff
T = JT (π

∗
T )− JT (πθ̃T

)

= Ex∼X

[
Ea∼π∗

T (·|x)[r(x, a, T )]

− τDKL[π
∗
T (·|x)∥πref(·|x)]

− Ea′∼πθ̃T
(·|x)[r(x, a

′, T )]

+ τDKL[πθ̃T
(·|x)∥πref(·|x)]

]
, (13)

where r(·, ·, T ) denotes the true reward function at time
T , and π∗

T denotes the optimal policy against which
we compare the performance of our algorithm. Given a
reference policy πref , the optimal policy π∗

T is defined as the
policy which optimises the RLHF objective at time step T

argmax
π∈Π

Ex∼X ,a∼π

[
r(x, a, T )− τDKL[π(·|x)∥πref(·|x)]

]
.

(14)

Similarly, we can define the parameter θ∗t of the optimal
policy in each time step t ∈ [T ] as

argmax
θt∈Θ

Ex∼X ,a∼πθt

[
r(x, a, t)−τDKL[πθt(·|x)∥πref(·|x)]

]
.

(15)

We now introduce assumptions on our setting. The pref-
erence drift is defined as the change in the true underlying
parameter θ∗t ∈ Θ,∀t ∈ [T ] of the optimal policy π∗
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at each time step. We do not constrain how the optimal
parameter changes, but instead upper bound the total
possible preference drift in the environment before time
step T . This upper bound is known as the variation budget.

Assumption 1. (Variation Budget Bound) The parameter
drift of θ∗t ∈ Θ across T timesteps is upper bounded as∑T−1

t=1 ∥θ∗t+1 − θ∗t ∥2 ≤ BT where BT > 0 is a known
constant.

We move on to general assumptions for the learning process.
We bound the 2-norm of the feature and parameter spaces.

Assumption 2. (Boundedness) The parameters and features
are bounded: θ ∈ Θ where Θ = {θ ∈ Rd | ∥θ∥2 ≤ W} and
Φ = {ϕ(x, a) ∈ Rd | ∥ϕ(x, a)∥2 ≤ L}.

It is known that an equivalence class of reward models leads
to the same preferences under the Bradley-Terry model
(Rafailov et al., 2024). This is similarly true in the case
of the Dynamic Bradley-Terry model, because the implicit
reward of NS-DPO, shown in Equation (8), relates the
reward to the policy parameters θ. We thus construct the
following constraint on the policy class to properly specify
the problem (Chowdhury et al., 2024).

Assumption 3. (Identifiability) The optimal policy in each
time step t corresponds to a single parameter in Θ, which
satisfies Equation (15): 1⊺dθ

∗
t = 0 ∀t ∈ [T ], where 1⊺

d ∈ Rd

is a vector of 1s.

In the offline setting, our learning is constrained by the
available dataset D. A standard assumption in the of-
fline learning literature is that of data coverage (Chowd-
hury et al., 2024; Zhu et al., 2023). The data coverage
assumption ensures that the reference policy πref suitably
explores the space of plausible responses of the optimal
policy. We define the population covariance matrix as Σπ =
E[ϕ(x, a)ϕ(x, a)⊺]− E[ϕ(x, a)]E[ϕ(x, a)]⊺, where the ex-
pectation is calculated over samples x ∼ X , a ∼ π(·|x).
The condition number κπ compares the coverage of the two
policies π and πref

∀π ∈ Π : κπ = sup
v∈Rd

v⊺Σπv

v⊺Σπref
v
=

λmax(Σπ)

λmin(Σπref
)
, (16)

while we use κ = maxπ κπ to denote the maximum value
of κπ . The definition of κπ requires that the reference policy
sufficiently explores the feature space, which leads to the
following assumption.

Assumption 4. (Feature Coverage) The reference policy
πref satisfies λmin(Σπref

) > 0.

In a time-varying setting, the quality of the dataset D also
depends upon its temporal coverage. We use the following
assumptionm which also guarantees a minimal amount of
data in each time step. Having enough data in each time step

is motivated by the fact that we are assuming no knowledge
of the dynamics of the actual preference drift. Note that
Θ(T ) in the assumption is the notation for the complexity,
which is different from the parameter set Θ in Assumption 2.

Assumption 5. (Temporal Coverage) For each time step
t ∈ [T − 1], the number of datapoints in the training set is
between m and m̄, where m > 0 and m̄ > m are constants
(i.e., n = Θ(T )).

4.1. Theoretical Results

Estimation Error. To bound the expected regret of the pol-
icy trained with NS-DPO, bounding the difference between
the optimal and the learnt parameter is required. To analyse
the parameter estimation error, we define the discounted
covariance matrix of the offline dataset as

Σ̂ =
1

n

n∑
i=1

γT−ti−1ϕ̂iϕ̂
⊺
i , (17)

where ϕ̂i = ϕ(xi, ai) − ϕ(xi, a
′
i) is also introduced for

brevity. Under the assumptions from Section 4, we introduce
bounds on the estimation error of the parameter θ̃T , which
minimises the NS-DPO loss in Equation (12), with respect
to the true parameter θ∗T and Σ̂:

∥θ∗T − θ̃T ∥Σ̂+λI , (18)

where λ > 0 is introduced to guarantee the inversion of the
matrix Σ̂ + λI . The upper bound on the estimation error
is shown in Theorem 2 and a detailed proof of the result is
provided in Appendix D.1. Our analysis differs from the
stationary case (Chowdhury et al., 2024), as we consider
the temporally discounted datapoints in the NS-DPO loss.
This is reflected in the covariance matrix Σ̂ by the inclu-
sion of the γT−ti−1 term, which decreases the influence of
observations that happened further in the past. As part of
our analysis, we separate the estimation error into a learn-
ing term and tracking term. This tracking term accounts
for the error introduced by the non-stationary nature of the
environment, depending upon BT and the choice of γ in the
algorithm to upper bound it. We outline a suitable choice
for γ below.

Theorem 2. (Estimation error of θ̃T .) Let δ ∈ (0, 1], λ >

0, τ > 0. Let θ̂T denote the minimiser of the NS-DPO loss
defined in Equation (12). Let θ̃T ∈ Θ denote the parameter
obtained by performing the parameter projection procedure
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Figure 2: Experiment results conducted on UltraFeedback-RM dataset with preference drift.[Left] ρdiff = 0.7. [Center Left] ρdiff = 0.9.
[Center Right] ρdiff = 0.95. [Right] ρdiff = 1.0. As ρdiff , the percentage of training datapoints with flipped preference increases,
DPO fails to learn the preference distribution at T = 101. Meanwhile, NS-DPO shows robust performance under various values of
ρdiff , maintaining reward accuracies above 50%. As tcp, the change point of the reward model happens later in time, the gap between
stationary approaches and NS-DPO gets larger. The experiments are run under a reward model shift from PAIRRM to ARMORM.
Llama-2-7b-chat-hf is used, and the training dataset consists of 100 time steps.

on θ̂T . Then with probability at least 1− δ:

∥θ̃T − θ∗T ∥Σ̂+λI ≤ 2
√
λW +

2C1

τcσ,τ

√
d+ log(1/δ)

n︸ ︷︷ ︸
learning

+
16LRσ,τm̄

T (1− γ)
3
2

√
dm̄

n
BT︸ ︷︷ ︸

tracking

(19)

where C1 > 0 is a constant.

Expected Regret Bound. Starting from the definition of the
expected regret in Equation (13), the regret can be expressed
with the estimation error in Equation (19). We then use our
results in Theorem 2 to complete the analysis. The details
of the regret analysis are deferred to Appendix D.2.

Theorem 3. (Regret bound of θ̃T ) Let δ ∈ (0, 1
2 ], τ > 0.

Let θ̃T denote the parameter in Θ which minimises the
NS-DPO loss (Equation (12)) on an offline dataset. The
following bound holds with probability at least 1− 2δ and
when λ ≥ C

√
d log(4d/δ)/n:

Roff
T ≤ τκm̄T (1− γ)

2m(1− γT−1)
∥θ̃T − θ∗T ∥2Σ̂+λI

,

where C1 > 0 denotes a constant. When γ = 1−
(
BT

T

)3/4
,

Roff
T satisfies:

Roff
T = Õ

(
d B

3/4
T n−1/4

)
.

Standard offline bandits and RL algorithms assuming the
stationarity of the underlying scalar-valued reward achieve
O(n−1/2) regret (Wang et al., 2021; Zhan et al., 2024;
Qiao & Wang, 2024; Cen et al., 2024). For stationary
preference-based rewards, (Chowdhury et al., 2024) show
an O(n−1/4) regret/sub-optimality gap for DPO algorithm,
whereas (Nika et al., 2024) obtain an O(n−1/2) regret.
Unlike these prior work assuming stationary preferences,

NS-DPO uses the discount weight γ = 1 −
(
BT

T

)3/4
to

address the non-stationarity in the dataset, which results in
the regret bound above. However, our approach is general
enough to capture the stationary setting, which corresponds
to BT → 0. By setting γ = 1 −

(
BT

T

)α
with 0 < α < 2

3 ,
we show that the tracking term in the estimation error bound
goes to zero. Corollary 4, shows that the widely considered
stationary setting is a special case of NS-DPO. We provide
the detailed proof in Appendix D.3.

Corollary 4. (Regret bound under stationary preferences)
Let BT → 0, δ ∈ (0, 1

2 ], τ > 0. Let θ̃T ∈ Θ denote the min-
imiser of the NS-DPO loss (Equation (12)). Then, for λ ≥
C
√

d log(4d/δ)/n, some constant C1 > 0, γ = 1−
(
BT

T

)α
and 0 < α < 2/3, we have with probability at least 1− 2δ:

lim
BT→0

Roff
T <

4τκm̄

m

(
√
λW +

C1

τcσ,τ

√
d+ log(1/δ)

n

)2

,

and recover the complexity of Roff
T = O(n− 1

2 ) under
stationary preferences.

5. Experiments
In this section, we empirically evaluate NS-DPO’s
ability to learn under preference drift. We analyse how
NS-DPO performs under different types of preference
drift and different strengths of preference change using
Llama-2-7b-chat-hf (Touvron et al., 2023) and
Llama-3.2-1b-it(Dubey et al., 2024). We provide
experiments in Appendix C.5 to further support our
theoretical results in Section 4.1. We provide code1 for our
experiments.

5.1. Experimental Setup

To test NS-DPO in an LLM setting, we create three pref-
erence datasets with known and controlled preference drift.

1https://github.com/geronest/ns-dpo

6

https://github.com/geronest/ns-dpo


Right Now, Wrong Then: Non-Stationary Direct Preference Optimization under Preference Drift

0.8

0.7

0.6

0.5

0.4

0.3

0.2

10

DPO

30

t

IPO

50 70

 - Change Point

90

NS-DPO

cp

R
e
w

a
r
d
 A

c
c
u
r
a
c
y

0.8

0.7

0.6

0.5

0.4

0.3

0.2

10

DPO

30

t

IPO

50 70

 - Change Point

90

NS-DPO

cp

R
e
w

a
r
d
 A

c
c
u
r
a
c
y

0.8

0.7

0.6

0.5

0.4

0.3

0.2

10

DPO

30

t

IPO

50 70

 - Change Point

90

NS-DPO

cp

R
e
w

a
r
d
 A

c
c
u
r
a
c
y

Figure 3: NS-DPO consistently outperforms DPO and IPO as the change point, tcp nears the present T = 101 for varying strengths of
preference shift on the TV-HH dataset using the Llama-2-7b-chat-hf model. [Left] ρdiff = 0.7. [Middle] ρdiff = 0.8. [Right]
ρdiff = 0.9. We note that as the value of tcp increases, the performance difference between NS-DPO and the baselines increases. This
is because as the change point moves closer to the present time step, the number of samples available from the updated preference
distribution decreases. NS-DPO discounts samples with old preferences, focusing learning upon the small number of samples with
up-to-date preference labels.

Creating Non-Stationary Preference Datasets. To create
datasets with varying preference drift, we select two reward
models r1, r2 that result in different preferences for the re-
sponses a and a′. We assign each datapoint an arbitrary time
across 100 timesteps t ∈ [100] and adjust the response pref-
erence according to two main modes of preference change,
sudden or gradual. For sudden preference change, we select
a change point tcp ∈ [100] for datapoints with a time before
tcp we assign preferences based on r1 and for points after
tcp we assign preferences based on r2. For gradual pref-
erence change, we linearly interpolate the reward of each
prompt response pair (x, a) between r1 and r2 over some
subset of the timesteps Tgrad ⊂ [100] (see Appendix C.2).

Preference Change Strength. Finally, we also adjust how
the strength of preference change affects the performance
of NS-DPO. We introduce ρdiff , which is the portion of
datapoints included in the dataset whose preferences change
when assigning preferences according to r2 instead of r1.
We provide further details in Appendix C.1.

Datasets. We create non-stationary preference datasets
for the GlobalOpinionsQA dataset (Durmus et al., 2024)
and Helpful-Harmless dataset (Bai et al., 2022a) using the
helpsteer-helpfulness and beavertails-is_safe outputs of the
ARMORM model. We use the Ultrafeedback dataset (Cui
et al., 2023) to create UltraFeedback-RM, which contains
the preferences of the PAIRRM (Jiang et al., 2023) and AR-
MORM (Wang et al., 2024) reward models. We also create
UltraFeedback-LM, which uses the responses provided in
the original dataset while preferences are determined based
on the language model used to generate the response. We
provide further details of how the non-stationary preference
datasets are created in Appendix C.2.

Language Models. We use Llama-2-7b-chat-hf

2 and Llama-3.2-1b-it 3 (Touvron et al., 2023;
Dubey et al., 2024) for both fine-tuning and the reference
model. To reduce the compute demands of fine-tuning
Llama-2-7b-chat-hf, we train LoRA weights (Hu
et al., 2022) (see Appendix C.4 for further details). We
fine-tune all parameters of Llama-3.2-1b-it.

Evaluation Metrics. To compare the performance of NS-
DPO with the baseline algorithms, we evalute the Reward
Accuracy and Win Rate. The reward accuracy is the pro-
portion of examples for which the implicit reward of the
preferred response is greater than the implicit reward of the
least preferred response in the test split of a dataset. The win
rate of NS-DPO versus a baseline algorithm in the TV-HH
dataset is the portion of responses generated by the NS-
DPO trained policy that score higher under the true reward
model at time T , than those generated by the baseline policy.
For each sample in the test set of the TV-HH dataset, we
limit the maximum length of generated responses to 2048
tokens. For the UltraFeedback-LM experiment, we evaluate
the performance of each algorithm by using AlpacaEval2
(Dubois et al., 2024). We report the Length-Controlled Win
Rate (LCWR), which compares the responses generated by
a given model to responses generated by GPT-4.

LLM Baselines. We compare NS-DPO against station-
ary DPO and Identity Preference Optimization (IPO) (Azar
et al., 2024). We also construct an In-Context Learning
(ICL) algorithm referred to as tDPO, in which information
about the time step is appended to the prompts of the data.
All algorithms use the same supervised fine-tuned (SFT)
model as the reference model. We use the SFT procedure
from (Rafailov et al., 2024), training the model on the pre-
ferred responses in the dataset. NS-DPO uses τ = 0.1
and γ = 0.95 for fine-tuning Llama-2-7b-chat-hf
with 2C NSGO dataset and UltraFeedback dataset. For

2https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
3https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
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Figure 4: [Left | Middle] NS-DPO outperforms DPO as the change point, tcp nears the present time, T = 101, for ρdiff = 0.7 and
ρdiff = 1.0 respectively on the TV-HH dataset finetuned on the llama-3-1b-it model. [Right] NS-DPO outperforms DPO in settings
where preference drift is gradual across multiple timesteps on the TV-HH dataset.

the Time Varying Helpful-Harmless (TV-HH) dataset, we
adjust the value of γ as γ = 1 − ( 1

100−tcp
) log(100). For

Llama-3.2-1b-it, we use τ = 1.0 and γ = 0.85.
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Figure 5: NS-DPO returns more aligned responses than DPO,
according to the reward model at T = 101, when sudden
preference shift occurs at later change points. We finetune
llama-3-1b-it on the TV-HH dataset across a range of
change points and ρdiff , and record the mean and std of the win
rate across 600 samples from the test split over 3 runs.

5.2. Experiment Results

How robust and effective is NS-DPO under varying
strengths of sudden preference drift? We investigate
how different strengths of sudden preference drift affect the
performance of NS-DPO. In Figure 2, Figure 3, Figure 4
[Left | Middle], and Figure 5 we compare how different
values of ρdiff , the portion of datapoints with preferences
that change, and the change point tcp, the time at which
the preference change occurs, affects the alignment of
models trained with NS-DPO versus those trained with
stationary preference algorithms. In Figure 5 we finetune
Llama-3.2-1b-it on the TV-HH dataset and report the
win rate against DPO. NS-DPO and DPO responses perform
broadly the same when changes occur early tcp ∈ {10, 30},
however, when the change point occurs later, NS-DPO

LCWR
ρdiff tcp NS-DPO SW-DPO DPO
0.7 21 8.93 6.09 7.29
0.7 51 8.38 4.93 7.85
0.7 81 7.85 4.63 7.17
1.0 21 9.00 6.71 8.23
1.0 51 7.41 5.59 6.99
1.0 81 7.36 4.83 6.49
0 0 9.12 8.81 8.81

Table 1: Length-Controlled Win Rates (LCWRs) of
Llama-3.2-1b-it models, evaluated by AlpacaEval2.
The models are trained with UltraFeedback-LM dataset (See
Appendix C.2). NS-DPO outperforms stationary DPO under
various types of sudden preference drift, with higher preference by
GPT-4 evaluator.

consistently achieves a win rate of > 0.5 beating DPO at
all values of ρdiff . The UltraFeedback-LM experiment in
Section 5.2 also shows that NS-DPO effectively addresses
the preference drift, having consistently higher LCWR than
the baselines including DPO. We observe a similar trend in
Figure 2, Figure 3 and Figure 4 [Left | Middle], where the
reward accuracy of NS-DPO matches that of IPO and DPO
for early change points and outperforms the stationary base-
lines at later change points on llama-2-7b-chat-hf
and llama-3-1b-it respectively.

Stationary algorithms treat the non-stationary preferences
within the data as label noise. Thus, for early change points,
the stationary algorithms see broadly correct preference
labels as the majority of the dataset consists of data after
the change point. As the change point occurs later, far more
of the dataset is likely to have the incorrect preference,
which is then learned by the stationary baseline, whilst
NS-DPO focuses learning only on the later correctly labeled
samples. It is also important to consider how many data
points are affected by the preference change. We capture
this in the ρdiff parameter. As more of the data experiences
preference drift (higher values of ρdiff ) the more beneficial
a non-stationary algorithm like NS-DPO is. We can see this
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Figure 6: Llama-2-7b-chat-hf experiment results using 2C NSGO dataset. [Left] Opinion drift from the US to Germany. [Middle]
Opinion drift from the US to Japan. [Right] Opinion drift from the US to Brazil. NS-DPO stays robust to the non-stationarity present
in the dataset and achieves reward accuracies above 60%, while stationary methods show dropped reward accuracies of around 55%.
Including the time steps in the prompt (tDPO) does not help meaningfully improve the performance of stationary DPO.

in Figure 5 where NS-DPO achieves the strongest win rate
at later change points when ρdiff = 0.9.

How does NS-DPO perform under gradual preference
drifts? Here we investigate how LLMs trained with NS-
DPO perform when preference drift happens gradually over
time. In Figure 4 [Right], we see that NS-DPO outper-
forms the DPO reward accuracy by over 10% on the TV-HH
dataset with gradual preference drift. We note that the perfor-
mance of NS-DPO is dependent upon the value of γ chosen,
however both approaches outperform the stationary base-
line. The experiment results on the 2C NSGO dataset, which
also simulates a gradual drift of preferences, are given in
Figure 6. NS-DPO shows significantly better performance
compared to stationary DPO, showing a performance gap
of nearly 10% in reward accuracy. This difference is mainly
caused by stationary methods failing to efficiently learn
from datapoints at later time steps. tDPO, which trains the
policy with time step information appended to the prompt,
does not show a significant difference from stationary DPO.
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Figure 7: Training curves of NS-DPO and DPO trained with the
UltraFeedback dataset without preference drift (tcp = 0).The
trained model is initialised from Llama-2-7b-chat-hf. NS-
DPO matches the performance of DPO even in stationary settings.

How does NS-DPO perform under no preference drift?
While NS-DPO is proposed to address scenarios where
preference drift happens, one natural question that follows
is whether NS-DPO performs worse than stationary DPO
when the dataset is stationary, containing no preference drift.
In order to answer this question, we train NS-DPO and sta-
tionary DPO on the UltraFeedback-RM and UltraFeedback-
RM datasets without introducing any preference drift. Note

that based on the definition of tcp, stationary datasets are
equivalent to datasets with tcp = 0. As demonstrated in
Figure 7, the model trained with NS-DPO using the station-
ary UltraFeedback dataset shows almost identical reward
accuracy as the model trained with stationary DPO. The
AlpacaEval2 results in Section 5.2 also support this, where
NS-DPO actually shows higher LCWR than DPO even with-
out any preference drift in the dataset.

6. Conclusion
In this work we propose NS-DPO, a practical and prov-
ably efficient approach for preference optimization on non-
stationary offline datasets. With standard assumptions on the
offline learning setting and a minimal assumption of having
only a upper bound BT on the preference drift, we provide
a theoretical analysis on the performance of NS-DPO in the
case of log-linear policies. NS-DPO achieves a sample com-
plexity of O(n−1/4). We also show that as the preference
drift in the environment diminishes, BT → 0, the complex-
ity of the regret recovers O(n−1/2), found in the stationary
setting. We further support this result with a suit of empirical
results on a synthetic setting. We also investigate the appli-
cation of NS-DPO to LLMs, creating several non-stationary
preference datasets with varied levels of preference drift, and
show that NS-DPO shows superior performance to standard
preference optimization algorithms and In Context Learning
approaches on these datasets. Even in stationary settings,
NS-DPO matches the performance of stationary algorithms.
This motivates the usefulness of our approach when the exis-
tence of preference drift in a dataset is unknown, as applying
NS-DPO will not hurt performance even if the preference
drift is too small to matter. NS-DPO introduces only a single
parameter γ in the stationary DPO loss, which is notably
easy to implement and test with. Our approach can be easily
extended to the online setting where data is sequentially pro-
vided as time passes. NS-DPO can also be adapted to learn
at a time step that is not the present by discounting both past
and future preference as a function of their distance from the
time step of interest. We leave these ideas for future work.
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Impact Statement
The development of NS-DPO provides a significant ad-
vancement in the field of preference optimization for non-
stationary scenarios, addressing a critical challenge in adapt-
ing to environments with temporal preference drift. By intro-
ducing a practical and theoretically rigorous approach, NS-
DPO enables robust optimization with minimal assumptions,
achieving competitive sample complexity and empirical per-
formance in both stationary and non-stationary settings.

Whilst NS-DPO offers a clear approach to address temporal
drift within offline dataset, it does not take the qualitative
aspects of the inputs into consideration. Aligning LLMs
can be a complex task and great care should be taken to
avoid introducing sources of bias during training, which
lead to misaligned harmful models. When using NS-DPO
practitioners should be cautious of newer data that may
contain biases as such biases may be amplified in training
by the NS-DPO discount parameter.
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Appendix Contents
In Appendix A, we provide further related works on DPO algorithms, different alignment settings, and a discussion of works
that consider time varying alignment problems. Appendix B analyses the gradient of the NS-DPO objective. Appendix C
explains the details of experiments conducted, including the creation of non-stationary datasets for LLM experiments and the
behaviour of NS-DPO and SW-DPO in the synthetic setting. We provide proofs of our theoretical analysis in Appendix D
step by step. In-depth derivations necessary for deriving the learning error are separately presented in Appendix D.4.

A. Further Related Works
Recent interest in the alignment of LLMs has lead to a wide variety of works. We briefly discuss further works that focus
upon direct preference alignment algorithms.

Several approaches examine preference optimisation from a game theory perspective, avoiding the implicit assumptions of
the BT model. In these settings the current policy plays against previous versions to further improve performance (Swamy
et al., 2024; Rosset et al., 2024; Wu et al., 2024b; Yuan et al., 2024; Chen et al., 2024b; Pang et al., 2024; Munos et al.,
2024). (Xu et al., 2023) propose a cringe loss based objective whilst (Hong et al., 2024; Pentyala et al., 2024; Hua et al.,
2024) try to combine the supervised fine-tuning and preference optimization steps. (Hong et al., 2024; Hua et al., 2024)
propose a single training objective to do this and (Pentyala et al., 2024) examine combining two different models trained
on an SFT and direct preference objective respectively. Finally, (Lu et al., 2024) propose a meta algorithm which uses
an LLM to optimize the form of the direct preference learning objective itself.

An orthogonal direction of work is the online setting (Qi et al., 2024; Zhang et al., 2024; Guo et al., 2024; Xie et al., 2024),
where feedback is returned by a human labeler or superior model. (Khaki et al., 2024; Liu et al., 2024) adapt the offline
settings using techniques such as rejection sampling to approximate an online setting. In this work we only consider the
offline setting for simplicity, however the approach we propose can easily be adapted to the online setting. Other important
directions of research include safety and robustness. (Dai et al., 2023; Ramesh et al., 2024; Wu et al., 2024a) consider
robust settings where safety or group information is known at training time and (Dai et al., 2023) analyse a constrained
optimization problem through the lens of safety in LLMs. Whilst these approaches look to address a wide range of settings,
our work is the first to provide a solution to the case of non-stationary preferences.

(Carroll et al., 2024) consider how to correctly align LLMs under preference drift, showing several possible goals for
alignment in an online setting. Whilst in the online non-stationary setting the LLM can adapt to the changing preferences of
the user, our setting considers aligning the model on an offline dataset before deploying the static model to users at test time.
As such our approach is most similar to the Privileged Reward and Initial Reward settings (Carroll et al., 2024) proposes, as
we determine that the preferences exhibited in the present are the most important (Privileged Reward) and future users will
interact with a model aligned to preferences from their past (Initial Reward).

B. Analysis of NS-DPO Gradient
Here we analyse the gradient of the NS-DPO loss objective. The gradient of Equation (10) with respect to the model
parameters θ is as follows:

∇θLNS(θ) =
∑

(xi,ai,a′
i,ti)∈D

−τγT−ti−1σ (−hθ(xi, ai, a
′
i))︸ ︷︷ ︸

Gradient scaling

(∇θ log πθ(ai|xi)−∇θ log πθ(a
′
i|xi))︸ ︷︷ ︸

Gradient Direction

. (20)

The gradient of the NS-DPO objective consists of two terms. The first term σ (−hθ(xi, ai, a
′
i)) scales the gradient update,

which increases when the model incorrectly prefers response a′i to ai and decreases when the model correctly predicts the
response preference. NS-DPO only adjusts the scaling term of the gradient by discounting the scaling term further when
points are temporally far away from T . The second term, ∇θ log πθ(ai|xi)−∇θ log πθ(a

′
i|xi), controls the direction of the

gradient update.

In the case of stationary preferences in the dataset (points whose preference does not change at any time ti), the gradient
of these points is still applied to the parameters θ by the NS-DPO Loss with scaling by the term γT−ti−1. Whilst this
downweights these gradients this is price of not knowing which points have changing preferences and which points have
fixed preferences within our setting. When we know that there is no preference drift, we set the value of γ to 1 to remove
discounts (see Appendix D.3).
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C. Further Experiment Details
C.1. Controlling the Strength of Preference Drift

In this section, we give more details on how ρdiff is calculated, which is used to control the degree of preference drift as
reward models are changed in the experiments. We first note that when t < tcp, old reward model is used to evaluate the
preference of the given prompt-response pair, while we use new reward model to evaluate datapoints with t ≥ tcp:

r(x, a, t) =

{
rold(x, a), if t < tcp

rnew(x, a), if t ≥ tcp.

We then use ooldi and onewi to denote the preference given by old and new reward model respectively, on the response pairs
(ai, a

′
i) of prompt xi:

ooldi ∼ σ(rold(xi, ai)− rold(xi, a
′
i)),

onewi ∼ σ(rnew(xi, ai)− rnew(xi, a
′
i)).

Using ooldi and onewi , we calculate the portion of datapoints whose preferences differ between the old and new reward
models:

ρdiff =
1

n

n∑
i

1(ooldi ̸= onewi ). (21)

If the value of ρdiff is large, it means that the preference drift from the old reward model to the new reward model is
happening stronger in the dataset. When tcp is fixed for the dataset, which means that the number of datapoints from each
reward model is fixed, datasets with higher ρdiff will result in worse performance of the algorithms. This is because more
datapoints evaluated with the old reward model will have conflicting preference with the new reward model, causing harm to
learning the true preference.

C.2. Non-Stationary Preference Dataset Creation
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Figure 8: The correlation of different
preference labels generated by rewards
from the ARMORM reward model on the
Helpful Harmless harmless-base dataset
(Bai et al., 2022a). We observed that
concepts such as safety and helpfulness
have more correlated preferences, whilst
the helpsteer-coherence reward model is
un-correlated with the other models we
analysed.

1) NSGO Datasets. We modify the GlobalOpinionQA dataset4 (Durmus et al.,
2024) to create a time varying dataset. GlobalOpinionQA consists of questions
regarding global issues, different responses, and preferences from several countries
represented as a probability vector. We copy the questions and responses to create
multiple time steps t ∈ [100]. We then vary the preferences with time by linearly
interpolating between the preferences of two different countries. This simulates
gradual preference drifts that can be caused by demographic shift or a series of
external events. We generate preference drift using three pairs of countries. In
each pair the starting country is the US, and the ending country is either Brazil,
Japan or Germany. The preferences at the first and last time step correspond to
either country in the pair. The last time step is held out as a test dataset and treated
as the current time T = 101. We divide the prompt-response pairs so that training
and test data do not share any prompts.

2) UltraFeedback-RM Datasets. Using the prompts and response candidates
of UltraFeedback5 (Cui et al., 2023), we obtain preferences from two different
reward models, PAIRRM6(Jiang et al., 2023) and ARMORM7 (Wang et al., 2024).
The datapoints in the training set are randomly assigned to one of t ∈ [100] time
steps, and assigned preferences of PAIRRM if the time step t is earlier than the
change point tcp ∈ {51, 66, 81}. We assign the preferences of ARMORM for the
datapoints with time steps t ≥ tcp and datapoints in the test set with T = 101.

4https://huggingface.co/datasets/Anthropic/llm_global_opinions
5We modify the binarized version of UltraFeedback.
6https://huggingface.co/llm-blender/PairRM
7https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1
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To test the effect of varied degrees of preference drift, we also vary the portion
of datapoints whose preferences flip as reward model changes. We denote this
portion as ρdiff and use ρdiff ∈ {0.7, 0.9, 0.95, 1.0} to create both training and test data. We use 10k datapoints for training
and 500 datapoints for testing.

3) UltraFeedback-LM Datasets. Using the same UltraFeedback dataset as above, we construct another dataset with
the information of language models used for generations. The datapoints in the training set are randomly assigned to
one of t ∈ [100] time steps. Among the datapoints whose time step is earlier than the change point tcp ∈ {21, 51, 81},
ρdiff ∈ {0.7, 1.0} of the datapoints have responses that are generated by smaller language models as preferred responses.
The other datapoints have responses generated by gpt-4 as preferred. We use 23.3k datapoints for training. We use the gen-
erations of starchat, llama-2-7b-chat, wizardlm-7b, pythia-12b, alpaca-7b, llama-2-13b-chat,
wizardlm-13b, ultralm-13b for smaller language models in the dataset.

4) Time Varying Helpful Harmless Datasets. Using the harmless-base subset of the Helpful Harmless dataset8(Bai et al.,
2022a), we create a time varying preference dataset. To do so, we use two reward models, the helpsteer-helpfulness and
beavertails-is_safe outputs from the ARMORM model (Wang et al., 2024). Figure 8 shows that these rewards result in
different preferences on the harmless-base dataset. We then assign each datapoint in the dataset a random time value
from t ∈ [100]. We construct two methods to assign preferences using the time step information: change point preference
shift and gradual variation. Under the change point preference shift, datapoints are assigned preferences according to
helpsteer-helpfulness before the change point tcp and beavertails-is_safe after the change point. Under gradual variation, we
use the following reward model

r(x, y, t)=


r0(x, y) t < 33

r0(x, y)
(t−33)

33 + r1(x, y)
(
1− t−33

33

)
33 ≤ t < 66

r1(x, y) t ≥ 66,

where r0 is the helpsteer-helpfulness reward and r1 is the beavertails-is_safe reward. We use this type of schedule for
gradual change to simulate preference drifts that happens gradually over a finite time horizon. We use 15k points for
training and 2k for testing. We use reward models for helpfulness and safety, as these are both desired properties of an
LLM but often result in differing preferences; for example, rewarding helpfulness can often lead to unsafe outputs when
an LLM is asked a dubious question, like how to best rob a store.

C.3. The Two Countries (2C) Non-Stationary Global Opinions Dataset

To test NS-DPO, we create a synthetic non-stationary dataset in which the temporal trends are known. To do this, we use
the GlobalOpinionsQA dataset (Durmus et al., 2024). We preprocess the dataset in three major ways.

Binary Preferences. We convert the dataset to a dataset of binary preferences. For each set of prompt and responses, we
create a row for each possible combination of prompt and binary response pairs. We calculate the preference probability for
these response pairs as follows. Assuming the non-binary responses follow a Plackett-Luce preference framework, we can
find the reward associated with responses (up to an additive constant) by taking the log of the preference probability. We can
then take the sigmoid of these responses to find a normalised binary preference.

Country Filter. We filter the dataset down to the following countries: Nigeria, Egypt, India, China, Japan, Germany, France,
Spain, United States, Canada, Brazil, Argentina, Australia and New Zealand.

Country Level Prompts. We filter the dataset such that each row of the dataset is the prompt, response, preference
probability of a single country.

After the preprocessing, we copy the dataset and assign a different timestep to each unique instance of (prompt, response,
preference). We simulate the drift in preferences by using preference probabilities of two countries, shifting from one to
another over time. Out of 100 time steps in the training dataset, the first 33 time steps consisted of preference probabilities
from the US. Preference labels sampled from the last 33 time steps are from probabilities of the target country. We use
Germany, Japan and Brazil as target countries, creating three different datasets. In the intermediate 33 time steps, preference
labels are sampled from interpolated probabilities between these two countries. To introduce sufficient shift in preferences,
we selected responses in which probabilities for the same response from two countries differed at least by 0.2. We subsample

8https://huggingface.co/datasets/Anthropic/hh-rlhf
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prompt-response pairs down to 10,000 datapoints, allowing each time step to consist of different prompts and responses. For
evaluation, we use prompts and response candidates that are not present in the training data.

C.4. Compute Resources Uses

To run the LLM experiments, we use A100 GPUs with 40GB VRAM. The synthetic experiments are run locally on a laptop
without using GPUs.

C.5. Synthetic Experiments

To analyse the performance of NS-DPO in the log-linear policy class, we construct a synthetic environment with a known
feature space and preference drift. We use the feature space from (Li et al., 2023), where x ∈ X = [0, 1]dx , a ∈ A = [na]
and ϕ(x, a) is computed as

ϕ(x, a) =

[
(a+ 1) · cos(x0 · π),

1

a+ 1
· sin(x0 · π), · · · , (a+ 1) · cos(xdx−1 · π),

1

a+ 1
· sin(xdx−1 · π)

]
. (22)

The dimensions of the feature space and the policy parameter are both 2 · dx. We use dx = 4, dθ = 8, |A| = 16 for all
synthetic experiments.

Non-stationary Dataset. To construct a dataset D = {x, a, a′, t}ni=1, we randomly sample x ∼ X and a1, a2 ∼ A. We
assign 20 datapoints per time step ∀t ∈ [100]. We sample 100 datapoints for evaluation at T = 101. To introduce preference
drift, we follow an approach similar to (Faury et al., 2021). We sample the preferences over a1 and a2 from the class of
log-linear policies given in Equation (11), parameterised by θ∗t . We denote preferred response as a and the rejected response
as a′. When t ≤ 33, we set the optimal parameter as θ∗t = (1, 0, 1, 0, 1, 0, 1, 0)⊺. Between 34 ≤ t ≤ 66, the parameter θ∗t
varies as

θ∗t =
[
cos( t−33

33 · π
2 ), sin(

t−33
33 · π

2 ), . . . , cos(
t−33
33 · π

2 ), sin(
t−33
33 · π

2 )
]⊺

. (23)

For the remaining time steps 67 ≤ t ≤ 100, we use θ∗t = (0, 1, 0, 1, 0, 1, 0, 1)⊺.

Algorithms for Synthetic Experiments. We compare NS-DPO with DPO and SW-DPO in synthetic experiments. SW-DPO
uses a "sliding" window to only consider points close to the current timestep T , which is commonly used in the non-stationary
bandit literature (Garivier & Moulines, 2008). We test the performance of NS-DPO and SW-DPO over several values of
γ ∈ {0.7, 0.9} and window size w ∈ {33, 50}. The regularisation coefficient is τ = 1.0 for all algorithms. We normalise
the scale of the gradient for each method to address the differences caused by the application of exponential weighting
and sliding window. For the reference policies, we use a uniform policy, whose parameter θref ∈ Rd is a zero vector.

Evaluation Metrics. To analyse the performance of the algorithms, we use the reward accuracy of the trained policies. The
reward accuracy is computed by the portion of test response pairs with correctly estimated preferences, using the implicit
rewards defined in Equation (8). For each tested algorithm, we report averaged results of the experiments across 10 different
random seeds.
How does NS-DPO perform when specialized to log-linear policy classes? As shown in the left image of Figure 9,
when compared to NS-DPO and SW-DPO, DPO shows the worst performance with respect to the test data. Both NS-DPO
and SW-DPO, which account for the preference drift present in the data, show significantly better performance. SW-DPO
achieves similar performance to NS-DPO in the later stages of training, but NS-DPO achieves this performance in fewer
training steps. As NS-DPO only varies the weights of datapoints, rather than removing them entirely, it can still leverage the
information of datapoints in the earlier time steps. The right image of Figure 9 shows a comparison of different values of γ,
ranging from 0.3 to 0.9. The results show that the performance of NS-DPO is stable in terms of the final test accuracy across
a wide range of values γ ∈ [0.5, 0.9]. As the value of γ is reduced, only the points closest to the current time step contribute
significantly to the gradient update of the model. Thus, as γ decreases, NS-DPO requires more training steps to converge the
reward accuracy on the test set.

Further Results of NS-DPO and SW-DPO. We present the experiment results of NS-DPO and SW-DPO on the synthetic
dataset with varied values of hyperparameters γ and w. As shown in Figure 10, The performance of NS-DPO is robust
across varied values of γ, maintaining its reward accuracy over 80% when 0.5 ≤ γ ≤ 0.97. In the case of SW-DPO, the
performance is more sensitive to the change of the window size w. When w = 10, it shows similar test performance in the
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Figure 9: Synthetic experiment results with dx = 4, |A| = 16. The shaded area represents the standard deviation of each algorithm.
[Left] NS-DPO and SW-DPO successfully addresses the non-stationarity present in the dataset, while stationary DPO fails to do so.
NS-DPO shows faster training than SW-DPO, even compared to the case where the value of the window parameter w for SW-DPO
is set to the optimal value of 33. [Right] An ablation study on how different values of the discount factor γ affect the training of NS-DPO.
As the value of γ becomes larger, the final test accuracy of the policy is achieved in fewer training steps.
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Figure 10: [Left] Performance of NS-DPO with values of γ > 0.9. NS-DPO shows robust performance with respect to the value of γ,
while it starts resembling the performance of stationary DPO as the value approaches very close to 1, γ > 0.97. [Right] Expected RLHF
objective gap of SW-DPO in the same experiments. The performance of SW-DPO improves as the value of w gets closer to 33, when the
algorithm is only learning from datapoints where the preference distribution stays stationary in the given setting. The setting with w = 10
also shows final performance similar to the case of w = 33, but it shows slower training because of the reduced amount of data used for
training.

later stage of the training, while the process is visibly slowed down due to the reduced amount of datapoints actually being
used. On the other hand, as the window size gets bigger and starts including datapoints where parameter shift introduces
conflicting preferences, SW-DPO also shows degrading performance. These results provide further support the advantages
of using NS-DPO over SW-DPO, as it shows faster training and less sensitivity to the hyperparameter.
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D. Offline Learning Analysis
In this section, we provide the remaining details of the analysis on the offline learning of non-stationary dataset.

Non-Linearity Coefficients. Following the analysis from (Filippi et al., 2010; Faury et al., 2021), we capture the non-
linearity of the sigmoid function in the NS-DPO loss. We use the coefficients kσ,τ , cσ,τ , which are the supremum and
infimum of σ̇(τ⟨ϕ(x, a)− ϕ(x, a′), θ⟩) over x ∈ X , (a, a′) ∈ A2, θ ∈ Θ respectively:

kσ,τ = sup
x∈X ,(a,a′)∈A2,θ∈Θ

σ̇(τ⟨ϕ(x, a)− ϕ(x, a′), θ⟩), (24)

cσ,τ = inf
x∈X ,(a,a′)∈A2,θ∈Θ

σ̇(τ⟨ϕ(x, a)− ϕ(x, a′), θ⟩), (25)

while we use Rσ,τ = kσ,τ/cσ,τ to denote the ratio between kσ,τ and cσ,τ .

Loss and gradient. We recap the loss of NS-DPO with ℓ2 regularisation term:

LNS
reg(θ) = − 1

n

n∑
i=1

[
γT−ti−1

{
oi log σ(hθ(xi, ai, a

′
i)) + (1− oi) log σ(hθ(xi, a

′
i, ai))

}]
+

λcσ,ττ
2

2
∥θ∥2. (26)

We use Equation (26) to draw parallels between the NS-DPO objective in Equation (10) and the logistic regression objective
used in the generalised linear bandit setting of (Faury et al., 2021). We assume the preference label oi is sampled from
a Dynamic Bradley-Terry model with the true unknown environment parameter θ∗ti . Under this assumption, the mean
of the preference label is E[oi|{xi, ai, a

′
i, ti}] = σ(hθ∗

ti
(xi, ai, a

′
i)). When there is only a unilateral preference sampled

for a given prompt-response pairs, the sigmoid function forces the implicit rewards of DPO to have infinitely large scale,
driving p(a ≻ a′) to either 1 or 0 (Azar et al., 2024). The ℓ2 regularisation term in our analysis mitigates this problem,
by controlling the parameter norm. Differentiating Equation (12) with respect to the parameter θ results in

∇θLNS
reg(θ) = − 1

n

n∑
i=1

τγT−ti−1oiϕ̂i +
1

n

n∑
i=1

[
τγT−ti−1σ(hθ(xi, ai, a

′
i))ϕ̂i

]
+ λcσ,ττ

2θ︸ ︷︷ ︸
:=gτ (θ)

, (27)

where ϕ̂i = ϕ(xi, ai)− ϕ(xi, a
′
i) is also introduced for brevity. We denote the parameter-dependent part of the gradient as

gτ (θ) = 1
n

∑n
i=1

[
τγT−ti−1σ(hθ(xi, ai, a

′
i))ϕ̂i

]
+ λcσ,ττ

2θ which we will use to analyse the parameter estimation error.

Parameter Projection. Let θ̂T denote the parameter minimising the NS-DPO loss defined in Equation (12), θ̂T =
argminθ∈Rd LNS(θ). Due to both learning and tracking aspects of the estimation error, we cannot guarantee that θ̂T is
within the boundary of the parameter presented in Assumption 2, θ̂T ∈ Θ. This motivates a parameter projection method,
which enables finding an admissible parameter θ̃T ∈ Θ while minimising its deviation from θ̂T (Faury et al., 2021; Wang
et al., 2023). Using θ̃T in the performance analysis of NS-DPO allows preventing the potential violation of Assumption 2
when θ̂T is used. We perform parameter projection by calculating θ̂T by

θ̃T = argmin
θ∈Θ

∥gτ (θ̂T )− gτ (θ)∥(Σ̂+λI)−1 , (28)

using Σ̂ defined in Equation (17) and gτ (θ) defined in Equation (27).

Covariance matrices. In addition to Σ̂ defined in Equation (17) we also define Σ̃, to which squared discount weights are
applied:

Σ̃ =
1

n

n∑
i=1

γ2T−2ti−2(ϕ(xi, ai)− ϕ(xi, a
′
i))(ϕ(xi, ai)− ϕ(xi, a

′
i))

⊺. (29)

Due to its squared application of the exponential weighting, Σ̂ ≻ Σ̃.
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D.1. Estimation Error

Theorem 2. (Estimation error of θ̃T .) Let δ ∈ (0, 1], λ > 0, τ > 0. Let θ̂T denote the minimiser of the NS-DPO loss
defined in Equation (12) on an offline dataset. Let θ̃T denote the parameter obtained by performing the parameter projection
procedure on θ̂T . Then with probability at least 1− δ:

∥θ̃T − θ∗T ∥Σ̂+λI ≤ 2
√
λW +

2C1

τcσ,τ

√
d+ log(1/δ)

n︸ ︷︷ ︸
learning

+
16LRσ,τm̄

T (1− γ)
3
2

√
dm̄

n
BT︸ ︷︷ ︸

tracking

(30)

where C1 > 0 is a constant.

Estimation errors in typical stationary settings can be considered as learning errors, which are caused by having finite data
sampled stochastically. In time-varying settings, the parameter estimation suffers from tracking error as well, which is
caused by the drift of the underlying true parameter along the time steps (Faury et al., 2021; Wang et al., 2023). In this
section, we show how these errors can be disentangled and bounded separately. To do this, we apply the approach of (Wang
et al., 2023) in contextual bandit setting to our setting of offline preference learning.

D.1.1. BOUND DECOMPOSITION

We begin with the deviation between the optimal parameter θ∗T and θ̃T , the projected parameter of the NS-DPO estimator
θ̂T :

gτ (θ̃T )− gτ (θ∗T ) =
1

n

n∑
i=1

τγT−1−ti
[
σ(hθ̃T

(xi, ai, a
′
i))− σ(hθ∗

T
(xi, ai, a

′
i))
]
ϕ̂i + λcσ,ττ

2(θ̃T − θ∗T ). (31)

Applying the mean value theorem to the difference of sigmoid functions in Equation (31) we get

gτ (θ̃T )− gτ (θ∗T ) =
1

n

n∑
i=1

τ2γT−1−ti

[∫ 1

v=0

σ̇(τ⟨ϕ̂i, (1− v)θ∗T + vθ̃T ⟩)dv
]
ϕ̂iϕ̂

⊺
i (θ̃T − θ∗T )

+ λcσ,ττ
2(θ̃T − θ∗T ).

We can now define a matrix GT to define the relation between gτ (θ̃T )− gτ (θ∗T ) and θ̃T − θ∗T :

GT :=
1

n

n∑
i=1

γT−1−ti

[∫ 1

v=0

σ̇(τ⟨ϕ̂i, (1− v)θ∗T + vθ̃T ⟩)dv
]

︸ ︷︷ ︸
α(i,θ∗

T ,θ̃T )

ϕ̂iϕ̂
⊺
i + λcσ,τI, (32)

gτ (θ̃T )− gτ (θ∗T ) = τ2 ·GT · (θ̃T − θ∗T ). (33)

We make a brief aside to show GT ⪰ cσ,τ (Σ̂ + λI) ⪰ 0 (Faury et al., 2020; Filippi et al., 2010), as this is an important
property of GT and one we will use later in the main proof. To prove this, we first show that α(i, θ∗T , θ̃T ) > cσ,τ . α(i, θ1, θ2)
is the mean value of σ̇ along the path between some points ⟨ϕ̂, θ1⟩ and ⟨ϕ̂, θ2⟩. This is greater than the infimum of σ̇ at a
point along that path, which is in turn greater than the infimum of σ̇ in the space of parameters θ ∈ Θ. The last infimum is
the definition of cσ,τ Equation (25). Then

α(i, θ1, θ2) =

∫ v=1

v=0

σ̇(τ(vϕ⊺
i θ1 − (1− v)ϕ⊺

i θ2))dv ≥ infc∈[ϕ⊺
i θ1,ϕ

⊺
i θ2]

[σ̇(c)]

≥ infϕ∈Φ,θ∈Θ[σ̇(τϕ
⊺θ)] = cσ,τ > 0. (34)

α(i, θ1, θ2) > 0 comes from the fact that the logistic sigmoid function is strictly increasing and has a gradient greater than
zero at every point. Because of this inequality, each element of GT denoted by [GT ]lk∀l, k ∈ [d], is strictly larger than each
element of cσ,τ [Σ̂]lk. We use this to prove that GT ⪰ cσ,τ (Σ̂ + λI) for any v = θ1 − θ2. We first remind the reader of the
definition of Σ̂:

Σ̂ =
1

n

n∑
i=1

γT−ti−1(ϕ(xi, ai)− ϕ(xi, a
′
i))(ϕ(xi, ai)− ϕ(xi, a

′
i))

⊺.
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We then prove the inequality, using the fact that α and γ do not depend upon the indices l, k of the vector v to move the sum
across indices within the sum over the datapoints

v⊺GT v =
∑

(l,k)∈[d]2

[ 1
n

n∑
i=1

γT−1−tiα(i, θ1, θ2)ϕ̂iϕ̂
⊺
i + λcσ,τI

]
lk
vlvk

=

 1

n

n∑
i=1

γT−1−tiα(i, θ1, θ2)
∑

(l,k)∈[d]2

[
ϕ̂iϕ̂

⊺
i

]
lk
vlvk

+ λcσ,τ
∑
l∈[d]

v2l

≥

 1

n

n∑
i=1

γT−1−ticσ,τ
∑

(l,k)∈[d]2

[
ϕ̂iϕ̂

⊺
i

]
lk
vlvk

+ λcσ,τ
∑
l∈[d]

v2l (35)

= cσ,τ
∑

(l,k)∈[d]2

[ 1
n

n∑
i=1

γT−1−ti ϕ̂iϕ̂
⊺
i + λI︸ ︷︷ ︸

Σ̂+λI

]
lk
vlvk = cσ,τv

⊺(Σ̂ + λI)v. (36)

We now continue applying Equation (33) to bound the estimation error term:

∥θ̃T − θ∗T ∥Σ̂+λI =
1

τ2
∥G−1

T (gτ (θ̃T )− gτ (θ∗T ))∥Σ̂+λI . (37)

We use Equation (36) to apply GT
−1 ≺ 1

cσ,τ
(Σ̂ + λI)−1:

1

τ2
∥G−1

T (gτ (θ̃T )− gτ (θ∗T ))∥Σ̂+λI ≺ 1

τ2cσ,τ
∥gτ (θ̃T )− gτ (θ∗T )∥(Σ̂+λI)−1 . (38)

We add and subtract gτ (θ̂T ) inside Equation (38), and apply triangle inequality to derive

1

τ2cσ,τ
∥gτ (θ̃T )− gτ (θ∗T )∥(Σ̂+λI)−1

=
1

τ2cσ,τ
∥gτ (θ̃T )− gτ (θ̂T ) + gτ (θ̂T )− gτ (θ∗T )∥(Σ̂+λI)−1

≤ 1

τ2cσ,τ

(
∥gτ (θ̃T )− gτ (θ̂T )∥(Σ̂+λI)−1 + ∥gτ (θ̂T )− gτ (θ∗T )∥(Σ̂+λI)−1

)
. (39)

We use the definition of θ̃T from Equation (28) to derive ∥gτ (θ̃T )− gτ (θ̂T )∥(Σ̂+λI)−1 ≤ ∥gτ (θ̂T )− gτ (θ∗T )∥(Σ̂+λI)−1 and
get

1

τ2cσ,τ

(
∥gτ (θ̃T )− gτ (θ̂T )∥(Σ̂+λI)−1 + ∥gτ (θ̂T )− gτ (θ∗T )∥(Σ̂+λI)−1

)
≤ 2

τ2cσ,τ
∥gτ (θ̂T )− gτ (θ∗T )∥(Σ̂+λI)−1 . (40)

We remind the definition of θ̂T , which minimises the gradient of the loss defined in Equation (27), making ∇LNS
reg(θ) = 0:

∇LNS
reg(θ) =

1

n

n∑
i=1

τγT−1−ti
[
σ(τ⟨ϕ̂i, θ̂T − θref⟩)− oi

]
ϕ̂i + λcσ,τ τ

2θ̂T = 0. (41)

We rearrange the terms in Equation (41) to derive gτ (θ̂T ) on one side of the equation:

1

n

n∑
i=1

τγT−1−tiσ(τ⟨ϕ̂i, θ̂T − θref⟩)ϕ̂i + λcσ,ττ
2θ̂T︸ ︷︷ ︸

=gτ (θ̂T )

=
1

n

n∑
i=1

τγT−1−tioiϕ̂i. (42)
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We apply the result of Equation (42) to obtain

gτ (θ̂T )− gτ (θ∗T ) =
1

n

n∑
i=1

τγT−1−ti [oi − σ(hθ∗
T
(xi, ai, a

′
i))]ϕ̂i − λcσ,ττ

2θ∗T . (43)

Using the fact that the preference label oi is obtained from the optimal parameter at time step ti, we define ϵi = oi −
σ(τ⟨ϕ̂i, θ

∗
ti − θref⟩), and use oi = ϵi + σ(τ⟨ϕ̂i, θ

∗
ti − θref⟩) to get

1

n

n∑
i=1

τγT−1−ti [oi − σ(hθ∗
T
(xi, ai, a

′
i))]ϕ̂i − λcσ,ττ

2θ∗T

=
1

n

n∑
i=1

τγT−1−ti [ϵi + σ(τ⟨ϕ̂i, θ
∗
ti − θref⟩)− σ(hθ∗

T
(xi, ai, a

′
i))]ϕ̂i − λcσ,ττ

2θ∗T

=
1

n

n∑
i=1

τγT−1−ti [σ(τ⟨ϕ̂i, θ
∗
ti − θref⟩)− σ(hθ∗

T
(xi, ai, a

′
i))]ϕ̂i︸ ︷︷ ︸

tracking

+
1

n

n∑
i=1

τγT−1−tiϵiϕ̂i − λcσ,ττ
2θ∗T︸ ︷︷ ︸

learning

. (44)

We use terms in Equation (44) with Equation (40) to define learning error and tracking error:

ξlearn =
2

τ2cσ,τ
∥ 1
n

n∑
i=1

τγT−1−tiϵiϕ̂i − λcσ,ττ
2θ∗T ∥(Σ̂+λI)−1 (45)

ξtrack =
2

τ2cσ,τ
∥ 1
n

n∑
i=1

τγT−1−ti [σ(τ⟨ϕ̂i, θ
∗
ti − θref⟩)− σ(hθ∗

T
(xi, ai, a

′
i))]ϕ̂i∥(Σ̂+λI)−1 . (46)

Bounding each of Equation (45) and Equation (46) results in Theorem 2. The detailed bounds for the tracking and learning
terms are provided in Appendix D.1.2 and Appendix D.1.3 respectively.

D.1.2. CONFIDENCE SETS: LEARNING

We begin with the definition of the learning error:

ξlearn =
2

τ2cσ,τ
∥ 1
n

n∑
i=1

τγT−1−tiϵiϕ̂i − λcσ,τ τ
2θ∗T ∥(Σ̂+λI)−1 . (47)

We bound the norm of Equation (47) with respect to Σ̃ + λI , using the fact that Σ̂ ≻ Σ̃ and Σ̃ + λI ⪰ λI:∥∥∥ 1
n

n∑
i=1

τγT−1−tiϵiϕ̂i − λcσ,τ τ
2θ∗T

∥∥∥
(Σ̂+λI)−1

≤
∥∥∥ 1
n

n∑
i=1

τγT−1−tiϵiϕ̂i − λcσ,ττ
2θ∗T

∥∥∥
(Σ̃+λI)−1

≤ ∥λcσ,ττ2θ∗T ∥(λI)−1 +
∥∥∥ 1
n

n∑
i=1

τγT−1−tiϵiϕ̂i

∥∥∥
(Σ̃+λI)−1

≤ τ2
√
λcσ,τW +

∥∥∥ 1
n

n∑
i=1

τγT−1−tiϵiϕ̂i

∥∥∥
(Σ̃+λI)−1

. (48)
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We can use the ϵi’s property of being a sub-Gaussian random variable, sampled i.i.d. during the creation of the dataset. We
apply Theorem 2.1 of (Hsu et al., 2012) to Equation (48), resulting in a bound holding with probability at least 1− δ:∥∥∥ 1

n

n∑
i=1

τγT−1−tiϵiϕ̂i

∥∥∥
(Σ̃+λI)−1

≤ τC1

√
d+ log(1/δ)

n
= βT (δ), (49)

where C1 denotes a constant introduced for bounding purpose. We provide the details of applying (Hsu et al., 2012)’s
theorem in Appendix D.4.

We now go back to the original definition of learning error term ξlearn and bound it. We use the result in Equation (48) and
Equation (49) to derive

ξlearn =
2

τ2cσ,τ
∥ 1
n

n∑
i=1

τγT−1−tiϵiϕ̂i − λcσ,ττ
2θ∗T ∥(Σ̂+λI)−1

=
2

τ2cσ,τ

(
τ2
√
λcσ,τW + τC1

√
d+ log(1/δ)

n

)

= 2
√
λW +

2C1

τcσ,τ

√
d+ log(1/δ)

n
, (50)

which finishes the bounding of the learning error.

D.1.3. ESTIMATION ERROR: TRACKING

We begin with the definition of the tracking error:

ξtrack =
2

τ2cσ,τ

∥∥∥ 1
n

n∑
i=1

τγT−1−ti [σ(τ⟨ϕ̂i, θ
∗
ti − θref⟩)− σ(hθ∗

T
(xi, ai, a

′
i))]ϕ̂i

∥∥∥
(Σ̂+λI)−1

=
2

τ2cσ,τ

∥∥∥ 1
n

n∑
i=1

τγT−1−ti [σ(τ⟨ϕ̂i, θ
∗
ti − θref⟩)− σ(τ⟨ϕ̂i, θ

∗
T − θref⟩)]ϕ̂i

∥∥∥
(Σ̂+λI)−1

. (51)

We remind that using Equation (34), α(i, θ∗ti , θ
∗
T ) is

α(i, θ∗ti , θ
∗
T ) :=

∫ 1

v=0

σ̇(τ⟨ϕ̂i, (1− v)θ∗T + vθ∗ti⟩)dv. (52)

Applying the man value theorem to Equation (51), we obtain

2

τ2cσ,τ

∥∥∥ 1
n

n∑
i=1

τγT−1−ti [σ(τ⟨ϕ̂i, θ
∗
ti − θref⟩)− σ(τ⟨ϕ̂i, θ

∗
T − θref⟩)]ϕ̂i

∥∥∥
(Σ̂+λI)−1

=
2

τ2cσ,τ

∥∥∥ 1
n

n∑
i=1

τ2γT−1−tiα(i, θ∗ti , θ
∗
T )ϕ̂iϕ̂

⊺
i (θ

∗
ti − θ∗T )

∥∥∥
(Σ̂+λI)−1

. (53)

We apply telescopic sum, which separates θ∗ti − θ∗T into differences of the optimal parameters between each datapoint:

∥∥∥ 1
n

n∑
i=1

τ2γT−1−tiα(i, θ∗ti , θ
∗
T )ϕ̂iϕ̂

⊺
i (θ

∗
ti − θ∗T )

∥∥∥
(Σ̂+λI)−1

=
∥∥∥ 1
n

n∑
i=1

τ2γT−1−tiα(i, θ∗ti , θ
∗
T )ϕ̂iϕ̂

⊺
i

( n∑
p=i

(θ∗tp − θ∗tp+1
)
)∥∥∥

(Σ̂+λI)−1
, (54)

where we use tn+1 to denote T .
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Then we use
∑n

i=k

∑n
j=i ai,j =

∑n
j=k

∑j
i=k ai,j to rearrange the terms inside the summation:

∥∥∥ 1
n

n∑
i=1

τ2γT−1−tiα(i, θ∗ti , θ
∗
T )ϕ̂iϕ̂

⊺
i

( n∑
p=i

(θ∗tp − θ∗tp+1
)
)∥∥∥

(Σ̂+λI)−1

=
∥∥∥ n∑

p=1

1

n

p∑
i=1

τ2γT−1−tiα(i, θ∗ti , θ
∗
T )ϕ̂iϕ̂

⊺
i (θ

∗
tp − θ∗tp+1

)
∥∥∥
(Σ̂+λI)−1

. (55)

We use α(i, θ∗ti , θ
∗
T ) ≤ kσ,τ using the definition of αi in Equation (34) to get

∥∥∥ n∑
p=1

1

n

p∑
i=1

τ2γT−1−tiα(i, θ∗ti , θ
∗
T )ϕ̂iϕ̂

⊺
i (θ

∗
tp − θ∗tp+1

)
∥∥∥
(Σ̂+λI)−1

≤ τ2kσ,τ

∥∥∥ n∑
p=1

1

n

p∑
i=1

γT−1−ti ϕ̂iϕ̂
⊺
i (θ

∗
tp − θ∗tp+1

)
∥∥∥
(Σ̂+λI)−1

. (56)

We then apply triangle inequality and Cauchy-Schwarz inequality to get

τ2kσ,τ

∥∥∥ n∑
p=1

1

n

p∑
i=1

γT−1−ti ϕ̂iϕ̂
⊺
i (θ

∗
tp − θ∗tp+1

)
∥∥∥
(Σ̂+λI)−1

≤ τ2kσ,τ

n∑
p=1

∥∥∥ 1
n

p∑
i=1

γT−1−ti ϕ̂i∥ϕ̂⊺
i ∥2∥θ

∗
tp − θ∗tp+1

∥2
∥∥∥
(Σ̂+λI)−1

. (57)

We use ∥ϕ̂∥ ≤ 2L and arrange terms to obtain

τ2kσ,τ

n∑
p=1

∥∥∥ 1
n

p∑
i=1

γT−1−ti ϕ̂i∥ϕ̂⊺
i ∥2∥θ

∗
tp − θ∗tp+1

∥2
∥∥∥
(Σ̂+λI)−1

≤ 2Lτ2kσ,τ

n∑
p=1

1

n

p∑
i=1

γT−1−ti∥ϕ̂i∥(Σ̂+λI)−1︸ ︷︷ ︸
=v1

∥θ∗tp − θ∗tp+1
∥2. (58)

Here we bound the term v1. We first apply Jensen’s inequality to derive

v1 ≤

√√√√ 1

n

p∑
i=1

γT−1−ti

√√√√ 1

n

p∑
i=1

γT−1−ti∥ϕ̂i∥2(Σ̂+λI)−1

= γ
T−1

2

√√√√ 1

n

p∑
i=1

γ−ti

√√√√ 1

n

p∑
i=1

γT−1−ti∥ϕ̂i∥2(Σ̂+λI)−1
. (59)

We then use the property of trace operation and Σ̂ ≻
∑p

i=1 γ
T−1−ti ϕ̂iϕ̂

⊺
i from Equation (17) to get

1

n

p∑
i=1

γT−1−ti∥ϕ̂i∥2(Σ̂+λI)−1 =
1

n

p∑
i=1

γT−1−titr
(
ϕ̂⊺
i (Σ̂ + λI)−1ϕ̂i

)
= tr

(
(Σ̂ + λI)−1 1

n

p∑
i=1

γT−1−ti ϕ̂iϕ̂
⊺
i

)
≤ tr (Id) = d. (60)
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We apply Assumption 5 here. Because each time step can have at maximum m̄ datapoints, we can upper bound 1
n

∑p
i=1 γ

−ti

with

1

n

p∑
i=1

γ−ti ≤ m̄

n

t∑
k=1

γ−k =
m̄γ(γ−(t+1) − 1)

n(1− γ)
, (61)

where t =
⌈
|[p]|
m̄

⌉
. We combine Equation (60) and Equation (61) to obtain

2Lτ2kσ,τ

n∑
p=1

1

n

p∑
i=1

γT−1−ti∥ϕ̂i∥(Σ̂+λI)−1∥θ∗tp − θ∗tp+1
∥2

≤ 2Lτ2kσ,τ

n∑
p=1

γ
T−1

2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
∥θ∗tp − θ∗tp+1

∥2. (62)

We apply Assumption 5 again to upper bound the summation as
∑n

p=1 vp ≤ m̄
∑T−1

t=1 vt, getting

2Lτ2kσ,τ

n∑
p=1

γ
T−1

2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
∥θ∗tp − θ∗tp+1

∥2

≤ 2Lτ2kσ,τm̄

T−1∑
t=1

γ
T−1

2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
∥θ∗t − θ∗t+1∥2. (63)

We apply v = 1
T

∑T
k=1 v to introduce another summation:

2Lτ2kσ,τm̄

T−1∑
t=1

γ
T−1

2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
∥θ∗t − θ∗t+1∥2

=
2Lτ2kσ,τm̄

T

T∑
k=1

T−1∑
t=1

γ
T−1

2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
∥θ∗t − θ∗t+1∥2. (64)

Because γ < 1, we can bound

T∑
k=1

T−1∑
t=1

γ
T−1

2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
≤ 2

T−1∑
t=1

T∑
k=t+1

γ
k−1
2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
(65)

and apply geometric sum to obtain

2

T−1∑
t=1

T∑
k=t+1

γ
k−1
2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
= 2

T−1∑
t=1

γ
t
2 − γ

T
2

1− γ
1
2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
. (66)

We use γ < 1 again to derive 1+γ
1
2

2 < 1, and get

2

T−1∑
t=1

γ
t
2 − γ

T
2

1− γ
1
2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
≤ 2

T−1∑
t=1

γ
t
2 − γ

T
2

1− γ
1
2 1+γ

1
2

2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)

= 4

T−1∑
t=1

γ
t
2 − γ

T
2

1− γ

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
. (67)
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We then use
(
γ

t
2 − γ

T
2

)√
γ(γ−(t+1) − 1) ≤ γ

t
2 γ− t

2 = 1 to derive

4

T−1∑
t=1

γ
t
2 − γ

T
2

1− γ

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
≤ 4

√
dm̄

n

T−1∑
t=1

1

(1− γ)
3
2

. (68)

We use the result from Equation (68) to Equation (64), and use the definition of variation budget BT from Assumption 1 to
get

2Lτ2kσ,τm̄

T

T∑
k=1

T−1∑
t=1

γ
T−1

2

√
dm̄γ(γ−(t+1) − 1)

n(1− γ)
∥θ∗t − θ∗t+1∥2

≤ 8Lτ2kσ,τm̄

T

√
dm̄

n

T−1∑
t=1

1

(1− γ)
3
2

∥θ∗t − θ∗t+1∥2

≤ 8Lτ2kσ,τm̄

T (1− γ)
3
2

√
dm̄

n
BT . (69)

We now combine Equation (69) with Equation (46) to derive the full bound of the tracking error:

ξtrack =
16LRσ,τm̄

T (1− γ)
3
2

√
dm̄

n
BT . (70)

We now use Equation (70) with Equation (50) to obtain the full estimation error:

∥θ̂T − θ̂
∗
T ∥Σ̂+λI ≤ ξlearn + ξtrack

≤ 2
√
λW +

2C1

τcσ,τ

√
d+ log(1/δ)

n
+

16LRσ,τm̄

T (1− γ)
3
2

√
dm̄

n
BT , (71)

which concludes the analysis for Theorem 2.

D.2. Regret Bound

Theorem 3. (Regret bound of θ̃T ) Let δ ∈ (0, 1
2 ], τ > 0. Let θ̃T denote the parameter in Θ which minimises the

NS-DPO loss (Equation (12)) on an offline dataset. The following bound holds with probability at least 1− 2δ and when
λ ≥ C

√
d log(4d/δ)/n:

Roff
T ≤ τκm̄T (1− γ)

2m(1− γT−1)

(
2
√
λW +

2C1

τcσ,τ

√
d+ log(1/δ)

n
+

16LRσ,τm̄

T (1− γ)
3
2

√
dm̄

n
BT

)2

,

where C1 > 0 denotes a constant. When γ = 1−
(
BT

T

)3/4
, Roff

T satisfies:

Roff
T = Õ

(
d B

3/4
T n−1/4

)
.

D.2.1. POPULATION COVARIANCE OF FEATURE DIFFERENCES

Let Σπref ,diff define the population covariance matrix of the feature differences:

Σπref ,diff = E[ϕ̂ϕ̂⊺], (72)

where ϕ̂ = ϕ(x, a) − ϕ(x, a′) denotes the feature difference vector, and the expectation is computed with respect to
x ∼ X , t ∼ T , a, a′ ∼ πref(·|x). We also define the discounted population covariance matrix Σγ

πref ,diff
:

Σγ
πref ,diff

= E[γT−1−tϕ̂ϕ̂⊺], (73)
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where the expectation is computed with respect to the same distributions as Σπref ,diff .

We then define ωupp(T, γ):

ωupp(T, γ) = sup
v∈Rd

v⊺Σπref ,diffv

v⊺Σγ
πref ,diff

v
, (74)

Without any assumptions on the time distribution, ωupp(T, γ) ≤ γ−(T−1), which happens when all the datapoints come
from the oldest time step. We use Assumption 5 to obtain a tighter upper bound of ωupp. Using m(T − 1) ≤ n ≤ m̄(T − 1),
we can get

1

n

n∑
i=1

γT−1−ti ≥ m

n
·
T−1∑
t=1

γT−1−t ≥ m

m̄(T − 1)
·
T−1∑
t=1

γT−1−t. (75)

We note that the prompt distribution X and the reference policy πref are independent from the time step distribution T .
Using Equation (75), we obtain

v⊺Σγ
πref ,diff

v ≥

(
m

m̄(T − 1)

T−2∑
i=0

γi

)
· (v⊺Σπref ,diffv) =

m(1− γT−1)

m̄(T − 1)(1− γ)
· (v⊺Σπref ,diffv), (76)

which implies ωupp(T, γ) ≤ m̄(T−1)(1−γ)
m(1−γT−1)

.

D.2.2. DECOMPOSING REGRET BOUND

In order to decompose and bound the detailed elements of the regret bound, we first show the relation between the regret and
the estimation error of the model parameters.

Theorem 5. Let δ ∈ [0, 1]. Let θ̃T denote the parameter obtained by performing the parameter projection in Appendix D,
after training with the NS-DPO loss defined in Equation (12) on an offline dataset. When λ ≥ C

√
d log(4d/δ)/n, with

probability at least 1− δ:

Roff
T ≤ τκm̄T (1− γ)

2m(1− γT−1)
∥θ∗T − θ̃T ∥2Σ̂+λI

. (77)

Let πθ̃T
denote the policy we obtained by training with NS-DPO and performing parameter projection. We use Σπθ̃T

to
denote the population covariance matrix, whose expectation taken with respect to πθ̃T

. We assess the performance of πθ̃

using the difference in expected non-stationary RLHF objective JT (π) defined in Equation (7), which is

JT (π) = Ex∼X ,a∼π

[
r(x, a, T )− τDKL[π(·|x)∥πref(·|x)]

]
,

Roff
T = JT (π

∗
T )− JT (πθ̃T

)

= Ex∼X

[
Ea∼π∗

T (·|x)[r(x, a, T )]− τDKL[π
∗
T (·|x)∥πref(·|x)]

− Ea′∼πθ̃T
(·|x)[r(x, a

′, T )] + τDKL[πθ̃T
(·|x)∥πref(·|x)]

]
. (78)

We plug Equation (8) in Equation (78) to obtain

Roff
T = Ex∼X

[
Ea∼π∗

T (·|x)[τ log
π∗
T (a|x)

πref(a|x)
]− τDKL[π

∗
T (·|x)∥πref(·|x)]

− Ea′∼πθ̃T
(·|x)[τ log

π∗
T (a|x)

πref(a|x)
] + τDKL[πθ̃T

(·|x)∥πref(·|x)]
]
, (79)

where terms with normalisation constant Z∗
T (x) are cancelled out. By using the definition of KL divergence in Equation (79)
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again, we obtain

Roff
T = Ex∼X

[
− Ea′∼πθ̃T

(·|x)

[
τ log

π∗
T (a|x)

πref(a|x)

]
+ Ea′∼πθ̃T

(·|x)

[
τ log

πθ̃T
(a|x)

πref(a|x)

]]

= Ex∼X

[
τEa′∼πθ̃T

(·|x)

[
log

πθ̃T
(a|x)

π∗
T (a|x)

]]

= Ex∼X

[
τDKL[πθ̃T

(·|x)∥π∗
T (·|x)]

]
. (80)

Here, we borrow the analysis in Appendix A.5. of (Chowdhury et al., 2024). We use the property of the Bergman divergence
BLx

with its potential function Lx(θ) = log
∑

a′∈A⟨θ, ϕ(x, a′)⟩:

DKL[πθ̃T
(·|x)∥π∗

T (·|x)] =
1

2
(θ∗T − θ̃T )

⊺∇2Lx(θ)(θ
∗
T − θ̃T ) (81)

for a parameter θ ∈ {tθ̃+(1−t)θ∗ : t ∈ [0, 1]} using Taylor’s approximation. With log-linear policies, Ex∼X [∇2Lx(θ)] =
Σπθ

. We use this to derive the upper bound of Equation (80):

Roff
T = Ex∼X

[
τDKL[πθ̃T

(·|x)∥π∗
T (·|x)]

]
≤ τ∥θ∗T − θ̃T ∥2Σπθ

= τ∥θ∗T − θ̃T ∥2Σ̂+λI

(θ∗T − θ̃T )
⊺Σπθ

(θ∗T − θ̃T )

(θ∗T − θ̃T )⊺(Σ̂ + λI)(θ∗T − θ̃T )
(82)

We now use the following lemma from (Chowdhury et al., 2024), which relies on the matrix concentration inequality to
explain the difference between Σ̂ and Σγ

πref ,diff
.

Lemma 6. (Lemma A.1. of (Chowdhury et al., 2024)) With probability at least 1− δ, for some universal constant C, we
have

∥Σ̂− Σγ
πref ,diff

∥2 ≤ C
√
d log(4d/δ)/n. (83)

Lemma 6 implies that with probability at least 1− δ and λ ≥ C
√
d log(4d/δ)/n:

Σ̂ + λI ⪰ Σγ
πref ,diff

+ λI − C
√
d log(4d/δ)/n

⪰ Σγ
πref ,diff

. (84)

We use Equation (84) to derive

τ∥θ∗T − θ̃T ∥2Σ̂+λI

(θ∗T − θ̃T )
⊺Σπθ

(θ∗T − θ̃T )

(θ∗T − θ̃T )⊺(Σ̂ + λI)(θ∗T − θ̃T )

≤ τ∥θ∗T − θ̃T ∥2Σ̂+λI

(θ∗T − θ̃T )
⊺Σπθ

(θ∗T − θ̃T )

(θ∗T − θ̃T )⊺Σ
γ
πref ,diff

(θ∗T − θ̃T )
. (85)

We then apply the result from Equation (74) which implies (∥v∥Σγ
πref ,diff

)−1 ≤
√

ωupp(T, γ)(∥v∥Σπref ,diff
)−1:

τ∥θ∗T − θ̃T ∥2Σ̂+λI

(θ∗T − θ̃T )
⊺Σπθ

(θ∗T − θ̃T )

(θ∗T − θ̃T )⊺Σ
γ
πref ,diff

(θ∗T − θ̃T )

≤ τωupp(T, γ)∥θ∗T − θ̃T ∥2Σ̂+λI

(θ∗T − θ̃T )
⊺Σπθ

(θ∗T − θ̃T )

(θ∗T − θ̃T )⊺Σπref ,diff(θ
∗
T − θ̃T )

. (86)
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From the definition of Σπref ,diff in Equation (72), a, a′ are independently sampled. We combine this fact with the population
covariance matrix Σπref

, deriving Σπref ,diff = 2Σπref
. We use this to get

τωupp(T, γ)∥θ∗T − θ̃T ∥2Σ̂+λI

(θ∗T − θ̃T )
⊺Σπθ

(θ∗T − θ̃T )

(θ∗T − θ̃T )⊺Σπref ,diff(θ
∗
T − θ̃T )

=
τωupp(T, γ)

2
∥θ∗T − θ̃T ∥2Σ̂+λI

(θ∗T − θ̃T )
⊺Σπθ

(θ∗T − θ̃T )

(θ∗T − θ̃T )⊺Σπref
(θ∗T − θ̃T )

. (87)

We use κ = maxπ∈Π κπ with the definition of κπ in Equation (16), along with the result obtained in Equation (76) to use
ωupp(T, γ) = (T−1)(1−γ)

1−γT−1 ≤ T (1−γ)
1−γT−1 :

τωupp(T, γ)

2
∥θ∗T − θ̃T ∥2Σ̂+λI

(θ∗T − θ̃T )
⊺Σπθ

(θ∗T − θ̃T )

(θ∗T − θ̃T )⊺Σπref
(θ∗T − θ̃T )

≤ τκωupp(T, γ)

2
∥θ∗T − θ̃T ∥2Σ̂+λI

≤ τκm̄T (1− γ)

2m(1− γT−1)
∥θ∗T − θ̃T ∥2Σ̂+λI

. (88)

D.2.3. COMPLEXITY ANALYSIS

In order to investigate the complexity of the regret bound, we set the value of γ using T,BT . We first set γ as

γ = 1−
(
BT

T

)3/4

. (89)

We apply Equation (89) in the estimation error ∥θ∗T − θ̃T ∥Σ̂+λI , with assumption of λ ≥ C
√
d log(4d/δ)/n from Lemma 6,

while ignoring the logarithmic factor:

2
√
λW (= d

1
4 n− 1

4 )

2C1

τcσ,τ

√
d+ log(1/δ)

n
(= d

1
2 n− 1

2 )

16LRσ,τm̄

T (1− γ)
3
2

√
dm̄

n
BT (= d

1
2 B

− 1
8

T T− 3
8 ) (90)

Here, we note that from Assumption 5, n = Θ(T ). This allows us to consider the complexity with respect to the dataset
size n and T together. We can conclude from Equation (90) that the complexity bound of the entire estimation error is

O(d
1
2 T− 1

4 ). By setting the value of T to a sufficiently large one, making 1− γT−1 ≥ 1
2 , then the complexity of ωupp(T, γ)

is

T (1− γ) (= B
3
4
T T

1
4 ). (91)

Finally we present the total complexity bound of the algorithm, by applying the complexity of ωupp(T, γ) in Equation (91)
to the squared estimation error ∥θ∗T − θ̃T ∥2Σ̂+λI

:

Roff
T = O(d B

3
4
T T− 1

4 )

= O(d B
3
4
T n− 1

4 ). (92)
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D.3. Theoretical Analysis of NS-DPO under stationary preferences

Corollary 4. (Regret bound under stationary preferences) Let BT → 0, δ ∈ (0, 1
2 ], τ > 0. Let θ̃T ∈ Θ denote the

minimiser of the NS-DPO loss (Equation (12)). Then, for λ ≥ C
√

d log(4d/δ)/n, some constant C1 > 0, γ = 1−
(
BT

T

)α
and α ∈ (0, 2

3 ), we have with probability at least 1− 2δ:

lim
BT→0

Roff
T <

4τκm̄

m︸ ︷︷ ︸
Pre-factor

(
√
λW +

C1

τcσ,τ

√
d+ log(1/δ)

n

)2

,

and recover the complexity of Roff
T = O(n− 1

2 ) under stationary preferences.

We show that under certain conditions, NS-DPO’s regret bound recovers O(n− 1
2 ). We first analyse the estimation error in

the limit BT → 0. Consider the estimation error bound in Theorem 2:

∥θ̃T − θ∗T ∥Σ̂+λI ≤ 2
√
λW +

2C1

τcσ,τ

√
d+ log(1/δ)

n︸ ︷︷ ︸
learning

+
16LRσ,τm̄

T (1− γ)
3
2

√
dm̄

n
BT︸ ︷︷ ︸

tracking

, (93)

in which the tracking term depends upon γ and BT . In the regret bound, we write γ in terms of BT the form of

γ = 1−
(
BT

T

)α

, (94)

where α ∈ R. We obtain 1 − γ =
(
BT

T

)α
by rearranging terms. Substituting BT back into the estimation error bound,

we find that the tracking term reduces to 16LRσ,τm̄T
3
2α−1B

1− 3
2α

T

√
dm̄
n . By inspection, for 0 < α < 2

3 the tracking term
tends to 0 as BT → 0. Thus we conclude that

lim
BT→0

(
2
√
λW +

2C1

τcσ,τ

√
d+ log(1/δ)

n
+

16LRσ,τm̄

T (1− γ)
3
2

√
dm̄

n
BT

)
= 2

√
λW +

2C1

τcσ,τ

√
d+ log(1/δ)

n
. (95)

We now consider the regret bound in Theorem 3:

Roff
T ≤ τκm̄T (1− γ)

2m(1− γT−1)︸ ︷︷ ︸
Pre-factor

(
2
√
λW +

2C1

τcσ,τ

√
d+ log(1/δ)

n
+

16LRσ,τm̄

T (1− γ)
3
2

√
dm̄

n
BT︸ ︷︷ ︸

Tracking

)2

. (96)

Here we note that the tracking term and the pre-factor term are dependent upon γ. Using the product rule of limits, we
analyse the limit of the pre-factor and tracking terms independently and then multiply them together. Using L’Hopital’s rule,
the pre-factor term in Equation (96) in the limit BT → 0 becomes

lim
BT→0

τκm̄T (1− γ(BT ))

2m(1− γ(BT )T−1)
= lim

BT→0

τκm̄T (BT

T )α

2m(1− (1− (BT

T )α)T−1

(97)

We remove terms that do not depend upon BT for simplicity and then apply L’Hopital’s rule:

lim
BT→0

(BT

T )α

(1− (1− (BT

T )α)T−1
= lim

BT→0

1

(T − 1)(1− (BT

T )α)T−2
(98)

=
1

T − 1
(99)
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thus finding the limit of the pre-factor term. As T > 1, τκm̄T
2m(T−1) <

τκm̄
m , we use our analysis from the estimation bound

and set 0 < α < 2
3 , such that the limit of the tracking term is 0 as expected in stationary scenarios. We can now write the

regret bound as

lim
BT→0

Roff
T <

4τκm̄

m︸ ︷︷ ︸
Pre-factor

(
√
λW +

C1

τcσ,τ

√
d+ log(1/δ)

n

)2

. (100)

and recover the result of O(n−1/2) in Corollary 4.

D.4. Details of applying Bernstein’s inequality

We restate the norm to investigate:

∥ 1
n

n∑
i=1

τγT−1−tiϵiϕ̂i∥(Σ̃+λI)−1 . (101)

We then define two vectors V and Z, followed by a matrix M :

V = [ϵ1, . . . , ϵn], (102)

Z = [γT−1−t1 ϕ̂1, . . . , γ
T−1−tn ϕ̂n], (103)

M =
1

n2
Z(Σ̃ + λI)−1Z⊺. (104)

We then express Equation (101) using V,Z,M :

∥ 1
n

n∑
i=1

τγT−1−tiϵiϕ̂i∥(Σ̃+λI)−1 =
√
τ2V ⊺MV . (105)

We here recall the definition of ϵi, which is a 1-sub-Gaussian random variable:

ϵi = oi − σ(τ⟨ϕ̂i, θ
∗
ti − θref⟩),

Eoi∼pti
(ai≻a′

i|xi)[ϵi] = 0, (106)

Varoi∼pti
(ai≻a′

i|xi)[ϵi] = Eoi∼pti
(ai≻a′

i|xi)[ϵ
2
i ]− (Eoi∼pti

(ai≻a′
i|xi)[ϵi])

2 ≤ 1. (107)

As stated in (Hsu et al., 2012), the Bernstein’s inequality for sub-Gaussian random variables in quadratic form implies

τ2V ⊺MV ≤ τ2
(

tr(M) + 2
√

tr(M⊺M) log(1/δ) + 2∥M∥ log(1/δ)
)

≤ τ2 · C1 ·
d+ log(1/δ)

n
, (108)

for some C1 > 0, while ∥M∥ = λmax(M). Here we used the definition of Σ̃ in Equation (17) to show Σ̃ = 1
nZ

⊺Z, and
derive for λ > 0

M ≺ 1

n2
Z(Σ̃)−1Z⊺ =

1

n
I, (109)

tr(M) ≤ d/n, (110)

tr(M⊺M) ≤ d/n2, (111)
∥M∥ ≤ 1/n. (112)
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