Under review as a conference paper at ICLR 2026

CONCUR: CONCISENESS MAKES STATE-OF-THE-ART
KERNEL GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

GPU kernel generation by LLMs has recently experienced rapid development,
leveraging test-time scaling and reinforcement learning techniques. However, a
key challenge for kernel generation is the scarcity of high-quality data, as most
high-quality kernels are proprietary and not open-source. This challenge prevents
us from leveraging supervised fine-tuning to align LLMs to the kernel generation
task. To address this challenge, we develop a pipeline that generates and curates
high-quality CUDA kernels with reasoning traces, motivated by a critical obser-
vation that concise yet informative reasoning traces result in robust generation of
high-performance kernels. Using this pipeline, we construct our dataset ConCuR
and introduce our model KernelCoder, which is the first model trained on a cu-
rated dataset consisting of PyTorch, reasoning, and CUDA kernel pairs, to our
knowledge. In the KernelBench setup, our model achieves significant improve-
ments over the existing top-performing model, QwQ-32B, and outperforms all
open-source models fine-tuned for kernel generation, as well as frontier models
such as DeepSeek-V3.1-Think and Claude-4-sonnet. Finally, we show that the
average reasoning length can serve as a metric to assess the difficulty of kernel
generation tasks. The observations, metrics, and our data collection and curation
pipeline can help obtain better data in the kernel generation task in the future.

1 INTRODUCTION

High-performance GPU kernels are critical to high performance in modern machine learning sys-
tems (Dao et al., 2022). However, developing them remains a costly and time-consuming task,
demanding knowledge of domain-specific programming languages such as CUDA (Nickolls et al.,
2008), Triton (Tillet et al., 2019), and ThunderKittens (Spector et al., 2025), as well as expertise
in computer architectures. Therefore, tools are emerging to help developers develop GPU kernels.
Previously, compilers like TVM (Chen et al., 2018) were introduced to generate program kernels.
Recently, more works have focused on leveraging Large Language Models (LLMs) to generate
CUDA or Triton kernels (Ouyang et al., 2025; Fisches et al., 2025). Initial attempts utilize test-time
scaling (Terry Chen & Devleker, 2025; Lange et al., 2025), but these approaches are limited by the
capabilities of the base models. Consequently, post-training techniques, especially reinforcement
learning (RL), have been utilized to enhance the capabilities of models in the kernel generation
domain (Baronio et al., 2025; Li et al., 2025b). Nevertheless, RL alone is often insufficient. It is
observed that Supervised Fine-Tuning (SFT) on high-quality data appears indispensable, as SFT
can provide foundational alignments for specific tasks. However, due to the scarcity of high-quality
open-source CUDA kernels, we lack high-quality data to perform SFT on base models. This leads
to the question: How can we collect high-quality CUDA kernels to fully leverage the SFT method?

In this work, we argue that a concise yet informative reasoning trace is crucial for generating high-
quality CUDA kernels, since we observe that more outstanding generated CUDA kernels are ac-
companied by more concise reasoning traces. Based on this idea, we can select CUDA kernels
paired with high-quality reasoning traces to construct a representative, informative, and well-curated
dataset to enable effective SFT. Specifically, we introduce our data synthesis and curation pipeline
(Figure 1), the first pipeline to select exceptional reasoning traces and excellent CUDA kernels in
the kernel generation task. Our pipeline consists of two parts: data synthesis and data curation. For
the data synthesis part, due to the scarcity of high-quality, open-source CUDA kernels, we choose
to leverage existing reasoning models to synthesize CUDA kernels along with reasoning traces. For

Under review as a conference paper at ICLR 2026

Data Generation Data Curation Final Dataset

D Task Filter || Representative Tasks

Data to be curated

def
Torch Eager Fastest generation

i . If max A single operator def
inplementation Kernel Generateion & shor?est speedup > 5.0? task?
. Parallel Task generation?
Reasoning
Lim Generate
five times Fast CUDA Kernels
L') » Five Generated * * * * * Concise and
X ! Kernels and CoTs e Logical cuda_source =
Kernel Selector L) g pifeuiby
Five CUDA Kernels Chain-of-
With CoTs & Correctness Thoughts
2 Speedup Select this fastest Select the fastest Select the fastest
version version version

(a) (b) (c)

Unit Test

Figure 1: Overview of our two-stage data gathering pipeline. The first stage involves synthesizing
CUDA kernels with corresponding CoTs and performing unit tests on each generated kernel to verify
the correctness of the kernel and get the speedup over the torch eager implementation. The second
stage is to select high-quality reasoning traces based on the criteria we claim in Section 3.3.

the data curation part, we design a data curation method that incorporates the conciseness of the
reasoning trace and the performance of the kernel, motivated by our observation and idea. Based on
this pipeline, we introduce the Concise CUDA Reasoning Dataset (ConCuR), a collection of 4,892
CUDA kernels paired with reasoning traces synthesized by Kevin-32B (Baronio et al., 2025). By
performing LoRA (Hu et al., 2022) fine-tuning on QwQ-32B (QwenTeam, 2025) with our ConCuR
dataset, we introduce KernelCoder, a state-of-the-art (SoTA) model on the kernel generation task.

Extensive experiments validate the high quality of our dataset and show that SFT remains an effec-
tive method for enhancing the model’s ability to generate high-performance kernels. Specifically,
we conduct comparisons with baselines via KernelBench (Ouyang et al., 2025) and show that Ker-
nelCoder outperforms all existing kernel generation models, as well as most frontier LLMs, such
as GPT-4 (Hurst et al., 2024), DeepSeek-V3.1-Think (Liu et al., 2024), and Claude-4-Sonnet (An-
thropic, 2025). Moreover, ablation studies prove that jointly incorporating the conciseness and per-
formance of a generation (including a reasoning trace and a kernel), as well as balancing the type of
generation tasks, are key to selecting representative tasks, high-quality reasoning traces, and CUDA
kernels.

Additionally, based on extensive experiments, we find that the reasoning length could serve as an
indicator of the complexity of kernel generation tasks. With this indicator, we can classify tasks
into different difficulty levels, thereby creating a more rigorous benchmark for evaluating model
performance. Furthermore, future studies can utilize this observation to select challenging kernel
generation tasks, helping to construct more representative and rigorous datasets, which ultimately
lead to the development of more powerful models.

In summary, our contributions are as follows:

1. We argue that conciseness and informative reasoning trace results in a well-performed
generated kernel. We observe that concise reasoning traces lead to reliable and robust
kernel generation. This argument contributes to the challenge of the lack of high-quality
data in the kernel generation area.

2. We propose a data synthesis and curation pipeline to build a high-quality dataset
for the kernel generation task. Motivated by our argument, we carefully design a data
synthesis and curation pipeline. Utilizing this pipeline, we construct the first synthesized
dataset of CUDA kernels with reasoning traces, ConCuR.

3. Trained on ConCuR dataset, we introduce KernelCoder, a SoTA model capable of
generating correct and efficient CUDA kernels. Our model outperforms the frontier
models and other competitors with fewer parameters and lower training cost.

4. Validated by experiments, we demonstrate that reasoning length can be a suitable
indicator to assess the difficulty of kernel generation tasks. This indicator can help with
data collection and model evaluation in future work.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 GPU KERNEL OPTIMIZATION USING LLM

LLM benefits from scaling (Kaplan et al., 2020). To support models with an expanding number of
parameters and larger-scale training, efficient GPU kernels are required. However, designing kernels
requires a significant amount of time and resources, even for a team of experts. To accelerate this
process, compilers such as TVM (Chen et al., 2018) and Taco (Kjolstad et al., 2017) have been
developed. However, the ability of compilers is strong but limited compared to human experts.
Recently, generating GPU kernels using LLM has gained wide attention. Evaluation benchmarks,
such as KernelBench (Ouyang et al., 2025) and TritonBench (Li et al., 2025a), are constructed
to facilitate systematic assessment of models’ ability to design kernels in terms of accuracy and
performance. Afterwards, test scaling, focusing on feedback-driven iterative approaches, has rapidly
developed. A Nvidia team proposed a method to generate and refine kernels utilizing DeepSeek-
R1 (Terry Chen & Devleker, 2025). The agent proposed by METR (METR, 2025) uses parallel tree
search with verification to scale up. Orthogonal to these two works, the AI CUDA Engineer (Lange
et al., 2025) attempted to utilize RAG (Gao et al., 2023) to scale test-time by increasing in-context
learning.

Since the performance of frontier models on kernel generation falls short, more work has started to
focus on training a more powerful model. KernelLLM (Fisches et al., 2025) constructed their dataset
utilizing the Triton compiler to perform SFT. Kevin (Baronio et al., 2025), leveraging powerful re-
inforcement learning techniques, designed a multi-turn GRPO (Shao et al., 2024) training strategy
and outperformed most of the frontier models. AutoTriton (Li et al., 2025b) employs both SFT and
GRPO in its design. It constructed its SFT training dataset using LLM distillation and compilation
with LLM-enhanced refinement simultaneously. More recently, the first multi-agent kernel gener-
ation system, Astra (Wei et al., 2025), was proposed. However, none of these works constructed a
well-curated, high-quality dataset.

2.2 REASONING DATASET COLLECTION AND CURATION

The Chain-of-Thoughts (CoTs) significantly improves the ability of large language models to per-
form complex reasoning (Wei et al., 2022). Therefore, researchers have devoted efforts to construct-
ing a high-quality dataset with labeled answers and CoTs to train reasoning models. LIMA (Zhou
et al., 2023) demonstrated that a small set of high-quality data can achieve alignment for specific
tasks. However, it is difficult to collect reliable data with chain-of-thoughts, especially for math
and coding problems. Thus, employing LLMs to generate data appears to be a reasonable choice.
WizardLM (Xu et al., 2025) proposed an iterative approach to generate complex science instructions
along with their answers. Furthermore, s1 (Muennighoff et al., 2025) proposed a reasoning dataset
curation method based on quality, difficulty, and diversity criteria.

3 CONCUR: SYSTEMATIC KERNEL AND COT CURATION

3.1 TASK DESCRIPTION

Traditionally, CUDA kernel design has been a challenging and time-consuming task, even for human
experts. It requires both system-level hardware knowledge and algorithmic insight, including GPU
architecture, parallel programming, algorithm design, memory optimization, etc. Aiming to help de-
velop CUDA kernels, the CUDA kernel generation task is, given a PyTorch implementation (which
could be a single operator, multiple operators, or networks) with fixed parameter dimensions and
input dimensions, a generation model rewrites it into CUDA kernels for more efficient execution.

3.2 ENVIRONMENT AND EVALUATION

To evaluate the performance of the model, two vital metrics are considered: the correctness of the
generated kernels (correct rate) and the performance of the generated kernels. We conduct evaluation
via KernelBench (Ouyang et al., 2025), an excellent benchmark that comprehensively assesses both
correctness and performance of generated kernels. Each task in KernelBench involves generating a

Under review as a conference paper at ICLR 2026

CUDA kernel based on the given PyTorch implementation. To evaluate the correctness, a random
input is given to the PyTorch implementation and the generated kernel. If two outputs are of the same
dimension and have the same value, the generated kernel would be considered correct. To evaluate
the performance of the generated kernel, we choose speedup over Torch Eager as our metric:

TTorch

speedup = - 1[correct], (1)

kernel
where Trorch 1S the execution time of the torch eager implementation and T is the execution time
of the generated kernel. 1[-] ensures that the speedup is computed only for the correct samples.

The KernelBench consists of 4 levels in total. We select level 1 (single-kernel operators, such as
matrix multiplication and convolution) and level 2 (simple fusion patterns, such as conv+bias+relu)
as our evaluation set. Since the tasks of level 3 and level 4 are comprehensive and challenging, they
exceed the current capabilities of LLMs to generate meaningful kernels. To evaluate the performance
of the model on one level, we adopt two metrics: (1) Execution correct rate (Exec) and (2) the fast,,
metric introduced by KernelBench, defined as:

N
1
fast, = N Z 1[speedup, > p],)

i=1

where N is the number of tasks of this level.

3.3 REASONING DATA COLLECTION

We collect a total of 90,810 CUDA kernels accompanied by corresponding CoT. We use the PyTorch
programs from KernelBook (Paliskara & Saroufim, 2025) as our initial tasks. We generate 5 times
using Kevin-32B (Baronio et al., 2025) for 18,162 tasks and obtain 90,810 pairs (PyTorch program,
CUDA kernel, accompanied by CoT). Among them, there are 9,789 tasks that have at least one
correct generation, and 24,136 kernels are correct. However, these correct kernels, along with their
corresponding CoT, differ in quality. We assess “quality” based on the following two criteria:

1. The speedup over torch eager (we refer to this as “speedup”): it is the metric to test if
the generated kernel is efficient. A larger speedup indicates a more efficient kernel.

2. The length of the corresponding CoT in tokens (we refer to this as “reasoning length”):
it is the metric to assess how much computational resource the model invested to generate
the kernel. We anticipate the CoT to be concise and logical.

We observe an unexpected correlation between these two criteria, which forms the foundation of our
data curation method.

3.4 OBSERVATIONS ON GENERATION QUALITY AND REASONING LENGTH

In our first round of task generation, we identified two main observations regarding generation qual-
ity: the correctness and performance of the generated kernels.

1. The shorter the length of reasoning, the higher the accuracy rate (Figure 2). This observation
contradicts previous opinions. DeepSeek-R1 (Guo et al., 2025) used the increase in reasoning length
as a result of learning to solve tasks with more thinking time. The method of s1 (Muennighoff
et al., 2025) assumes that a more challenging task requires more thinking tokens; thereby, they
claim that a correct generation with a long reasoning trace would be high-quality data to learn.
However, our observation illustrated that although more challenging tasks typically require a
greater number of reasoning tokens, for the same task, CUDA kernels generated after shorter
reasoning traces tend to be correct more often than those produced through longer ones. Our
detailed analyses (see Appendix B) of reasoning traces suggest the reason for this relationship: long
reasoning demonstrates features of overthinking (Chen et al., 2025; Wu et al., 2025). In particular,
lengthy reasoning often involves self-doubt and repeatedly verifies results that are already correct,
which undermines logical coherence. In contrast, concise reasoning tends to be more logical and
consistent, resulting in higher accuracy. In conclusion, we argue that a correctly generated kernel,
along with a concise reasoning trace, is of high quality.

Under review as a conference paper at ICLR 2026

Reasoning Length Distribution by Correctness Accuracy Rate by Reasoning Length Bins
0.65

o
20000 8

o
o

0.54 / 4000

r

15000
3000

o
IS

2000

- 10000 ’7—‘

1000

Reasoning Length (tokens)
o
3
3
3
Accuracy Rate
° o o
[o w
:|v°
& -
&
:|.o
o
>
:|.O
2 .
&
°
=
o
s
mc
°
3
°
S
2
Sample Count

o

o
o

Incorrect Correct © A 2> 5 3 N N Y SV
A< 3 3 o3 o0 oS 25 25)
(a) Correctness N e),b-*’ ,\,é\ S 8T 5>
O AR A AP O M
SRR

(b) Reasoning Length Bins (tokens)

Figure 2: Relationship between reasoning length and accuracy rate. (a): Boxplot of reasoning
length distributions for correct and incorrect responses, indicating that incorrect responses generally
involve longer reasoning. (b): Accuracy rate across reasoning length bins (blue bars) with corre-
sponding sample counts (red line). The results indicate that shorter reasoning is generally associated
with higher accuracy, whereas longer reasoning tends to reduce accuracy.

2. We observe that speedup is largely in- P ing Length
dependent of reasoning length (Figure 3). e
From a conventional standpoint, longer reason- &
ing processes, entailing more time spent on 2
reasoning, are generally expected to enhance
model performance. However, in CUDA ker-
nel generation, we find that prolonged reason-
ing does not necessarily yield higher-quality
kernels and may instead introduce redundant
steps that neither enhance correctness nor im-
prove execution efficiency. In fact, when the N I IO S s S |
prompt does not explicitly specify the program- Reasoning Length (tokens) ‘

ming strategy, the model tends to generate simi-

lar kernel optimization ideas and designs across Figure 3: Scatter plot showing the relationship
trials. However, the specific implementations between reasoning length (tokens) and speedup
often vary, and such variations play a crucial over eager execution. A linear fit yields a corre-
role in determining performance. This suggests lation of » = —0.047 (Pearson correlation coeffi-
that concise reasoning can possibly yield ro- cient p < 0.01), indicating that reasoning length
bust and efficient implementations, providing has virtually no practical impact on performance.
an explanation for why longer reasoning does

not necessarily lead to higher speedup.

— Linear fit (r = 0.047) |

°

Speedup over Eager
&

3.5 DATA CURATION

Based on our observation, we propose a data curation method to select high-quality CUDA kernels
and reasoning CoTs, as shown in Figure 1. Our dataset (ConCuR) is composed of three parts. (a)
For each problem, among five generations, if the version with the shortest reasoning length achieves
the highest speedup among five generations, then we add this version to our dataset. This approach
prioritizes samples that simultaneously possess a short CoT and achieve a high speedup, as our
observations indicate that shorter CoTs tend to be more logical and valuable. In total, we added
3,934 samples in this part. (b) The second part consists of kernels with speedups greater than 5. We
consider these high-performance kernels valuable for learning. This part contains 414 samples. (c)
In addition, we found that designing a CUDA kernel for a single operator typically requires imple-
menting it as a standalone kernel, optimizing it at the level of its individual operations. In contrast,
designing kernels for multiple operators or entire networks primarily involves operator fusion. These
represent two distinct design paradigms. Therefore, we need to balance the ratio of these two types
of tasks in our dataset. To achieve this, we identify 544 samples that are CUDA kernels with CoT

Under review as a conference paper at ICLR 2026

Table 1: Pass@1 results on KernelBench Level 1 and Level 2. We present the correct rate (Exec)
and the fast; score across levels, reported as percentages. The best result is labeled by Bold.

Levell Level2
Exec? fasty T Exec? fasty T

Frontier Models

Model #Params Lang.

DeepSeek-R1-0528 685B Triton 35.0 7.0 42.0 28.0
DeepSeek-R1-0528 685B CUDA 52.0 18.0 55.0 38.0
DeepSeek-V3.1-Think 685B CUDA 44.0 16.0 30.0 20.0
Qwen3-Coder-Plus 480B CUDA 32.0 7.0 55.0 35.0
GPT-40 - Triton 15.0 3.0 5.0 3.0
Claude-4-Sonnet - Triton 33.0 11.0 26.0 10.0
Smaller-Scale Models

QwQ 32B CUDA 18.0 7.0 17.0 11.0
Qwen3 8B CUDA 16.0 4.0 15.0 7.0
Qwen3 32B CUDA 20.0 6.0 35.0 18.0
Llama-3.3 70B CUDA 11.0 2.0 0.0 0.0
AutoTriton 8B Triton 36.0 10.0 45.0 17.0
KernelLLM 8B Triton 20.2 - 16.0 -

Kevin* 32B CUDA 50.0 16.0 46.0 27.0
KernelCoder 32B CUDA 58.0 17.0 59.0 39.0

of single operators. Based on these three parts, ConCuR, comprising 4,892 examples, considers
speedup, reasoning quality, and task distribution. In Section 5, we show that combining these three
parts is crucial, as relying on one specific criterion or having an unbalanced task distribution will
lead to a worse model.

4 EXPERIMENTAL RESULTS

4.1 TRAINING DETAILS

We select QwQ-32B (QwenTeam, 2025), a powerful reasoning model that excels at coding, as our
base model. We leverage the ms-swift (Zhao et al., 2025) framework to perform LoRA (Hu et al.,
2022) fine-tuning with ConCuR. We use a basic LoRA fine-tuning recipe, setting the LoRA rank
to 32, the LoRA alpha to 32, and the LoRA dropout to 0.05 for all linear layers. The model is
trained for three epochs with a batch size of 8 and a gradient accumulation of 2, resulting in a total
of 1,815 gradient steps. The learning rate is set to 1e-4 with a warmup ratio of 0.05, and then decays
following a cosine schedule. We use the AdamW (Loshchilov & Hutter, 2019) optimizer with
£1 = 0.9, B2 = 0.95, and weight decay of 0.1. We do not compute loss on system prompts, only on
responses (CoTs and generated kernels). Due to the long reasoning trace in our dataset, we set the
max sequence length to 32,768. We use ZeRO stage-3 (Rajbhandari et al., 2020) to train our model
on a single node with 8 A100 GPUs. The training process takes 9 hours, requiring significantly less
computational resources than its counterparts. Our training dynamics are reported in Appendix A.

4.2 EVALUATION

We compare our model against frontier models and open-source fine-tuned models. We report
pass@1 and pass@10 results here. For the Exec score, pass@10 checks if there is at least one
correct kernel among 10 trials. For the fast; score, pass@ 10 checks if there is at least one kernel
with a speedup larger than 1. As shown in Table 1 and Table 2, our model has made a significant leap
in correctness (Exec) and performance (fast;) compared to our base model, QwQ-32B. Moreover, it
surpasses all frontier models, including DeepSeek-R1-0528, GPT-40, and Claude-4-sonnet, as well
as fine-tuned models like Kevin, especially in generating correct kernels, demonstrating that our
dataset is of high quality. Experimental results show that our data curation method distills concise

Under review as a conference paper at ICLR 2026

Table 2: Pass@10 results on KernelBench Level 1 and Level 2. The results show that our model is
capable of solving most tasks in KernelBench successfully by simply employing parallel inference.
DeepSeek-V3.1-Think performs worse than DeepSeek-R1-0528 since the CoTs of V3.1 are highly
compressed. This compression decreases the quality of CoTs. In contrast, our method, which prefers
short CoTs, successfully selects concise but high-quality CoTs.

Levell Level2
Exec? fasty T Exec? fasty T

Frontier Models

Model #Params Lang.

Al CUDA Engineer

-ol-preview - CUDA 63.0 - 95.0 -

-ol-high - CUDA 50.0 - 81.0 -
DeepSeek-R1-0528 685B CUDA 90.0 31.0 97.0 82.0
DeepSeek-V3.1-Think 685B CUDA 72.0 24.0 78.0 61.0
Qwen3-Coder-Plus 480B CUDA 76.0 35.0 94.0 76.0
Claude-4-Sonnet - CUDA 64.0 - 92.0 -

Smaller-Scale Models

QwQ 32B CUDA 55.0 12.0 76.0 46.0
Qwen3 8B CUDA 31.0 12.0 53.0 32.0
Qwen3 32B CUDA 68.0 21.0 82.0 37.0
Llama-3.3 70B CUDA 31.0 9.0 8.0 1.0
KernelLLM 8B Triton 52.0 - 34.0 -
AutoTriton 8B Triton 68.0 - 88.0 -
Kevin* 32B CUDA 86.0 20.0 90.0 63.0
KernelCoder 32B CUDA 91.0 32.0 95.0 68.0

and logical reasoning traces, equipping our model with robust and error-resistant reasoning patterns.
All evaluations are run on a node with 8 RTX 5090 GPUs.

5 ABLATION STUDY

In this section, we prove that combining the two criteria stated in Section 3.3 and balancing the types
of tasks are crucial for selecting high-quality reasoning traces and CUDA kernels. We construct the
following datasets and train on them using the same settings as in the main experiments.

1. Random Selection (5K-random): For each task, we randomly select one correct kernel
with its CoT (if such a kernel does not exist, we skip). Then, we randomly select 4,892
tasks along with their corresponding kernel.

2. Max Length First Selection (SK-max): For each task, we select the correct kernel with the
longest reasoning length, and then retain the 4,892 tasks whose kernels exhibit the longest
reasoning overall. This method was introduced by s1 (Muennighoff et al., 2025), which
hypothesized that a more challenging task would require more reasoning tokens.

3. Min length First Selection (SK-min): For each task, we select the correct kernel with the
shortest reasoning length, and then retain the 4,892 tasks whose kernels exhibit the shortest
reasoning overall. This method only considers the conciseness (criterion 1) of the reasoning
trace and would potentially select only easy tasks.

4. Speedup First Selection (SK-speedup): We construct the dataset by selecting, for each
task, the kernel with the highest speedup and then keeping the 4,892 tasks with the largest
speedups overall. This method only considers the performance of kernels (criterion 2).
Although models can learn from high-performance kernels, this method may select only
easy-to-optimize tasks, resulting in the model struggling with more challenging tasks.

As shown in Table 3, considering only one criterion would cause worse model performance, es-
pecially in correctness. Notably, KernelCoder substantially outperforms other models, which can

Under review as a conference paper at ICLR 2026

Table 3: Ablation study on data selection methods. The results are evaluated for both pass@1
(shown on the left) and pass@ 10 (shown on the right). ARL denotes the Average Reasoning Length
(in tokens) for the generated CoTs at each level.

Level 1 Level 2
Model
Exect fasty T ARL Exec? fasty T ARL
5K-random 39.0/84.0 9.0/21.0 70653 50.0/90.0 24.0/550 6447.2
5K-max 34.0/8.0 7.0/17.0 72384 53.0/96.0 27.0/50.0 65153
5K-min 35.0/86.0 10.0/23.0 67109 50.0/91.0 26.0/55.0 6100.7

5K-speedup 42.0/83.0 80/21.0 71193 52.0/93.0 21.0/56.0 6435.0
KernelCoder 58.0/91.0 17.0/32.0 70359 59.0/950 39.0/68.0 6410.8

be attributed to its higher single-attempt correctness: although other models can approach Kernel-
Coder’s correctness over multiple attempts, the consistently strong performance in a single attempt
demonstrates that KernelCoder is less prone to errors. Trained on these datasets, models will learn
similar patterns, methods, ideas, and techniques to design kernels. However, the quality of the rea-
soning process leads to different abilities for the models to reason effectively and correctly, which is
crucial to generating correct kernels. Besides, these four datasets we construct for the ablation study
do not balance the types of tasks. Therefore, models trained on these datasets have worse perfor-
mances than KernelCoder on KernelBench Level 1. 5K-max, which utilizes the method proposed by
sl (Muennighoff et al., 2025), has improved the performance on KernelBench Level 2, but overall
still fails to outperform our model.

Additionally, we analyze the average reasoning length (ARL) of each model on levels, defined as:

N M

ARL = ﬁZZL[i,j], 3)

i=1 j=1

where L € NV*M is the reasoning length of all the samples. N is the number of tasks in this level,
and M is the number of times each task is generated. The ARL results demonstrate that relying
solely on one criterion would cause bias in the dataset. SK-max has selected some long but illogical,
chaotic traces, so its ARL is longer than 5SK-random and KernelCoder. SK-min would mistakenly
have a bias towards simple tasks. Consequently, it may not invest enough reasoning tokens to solve
hard tasks. However, ConCuR has balanced and unbiased data, as the ARL of KernelCoder is close
to that of 5K-random, which potentially approaches the optimal reasoning length (Wu et al., 2025).

6 DISCUSSION

6.1 DIVISION OF TASK DIFFICULTY

Currently, there is no suitable criterion to assess the difficulty of one kernel generation task, which is
crucial for constructing high-quality datasets and benchmarks. KernelBench (Ouyang et al., 2025)
utilizes the model’s structure to categorize tasks into multiple levels. However, as shown in Table 2,
all models perform worse on level 1 than on level 2, indicating that some tasks in level 1 are more
challenging to solve than some in level 2 (a notable example is convolution). To assess the inherent
difficulty of kernel generation tasks, we propose a method that compares task difficulty based on
ARL. For a given set of tasks, we first select a sufficiently strong reasoning model (e.g., Kevin-
32B or DeepSeek-R1-0528) and generate M times for each task. We then compute the ARL for
each task over M generations. Since individual reasoning processes exhibit variability, we perform
multiple generations for each task to mitigate bias. As M increases, the ARL becomes a more
reliable estimator of the inherent difficulty of the task.

6.2 DIFFICULTY DIVISION OF KERNELBENCH

In our experiment, we use Kevin as the generator and selected M/ = 10. We categorize KernelBench
level 1 and level 2 into three difficulty levels: easy, medium, and hard, based on the ARL. The

Under review as a conference paper at ICLR 2026

Table 4: Difficulty division of KernelBench Level 1 and Level 2. Tasks are divided into three
difficulty levels based on their ARLs.

Level ARL Number
Easy < 4000 37
Medium 4000 ~ 8500 114
Hard > 8500 49

thresholds and task counts are listed in Table 4. As shown in Table 5, across all models, both
accuracy and performance consistently decrease from the easy subset to the hard subset. This trend
indicates that tasks are successfully divided by level of difficulty. This task division method can
facilitate the construction of more challenging benchmarks and datasets.

Table 5: Pass@10 results of different models on KernelBench difficulty division. The perfor-
mance is reported as the geometric average of speedups (Ggpeedup)-

Models Easy Medium Hard
EXGCT GspeedupT EXGCT GspeedupT EXCCT GspeedupT
Kevin-32B 100.0 1.215 91.2 0.752 67.3 0.376
Qwen3-8B 83.8 1.229 40.4 0.428 14.3 0.675
DeepSeek-V3.1-Think 91.9 1.218 80.7 0.747 49.0 0.399
Qwen3-Coder-Plus 100.0 1.468 86.8 1.152 69.4 0.741
KernelCoder 100.0 1.319 94.7 0.831 83.7 0.410

7 CONCLUSION

7.1 SUMMARY

We design a data collection and curation pipeline to address the lack of high-quality data in the ker-
nel generation area, based on our insight into the length of the reasoning and the performance of the
generated kernel. Utilizing this pipeline, we construct the dataset ConCuR, the first curated dataset
of CUDA kernels with reasoning traces. We also present KernelCoder trained on ConCuR. Experi-
ment results on KernelBench demonstrate that KernelCoder outperforms existing models fine-tuned
on the kernel generation task, as well as frontier models, which indicates that our data collection and
curation pipeline successfully selects high-quality data. By addressing the scarcity of high-quality
data, our work demonstrates that SFT remains crucial for enhancing a model’s kernel generation
capability. Additionally, since both test-time scaling approaches and RL approaches require a pow-
erful base model, our model can facilitate these approaches by providing a pathway to obtain a more
powerful base model. Finally, we propose a method of dividing tasks by difficulty based on reason-
ing length, which also helps select more valuable tasks to construct better benchmarks and datasets
in the future.

7.2 FUTURE WORK

Currently, models are capable of generating correct kernels for most tasks. However, the generated
kernels do not exhibit satisfactory performance (at least, better than Torch Eager), which is a com-
mon phenomenon for all models. This can be attributed to the model rewriting the non-bottlenecking
part into kernels, rather than optimizing the bottlenecking part. This can be potentially solved
by developing a paradigm involving multi-agent work and test-time scaling, such as Astra (Wei
et al., 2025), which includes profiling, idea generation, and kernel implementation. Based on this
paradigm, more diverse, reasonable, and comprehensive datasets (in terms of patterns, ideas, and
methods for designing kernels) could be constructed, and our data curation method could be applied
to these datasets to select high-quality data.

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

Our curated dataset ConCuR can be reproduced by following these steps: 1. Use reasoning models
to generate kernels with CoTs using the prompt provided in Appendix C. 2. Use the data curation
method introduced in Section 3.5. To reproduce our model KernelCoder, please refer to the training
details in Section 4.1.

REFERENCES
Anthropic. Claude sonnet 4, 2025.

Carlo Baronio, Pietro Marsella, Ben Pan, Simon Guo, and Silas Alberti. Kevin: Multi-turn RL for
generating CUDA kernels. In The Exploration in Al Today Workshop at ICML 2025, 2025.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning large language models. arXiv preprint arXiv:2503.09567, 2025.

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan, Haichen
Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Tvm:
an automated end-to-end optimizing compiler for deep learning. In OSDI, 2018.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. In NeurIPS, 2022.

Zacharias V. Fisches, Sahan Paliskara, Simon Guo, Alex Zhang, Joe Spisak, Chris Cummins, Hugh
Leather, Gabriel Synnaeve, Joe Isaacson, Aram Markosyan, and Mark Saroufim. Kernelllm:
Making kernel development more accessible, 2025.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
survey. arXiv preprint arXiv:2312.10997, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In /CLR, 2022.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Fredrik Kjolstad, Stephen Chou, David Lugato, Shoaib Kamil, and Saman Amarasinghe. Taco: A
tool to generate tensor algebra kernels. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2017.

Robert Tjarko Lange, Aaditya Prasad, Qi Sun, Maxence Faldor, Yujin Tang, and David Ha. The
ai cuda engineer: Agentic cuda kernel discovery, optimization and composition. arXiv preprint
arXiv:2509.14279, 2025.

Jianling Li, Shangzhan Li, Zhenye Gao, Qi Shi, Yuxuan Li, Zefan Wang, Jiacheng Huang, Hao-
jie Wang, Jianrong Wang, Xu Han, Zhiyuan Liu, and Maosong Sun. Tritonbench: Bench-
marking large language model capabilities for generating triton operators. arXiv preprint
arXiv:2502.14752, 2025a.

10

Under review as a conference paper at ICLR 2026

Shangzhan Li, Zefan Wang, Ye He, Yuxuan Li, Qi Shi, Jianling Li, Yonggang Hu, Wanxiang Che,
Xu Han, Zhiyuan Liu, et al. Autotriton: Automatic triton programming with reinforcement learn-
ing in llms. arXiv preprint arXiv:2507.05687, 2025b.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437,2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.
METR. Measuring automated kernel engineering, 2025. Accessed: 2025-06-15.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel programming with
cuda. In ACM SIGGRAPH 2008 Classes, 2008.

Anne Ouyang, Simon Guo, Simran Arora, Alex L Zhang, William Hu, Christopher Re, and Azalia
Mirhoseini. Kernelbench: Can LLMs write efficient GPU kernels? In ICML, 2025.

Sahan Paliskara and Mark Saroufim. Kernelbook, 2025.
QwenTeam. Qwq-32b: Embracing the power of reinforcement learning, 2025.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. arXiv preprint arXiv:1910.02054, 2020.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Benjamin Frederick Spector, Simran Arora, Aaryan Singhal, Arjun Parthasarathy, Daniel Y Fu, and
Christopher Re. Thunderkittens: Simple, fast, and adorable kernels. In ICLR, 2025.

Bing Xu Terry Chen and Kirthi Devleker. Nvidia developer blog. automating gpu kernel generation
with deepseek-rl and inference time scaling., 2025.

Philippe Tillet, H. T. Kung, and David Cox. Triton: an intermediate language and compiler for tiled
neural network computations. In Proceedings of the 3rd ACM SIGPLAN International Workshop
on Machine Learning and Programming Languages, 2019.

Anjiang Wei, Tianran Sun, Yogesh Seenichamy, Hang Song, Anne Ouyang, Azalia Mirhoseini,
Ke Wang, and Alex Aiken. Astra: A multi-agent system for gpu kernel performance optimization.
arXiv preprint arXiv:2509.07506, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In NeurIPS, 2022.

Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is less: Under-
standing chain-of-thought length in LLMs. In Workshop on Reasoning and Planning for Large
Language Models, 2025.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qing-
wei Lin, and Daxin Jiang. Wizardlm: Empowering large pre-trained language models to follow
complex instructions. arXiv preprint arXiv:2304.12244, 2025.

Yuze Zhao, Jintao Huang, Jinghan Hu, Xingjun Wang, Yunlin Mao, Daoze Zhang, Zeyinzi Jiang,
Zhikai Wu, Baole Ai, Ang Wang, Wenmeng Zhou, and Yingda Chen. Swift: A scalable
lightweight infrastructure for fine-tuning. In AAAI 2025.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy.
Lima: Less is more for alignment. arXiv preprint arXiv:2305.11206, 2023.

11

Under review as a conference paper at ICLR 2026

A TRAINING DETAILS

We report our training dynamics during LoRA fine-tuning and the results of other ablation studies
here.

(a) Training Loss le-4 (b) Learning Rate (c) Gradient Norm

o I
Y o

o
o
o

Learning Rate
o
=

Gradient Norm
o o ~
o ®

o
o

0.05 02 M.UNLJAL[M il lﬂ“ Ll

0 250 500 750 1000 1250 1500 1750 0 250 500 750 1000 1250 1500 1750 0 250 500 750 1000 1250 1500 1750
Training Step Training Step Training Step

o
°

Figure 4: Training statistics of KernelCoder on ConCuR.
A.1 TRAINING ABLATIONS: SIZE OF DATASET

Table 6: Pass@10 results of models trained on datasets of different sizes.
Levell Level2
#Data

Exec fast; Exec fasty

552 720 21.0 84.0 50.0
1105 80.0 320 89.0 64.0
2210 86.0 260 94.0 66.0
4892 91.0 32.0 950 68.0

Besides the ablation study in Section 5, we also implement an ablation study on the size of our
dataset. We randomly select #Data of samples from the ConCuR to construct three smaller datasets.
The results shown in Table 6 demonstrate that increasing the dataset size improves the model’s
ability, but this improvement is subject to a margin effect decrease. Nevertheless, the size of 4,892
samples is significantly smaller than the size of the training dataset of AutoTriton (Li et al., 2025b)
and KernelLLM (Fisches et al., 2025), which are 14,102 and approximately 25,000, respectively.

A.2 TRAINING COST

As shown in Table 7, our method requires significantly fewer computational resources than its coun-
terparts. For KernelLLM and AutoTriton, although the scale of parameters of our model is larger
than theirs, our dataset is on a smaller scale. Moreover, we do not employ GRPO, which is an
effective yet computationally heavy method. For Kevin, their multi-turn setup amplifies the com-
putational cost of GRPO, which involves sampling m parallel trajectories with n refinement turns
for each task. Therefore, the VRAM requirement and computational cost Kevin required are signif-
icantly higher than ours.

Table 7: Comparison on training cost across existing fine-tuned models. AutoTriton used 14,102
samples for 3 epochs for SFT and 6,302 samples for 1 epoch for GRPO. * denotes that Kevin used
180 evaluation data for training.

Models #Params Methods #Data epochs
Kevin 32B GRPO (multi-turn) 180%* -
KernelLLM 8B SFT 25000 10
AutoTriton 8B SFT + GRPO 14102+ 6302 3+1
KernelCoder 32B LoRA 4892 3

12

Under review as a conference paper at ICLR 2026

B CASE STUDY

We present the reasoning trace generated by Kevin-32B (Baronio et al., 2025) in parallel inference.
The generated kernel of the concise version is correct, while the kernel of the long version is incor-
rect. As shown in the following text boxes, the concise version has a clear initial plan, a coherent
logical flow, and organized execution. However, the long version struggles with self-doubt from
the beginning, giving rise to an incomplete plan that requires continuous revision and refinement.
Therefore, it is more prone to error and culminates in an incorrect kernel generation. Addition-
ally, we observed several times that the reasoning trace is wrong or of low quality from the outset,
resulting in errors and disruptions in subsequent generations. Therefore, the method of iterative re-
finement sometimes proved ineffective, as the generated reasoning is not of good quality from the
outset. To solve this problem, parallel inference can be employed to generate multiple reasoning
traces simultaneously, allowing selection of the highest-quality trace for subsequent steps.

Concise Version (4814 tokens, correct kernel generated):

Okay, I need to optimize the given Model which performs a matrix multiplication using
torch.matmul. The goal is to write a custom CUDA kernel to replace this operation for
better performance. Let me think about how to approach this.

The steps are:

1. Each block loads a tile of A and a tile of B into shared memory.

2. Each thread computes its part of the dot product using the tiles.

3. Use multiple passes to handle larger matrices than what fits in shared memory.

Wiait, but this is a very naive approach and not optimized. The better approach uses shared
memory to store tiles of A and B, so that each thread can compute multiple elements. Let
me think again.

A better approach is the matrix multiplication using tiling. Here’s the standard approach:
Each block is responsible for a tile of the output matrix C. The block size is BLOCK_SIZE
x BLOCK_SIZE (e.g., 16x16). Each thread in the block computes one element of the tile.
The kernel uses shared memory to store the tiles of A and B.

The kernel would look something like:

Now, in the Python code, I need to compile this kernel. The Python code will have the
CUDA source as a string, then load it using load_inline.

So the steps are:

1. Write the CUDA kernel code as a string.

2. Define the Python function that calls the kernel.

3. Create a new ModelNew class that uses this function.

Let me structure the code.

Putting it all together, the Python code would be:

Long Version (6575 tokens, wrong kernel generated):

Okay, I need to optimize the given Model which performs a matrix multiplication using
torch.matmul. The user wants me to write a custom CUDA kernel to replace this operation
for better performance. Let me think about how to approach this.

First, the original model just does a simple matrix multiply of two N x N matrices. The
standard torch.matmul is already quite optimized, but maybe there’s a way to make it faster
with a custom kernel, especially for a specific matrix size like 2048*2. Perhaps by using
shared memory to store chunks of the matrices and reducing memory access time?

Wait, but matrix multiplication is a highly optimized operation in cuBLAS, which is what
PyTorch uses under the hood. So maybe the default implementation is already as fast as it
can get. Hmm, but the problem says to try replacing it. Maybe the user wants to experiment
with block matrix multiplication or some specific tiling approach?

Let me outline the steps:

13

Under review as a conference paper at ICLR 2026

1. Each block of threads is responsible for a tile of the output matrix C. The tile size should
be chosen based on the shared memory available. Let’s say a tile size of 16x16 or 32x32.

2. The kernel will have each block load a tile of A and a tile of B into shared memory. Then,
compute the dot products for the corresponding tile in C.

But to reduce global memory access, the blocks of A and B are first loaded into shared
memory. So each block will have two shared memory arrays: one for the current tile of A,
and one for the current tile of B.

The process would be:

1. Each block is responsible for a block of C at (blockldx.y, blockldx.x) or something like
that. Wait, the block index needs to map to the position of the C tile.

2. The kernel will have to loop over all the tiles of A and B that are needed to compute the C
tile. For each iteration, load the respective tiles of A and B into shared memory, synchronize,
compute the partial results, and then sum them up.

Wait, in the B loading part, ...

Ah, here’s the mistake...

Wait, no. The kernel as written has each thread responsible for one element in the C block...
Wait, perhaps the sharedA is the block of A’s rows (blockRow*BLOCK_SIZE to (block-
Row+1)*BLOCK_SIZE) and columns m*BLOCK_SIZE to (m+1)*BLOCK_SIZE...

Now, the kernel launch parameters. The grid should be divided into blocks of size
BLOCK_SIZE x BLOCK_SIZE. The number of blocks in x and y dimensions is ceil(N
BLOCK_SIZE).

Putting it all together, the new code would be:

C INFERENCE PROMPT

PROMPT_TEMPLATE = Template(’'’

You are a Machine Learning Engineer trying to write custom cuda kernels
to replace the pytorch operators in the given architecture to get
speedups.

You have complete freedom to choose the set of operators you want to
replace. You may make the decision to replace some operators with
custom cuda kernels and leave others unchanged. You may replace
multiple operators with custom implementations, consider operator
fusion opportunities (combining multiple operators into a single
kernel, for example, combining matmul+relu), or algorithmic changes (
such as online softmax). You are only limited by your imagination.

For [Imports], you will likely need but not limited to the following
libraries:

import torch

import torch.nn as nn

import torch.nn.functional as F

import math

AW

Here’s an example to show you the syntax of inline embedding custom
operators from the cuda kernel in torch:
The pytorch module needed to be optimize is:

AN

Sref_arch_torch

AN

The example new arch with custom cuda kernels looks like this:

AURNRY

Sref_arch_kernel

AW

14

Under review as a conference paper at ICLR 2026

And the PyTorch code you need to optimize is:

AN

Scode

Optimize the architecture named Model with custom cuda kernels!
the architecture named Model with custom cuda kernels! Name
optimized output architecture ModelNew. Output the new code
codeblocks. Please generate real code, NOT pseudocode, make

Optimize
your

in

sure the

code compiles and is fully functional. Just output the new model code

, no other text, and NO testing code!

III)

D LLM USAGE

I used LLM to check my grammar and polish my writing. Besides, I also used LLM to help find

some papers about dataset collection and curation.

15

	Introduction
	Related work
	GPU kernel optimization using LLM
	Reasoning dataset collection and curation

	ConCuR: systematic kernel and cot curation
	Task description
	Environment and evaluation
	Reasoning data collection
	Observations on generation quality and reasoning length
	Data curation

	Experimental results
	Training details
	Evaluation

	Ablation study
	Discussion
	Division of task difficulty
	Difficulty division of KernelBench

	Conclusion
	Summary
	Future work

	Reproducibility statement
	Training details
	Training ablations: size of dataset
	Training cost

	Case study
	Inference prompt
	LLM usage

