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Abstract

Instruction-following Large Vision Language001
Models (LVLMs) have achieved significant002
progress recently on a variety of tasks. These003
approaches merge strong pre-trained vision004
models and large language models (LLMs).005
Since these components are trained sepa-006
rately, the learned representations need to be007
aligned with joint training on additional image-008
language pairs. This procedure is not perfect009
and can cause the model to hallucinate - provide010
answers that do not accurately reflect the image,011
even when the core LLM is highly factual and012
the vision backbone has sufficiently complete013
representations. In this work, we frame the014
hallucination problem as an alignment issue,015
tackle it with preference tuning. Specifically,016
we propose POVID to generate feedback data017
with AI models. We use ground-truth instruc-018
tions as the preferred response and a two-stage019
approach to generate dispreferred data. First,020
we prompt GPT-4V to inject plausible hallu-021
cinations into the correct answer. Second, we022
distort the image to trigger the inherent hal-023
lucination behavior of the LVLM. This is an024
automated approach, which does not rely on hu-025
man data generation or require a perfect expert,026
which makes it easily scalable. Finally, both027
of these generation strategies are integrated028
into an preference optimization pipeline. In ex-029
periments across broad benchmarks, we show030
that we can not only reduce hallucinations, but031
improve model performance across standard032
benchmarks, outperforming prior approaches.033

1 Introduction034

Large Vision Language Models (LVLMs) have035

achieved significant success in various vision under-036

standing tasks, such as image captioning (Vinyals037

et al., 2015; Li et al., 2022, 2023c) and vision ques-038

tion answering (Ye et al., 2023; Antol et al., 2015).039

These LVLM models fuse larger-scale pre-trained040

vision models into the representation space of a041

large language models (LLM), allowing the LLM042

access to the visual representations. However, such 043

LVLMs are not perfect and even suffer from “hal- 044

lucinations", a phenomenon in which the language 045

model generates content that is not grounded in the 046

image, such as imagined objects and even scenes, 047

wrong spatial relationships or categories, etc. Such 048

artifacts are present even when both the vision back- 049

bone produces high-quality visual features and the 050

language model itself is factual and accurate. These 051

issues can pose significant risks when LVLMs are 052

deployed in high-stakes scenarios, such as medi- 053

cal domains (Li et al., 2023b) or autonomous driv- 054

ing (Dewangan et al., 2023). 055

As discussed by Cui et al. (2023), the potential 056

reason for hallucinations in LVLMs lies in their 057

tendency to prioritize common sense present in the 058

training language data, often disregarding the ac- 059

tual visual input information. In this paper, we 060

attribute this issue to the lack of alignment between 061

the image and text modalities, resulting in a re- 062

duced focus on input image information. Recent 063

research efforts have sought to enhance the align- 064

ment between modalities through preference fine- 065

tuning techniques, such as reinforcement learning 066

from human feedback (RLHF) (Sun et al., 2023). 067

Concurrent works (Li et al., 2023d; Zhao et al., 068

2023b) also use the Direct Preference Optimization 069

(DPO) framework, but they rely on the traditional 070

preference data generation process in LLMs, where 071

both preferred and dispreferred responses may po- 072

tentially be incorrect. However, in LVLMs, the 073

produced responses are centered around the im- 074

age data rather than being generated freely like 075

in LLMs. When comparing two responses, both 076

of which may be incorrect for the given task, the 077

model may struggle to accurately align the image 078

with the correct generated response. In (Yu et al., 079

2023a) the authors propose to solve this issue by 080

collection corrective feedback, which shows strong 081

results, but relies on costly human data gathering. 082

Unlike prior works that generate both preferred 083
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and dispreferred data, we propose Preference084

Optimization in LVLM with AI-Generated085

Dispreferences (POVID) framework, aiming to ex-086

clusively generate dispreferred feedback data using087

AI models. In POVID we employ a high-quality088

ground truth multi-modal instruction as the pre-089

ferred answer and employ two strategies to gener-090

ate dispreferred responses. First, we utilize GPT-091

4V to introduce plausible hallucinations into the092

answer, which we then use as the dispreferred re-093

sponse. Second, we aim to provoke inherent hal-094

lucination patterns and subsequently correct them095

within the target LVLM that requires fine-tuning.096

We achieve this goal by introducing noise, trig-097

gering inherent hallucination patterns within the098

LVLMs. The introduction of noise disrupts the099

LVLM’s comprehension of the image, leading it to100

generate uncertain responses that rely more on tex-101

tual context or the knowledge it has acquired from102

the training data. Given that the inherent halluci-103

nation patterns of the target LVLM evolve during104

the training process, the response generation with105

the noisy image occurs in real-time during training,106

and this is treated as dispreference. Finally, we107

integrate both forms of dispreference into the DPO108

optimization framework, specifically targeting the109

alignment of language generation with the image.110

The primary contribution of this paper is POVID,111

which aligns the image and text modalities in112

LVLMs. This approach explicitly contrasts a hal-113

lucinatory answer with a truthful one, eliminating114

the need for gathering human feedback and making115

it easily deployable at scale. Our empirical results116

demonstrate the promise of our framework in re-117

ducing hallucinations and enhancing other LVLM-118

related tasks. In particular, our approach signifi-119

cantly improves performance compared to other120

preference tuning methods in LVLMs. Addition-121

ally, we demonstrate that POVID can redirect the122

attention of LVLMs towards the image modality,123

resulting in better modality alignment.124

2 Preliminaries125

Our approach aims to fine-tune LVLMs for bet-126

ter aligning the image and text modalities uses the127

framework of preference tuning from preferences128

over responses. In this section, we will provide129

some notations of LVLMs and an overview of di-130

rect preference optimization (Rafailov et al., 2023).131

Vision Large Language Models. LVLMs is an132

multimodal extension of large language models,133

which can generate sentences in an autoregressive 134

manner, aiming to progressively predict the proba- 135

bility distribution of the next token. Here, the input 136

prompt x contains both images and text prompts, 137

and the output contains text response y. A typical 138

application scenario for LVLMs is image caption- 139

ing and Vision Question Answering (VQA). 140

Direct Preference Optimization. Direct prefer- 141

ence optimization (DPO) (Rafailov et al., 2023) 142

leverages preference data for preference optimiza- 143

tion in language models. Here, the preference data 144

is defined as D = {x(i), y
(i)
w , y

(i)
l }Ni=1, where y

(i)
w and 145

y
(i)
l represent preferred and dispreferred responses 146

given an input prompt x. r(x, y) is defined as 147

the reward function. Following a Bradley-Terry 148

model (Bradley and Terry, 1952), the probably of 149

obtaining each preference pair is: 150

p(yw ≻ yl) = σ(r(x, yw)− r(x, yl)), (1) 151

where we omit the superscript (i) for simplicity and 152

σ(·) is defined as a sigmoid function. The DPO 153

loss can be formulated as classification loss over 154

the preference data as: 155

LDPO(πθ;πref) = −E(x,yw,yl)∼D[
log σ

(
α log

πθ(yw|x)
πref(yw|x)

− α log
πθ(yl|x)
πref(yl|x)

)]
.

(2) 156

DPO enables learning πθ from a fixed dataset of 157

preferences, which is lightweight. However, the 158

key challenge lies in generating effective prefer- 159

ence data for fine-tuning and aligning image and 160

text modalities in LVLMs. 161

3 Constructing Preferences to Aligning 162

Modalities in LVLMs 163

While preference learning approaches (e.g., DPO) 164

facilitate the lightweight training of LVLMs, they 165

require data in the form of preferences. In contrast 166

to LLMs, which support more freestyle generation 167

in many scenarios, LVLMs used in various applica- 168

tions, such as VQA or image captioning, produce 169

responses linked to input images. This inherent 170

image-centricity presents distinct challenges in the 171

preference data generation process for LVLMs, set- 172

ting it apart from the process in LLMs. Specifically, 173

in LVLMs, when comparing two responses, nei- 174

ther of which is correct for the required task (e.g., 175

image captioning), the model may not be able to 176

accurately align the image with the response. 177

To address this challenge, we propose Preference 178

Optimization in LVLM with AI-Generated 179

2



Prompt: Describe this image.
Answer: The picture shows a table
with ….. The sun is shining in from
outside and everything is peaceful.

Prompt: Describe this image.
Answer: The picture shows a table with a fruit knife (hallucinatory
entity) …twenty oranges (entity attributes)... The moon (logical
relationship) is shining in from outside and everything is peaceful.

Preferred data

Injected dis-preferred 
response 𝑦!"

Image Distorted image

Hallucination
Injection

Step 1: Hallucinating Textual Responses Step 2: Mitigating Inherent Hallucination Patterns

𝑦!"

Triggered 
dis-preferred 
response

A fruit knife, apples (internal hallucination). …

Real-time 
triggering process

𝑦!"𝑦𝑤

>

𝑦!#

LLaVA-1.5

Preference optimization

Final model

)(

Figure 1: The framework of POVID. The preference generation process is divided into two steps: hallucinating
textual responses and trigger dispreference during training. Here, different types of triggered hallucinations are
labeled in (types of hallucinations).

Dispreferences (POVID), a novel approach aimed180

at better aligning image and text modalities. As181

illustrated in Figure 1, POVID leverages AI models182

to generate dispreferred responses without the need183

for human labeling efforts. These generated dispre-184

ferred responses, when combined with groundtruth185

image descriptions (treated as preferred responses),186

form the preference data pairs. Specifically, we em-187

ploy two strategies to generate the dispreferred re-188

sponse: (1) Firstly, we manipulate the groundtruth189

response by transforming the groundtruth response190

into hallucinated response, which serves as the dis-191

preferred response; (2) Secondly, we introduce192

distortion to the image input during the training193

process, intending to trigger inherent hallucination194

patterns within the LVLMs. These patterns are then195

formalized as the dispreferred response, motivat-196

ing the model to correct its inherent dispreferred197

patterns. In the remainder of this section, we will198

provide detailed explanations of both strategies and199

demonstrate how to integrate them into the prefer-200

ence training framework.201

3.1 Hallucinating Textual Responses202

In our first strategy, we aim to generate dispre-203

ferred hallucinatory responses by hallucinating the204

groundtruth correct response. We construct the hal-205

lucinatory response based on a subset with 17K206

examples that are randomly sampled from LLaVA-207

Instruct-150K (Liu et al., 2023b) dataset. Here,208

the LLaVA-Instruct-150K datasets is used to train209

LLaVA LLaVA with supervised fine-tuning. The210

17K examples includes various task types, includ-211

ing image captioning, VQA and logical reasoning. 212

To construct the preferences, we treat the origi- 213

nal answers in the 17K examples as preferred re- 214

sponses. In terms of constructing dispreferred re- 215

sponses, we hallucinate the original answers using 216

GPT-4V (OpenAI, 2023). Here, we adopt two hal- 217

lucinating approaches tailored to different tasks: 218

I. Hallucinating Image Captioning Tasks. First, 219

we hallucinate the image captioning tasks by con- 220

sidering three fundamental causes of hallucina- 221

tion in LVLMs: (1) Object Co-occurrence: This 222

phenomenon arises when the training data con- 223

tains spurious co-occurring patterns between ob- 224

jects, leading LVLMs to generate objects based 225

on these learned spurious correlations. In this 226

context, we aim to leverage GPT-4V to deduce 227

object co-occurrence within the given image and 228

subsequently revise the original responses accord- 229

ingly; (2) Logical Relationships Between Entities: 230

This involves using GPT-4V to modify the relation- 231

ships between the original objects; (3) Incorrect 232

Attributes: In this case, we employ GPT-4V to alter 233

the attributes of various objects, such as changing 234

their colors. We illustrate these three distinct hal- 235

lucination scenarios with an example provided in 236

Figure 2(a). The prompt we used to generate the 237

dispreferred response is in Appendix A.2. 238

II. Hallucinating Reasoning Tasks. Secondly, 239

when dealing with tasks involving reasoning, such 240

as VQA and logical reasoning, we task GPT-4V 241

with modifying the reasoning process. This entails 242

introducing errors related to logical relationships, 243
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The image shows two men in a small boat on the water. One 
man is standing near the center of the boat, while the other is 
seated and rowing. The man wearing a headscarf is watching 
television, which is placed on the boat, adding an interesting 
element to the scene. There are a few other boats visible in the 
background, indicating that they might be in a city river or a 
busy waterway. The presence of the television in the boat 
adds a unique touch to their leisurely activity.

The image shows two men in a small boat on the water, 
equipped with fishing poles (hallucinatory entity) for their 
leisurely activity. One man is sitting near the center of the 
boat (entity attributes), fishing with his fishing pole 
(hallucinatory entity) , while the other is seated and rowing. 
They are both watching a television (logical relationship), 
which is placed on the boat, adding an interesting element to 
the scene. There are a few other boats visible in the 
background, indicating that they might be in a city river or a 
busy waterway. The presence of the fishing poles and the 
television in the boat adds a unique touch to their relaxing day 
on the water.

Preferred response Dis-preferred response
Prompt: Describe this image.

Reasoning: The picture depicts a sunset scene in which I see 
a lake and open sky.
Answer: Yes, there is a person standing next to some blue 
water in the image.

Reasoning: The image depicts a sunset scene with a man 
standing on an open ice field (false reasoning, hallucinatory 
entities) with what appears to be a few buildings visible in 
the distance.
Answer: No, the person is standing next to a vast snowy 
field, not water (incorrect answer).

Prompt: Is there a person standing next 
to water in the image?

a. Hallucinating Image Captioning Tasks

b. Hallucinating Reasoning Tasks

Dis-preferred responsePreferred response

Figure 2: Two examples extracted from hallucinated image captioning tasks and reasoning tasks. Different types of
hallucinations are labeled in (types of hallucinations).

entity information, entity attributes, and more. Ad-244

ditionally, we recommend that GPT-4V attempts245

to make subtle changes to the reasoning process,246

ensuring it remains independent of factual reason-247

ing results, meaning that an incorrect reasoning248

process may still yield correct results. However, if249

the introduction of errors necessitates alterations to250

the reasoning results, we instruct GPT-4V to adjust251

the results accordingly. Likewise, in Figure 2(b),252

we provide an example to demonstrate both the253

original and the generated dispreferred responses.254

The prompt we used is detailed in Appendix A.2.255

3.2 Mitigating Inherent Hallucination256

Patterns257

In addition to generating the dispreferred response258

using powerful external models like GPT-4V, we259

also aim to provoke inherent hallucination patterns260

to be finetuned. Our second strategy introduces261

noise into the image to trigger inherent halluci-262

nation patterns. This noise disrupts the LVLM’s263

understanding of the image, leading it to produce264

uncertain responses that rely more on textual con-265

text or acquired knowledge from the training data.266

This occurs because, in the presence of noisy im-267

ages, the model tends to prioritize inherent object268

associations over visual information. Notably, the269

noise step should remain within a reasonable range,270

ensuring that the image remains easily recognizable271

by humans. For example, as depicted in Figure 3,272

when presented with the context "There are a knife273

and _", under specific noisy conditions, the like-274

Figure 3: Illustration of logits for the next token gener-
ation with "In the image, there are knife and _". This
figure shows the predictive uncertainty in token gener-
ation, emphasizing the influence of visual cues from
objects identified as "knife" and "plate" (see Appendix
C.1 for more detailed discussion).

lihood of "fork" surpasses that of "plate" (ground 275

truth). This may occur because "knife" is more 276

likely to co-occur with "fork" in the training data. 277

With an increase in noise steps, the term "pixel" be- 278

comes predominant, owing to the noticeable noise 279

patterns within the image. We further demonstrate 280

the generalizability of this phenomenon through 281

experiments on multiple models and different im- 282

ages in Appendix C.1. Consequently, establishing 283

an appropriate noise step to trigger inherent hallu- 284

cination patterns is a reasonable approach. 285
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To achieve this goal, we introduce diffusion286

noise into the original image. We define the noise287

step as k, and the noised image with step k can be288

expressed as follows:289

x(k) =

√
ξ̄k · x+

√
1− ξ̄k · ϵ, (3)290

where ξ̄t =
∏k

i=0 ξi and ξk ∈ (0, 1) is a hyperpa-291

rameter chosen prior to model training. Detailed292

settings can be found in Appendix A.1. After ob-293

taining the noised image, in order to more effec-294

tively capture changes in inherent hallucination pat-295

terns during the fine-tuning process of the LVLM,296

we integrate the image noising process into the297

DPO fine-tuning process. Specifically, for each in-298

put prompt x, we take into account the dispreferred299

responses from both the hallucinated text responses300

discussed in Section 3.1 and the responses triggered301

by distorted images. We then reformulate the DPO302

loss as follows:303

LPOVID = −E(x,yw,yl)∼D

[
log σ

(
α log

πθ(yw|x)
πref(yw|x)

−
(
β1 log

πθ(y
t
l |x)

πref(yt
l |x)

+ β2 log
πθ(y

n
l |xn)

πref(yn
l |xn)

))]
,

(4)304

where α, β1 and β2 are coefficients that balance305

preferred and dispreferred terms. ygl represents the306

dispreferred response generated using the approach307

outlined in Section 3.1. Additionally, xn represents308

the noisy image, which triggers the generation of309

the dispreferred response ynl . It’s important to note310

that for each token i in the sequence ynl , the value311

of ynl,i is determined by selecting the maximum312

probability from the set πθ(· | xn, yw,<i). Here,313

each generated token in the dispreferred response314

ynl,i is conditioned on the prior tokens from the pre-315

ferred response yw,<i. This conditioning allows316

us to control the reliability of the triggered dispre-317

ferred response. As a result, we aim to capture the318

most significant changes between the preferred and319

dispreferred responses, since a substantial portion320

of dispreferred response overlaps with preferred321

response. The training process of our method is322

detailed in Algorithm 1.323

4 Experiment324

In this section, we empirically investigate the ef-325

fectiveness of POVID in aligning image and text326

modalities in LVLMs and reducing hallucination.327

We aim to answer the following questions: (1) Can328

Algorithm 1 POVID Training Process

Require: D: Dataset of paired images and text
context. πθ: Parameters of the LVLM. πref:
Parameters of the reference model. α, β1, β2:
Hyperparameters. ξk: Noise hyperparameter
for each timestep. T : Noise Steps.

1: AddNoiseToImage(x0, k)
ϵ ∼ N(0, 1)

x(k)←
√
ξ̄k · x0 +

√
1− ξ̄k · ϵ

2: Generate disprefered data and place it in D
3: Initialize reference policy πθ
4: for epochs do
5: for (x, yw, y

t
l ) ∈ D do

6: for k = 0 to T do
7: x(k)← AddNoiseToImage(x, k)
8: end for
9: Update πθ through Eq. (4)

10: end for
11: end for

POVID effectively reduce hallucination in LVLMs 329

compared to other preference fine-tuning strate- 330

gies? (2) Can hallucinating textual responses and 331

image distortion benefit performance? (3) How 332

does POVID change attention weights to align im- 333

age and text modalities? 334

4.1 Experimental Setups 335

In this section, we briefly introduce the implemen- 336

tation details, baselines, and evaluation settings. 337

Implementation Details. Following concurrent 338

LVLM preference tuning studies Yu et al. (2023b); 339

Li et al. (2023d), we choose LLaVA-1.5 (7B) as 340

our backbone model for all experiments and have 341

applied POVID to fine-tune LLaVA-1.5 (7B), in- 342

cluding both LoRA fine-tuning and full fine-tuning. 343

The training process is divided into two stages. In 344

the first stage, we exclusively utilize the prefer- 345

ences generated through the hallucinating textual 346

responses, as discussed in Section 3.1, to fine-tune 347

LLaVA-1.5 using DPO. In the second stage, we em- 348

ploy image distortion to rectify the model’s inher- 349

ent hallucinatory behaviors using the loss defined 350

in Eqn. (4). The first stage involves training for 3 351

epochs, and the second stage for 1 epoch. Please 352

refer to Appendix A.1 for more details. 353

Baseline Approaches. We first compare the pro- 354

posed approach with other LVLM preference tun- 355

ing methods, which include Silkie (Li et al., 2023d), 356

LLaVA-RLHF (Sun et al., 2023), and RLHF-V (Yu 357

et al., 2023b). These methods enhance model per- 358

5



formance by creating curated datasets and subse-359

quently applying preference tuning techniques to360

fine-tune the model based on these datasets. To361

ensure a fair and equitable comparison, we utilize362

the same curated datasets employed by these ap-363

proaches and apply DPO to fine-tune LLaVA-1.5364

(7B)’s LoRA parameters for the same number of365

training epochs as in the first stage of POVID. Fur-366

thermore, we compare the performance with other367

open source LVLMs, including InstructBLIP (Dai368

et al., 2023), Qwen-VL-Chat (Bai et al., 2023) and369

mPLUG-Owl2 (Ye et al., 2023).370

Evaluation Benchmark. To evaluate the perfor-371

mance, we first adopt LVLM hallucination bench-372

marks, including CHAIR (Rohrbach et al., 2018),373

POPE (Li et al., 2023f), and MMHal (Sun et al.,374

2023). In addition, we evaluate all approaches on375

comprehensive LVLM evaluation benchmarks, in-376

cluding SQAI (Lu et al., 2022), VQAv2 (Goyal377

et al., 2017), GQA (Hudson and Manning, 2019),378

VQAT (Singh et al., 2019), MME (Fu et al., 2023),379

MMB (Liu et al., 2023c), MM-Vet (Yu et al.,380

2023c) and LLaVAW (Liu et al., 2023b). Detailed381

descriptions of all benchmarks are in Appendix B.382

4.2 Results383

Comparison with Different Preferences in384

LVLMs. In Table 1, we present the results385

of a comparison between various LVLM prefer-386

ences, evaluating both hallucination and compre-387

hensive benchmarks. Firstly, in the hallucination388

benchmarks, POVID effectively enhances perfor-389

mance by creating dispreferred preferences through390

textual data manipulation and image distortion.391

We achieve a significant improvement of 17.08%392

across all hallucination benchmarks, effectively re-393

ducing hallucinations in the generated responses.394

This outcome aligns with our expectations, as con-395

structing dispreferences from the ground-truth cor-396

rect responses maximally enables the model to dis-397

cern differences between correct and incorrect re-398

sponses while optimizing alignment between the399

image and text modalities within the model. More-400

over, in more comprehensive evaluation bench-401

marks, which encompass not only factuality and402

hallucination assessment but also other aspects,403

POVID continues to demonstrate superior perfor-404

mance when compared to other preference data col-405

lection methods. This further indicates our model’s406

capacity to enhance LVLM performance through407

improved modality alignment.408

Comparison with Open-Sourced LVLMs Mod- 409

els. We present a comparison between POVID and 410

other open-sourced LVLMs in Table 6 of Appendix. 411

Although various approaches utilize different im- 412

age and text encoders, POVID outperforms other 413

popular LVLMs in eight out of twelve benchmarks. 414

In contrast, the second-best baseline, Qwen-VL- 415

Chat, achieves the best performance in only three 416

out of twelve benchmarks. This underscores the 417

superiority of POVID and further corroborates its 418

effectiveness in aligning image and text modalities 419

to improve the performance of LVLMs. 420

4.3 Analysis 421

In this section, we provide a comprehensive analy- 422

sis to demonstrate how different components con- 423

tribute to the performance of POVID and illustrate 424

how POVID enhances overall performance. We 425

further conduct fine-grained analysis of different 426

preference collection strategies in Appendix D. In 427

addition, we discuss the compatibility of POVID 428

on other state-of-the-art open-source LVLMs. 429

Ablation Studies. To further demonstrate the es- 430

sential role of the key components of POVID in 431

contributing to performance, we conduct ablation 432

experiments on POVID (Full), and present the re- 433

sults in Table 2. In this ablation study, we evaluate 434

the effectiveness of two aspects: (1) hallucinat- 435

ing groundtruth responses and (2) image distortion. 436

According to the results, we initially observe that 437

image distortion can enhance performance across 438

all benchmarks. This indicates its effectiveness in 439

aligning multimodalities by compelling the model 440

to rectify inherent hallucination patterns. Addi- 441

tionally, generating dispreference from groundtruth 442

responses significantly enhances performance, un- 443

derscoring the effectiveness of the AI-generated 444

dispreference strategy. Finally, when combining 445

both strategies, POVID achieves the best perfor- 446

mance, further affirming its effectiveness in enhanc- 447

ing LVLMs through improved modality alignment. 448

Compatibility Analysis. To verify the compati- 449

bility of POVID we have migrated POVID to two 450

state-of-the-art LVLMs - SVIT (Zhao et al., 2023a) 451

and Vila (Lin et al., 2023), to validate its com- 452

patibility. For the experiments in this section, we 453

only fine-tuned the LoRA parameters of the lan- 454

guage models, with SVIT using a 13B-parameter 455

language model and Vila using a 7B-parameter lan- 456

guage model. The training setup is same as the 457

training of LLaVA shown in Appendix A.1. We 458
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Table 1: Comparison between POVID and other preferences construction approaches in both hallucination and
comprehensive benchmarks. We bold the best and underline the second best results.

Hallucination Benchmark Comprehensive Benchmark

Method CS Ci POPE MMHal SQAI MM-Vet MMB LLaVAW MME VQAv2 VQAT GQA Avg rank

LLaVA-1.5 66.8 12.7 85.90 2.42 66.8 30.5 64.3 63.4 1510.7 78.5 58.2 62.0 4.3
+ Vlfeedback 56.3 11.4 83.72 2.62 66.2 31.2 63.9 62.1 1432.7 77.3 57.5 63.2 4.6
+ Human-Preference 54.0 9.3 81.50 2.53 65.8 31.1 60.4 63.7 1490.6 78.4 58.6 61.3 4.4
+ RLHF-V 44.6 7.9 86.20 2.59 67.1 30.9 63.6 65.4 1489.2 78.2 58.3 62.1 3.5

+ POVID (LoRA) 31.8 5.4 86.90 2.69 68.8 31.8 64.9 68.7 1452.8 78.7 58.9 61.7 2.1
+ POVID (Full) 33.5 5.7 87.12 3.08 70.0 36.4 65.6 69.9 1449.1 78.6 57.8 62.0 2.0

Table 2: Results of ablation study. Text disprefer (Txt) indicates solely training with hallucinated responses. Image
distortion (Img) means that we use distorted images to trigger inherent hallucination patterns.

Hallucination Benchmarks Comprehensive Benchmarks

Txt Img CS Ci POPE MMHal MME VQAT SQAI GQA MM-Vet MMB LLaVAW VQAv2

× × 66.8 12.7 85.90 2.42 1510.7 78.5 58.2 62.0 30.5 64.3 63.4 78.5
✓ × 35.0 9.9 87.01 2.67 1445.4 78.5 57.6 62.2 34.2 65.4 64.2 78.5
× ✓ 45.0 10.7 85.91 2.52 1440.7 78.2 54.1 59.9 31.8 63.4 66.0 78.2
✓ ✓ 33.5 5.7 87.12 3.08 1449.1 78.6 57.8 62.0 36.4 65.6 68.7 78.6

present the results in Table 3. POVID improves459

the performance of both SVIT and Vila across sev-460

eral benchmarks. For SVIT, POVID significantly461

reduce the CS and Ci scores, indicating better per-462

formance in captioning and the reliability of its463

responses to images. Similarly, Vila also saw re-464

ductions in CS and Ci scores, along with improve-465

ments in other key benchmarks, demonstrating the466

effectiveness and compatibility of POVID when in-467

tegrated into these LVLMs. The results from Table468

3 demonstrate the robustness and utility of PO-469

VIDin enhancing performance and dependability470

across various open-sourced LVLMs.471

Modality Alignment Analysis. We assess the im-472

pact of POVID on modality alignment by com-473

paring the attention maps generated by POVID474

with those of the original LLaVA-1.5 model, with475

a specific focus on image captioning and VQA476

tasks. We illustrate two cases in Figure 4, where477

these attention maps reveal the distribution of at-478

tention scores assigned to generated textual tokens479

within the input image-text sequence throughout480

the LVLM’s output generation phase. Our findings481

reveal that the original LLaVA-1.5 model tends to482

overemphasize the context of the text, which can483

result in hallucinations. In contrast, POVID increas-484

ingly prioritizes attention towards the image, indi-485

cating a strong alignment between image and text486

modalities. One potential explanation for this phe-487

nomenon is that, through a comparison between the488

ground truth and the generated dispreferred data, 489

along with the mitigation of internal hallucination 490

patterns, POVID redirects the LVLM’s attention, 491

leading to a greater focus on the image tokens. 492

5 Related Work 493

LVLMs and LVLM Hallucination. The ad- 494

vent of autoregressive large-scale language models 495

(LLMs), highlighted in works by (Touvron et al., 496

2023a,b; Taori et al., 2023), has led to the develop- 497

ment of Vision-Large Language Models (LVLMs). 498

To align the image and text modalities, recent re- 499

search has concentrated on instruction tuning (Li 500

et al., 2023a), scaling up training dataset (Jia et al., 501

2021), and better alignment between image and text 502

with local feature enhancement (Cha et al., 2023). 503

These advancements have successfully combined 504

LLMs with image inputs and excel in image com- 505

prehension. However, such LVLMs are not perfect 506

and even suffer from “hallucinations”, generating 507

outputs that may not accurately or faithfully repre- 508

sent the content of a user-provided image. There 509

are various sources of hallucinations in LVLMs, in- 510

cluding biased data (Chuang et al., 2023; Tu et al., 511

2023), insufficient training (Chen et al., 2023), and 512

imperfect inference (Huang et al., 2023). Recently, 513

addressing hallucination in LVLMs is primarily 514

achieved through various techniques such as de- 515

coding approaches (Leng et al., 2023; Huang et al., 516

2023), post-processing (Zhou et al., 2023; Yin et al., 517

7



Table 3: The performance of POVID when migrated to other open-source LVLMs on comprehensive benchmarks.

Method CS Ci POPE MMHal VQAv2 VQAT SQAI GQA MM-Vet MMB LLaVAW MME

SVIT 48.9 4.6 86.25 2.71 80.3 60.8 70.0 64.1 34.2 68.6 67.4 1565.8

SVIT + POVID 42.4 4.3 86.30 2.76 80.2 60.9 70.1 63.9 35.4 69.1 70.2 1560.2

Method CS Ci POPE MMHal VQAv2 VQAT SQAI GQA MM-Vet MMB LLaVAW MME

Vila 26.3 6.6 85.5 2.56 79.9 64.4 68.2 62.3 34.9 68.9 69.7 1533.0

Vila + POVID 23.4 6.1 86.1 2.61 81.2 64.4 68.7 62.1 36.3 69.2 69.9 1529.7

The image shows a man sitting down and brushing 
the teeth of a cat with his fingers. The cat appears 
to be reacting to or accepting the tooth brushing 
process. The man and the cat are the main focus of 
the scene.
The setting appears to be indoors, as there is a 
person visible in the image along with the close 
interaction between the man and the cat. The cat is 
located near the center of the scene, while the man 
is positioned on the left side of the image.

Visual tokens Textual tokens

Textual tokens

LLaVA-1.5

POVID (Ours)

LLaVA 1.5

Prompt: Describe this image.

Visual tokens

The image features a person brushing an open mouth 
cat‘s teeth with a small electric toothbrush. They are in 
a kitchen (hallucinatory entity) setting, focused on 
maintaining good oral hygiene. An oven (hallucinatory 
entity) is visible in the background, adding to the cozy 
kitchen environment entity attributes. 
There is also a tie (hallucinatory entity)  in the scene, 
likely placed on or hung up nearby, possibly indicating 
that someone's clothing is being attended to or is 
hanging out to be worn.

No, there is no fruit knife in the picture. There are 
oranges and a glass of orange juice in the image.

Yes (incorrect answer), there is a fruit 
knife(hallucinatory entities) in the picture.

Visual tokens

Visual tokens

Textual tokens

Textual tokens

POVID (ours) LLaVA-1.5

POVID (Ours)

LLaVA 1.5

Prompt: Is there someone in this picture?POVID (ours)

Captioning Task VQA Task

Figure 4: Comparison of attention map between POVID and LLaVA-1.5 at different tasks. The red box region is
labeled with the image attentions that can be significantly improved by POVID.

2023) and the construction of higher-quality dataset518

(Liu et al., 2023a; Li et al., 2023e). While these ap-519

proaches can mitigate hallucination to some extent,520

they often fail to directly guide LVLMs to align521

image and text modalities.522

Preference Alignment. Aligning with human pref-523

erences for large models has emerged as a criti-524

cal issue due to the limitations imposed by safety525

and ethical considerations in real-world applica-526

tions. Preference alignment can be broadly cat-527

egorized into two main approaches: alignment528

through feedback, which encompasses both human529

(Bai et al., 2022; Rafailov et al., 2023) and AI-530

generated feedback (Lee et al., 2023) and alignment531

via prompt guidance (Wei et al., 2022). Initial in-532

vestigations into preference alignment for LVLMs533

have recently been conducted. Sun et al. (2023)534

introduced LLaVA-RLHF, which utilizes a prefer-535

ence dataset annotated by humans to decrease hal-536

lucinations in LLaVA. Li et al. (2023d) proposed537

a method for distilling preferences into LVLMs to538

enhance their ability to generate relevant and ac-539

curate responses based on visual context. Yu et al.540

(2023b) collected human preferences in the form541

of segment-level corrections to hallucinatory con-542

tent and optimizing the model’s behavior based on543

dense, direct feedback. While these initial results544

are promising, these works heavily rely on the tradi- 545

tional preference data generation process in LLMs, 546

which generate both preferred and dispreferred re- 547

sponses, but none of them are guaranteed to be 548

correct. In LVLMs, when both responses prove 549

incorrect for the given task, accurately aligning the 550

image with the correct generated response becomes 551

challenging. In contrast, POVID directly generates 552

dispreferred responses, effectively addressing this 553

challenge. 554

6 Conclusion 555

In this work, we introduce a novel approach, Pref- 556

erence Optimization in LVLM with AI-Generated 557

Dispreferences (POVID) to address the challenges 558

in modality alignment for large vision-language 559

models. In POVID, we adopt two strategies to gen- 560

erate disprefered responses: first, we use synthetic 561

data from GPT-4V to inject plausible hallucinations 562

into the correct answer. Second, we use distorted 563

images to trigger the inherent hallucination behav- 564

ior of the LVLM. Then both of these answers are 565

integrated into an RLHF framework via Direct Pref- 566

erence Optimization. Empirical evaluations across 567

multiple benchmarks reveal that POVID not only 568

mitigates hallucination effectively but boosts the 569

overall performance of model. 570
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7 Limitation571

While our results provide significant insights into572

the behavior of LVLMs under varying conditions,573

several limitations of our study need to be ad-574

dressed. The training and evaluation of the models575

were conducted using high-performance hardware,576

such as multiple A100 80G GPUs. This setup may577

not be feasible for all research teams or practical578

applications, potentially limiting the reproducibil-579

ity and accessibility of our findings. Additionally,580

the specific formula used to adjust the diffusion581

noise level is manually designed rather than auto-582

matically generated.583

References584

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-585
garet Mitchell, Dhruv Batra, C Lawrence Zitnick, and586
Devi Parikh. 2015. Vqa: Visual question answering.587
In Proceedings of the IEEE international conference588
on computer vision, pages 2425–2433.589

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,590
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,591
and Jingren Zhou. 2023. Qwen-vl: A frontier large592
vision-language model with versatile abilities. arXiv593
preprint arXiv:2308.12966.594

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda595
Askell, Anna Chen, Nova DasSarma, Dawn Drain,596
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.597
2022. Training a helpful and harmless assistant with598
reinforcement learning from human feedback. arXiv599
preprint arXiv:2204.05862.600

Ralph Allan Bradley and Milton E Terry. 1952. Rank601
analysis of incomplete block designs: I. the method602
of paired comparisons. Biometrika, 39(3/4):324–603
345.604

Junbum Cha, Wooyoung Kang, Jonghwan Mun, and605
Byungseok Roh. 2023. Honeybee: Locality-606
enhanced projector for multimodal llm. arXiv607
preprint arXiv:2312.06742.608

Gongwei Chen, Leyang Shen, Rui Shao, Xiang Deng,609
and Liqiang Nie. 2023. Lion: Empowering multi-610
modal large language model with dual-level visual611
knowledge. arXiv preprint arXiv:2311.11860.612

Ching-Yao Chuang, Varun Jampani, Yuanzhen Li, Anto-613
nio Torralba, and Stefanie Jegelka. 2023. Debiasing614
vision-language models via biased prompts. arXiv615
preprint arXiv:2302.00070.616

Chenhang Cui, Yiyang Zhou, Xinyu Yang, Shirley Wu,617
Linjun Zhang, James Zou, and Huaxiu Yao. 2023.618
Holistic analysis of hallucination in gpt-4v (ision):619
Bias and interference challenges. arXiv preprint620
arXiv:2311.03287.621

Wenliang Dai, Junnan Li, Dongxu Li, Anthony 622
Meng Huat Tiong, Junqi Zhao, Weisheng Wang, 623
Boyang Li, Pascale Fung, and Steven Hoi. 2023. In- 624
structblip: Towards general-purpose vision-language 625
models with instruction tuning. 626

Vikrant Dewangan, Tushar Choudhary, Shivam Chand- 627
hok, Shubham Priyadarshan, Anushka Jain, Arun K 628
Singh, Siddharth Srivastava, Krishna Murthy Jataval- 629
labhula, and K Madhava Krishna. 2023. Talk2bev: 630
Language-enhanced bird’s-eye view maps for au- 631
tonomous driving. arXiv preprint arXiv:2310.02251. 632

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, 633
Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng, 634
Ke Li, Xing Sun, et al. 2023. Mme: A comprehensive 635
evaluation benchmark for multimodal large language 636
models. arXiv preprint arXiv:2306.13394. 637

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv 638
Batra, and Devi Parikh. 2017. Making the v in vqa 639
matter: Elevating the role of image understanding 640
in visual question answering. In Proceedings of the 641
IEEE conference on computer vision and pattern 642
recognition, pages 6904–6913. 643

Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, 644
Conghui He, Jiaqi Wang, Dahua Lin, Weiming 645
Zhang, and Nenghai Yu. 2023. Opera: Alleviating 646
hallucination in multi-modal large language models 647
via over-trust penalty and retrospection-allocation. 648
arXiv preprint arXiv:2311.17911. 649

Drew A Hudson and Christopher D Manning. 2019. 650
Gqa: A new dataset for real-world visual reasoning 651
and compositional question answering. In Proceed- 652
ings of the IEEE/CVF conference on computer vision 653
and pattern recognition, pages 6700–6709. 654

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana 655
Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen 656
Li, and Tom Duerig. 2021. Scaling up visual and 657
vision-language representation learning with noisy 658
text supervision. In International conference on ma- 659
chine learning, pages 4904–4916. PMLR. 660

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie 661
Lu, Thomas Mesnard, Colton Bishop, Victor Car- 662
bune, and Abhinav Rastogi. 2023. Rlaif: Scaling 663
reinforcement learning from human feedback with ai 664
feedback. arXiv preprint arXiv:2309.00267. 665

Sicong Leng, Hang Zhang, Guanzheng Chen, Xin 666
Li, Shijian Lu, Chunyan Miao, and Lidong Bing. 667
2023. Mitigating object hallucinations in large vision- 668
language models through visual contrastive decoding. 669
arXiv preprint arXiv:2311.16922. 670

Chen Li, Yixiao Ge, Dian Li, and Ying Shan. 2023a. 671
Vision-language instruction tuning: A review and 672
analysis. 673

Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto 674
Usuyama, Haotian Liu, Jianwei Yang, Tristan Nau- 675
mann, Hoifung Poon, and Jianfeng Gao. 2023b. 676

9

http://arxiv.org/abs/2305.06500
http://arxiv.org/abs/2305.06500
http://arxiv.org/abs/2305.06500
http://arxiv.org/abs/2305.06500
http://arxiv.org/abs/2305.06500
http://arxiv.org/abs/2311.08172
http://arxiv.org/abs/2311.08172
http://arxiv.org/abs/2311.08172


Llava-med: Training a large language-and-vision as-677
sistant for biomedicine in one day. arXiv preprint678
arXiv:2306.00890.679

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.680
2023c. Blip-2: Bootstrapping language-image pre-681
training with frozen image encoders and large lan-682
guage models. arXiv preprint arXiv:2301.12597.683

Junnan Li, Dongxu Li, Caiming Xiong, and Steven684
Hoi. 2022. Blip: Bootstrapping language-image pre-685
training for unified vision-language understanding686
and generation. In International Conference on Ma-687
chine Learning, pages 12888–12900. PMLR.688

Lei Li, Zhihui Xie, Mukai Li, Shunian Chen, Peiyi689
Wang, Liang Chen, Yazheng Yang, Benyou Wang,690
and Lingpeng Kong. 2023d. Silkie: Preference dis-691
tillation for large visual language models. arXiv692
preprint arXiv:2312.10665.693

Lei Li, Yuwei Yin, Shicheng Li, Liang Chen, Peiyi694
Wang, Shuhuai Ren, Mukai Li, Yazheng Yang,695
Jingjing Xu, Xu Sun, et al. 2023e. M3it: A large-696
scale dataset towards multi-modal multilingual in-697
struction tuning. arXiv preprint arXiv:2306.04387.698

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang,699
Wayne Xin Zhao, and Ji-Rong Wen. 2023f. Eval-700
uating object hallucination in large vision-language701
models. arXiv preprint arXiv:2305.10355.702

Ji Lin, Hongxu Yin, Wei Ping, Yao Lu, Pavlo703
Molchanov, Andrew Tao, Huizi Mao, Jan Kautz, Mo-704
hammad Shoeybi, and Song Han. 2023. Vila: On pre-705
training for visual language models. arXiv preprint706
arXiv:2312.07533.707

Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser708
Yacoob, and Lijuan Wang. 2023a. Aligning large709
multi-modal model with robust instruction tuning.710
arXiv preprint arXiv:2306.14565.711

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae712
Lee. 2023b. Visual instruction tuning. arXiv preprint713
arXiv:2304.08485.714

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li,715
Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi716
Wang, Conghui He, Ziwei Liu, et al. 2023c. Mm-717
bench: Is your multi-modal model an all-around718
player? arXiv preprint arXiv:2307.06281.719

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-720
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter721
Clark, and Ashwin Kalyan. 2022. Learn to explain:722
Multimodal reasoning via thought chains for science723
question answering. In The 36th Conference on Neu-724
ral Information Processing Systems (NeurIPS).725

OpenAI. 2023. Gpt-4 technical report. ArXiv,726
abs/2303.08774.727

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-728
pher D Manning, Stefano Ermon, and Chelsea Finn.729
2023. Direct preference optimization: Your language730

model is secretly a reward model. In Thirty-seventh 731
Conference on Neural Information Processing Sys- 732
tems. 733

Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, 734
Trevor Darrell, and Kate Saenko. 2018. Object 735
hallucination in image captioning. arXiv preprint 736
arXiv:1809.02156. 737

Amanpreet Singh, Vivek Natarajan, Meet Shah, 738
Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, 739
and Marcus Rohrbach. 2019. Towards vqa models 740
that can read. In Proceedings of the IEEE/CVF con- 741
ference on computer vision and pattern recognition, 742
pages 8317–8326. 743

Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, 744
Chunyuan Li, Yikang Shen, Chuang Gan, Liang- 745
Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. 2023. 746
Aligning large multimodal models with factually aug- 747
mented rlhf. arXiv preprint arXiv:2309.14525. 748

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 749
Dubois, Xuechen Li, Carlos Guestrin, Percy 750
Liang, and Tatsunori B. Hashimoto. 2023. Stan- 751
ford alpaca: An instruction-following llama 752
model. https://github.com/tatsu-lab/ 753
stanford_alpaca. 754

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 755
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 756
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 757
Azhar, et al. 2023a. Llama: Open and effi- 758
cient foundation language models. arXiv preprint 759
arXiv:2302.13971. 760

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 761
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 762
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 763
Bhosale, et al. 2023b. Llama 2: Open founda- 764
tion and fine-tuned chat models. arXiv preprint 765
arXiv:2307.09288. 766

Haoqin Tu, Chenhang Cui, Zijun Wang, Yiyang 767
Zhou, Bingchen Zhao, Junlin Han, Wangchunshu 768
Zhou, Huaxiu Yao, and Cihang Xie. 2023. How 769
many unicorns are in this image? a safety evalu- 770
ation benchmark for vision llms. arXiv preprint 771
arXiv:2311.16101. 772

Oriol Vinyals, Alexander Toshev, Samy Bengio, and 773
Dumitru Erhan. 2015. Show and tell: A neural image 774
caption generator. In Proceedings of the IEEE con- 775
ference on computer vision and pattern recognition, 776
pages 3156–3164. 777

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 778
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 779
et al. 2022. Chain-of-thought prompting elicits rea- 780
soning in large language models. Advances in Neural 781
Information Processing Systems, 35:24824–24837. 782

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, 783
Ming Yan, Yiyang Zhou, Junyang Wang, An- 784
wen Hu, Pengcheng Shi, Yaya Shi, et al. 2023. 785

10

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca


mplug-owl: Modularization empowers large lan-786
guage models with multimodality. arXiv preprint787
arXiv:2304.14178.788

Shukang Yin, Chaoyou Fu, Sirui Zhao, Tong Xu, Hao789
Wang, Dianbo Sui, Yunhang Shen, Ke Li, Xing Sun,790
and Enhong Chen. 2023. Woodpecker: Hallucina-791
tion correction for multimodal large language models.792
arXiv preprint arXiv:2310.16045.793

Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng794
Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu, Hai-Tao795
Zheng, Maosong Sun, and Tat-Seng Chua. 2023a.796
Rlhf-v: Towards trustworthy mllms via behavior797
alignment from fine-grained correctional human feed-798
back. arxiv.799

Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng800
Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu, Hai-Tao801
Zheng, Maosong Sun, et al. 2023b. Rlhf-v: Towards802
trustworthy mllms via behavior alignment from fine-803
grained correctional human feedback. arXiv preprint804
arXiv:2312.00849.805

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang,806
Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan807
Wang. 2023c. Mm-vet: Evaluating large multimodal808
models for integrated capabilities. arXiv preprint809
arXiv:2308.02490.810

Bo Zhao, Boya Wu, and Tiejun Huang. 2023a. Svit:811
Scaling up visual instruction tuning. arXiv preprint812
arXiv:2307.04087.813

Zhiyuan Zhao, Bin Wang, Linke Ouyang, Xiaoyi Dong,814
Jiaqi Wang, and Conghui He. 2023b. Beyond hal-815
lucinations: Enhancing lvlms through hallucination-816
aware direct preference optimization. arXiv preprint817
arXiv:2311.16839.818

Yiyang Zhou, Chenhang Cui, Jaehong Yoon, Linjun819
Zhang, Zhun Deng, Chelsea Finn, Mohit Bansal, and820
Huaxiu Yao. 2023. Analyzing and mitigating object821
hallucination in large vision-language models. arXiv822
preprint arXiv:2310.00754.823

A Experimental Setup and Prompt824

Design825

A.1 Training Setup826

Training hyperparameters are shown in Table 4.827

For the first phase, we trained for 3 epochs, and for828

the second phase, the training was conducted for 1829

epoch. Under the setup of DeepSpeed ZeRO2, for830

POVID LoRA, we utilize a single A100 80G during831

the training process, which takes approximately 6832

hours. For POVID full, our first stage employs four833

A100 80G, taking approximately 2.5 hours, while834

the second stage utilizes eight A100 80G, taking835

approximately 1 hour. For the second phase, we836

adjust the diffusion noise level, symbolized by ξ837

through a specific formula: ξ = Sigmoid(lt) ×838

(0.5 × 10−2 − 10−5) + 10−5, where ϵ is drawn 839

from a normal distribution. 840

A.2 Construction of the Dispreference Dataset 841

This section details the prompts utilized to com- 842

pile the dataset focusing on dispreferences, specif- 843

ically within the realms of image captioning and 844

reasoning tasks. The prompts are designed to elicit 845

responses that reveal dispreference patterns, cat- 846

egorized into two main types: image captioning 847

tasks intended to provoke imaginative descriptions, 848

and reasoning tasks aimed at stimulating inferen- 849

tial thought processes. These prompts, central to 850

our methodology, are enumerated in Table 7, offer- 851

ing a comprehensive view of the data generation 852

framework. 853

B Details about Baselines and Benchmark 854

This section provides a detailed introduction to the 855

benchmarks used in the experimental part of this 856

paper. 857

• CHAIR, including CHAIRS (CS) and CHAIRi 858

(Ci), is a metric used in image captioning tasks 859

to evaluate the accuracy of object descriptions in 860

captions. It compares the objects mentioned in a 861

caption with those present in the image. 862

• MMHal (Sun et al., 2023) assesses hallucina- 863

tions and response informativeness by utilizing 864

GPT-4V to compare model output with human 865

responses and various object labels, determining 866

the scores accordingly. 867

• POPE (Li et al., 2023f) uses a set of binary clas- 868

sification tasks, prompting LVLMs with simple 869

Yes-or-No questions about the existence of cer- 870

tain objects in images. 871

• MME (Fu et al., 2023) is a comprehensive evalu- 872

ation tool designed to measure both perception 873

and cognition abilities across 14 sub-tasks for 874

LVLMs. 875

• MMB: MMbench (Liu et al., 2023c) is known 876

for its approach to assessing both perception and 877

reasoning abilities, categorized into top-level di- 878

mensions in the ability taxonomy. This bench- 879

mark includes different levels of abilities, each 880

encompassing specific aspects of perception and 881

reasoning. 882

• MM-Vet (Yu et al., 2023c) focuses on evaluating 883

six core capabilities: recognition, knowledge, 884
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Table 4: Training hyperparameters.

Hyperparameters

lora_r 128
lora_alpha 256
lora_target all
mm_projector_lr 2e-5
Batch size 1
Learning rate 1e-7
model_max_length 1024
noise_step (only for internal preference optimization) 500

Table 5: Fine-grained performance comparison of various models on LLaVAW, where we adopt the following
abbreviation: Convo for Conversation, Captioning for Detail description, Reasoning for Complex reasoning.

Method Convo Captioning Reasoning Overall

LLaVA-1.5 53.3 53.4 79.6 63.4
+ Vlfeedback 51.3 49.3 78.5 62.1
+ Human-Preference 49.6 43.3 81.3 63.7
+ RLHF-V 55.8 56.1 80.3 65.4

+ POVID (LoRA) 55.9 60.1 81.5 68.7
+ POVID (Full) 56.5 67.2 81.7 69.9

Figure 5: Comparison of CHAIRI scores on different LVLMs across various noise levels.

OCR, spatial awareness, language generation,885

and math. These capabilities cover a wide range886

of functions, from general visual recognition to887

specific tasks like arithmetic problem-solving.888

• LLaVAW: LLaVA-bench (Liu et al., 2023b) as-889

sesses models in more complex tasks and their890

adaptability to new domains. It consists of 24891

diverse images, encompassing a variety of scenes892

such as indoor and outdoor settings, memes,893

paintings, and sketches. Each image in LLaVAW894

is paired with a detailed, manually crafted de- 895

scription and a carefully chosen set of questions, 896

totaling 60 questions. This setup aims to provide 897

a thorough and varied evaluation of the models’ 898

capabilities. 899

• VQAv2 (Goyal et al., 2017) is a dataset com- 900

prising open-ended questions related to images, 901

demanding comprehension of vision, language, 902

and commonsense knowledge for answers. 903
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Table 6: Comparison between POVID and other state-of-the-art LVLMs across both hallucination and comprehensive
benchmarks. We bold the best results and underline the second best results. Notably, when LLaVA-1.5 7B utilizes
POVID for preference learning, it can achieves an average rank at 2.0 over other open-source models across all
benchmarks.

Method Vision Encoder Language Model CS Ci POPE MMHal VQAv2 VQAT

InstructBLIP ViT-g (1.3B) Vicuna (7B) 40.0 8.0 77.83 2.10 70.1 50.1
Qwen-VL-Chat ViT-G (1.9B) Qwen (7B) 48.2 9.1 87.07 2.89 78.2 61.5
mPLUG-Owl2 ViT-L (0.3B) LLaMA (7B) 54.4 12.0 86.20 2.17 79.4 58.2

LLaVA-1.5 + POVID (LoRA) ViT-L (0.3B) Vicuna (7B) 31.8 5.4 86.90 2.69 78.7 58.9
LLaVA-1.5 + POVID (Full) ViT-L (0.3B) Vicuna (7B) 33.5 5.7 87.12 3.08 78.6 57.8

Method Vision Encoder Language Model SQAI GQA MM-Vet MMB LLaVAW MME

InstructBLIP ViT-g (1.3B) Vicuna (7B) 60.5 49.2 26.2 36.0 60.9 1212.8
Qwen-VL-Chat ViT-G (1.9B) Qwen (7B) 68.2 57.5 41.2 60.6 67.7 1487.5
mPLUG-Owl2 ViT-L (0.3B) LLaMA (7B) 64.5 56.1 36.2 64.5 59.9 1450.2

LLaVA-1.5 + POVID (LoRA) ViT-L (0.3B) Vicuna (7B) 68.8 61.7 31.8 64.9 68.7 1452.8
LLaVA-1.5 + POVID (Full) ViT-L (0.3B) Vicuna (7B) 70.0 62.0 36.4 65.6 69.9 1449.1

• GQA (Hudson and Manning, 2019) is a novel904

dataset tailored for real-world visual reasoning905

and compositional question answering. It ad-906

dresses shortcomings of previous VQA datasets907

by leveraging scene graph structures and a robust908

question engine to generate 22 million diverse909

reasoning questions, each paired with functional910

programs representing their semantics.911

• VQAT: TextVQA (Singh et al., 2019) is a dataset912

aimed at addressing the significant challenge of913

visually impaired users reading text in images of914

their surroundings. It consists of 45,336 ques-915

tions and 28,408 images, requiring reasoning916

about text in the images to answer. SQAI: SciQA-917

IMG (Lu et al., 2022) is a new benchmark dataset918

designed to assess the multi-hop reasoning capa-919

bility and interpretability of artificial intelligence920

systems on multimodal multiple-choice scientific921

questions. It consists of approximately 21,000922

diverse science-themed questions, along with an-923

notated answers and corresponding lecture and924

explanation annotations.925

• SQAI (Lu et al., 2022): ScienceQA is a new926

benchmark dataset designed to evaluate the multi-927

hop reasoning ability and interpretability of AI928

systems. ScienceQA consists of approximately929

21,000 multimodal multiple-choice science ques-930

tions, covering a variety of scientific topics, and931

provides annotations of the answers along with932

corresponding lectures and explanations.933

C Experimental Supplement for Inherent 934

Hallucination Pattern 935

C.1 The Impact of Noise Levels on Inherent 936

Hallucination Pattern in LVLMs 937

To further demonstrate that noise in the image con- 938

tributes to activating inherent hallucination patterns, 939

we compare CHAIRI scores on LLaVA, svit and 940

Vila across different noise levels. The experimen- 941

tal settings align with the hallucination evaluation 942

benchmark CHAIR. As illustrated in Figure 5, it is 943

evident that as noise levels increase, the CHAIRI 944

scores also tend to rise, indicating a higher occur- 945

rence of hallucinations. 946

D Fine-grained Performance Analysis 947

Table 5 presents a fine-grained performance anal- 948

ysis of different preference collection strategies 949

on the LLaVA-Bench benchmark. This analysis 950

encompasses a spectrum of multi-modal reason- 951

ing and perception dimensions, such as Conver- 952

sation, Detail Description, and Complex Reason- 953

ing. According to Table 5, it is evident that, when 954

compared with other preference data collection ap- 955

proaches, POVID excels in image captioning and 956

providing detailed descriptions for a given image. 957

This outcome aligns with our expectations, as our 958

training data includes various long-form captions, 959

and such comprehensive preference comparisons 960

result in improved alignment and stronger image 961

captioning results. 962
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Table 7: Two types of prompts to GPT4V (The format of the obtained data is {image, prefer data, disprefer data}).

Prompts for hallucinating image captioning tasks:
Help me generate one highly confusing response based on the image and the standard caption in the
Question-Answer Pair.
*****************************************
Question-answer Pair:
Q: {question}
A: {answer}
Requirements:
(1) The generated caption is generally similar to the given A, with the same main meaning; (2) You
can refer to the following errors to generate the wrong caption (1. The wrong caption can contain
some co-occurring objects, which are prone to appear in such scenarios but do not appear in the
image; 2. The wrong caption can be an error in the number of entities or the logical relationships
between entities; 3. The attributes of entities in the caption can also be modified, such as color,
appearance, etc.) (3) Compared to the original caption A, the caption you modified is incorrect based
on the provided image.
*****************************************
Output Format:
Answer: your answer

Prompts for hallucinating reasoning tasks:
Now, please help me generate new answers with hallucination errors based on the image, question,
and answer provided. There are two cases now:
1. If the given question and answer are short and do not require logical reasoning, then modify the
answer to a hallucination error answer, such as some quantity errors or entity and property errors.
2. If the entire question requires logical reasoning, then help me reorganize the answers based on the
given image, questions, and answers into the format “Reason: xxx, Result: xxx" (Answer 1). Modify
the reasons by introducing errors related to logical relationships, entity information, entity attributes,
etc. If the error in the reason would lead to a new result, modify the result accordingly. If the error
does not lead to a new result, keep the original result. Similarly, organize it in the format “Reason:
xxx, Result: xxx" (Answer 2).
*****************************************
Question-answer Pair:
Q: {question}
A: {answer}
Requirements:
(1) The generated wrong answer and reasoning process should be combined with the image and be
misleading..
*****************************************
Output Format:
Answer: your answer
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