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Abstract

Instruction-following Large Vision Language
Models (LVLMs) have achieved significant
progress recently on a variety of tasks. These
approaches merge strong pre-trained vision
models and large language models (LLMs).
Since these components are trained sepa-
rately, the learned representations need to be
aligned with joint training on additional image-
language pairs. This procedure is not perfect
and can cause the model to hallucinate - provide
answers that do not accurately reflect the image,
even when the core LLM is highly factual and
the vision backbone has sufficiently complete
representations. In this work, we frame the
hallucination problem as an alignment issue,
tackle it with preference tuning. Specifically,
we propose POVID to generate feedback data
with Al models. We use ground-truth instruc-
tions as the preferred response and a two-stage
approach to generate dispreferred data. First,
we prompt GPT-4V to inject plausible hallu-
cinations into the correct answer. Second, we
distort the image to trigger the inherent hal-
lucination behavior of the LVLM. This is an
automated approach, which does not rely on hu-
man data generation or require a perfect expert,
which makes it easily scalable. Finally, both
of these generation strategies are integrated
into an preference optimization pipeline. In ex-
periments across broad benchmarks, we show
that we can not only reduce hallucinations, but
improve model performance across standard
benchmarks, outperforming prior approaches.

1 Introduction

Large Vision Language Models (LVLMs) have
achieved significant success in various vision under-
standing tasks, such as image captioning (Vinyals
etal., 2015; Li et al., 2022, 2023c¢) and vision ques-
tion answering (Ye et al., 2023; Antol et al., 2015).
These LVLM models fuse larger-scale pre-trained
vision models into the representation space of a
large language models (LLM), allowing the LLM

access to the visual representations. However, such
LVLMs are not perfect and even suffer from “hal-
lucinations", a phenomenon in which the language
model generates content that is not grounded in the
image, such as imagined objects and even scenes,
wrong spatial relationships or categories, etc. Such
artifacts are present even when both the vision back-
bone produces high-quality visual features and the
language model itself is factual and accurate. These
issues can pose significant risks when LVLMs are
deployed in high-stakes scenarios, such as medi-
cal domains (Li et al., 2023b) or autonomous driv-
ing (Dewangan et al., 2023).

As discussed by Cui et al. (2023), the potential
reason for hallucinations in LVLMs lies in their
tendency to prioritize common sense present in the
training language data, often disregarding the ac-
tual visual input information. In this paper, we
attribute this issue to the lack of alignment between
the image and text modalities, resulting in a re-
duced focus on input image information. Recent
research efforts have sought to enhance the align-
ment between modalities through preference fine-
tuning techniques, such as reinforcement learning
from human feedback (RLHF) (Sun et al., 2023).
Concurrent works (Li et al., 2023d; Zhao et al.,
2023b) also use the Direct Preference Optimization
(DPO) framework, but they rely on the traditional
preference data generation process in LLMs, where
both preferred and dispreferred responses may po-
tentially be incorrect. However, in LVLMs, the
produced responses are centered around the im-
age data rather than being generated freely like
in LLMs. When comparing two responses, both
of which may be incorrect for the given task, the
model may struggle to accurately align the image
with the correct generated response. In (Yu et al.,
2023a) the authors propose to solve this issue by
collection corrective feedback, which shows strong
results, but relies on costly human data gathering.

Unlike prior works that generate both preferred



and dispreferred data, we propose Preference
Optimization in LVLM with AI-Generated
Dispreferences (POVID) framework, aiming to ex-
clusively generate dispreferred feedback data using
Al models. In POVID we employ a high-quality
ground truth multi-modal instruction as the pre-
ferred answer and employ two strategies to gener-
ate dispreferred responses. First, we utilize GPT-
4V to introduce plausible hallucinations into the
answer, which we then use as the dispreferred re-
sponse. Second, we aim to provoke inherent hal-
lucination patterns and subsequently correct them
within the target LVLM that requires fine-tuning.
We achieve this goal by introducing noise, trig-
gering inherent hallucination patterns within the
LVLMs. The introduction of noise disrupts the
LVLM’s comprehension of the image, leading it to
generate uncertain responses that rely more on tex-
tual context or the knowledge it has acquired from
the training data. Given that the inherent halluci-
nation patterns of the target LVLM evolve during
the training process, the response generation with
the noisy image occurs in real-time during training,
and this is treated as dispreference. Finally, we
integrate both forms of dispreference into the DPO
optimization framework, specifically targeting the
alignment of language generation with the image.

The primary contribution of this paper is POVID,
which aligns the image and text modalities in
LVLMs. This approach explicitly contrasts a hal-
lucinatory answer with a truthful one, eliminating
the need for gathering human feedback and making
it easily deployable at scale. Our empirical results
demonstrate the promise of our framework in re-
ducing hallucinations and enhancing other LVLM-
related tasks. In particular, our approach signifi-
cantly improves performance compared to other
preference tuning methods in LVLMs. Addition-
ally, we demonstrate that POVID can redirect the
attention of LVLMs towards the image modality,
resulting in better modality alignment.

2 Preliminaries

Our approach aims to fine-tune LVLMs for bet-
ter aligning the image and text modalities uses the
framework of preference tuning from preferences
over responses. In this section, we will provide
some notations of LVLMs and an overview of di-
rect preference optimization (Rafailov et al., 2023).
Vision Large Language Models. LVLMs is an
multimodal extension of large language models,

which can generate sentences in an autoregressive
manner, aiming to progressively predict the proba-
bility distribution of the next token. Here, the input
prompt x contains both images and text prompts,
and the output contains text response y. A typical
application scenario for LVLMs is image caption-
ing and Vision Question Answering (VQA).
Direct Preference Optimization. Direct prefer-
ence optimization (DPO) (Rafailov et al., 2023)
leverages preference data for preference optimiza-
tion in language models. Here, the preference data
is defined as D = {z@, 4%,y 1V, where 3 and
y" represent preferred and dispreferred responses
given an input prompt z. 7(x,y) is defined as
the reward function. Following a Bradley-Terry
model (Bradley and Terry, 1952), the probably of
obtaining each preference pair is:

P =) = o(r(z, yw) —r(z,0)), (1)

where we omit the superscript (¢) for simplicity and
o(-) is defined as a sigmoid function. The DPO
loss can be formulated as classification loss over
the preference data as:
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DPO enables learning 7y from a fixed dataset of
preferences, which is lightweight. However, the
key challenge lies in generating effective prefer-
ence data for fine-tuning and aligning image and
text modalities in LVLMs.

3 Constructing Preferences to Aligning
Modalities in LVLMs

While preference learning approaches (e.g., DPO)
facilitate the lightweight training of LVLMs, they
require data in the form of preferences. In contrast
to LLMs, which support more freestyle generation
in many scenarios, LVLMs used in various applica-
tions, such as VQA or image captioning, produce
responses linked to input images. This inherent
image-centricity presents distinct challenges in the
preference data generation process for LVLMs, set-
ting it apart from the process in LLMs. Specifically,
in LVLMs, when comparing two responses, nei-
ther of which is correct for the required task (e.g.,
image captioning), the model may not be able to
accurately align the image with the response.

To address this challenge, we propose Preference
Optimization in LVLM with AI-Generated



Step 1: Hallucinating Textual Responses

Prompt: Describe this image.

Answer: The picture shows a table
with ..... The sun is shining in from
outside and everything is peaceful.
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Figure 1: The framework of POVID. The preference generation process is divided into two steps: hallucinating
textual responses and trigger dispreference during training. Here, different types of triggered hallucinations are

labeled in (types of hallucinations).

Dispreferences (POVID), a novel approach aimed
at better aligning image and text modalities. As
illustrated in Figure 1, POVID leverages Al models
to generate dispreferred responses without the need
for human labeling efforts. These generated dispre-
ferred responses, when combined with groundtruth
image descriptions (treated as preferred responses),
form the preference data pairs. Specifically, we em-
ploy two strategies to generate the dispreferred re-
sponse: (1) Firstly, we manipulate the groundtruth
response by transforming the groundtruth response
into hallucinated response, which serves as the dis-
preferred response; (2) Secondly, we introduce
distortion to the image input during the training
process, intending to trigger inherent hallucination
patterns within the LVLMs. These patterns are then
formalized as the dispreferred response, motivat-
ing the model to correct its inherent dispreferred
patterns. In the remainder of this section, we will
provide detailed explanations of both strategies and
demonstrate how to integrate them into the prefer-
ence training framework.

3.1 Hallucinating Textual Responses

In our first strategy, we aim to generate dispre-
ferred hallucinatory responses by hallucinating the
groundtruth correct response. We construct the hal-
lucinatory response based on a subset with 17K
examples that are randomly sampled from LLaVA-
Instruct-150K (Liu et al., 2023b) dataset. Here,
the LLaVA-Instruct-150K datasets is used to train
LLaVA LLaVA with supervised fine-tuning. The
17K examples includes various task types, includ-

ing image captioning, VQA and logical reasoning.

To construct the preferences, we treat the origi-
nal answers in the 17K examples as preferred re-
sponses. In terms of constructing dispreferred re-
sponses, we hallucinate the original answers using
GPT-4V (OpenAl, 2023). Here, we adopt two hal-
lucinating approaches tailored to different tasks:

1. Hallucinating Image Captioning Tasks. First,
we hallucinate the image captioning tasks by con-
sidering three fundamental causes of hallucina-
tion in LVLMs: (1) Object Co-occurrence: This
phenomenon arises when the training data con-
tains spurious co-occurring patterns between ob-
jects, leading LVLMs to generate objects based
on these learned spurious correlations. In this
context, we aim to leverage GPT-4V to deduce
object co-occurrence within the given image and
subsequently revise the original responses accord-
ingly; (2) Logical Relationships Between Entities:
This involves using GPT-4V to modify the relation-
ships between the original objects; (3) Incorrect
Attributes: In this case, we employ GPT-4V to alter
the attributes of various objects, such as changing
their colors. We illustrate these three distinct hal-
lucination scenarios with an example provided in
Figure 2(a). The prompt we used to generate the
dispreferred response is in Appendix A.2.

II. Hallucinating Reasoning Tasks. Secondly,
when dealing with tasks involving reasoning, such
as VQA and logical reasoning, we task GPT-4V
with modifying the reasoning process. This entails
introducing errors related to logical relationships,



a. Hallucinating Image Captioning Tasks

Preferred response

The image shows two men in a small boat on the water. One
man is standing near the center of the boat, while the other is
seated and rowing. The man wearing a headscarf is watching
television, which is placed on the boat, adding an interesting
element to the scene. There are a few other boats visible in the
background, indicating that they might be in a city river or a
busy waterway. The presence of the television in the boat
adds a unique touch to their leisurely activity.

Prompt: Describe this image.

Dis-preferred response

The image shows two men in a small boat on the water,
equipped with fishing poles (hallucinatory entity) for their
leisurely activity. One man is sitting near the center of the
boat (entity attributes), fishing with his fishing pole
(hallucinatory entity) , while the other is seated and rowing.
They are both watching a television (logical relationship),
which is placed on the boat, adding an interesting element to
the scene. There are a few other boats visible in the
background, indicating that they might be in a city river or a
busy waterway. The presence of the fishing poles and the
television in the boat adds a unique touch to their relaxing day
on the water.

b. Hallucinating Reasoning Tasks

Prompt: Is there a person standing next
to water in the image?

a lake and open sky.

water in the image.

Preferred response

Reasoning: The picture depicts a sunset scene in which I see

Answer: Yes, there is a person standing next to some blue

Dis-preferred response

Reasoning: The image depicts a sunset scene with a man
standing on an open ice field (false reasoning, hallucinatory
entities) with what appears to be a few buildings visible in
the distance.

Answer: No, the person is standing next to a vast snowy
field, not water (incorrect answer).

Figure 2: Two examples extracted from hallucinated image captioning tasks and reasoning tasks. Different types of

hallucinations are labeled in (types of hallucinations).

entity information, entity attributes, and more. Ad-
ditionally, we recommend that GPT-4V attempts
to make subtle changes to the reasoning process,
ensuring it remains independent of factual reason-
ing results, meaning that an incorrect reasoning
process may still yield correct results. However, if
the introduction of errors necessitates alterations to
the reasoning results, we instruct GPT-4V to adjust
the results accordingly. Likewise, in Figure 2(b),
we provide an example to demonstrate both the
original and the generated dispreferred responses.
The prompt we used is detailed in Appendix A.2.

3.2 Mitigating Inherent Hallucination
Patterns

In addition to generating the dispreferred response
using powerful external models like GPT-4V, we
also aim to provoke inherent hallucination patterns
to be finetuned. Our second strategy introduces
noise into the image to trigger inherent halluci-
nation patterns. This noise disrupts the LVLM’s
understanding of the image, leading it to produce
uncertain responses that rely more on textual con-
text or acquired knowledge from the training data.
This occurs because, in the presence of noisy im-
ages, the model tends to prioritize inherent object
associations over visual information. Notably, the
noise step should remain within a reasonable range,
ensuring that the image remains easily recognizable
by humans. For example, as depicted in Figure 3,
when presented with the context "There are a knife
and _", under specific noisy conditions, the like-

Question: Describe this image.
Answer: In the image, there are kniefand . f(ﬂ
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Figure 3: Illustration of logits for the next token gener-
ation with "In the image, there are knife and _". This
figure shows the predictive uncertainty in token gener-
ation, emphasizing the influence of visual cues from
objects identified as "knife" and "plate" (see Appendix
C.1 for more detailed discussion).

lihood of "fork" surpasses that of "plate" (ground
truth). This may occur because "knife" is more
likely to co-occur with "fork" in the training data.
With an increase in noise steps, the term "pixel" be-
comes predominant, owing to the noticeable noise
patterns within the image. We further demonstrate
the generalizability of this phenomenon through
experiments on multiple models and different im-
ages in Appendix C.1. Consequently, establishing
an appropriate noise step to trigger inherent hallu-
cination patterns is a reasonable approach.



To achieve this goal, we introduce diffusion
noise into the original image. We define the noise
step as k, and the noised image with step k can be
expressed as follows:

:r(k):\/fjk~z+\/l—£k~e, 3)

where & = H?:o & and & € (0,1) is a hyperpa-
rameter chosen prior to model training. Detailed
settings can be found in Appendix A.1. After ob-
taining the noised image, in order to more effec-
tively capture changes in inherent hallucination pat-
terns during the fine-tuning process of the LVLM,
we integrate the image noising process into the
DPO fine-tuning process. Specifically, for each in-
put prompt x, we take into account the dispreferred
responses from both the hallucinated text responses
discussed in Section 3.1 and the responses triggered
by distorted images. We then reformulate the DPO
loss as follows:

Lrovip = =B,y ,y))~D
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where «, £1 and (3 are coefficients that balance
preferred and dispreferred terms. yzg represents the
dispreferred response generated using the approach
outlined in Section 3.1. Additionally, ™ represents
the noisy image, which triggers the generation of
the dispreferred response y;*. It’s important to note
that for each token ¢ in the sequence y;’, the value
of y;"; is determined by selecting the maximum
probability from the set mo(- | 2", Yw,<i). Here,
each generated token in the dispreferred response
y;"; 18 conditioned on the prior tokens from the pre-
ferred response ¥, ;. This conditioning allows
us to control the reliability of the triggered dispre-
ferred response. As a result, we aim to capture the
most significant changes between the preferred and
dispreferred responses, since a substantial portion
of dispreferred response overlaps with preferred

response. The training process of our method is
detailed in Algorithm 1.

4 Experiment

In this section, we empirically investigate the ef-
fectiveness of POVID in aligning image and text
modalities in LVLMs and reducing hallucination.
We aim to answer the following questions: (1) Can

Algorithm 1 POVID Training Process

Require: D: Dataset of paired images and text
context. my: Parameters of the LVLM. mf:
Parameters of the reference model. «, 31, (5:
Hyperparameters. &;: Noise hyperparameter
for each timestep. T: Noise Steps.

1: AddNoiseTolmage(xg, k)

e ~N(0,1)

z(k) < V& o+ V1 — &€

Generate disprefered data and place it in D

Initialize reference policy 7y

for epochs do

for (z, yw,y}) € D do
for k =0to T do
x(k) « AddNoiseTolmage(z, k)
end for
Update my through Eq. (4)
end for
: end for
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POVID effectively reduce hallucination in LVLMs
compared to other preference fine-tuning strate-
gies? (2) Can hallucinating textual responses and
image distortion benefit performance? (3) How
does POVID change attention weights to align im-
age and text modalities?

4.1 Experimental Setups

In this section, we briefly introduce the implemen-
tation details, baselines, and evaluation settings.
Implementation Details. Following concurrent
LVLM preference tuning studies Yu et al. (2023b);
Li et al. (2023d), we choose LLaVA-1.5 (7B) as
our backbone model for all experiments and have
applied POVID to fine-tune LLaVA-1.5 (7B), in-
cluding both LoRA fine-tuning and full fine-tuning.
The training process is divided into two stages. In
the first stage, we exclusively utilize the prefer-
ences generated through the hallucinating textual
responses, as discussed in Section 3.1, to fine-tune
LLaVA-1.5 using DPO. In the second stage, we em-
ploy image distortion to rectify the model’s inher-
ent hallucinatory behaviors using the loss defined
in Eqn. (4). The first stage involves training for 3
epochs, and the second stage for 1 epoch. Please
refer to Appendix A.1 for more details.

Baseline Approaches. We first compare the pro-
posed approach with other LVLM preference tun-
ing methods, which include Silkie (Li et al., 2023d),
LLaVA-RLHF (Sun et al., 2023), and RLHF-V (Yu
et al., 2023b). These methods enhance model per-



formance by creating curated datasets and subse-
quently applying preference tuning techniques to
fine-tune the model based on these datasets. To
ensure a fair and equitable comparison, we utilize
the same curated datasets employed by these ap-
proaches and apply DPO to fine-tune LLaVA-1.5
(7B)’s LoRA parameters for the same number of
training epochs as in the first stage of POVID. Fur-
thermore, we compare the performance with other
open source LVLMs, including InstructBLIP (Dai
et al., 2023), Qwen-VL-Chat (Bai et al., 2023) and
mPLUG-OwI2 (Ye et al., 2023).

Evaluation Benchmark. To evaluate the perfor-
mance, we first adopt LVLM hallucination bench-
marks, including CHAIR (Rohrbach et al., 2018),
POPE (Li et al., 2023f), and MMHal (Sun et al.,
2023). In addition, we evaluate all approaches on
comprehensive LVLM evaluation benchmarks, in-
cluding SQA! (Lu et al., 2022), VQA"2 (Goyal
et al., 2017), GQA (Hudson and Manning, 2019),
VQAT (Singh et al., 2019), MME (Fu et al., 2023),
MMB (Liu et al., 2023c), MM-Vet (Yu et al.,
2023c) and LLaVA"W (Liu et al., 2023b). Detailed
descriptions of all benchmarks are in Appendix B.

4.2 Results

Comparison with Different Preferences in
LVLMs. In Table 1, we present the results
of a comparison between various LVLM prefer-
ences, evaluating both hallucination and compre-
hensive benchmarks. Firstly, in the hallucination
benchmarks, POVID effectively enhances perfor-
mance by creating dispreferred preferences through
textual data manipulation and image distortion.
We achieve a significant improvement of 17.08%
across all hallucination benchmarks, effectively re-
ducing hallucinations in the generated responses.
This outcome aligns with our expectations, as con-
structing dispreferences from the ground-truth cor-
rect responses maximally enables the model to dis-
cern differences between correct and incorrect re-
sponses while optimizing alignment between the
image and text modalities within the model. More-
over, in more comprehensive evaluation bench-
marks, which encompass not only factuality and
hallucination assessment but also other aspects,
POVID continues to demonstrate superior perfor-
mance when compared to other preference data col-
lection methods. This further indicates our model’s
capacity to enhance LVLM performance through
improved modality alignment.

Comparison with Open-Sourced LVLMs Mod-
els. We present a comparison between POVID and
other open-sourced LVLMs in Table 6 of Appendix.
Although various approaches utilize different im-
age and text encoders, POVID outperforms other
popular LVLMs in eight out of twelve benchmarks.
In contrast, the second-best baseline, Qwen-VL-
Chat, achieves the best performance in only three
out of twelve benchmarks. This underscores the
superiority of POVID and further corroborates its
effectiveness in aligning image and text modalities
to improve the performance of LVLMs.

4.3 Analysis

In this section, we provide a comprehensive analy-
sis to demonstrate how different components con-
tribute to the performance of POVID and illustrate
how POVID enhances overall performance. We
further conduct fine-grained analysis of different
preference collection strategies in Appendix D. In
addition, we discuss the compatibility of POVID
on other state-of-the-art open-source LVLMs.

Ablation Studies. To further demonstrate the es-
sential role of the key components of POVID in
contributing to performance, we conduct ablation
experiments on POVID (Full), and present the re-
sults in Table 2. In this ablation study, we evaluate
the effectiveness of two aspects: (1) hallucinat-
ing groundtruth responses and (2) image distortion.
According to the results, we initially observe that
image distortion can enhance performance across
all benchmarks. This indicates its effectiveness in
aligning multimodalities by compelling the model
to rectify inherent hallucination patterns. Addi-
tionally, generating dispreference from groundtruth
responses significantly enhances performance, un-
derscoring the effectiveness of the Al-generated
dispreference strategy. Finally, when combining
both strategies, POVID achieves the best perfor-
mance, further affirming its effectiveness in enhanc-
ing LVLMs through improved modality alignment.
Compatibility Analysis. To verify the compati-
bility of POVID we have migrated POVID to two
state-of-the-art LVLMs - SVIT (Zhao et al., 2023a)
and Vila (Lin et al., 2023), to validate its com-
patibility. For the experiments in this section, we
only fine-tuned the LoRA parameters of the lan-
guage models, with SVIT using a 13B-parameter
language model and Vila using a 7B-parameter lan-
guage model. The training setup is same as the
training of LLaVA shown in Appendix A.1. We



Table 1: Comparison between POVID and other preferences construction approaches in both hallucination and
comprehensive benchmarks. We bold the best and underline the second best results.

‘ Hallucination Benchmark ‘

Comprehensive Benchmark ‘

Method \ Cs C; POPE MMHal \ SQA! MM-Vet MMB LLaVAY MME VQA'? VQAT GQA \ Avg rank
LLaVA-1.5 66.8 127 8590 242 | 668 305 643 634 15107 785 582  62.0 43
+ Vlfeedback 563 114 8372 262 | 662 312 639 62.1 14327 773 575 632 4.6
+ Human-Preference | 54.0 93 8150 253 | 658  31.1 60.4 637 14906 784 586 613 44
+RLHF-V 446 79 8620 259 | 67.1 309 636 654 14892 782 583 621 3.5
+POVID (LoRA) |31.8 54 8690 269 | 688 318 649 687 14528 787 589 617 2.1
+POVID (Full) 335 57 8712 308 | 700 364  65.6 69.9  1449.1 786 578 620 2.0

Table 2: Results of ablation study. Text disprefer (Txt) indicates solely training with hallucinated responses. Image
distortion (Img) means that we use distorted images to trigger inherent hallucination patterns.

| Hallucination Benchmarks |

Comprehensive Benchmarks

Txt Img| Cs C; POPE MMHal | MME VQA" SQA'" GQA MM-Vet MMB LLaVAY VQA™?
x x |668 127 8590 242 [15107 785 582 620 305 643 634 78.5
v x |350 99 8701 267 |[14454 785 576 622 342 654 642 78.5
x v |450 107 8591 252 | 14407 782 541 599 318 634 660 78.2
v v [335 57 872 308 |1449.1 786 578 620 364 656  68.7 78.6

present the results in Table 3. POVID improves
the performance of both SVIT and Vila across sev-
eral benchmarks. For SVIT, POVID significantly
reduce the Cg and C; scores, indicating better per-
formance in captioning and the reliability of its
responses to images. Similarly, Vila also saw re-
ductions in Cg and C; scores, along with improve-
ments in other key benchmarks, demonstrating the
effectiveness and compatibility of POVID when in-
tegrated into these LVLMs. The results from Table
3 demonstrate the robustness and utility of PO-
VIDin enhancing performance and dependability
across various open-sourced LVLMs.

Modality Alignment Analysis. We assess the im-
pact of POVID on modality alignment by com-
paring the attention maps generated by POVID
with those of the original LLaVA-1.5 model, with
a specific focus on image captioning and VQA
tasks. We illustrate two cases in Figure 4, where
these attention maps reveal the distribution of at-
tention scores assigned to generated textual tokens
within the input image-text sequence throughout
the LVLM’s output generation phase. Our findings
reveal that the original LLaVA-1.5 model tends to
overemphasize the context of the text, which can
result in hallucinations. In contrast, POVID increas-
ingly prioritizes attention towards the image, indi-
cating a strong alignment between image and text
modalities. One potential explanation for this phe-
nomenon is that, through a comparison between the

ground truth and the generated dispreferred data,
along with the mitigation of internal hallucination
patterns, POVID redirects the LVLM’s attention,
leading to a greater focus on the image tokens.

5 Related Work

LVLMs and LVLM Hallucination. The ad-
vent of autoregressive large-scale language models
(LLMs), highlighted in works by (Touvron et al.,
2023a,b; Taori et al., 2023), has led to the develop-
ment of Vision-Large Language Models (LVLMs).
To align the image and text modalities, recent re-
search has concentrated on instruction tuning (Li
et al., 2023a), scaling up training dataset (Jia et al.,
2021), and better alignment between image and text
with local feature enhancement (Cha et al., 2023).
These advancements have successfully combined
LLMs with image inputs and excel in image com-
prehension. However, such LVLMs are not perfect
and even suffer from “hallucinations”, generating
outputs that may not accurately or faithfully repre-
sent the content of a user-provided image. There
are various sources of hallucinations in LVLMs, in-
cluding biased data (Chuang et al., 2023; Tu et al.,
2023), insufficient training (Chen et al., 2023), and
imperfect inference (Huang et al., 2023). Recently,
addressing hallucination in LVLMs is primarily
achieved through various techniques such as de-
coding approaches (Leng et al., 2023; Huang et al.,
2023), post-processing (Zhou et al., 2023; Yin et al.,



Table 3: The performance of POVID when migrated to other open-source LVLMs on comprehensive benchmarks.

Method Cs C; POPE MMHal VQA"? VQAT SQA' GQA MM-Vet MMB LLaVAY MME
SVIT 489 4.6 8625 271 803 608 700 641 342 686 67.4  1565.8
SVIT + POVID 424 43 8630 2.76 80.2 609 70.1 639 354  69.1 702 1560.2
Method Cs C; POPE MMHal VQA"? VQAT SQA' GQA MM-Vet MMB LLaVAY MME
Vila 263 6.6 855 256 799 644 682 623 349 689 69.7  1533.0
Vila+ POVID 234 61 861 261 81.2 644 687 621 363  69.2 699  1529.7

Captioning Task

Prompt: Describe this image.

POVID (ours) LLaVA-1.5

LLaVA 1.5

VQA Task
Prompt: Is there someone in this picture?

POVID (ours)

Visual tokens Textual tokens

Textual tokens

Visual tokens

Figure 4: Comparison of attention map between POVID and LLaVA-1.5 at different tasks. The red box region is
labeled with the image attentions that can be significantly improved by POVID.

2023) and the construction of higher-quality dataset
(Liu et al., 2023a; Li et al., 2023e). While these ap-
proaches can mitigate hallucination to some extent,
they often fail to directly guide LVLMs to align
image and text modalities.

Preference Alignment. Aligning with human pref-
erences for large models has emerged as a criti-
cal issue due to the limitations imposed by safety
and ethical considerations in real-world applica-
tions. Preference alignment can be broadly cat-
egorized into two main approaches: alignment
through feedback, which encompasses both human
(Bai et al., 2022; Rafailov et al., 2023) and Al-
generated feedback (Lee et al., 2023) and alignment
via prompt guidance (Wei et al., 2022). Initial in-
vestigations into preference alignment for LVLMs
have recently been conducted. Sun et al. (2023)
introduced LLaVA-RLHF, which utilizes a prefer-
ence dataset annotated by humans to decrease hal-
lucinations in LLaVA. Li et al. (2023d) proposed
a method for distilling preferences into LVLMs to
enhance their ability to generate relevant and ac-
curate responses based on visual context. Yu et al.
(2023b) collected human preferences in the form
of segment-level corrections to hallucinatory con-
tent and optimizing the model’s behavior based on
dense, direct feedback. While these initial results

are promising, these works heavily rely on the tradi-
tional preference data generation process in LLMs,
which generate both preferred and dispreferred re-
sponses, but none of them are guaranteed to be
correct. In LVLMs, when both responses prove
incorrect for the given task, accurately aligning the
image with the correct generated response becomes
challenging. In contrast, POVID directly generates
dispreferred responses, effectively addressing this
challenge.

6 Conclusion

In this work, we introduce a novel approach, Pref-
erence Optimization in LVLM with AI-Generated
Dispreferences (POVID) to address the challenges
in modality alignment for large vision-language
models. In POVID, we adopt two strategies to gen-
erate disprefered responses: first, we use synthetic
data from GPT-4V to inject plausible hallucinations
into the correct answer. Second, we use distorted
images to trigger the inherent hallucination behav-
ior of the LVLM. Then both of these answers are
integrated into an RLHF framework via Direct Pref-
erence Optimization. Empirical evaluations across
multiple benchmarks reveal that POVID not only
mitigates hallucination effectively but boosts the
overall performance of model.



7 Limitation

While our results provide significant insights into
the behavior of LVLMs under varying conditions,
several limitations of our study need to be ad-
dressed. The training and evaluation of the models
were conducted using high-performance hardware,
such as multiple A100 80G GPUs. This setup may
not be feasible for all research teams or practical
applications, potentially limiting the reproducibil-
ity and accessibility of our findings. Additionally,
the specific formula used to adjust the diffusion
noise level is manually designed rather than auto-
matically generated.
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A Experimental Setup and Prompt
Design

A.1 Training Setup

Training hyperparameters are shown in Table 4.
For the first phase, we trained for 3 epochs, and for
the second phase, the training was conducted for 1
epoch. Under the setup of DeepSpeed ZeRO2, for
POVID LoRA, we utilize a single A100 80G during
the training process, which takes approximately 6
hours. For POVID full, our first stage employs four
A100 80G, taking approximately 2.5 hours, while
the second stage utilizes eight A100 80G, taking
approximately 1 hour. For the second phase, we
adjust the diffusion noise level, symbolized by &
through a specific formula: { = Sigmoid(l;) x
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(0.5 x 1072 — 107°) + 10~°, where ¢ is drawn
from a normal distribution.

A.2 Construction of the Dispreference Dataset

This section details the prompts utilized to com-
pile the dataset focusing on dispreferences, specif-
ically within the realms of image captioning and
reasoning tasks. The prompts are designed to elicit
responses that reveal dispreference patterns, cat-
egorized into two main types: image captioning
tasks intended to provoke imaginative descriptions,
and reasoning tasks aimed at stimulating inferen-
tial thought processes. These prompts, central to
our methodology, are enumerated in Table 7, offer-
ing a comprehensive view of the data generation
framework.

B Details about Baselines and Benchmark

This section provides a detailed introduction to the
benchmarks used in the experimental part of this

paper.

e CHAIR, including CHAIRg (Cg) and CHAIR;
(C;), is a metric used in image captioning tasks
to evaluate the accuracy of object descriptions in
captions. It compares the objects mentioned in a
caption with those present in the image.

e MMHal (Sun et al., 2023) assesses hallucina-
tions and response informativeness by utilizing
GPT-4V to compare model output with human
responses and various object labels, determining
the scores accordingly.

* POPE (Li et al., 2023f) uses a set of binary clas-
sification tasks, prompting LVLMs with simple
Yes-or-No questions about the existence of cer-
tain objects in images.

* MME (Fu et al., 2023) is a comprehensive evalu-
ation tool designed to measure both perception
and cognition abilities across 14 sub-tasks for
LVLMs.

¢ MMB: MMbench (Liu et al., 2023c¢) is known
for its approach to assessing both perception and
reasoning abilities, categorized into top-level di-
mensions in the ability taxonomy. This bench-
mark includes different levels of abilities, each
encompassing specific aspects of perception and
reasoning.

* MM-Vet (Yu et al., 2023c) focuses on evaluating
six core capabilities: recognition, knowledge,



Table 4: Training hyperparameters.

Hyperparameters

lora_r 128
lora_alpha 256
lora_target all
mm_projector_lIr 2e-5
Batch size 1
Learning rate le-7
model_max_length 1024

noise_step (only for internal preference optimization) 500

Table 5: Fine-grained performance comparison of various models on LLaVAW, where we adopt the following
abbreviation: Convo for Conversation, Captioning for Detail description, Reasoning for Complex reasoning.

Method Convo Captioning Reasoning Overall
LLaVA-1.5 53.3 534 79.6 63.4
+ Vlfeedback 51.3 49.3 78.5 62.1
+ Human-Preference | 49.6 43.3 81.3 63.7
+ RLHF-V 55.8 56.1 80.3 65.4
+ POVID (LoRA) 55.9 60.1 81.5 68.7
+ POVID (Full) 56.5 67.2 81.7 69.9

CHAIR, Scores Over Steps for Different VLLMs

—e— svit
—&— vila
LLaVA-1.5

0.8

0.6

CHAIR,

0.4

0.2

0.0

0 200 400 600 800
Steps

Figure 5: Comparison of CHAIR; scores on different LVLMs across various noise levels.

OCR, spatial awareness, language generation, is paired with a detailed, manually crafted de-

and math. These capabilities cover a wide range scription and a carefully chosen set of questions,

of functions, from general visual recognition to totaling 60 questions. This setup aims to provide

specific tasks like arithmetic problem-solving. a thorough and varied evaluation of the models’
capabilities.

« LLaVA"W: LLaVA-bench (Liu et al., 2023b) as-
sesses models in more complex tasks and their
adaptability to new domains. It consists of 24  « VQAY? (Goyal et al., 2017) is a dataset com-

diverse images, encompassing a variety of scenes prising open-ended questions related to images,
such as indoor and outdoor settings, memes, demanding comprehension of vision, language,
paintings, and sketches. Each image in LLaVAW and commonsense knowledge for answers.
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Table 6: Comparison between POVID and other state-of-the-art LVLMs across both hallucination and comprehensive
benchmarks. We bold the best results and underline the second best results. Notably, when LLaVA-1.5 7B utilizes
POVID for preference learning, it can achieves an average rank at 2.0 over other open-source models across all

benchmarks.
Method ‘ Vision Encoder Language Model ‘ Cs C; POPE MMHal VQAV2 VQAT
InstructBLIP ViT-g (1.3B) Vicuna (7B) 40.0 8.0 77.83 2.10 70.1 50.1
Qwen-VL-Chat ViT-G (1.9B) Qwen (7B) 482 9.1  87.07 2.89 78.2 61.5
mPLUG-OwI2 ViT-L (0.3B) LLaMA (7B) 54.4 12.0 86.20 2.17 79.4 58.2
LLaVA-1.5 + POVID (LoRA) | ViT-L (0.3B) Vicuna (7B) 318 54 8690 2.69 78.7 58.9
LLaVA-1.5 + POVID (Full) ViT-L (0.3B) Vicuna (7B) 33.5 5.7 87.12 3.08 78.6 57.8
Method | Vision Encoder Language Model | SQA" GQA MM-Vet MMB LLaVAY MME
InstructBLIP ViT-g (1.3B) Vicuna (7B) 60.5 492 26.2 36.0 60.9 1212.8
Qwen-VL-Chat ViT-G (1.9B) Qwen (7B) 682 575 41.2 60.6 67.7 1487.5
mPLUG-OwI2 ViT-L (0.3B) LLaMA (7B) 64.5 56.1 36.2 64.5 59.9 1450.2
LLaVA-1.5 + POVID (LoRA) | ViT-L (0.3B) Vicuna (7B) 68.8 61.7 31.8 64.9 68.7 1452.8
LLaVA-1.5 + POVID (Full) ViT-L (0.3B) Vicuna (7B) 70.0 62.0 36.4 65.6 69.9 1449.1

GQA (Hudson and Manning, 2019) is a novel
dataset tailored for real-world visual reasoning
and compositional question answering. It ad-
dresses shortcomings of previous VQA datasets
by leveraging scene graph structures and a robust
question engine to generate 22 million diverse
reasoning questions, each paired with functional
programs representing their semantics.

VQAT: TextVQA (Singh et al., 2019) is a dataset
aimed at addressing the significant challenge of
visually impaired users reading text in images of
their surroundings. It consists of 45,336 ques-
tions and 28,408 images, requiring reasoning
about text in the images to answer. SQA': SciQA-
IMG (Lu et al., 2022) is a new benchmark dataset
designed to assess the multi-hop reasoning capa-
bility and interpretability of artificial intelligence
systems on multimodal multiple-choice scientific
questions. It consists of approximately 21,000
diverse science-themed questions, along with an-
notated answers and corresponding lecture and
explanation annotations.

SQA! (Lu et al., 2022): ScienceQA is a new
benchmark dataset designed to evaluate the multi-
hop reasoning ability and interpretability of Al
systems. ScienceQA consists of approximately
21,000 multimodal multiple-choice science ques-
tions, covering a variety of scientific topics, and
provides annotations of the answers along with
corresponding lectures and explanations.

13

C Experimental Supplement for Inherent

Hallucination Pattern

C.1 The Impact of Noise Levels on Inherent
Hallucination Pattern in LVLMs

To further demonstrate that noise in the image con-
tributes to activating inherent hallucination patterns,
we compare CHAIR scores on LLaVA, svit and
Vila across different noise levels. The experimen-
tal settings align with the hallucination evaluation
benchmark CHAIR. As illustrated in Figure 5, it is
evident that as noise levels increase, the CHAIR ;
scores also tend to rise, indicating a higher occur-
rence of hallucinations.

D Fine-grained Performance Analysis

Table 5 presents a fine-grained performance anal-
ysis of different preference collection strategies
on the LLaVA-Bench benchmark. This analysis
encompasses a spectrum of multi-modal reason-
ing and perception dimensions, such as Conver-
sation, Detail Description, and Complex Reason-
ing. According to Table 5, it is evident that, when
compared with other preference data collection ap-
proaches, POVID excels in image captioning and
providing detailed descriptions for a given image.
This outcome aligns with our expectations, as our
training data includes various long-form captions,
and such comprehensive preference comparisons
result in improved alignment and stronger image
captioning results.



Table 7: Two types of prompts to GPT4V (The format of the obtained data is {image, prefer data, disprefer data}).

Prompts for hallucinating image captioning tasks:

Help me generate one highly confusing response based on the image and the standard caption in the
Question-Answer Pair.

st sfe sfe sfe sfe sfe sfe sfe sfe sfe she she sfe sfe she she she she she she she sk ske sk sk sk sk stk

Question-answer Pair:

Q: {question}

A: {answer}

Requirements:

(1) The generated caption is generally similar to the given A, with the same main meaning; (2) You
can refer to the following errors to generate the wrong caption (1. The wrong caption can contain
some co-occurring objects, which are prone to appear in such scenarios but do not appear in the
image; 2. The wrong caption can be an error in the number of entities or the logical relationships
between entities; 3. The attributes of entities in the caption can also be modified, such as color,
appearance, etc.) (3) Compared to the original caption A, the caption you modified is incorrect based

on the provided image.
st sfe st sfe sfe sfe sfe sfe s she she sk she she sk she she she sk ske sk ske sk sk sk sk sk

Output Format:

Answer: your answer

Prompts for hallucinating reasoning tasks:

Now, please help me generate new answers with hallucination errors based on the image, question,
and answer provided. There are two cases now:

1. If the given question and answer are short and do not require logical reasoning, then modify the
answer to a hallucination error answer, such as some quantity errors or entity and property errors.

2. If the entire question requires logical reasoning, then help me reorganize the answers based on the
given image, questions, and answers into the format “Reason: xxx, Result: xxx" (Answer 1). Modify
the reasons by introducing errors related to logical relationships, entity information, entity attributes,
etc. If the error in the reason would lead to a new result, modify the result accordingly. If the error
does not lead to a new result, keep the original result. Similarly, organize it in the format “Reason:
xxx, Result: xxx" (Answer 2).

sk st s ke sk ke sfeoste sk st sk st s sk sk sk sk s sk sk sk sk sfeoste sk sk st stk sk skokeoskokesk

Question-answer Pair:

Q: {question}

A: {answer}

Requirements:

(1) The generated wrong answer and reasoning process should be combined with the image and be
misleading..

sk st st sk st sfeste sk sk sk st sk sk sk sk sk s st seoste s skt sheoste st sk sk s stk skoske skokeoskokesk

Output Format:

Answer: your answer
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