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Abstract

Parameter-efficient fine-tuning methods like Low-
Rank Adaptation (LoRA) have become essential
for deploying large language models, yet their
static parameter allocation remains suboptimal
for inputs of varying complexity. We present
Flexi-LoRA, a novel framework that dynamically
adjusts LoRA ranks based on input complexity
during both training and inference. Through em-
pirical analysis across question answering and
mathematical reasoning tasks, we demonstrate
that maintaining consistency between training
and inference dynamics is important for effective
adaptation, particularly for sequential reasoning
tasks. Our findings reveal that input-dependent pa-
rameter allocation achieves superior performance
with fewer parameters by optimally matching rank
configurations to question complexity. Further-
more, task-specific sensitivity to rank dynamics
varies, with mathematical reasoning tasks exhibit-
ing higher sensitivity than QA tasks. Successful
adaptation manifests not only in correctness but
also in reasoning quality and instruction adher-
ence. Flexi-LoRA consistently outperforms static
LoRA while using fewer parameters, with perfor-
mance gains more pronounced on tasks requiring
strict reasoning chains. Our approach realizes
key benefits of mixture-of-experts frameworks
through a more streamlined implementation, re-
ducing parameter redundancy while enhancing
model capabilities. We provide comprehensive
empirical studies across diverse tasks, establish-
ing a foundation for future work in input-adaptive
and efficient fine-tuning approaches. !
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Difficult Question

Emily has 4 kids named Amy,
Jackson, Corey, and James. Amy is 5
years older than Jackson and 2 years
younger than Corey. If James is 10
and is 1 year younger than Corey,
how old is Jackson?

Paige raised 7 goldfish and 12
catfish in the pond but stray cats
loved eating them. Now she has 15
left. How many fishes disappeared?

[ N\
\—./
|}
LLM Rank 8

(LoRA) Rank 8
H
>

Figure 1. Flexi-LoRA’s input-adaptive rank allocation versus static
normal LoRA. Flexi-LoRA (left) dynamically assigns rank 2 (dark
trapezoid) for simple problems and rank 8 (light trapezoid) for
complex ones, successfully solving both. LoRA (right) uses fixed
rank 8 (light trapezoid) regardless of complexity, failing on diffi-
cult problems. This demonstrates the necessity of input-adaptive
parameter allocation for handling varying question complexity.
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1. Introduction

As large language models grow in size, efficient fine-tuning
methods like LoRA (Hu et al., 2022) have become essential
for applications. However, their static parameter alloca-
tion remains suboptimal for questions of varying complex-
ity, suggesting the need for input-adaptive approaches in
parameter-efficient fine-tuning (Jiang et al., 2025).

Through empirical analysis, we observe two key phenom-
ena in LoRA-based fine-tuning. First, there exists a notable
performance gap when using static ranks during inference
for models trained with dynamic ranks at fine-grained level,
particularly in their ability to follow instructions precisely
(DyLoRA vs DyLoRA+, Table 2 and 3, Figure 4). Second,
while model performance generally saturates with increas-
ing ranks, the optimal rank varies across different inputs:
simple questions can be effectively handled with small ranks,
while complex problems benefit substantially from larger
ranks (Rank 4 vs 8, Table 2 and 3, Figure 3). These observa-
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tions indicate that a one-size-fits-all approach to rank selec-
tion is suboptimal, motivating the need for input-adaptive
rank allocation.

Inspired by these observations, we propose Flexi-LoRA, a
finetuning framework that dynamically adjusts LoRA ranks
based on input complexity. Our approach not only achieves
superior performance to high-rank LoRA while using fewer
parameters, but also successfully solves some complex prob-
lems that static LoRA fails to handle even with equivalent
rank, as shown in Figure 1.

Our contributions are threefold:

* Novel Framework: We introduce the first input-adaptive
LoRA framework that maintains dynamic ranks during
both training and inference, achieving higher performance
with reduced parameter count compared to static LoRA.

* Insights: We demonstrate that (1) maintaining consis-
tency between training and inference dynamics is im-
portant for LORA adaptation, particularly for sequential
reasoning tasks; (2) input-dependent parameter alloca-
tion achieves superior performance with fewer parameters
by optimally matching rank configurations to question
complexity; (3) task-specific sensitivity to rank dynam-
ics varies, with mathematical reasoning tasks exhibiting
higher sensitivity than QA tasks; (4) successful adaptation
manifests not only in correctness but also in reasoning
quality and instruction adherence; and (5) our approach
realizes benefits of mixture-of-experts through a more
streamlined implementation, reducing parameter redun-
dancy while enhancing model capabilities.

* Comprehensive Analysis: We provide comprehensive
empirical studies across diverse tasks, establishing a foun-
dation for future work in input-adaptive and efficient fine-
tuning approaches.

2. Related Work

LoRA with dynamic ranks. Recent works have explored
dynamic rank adaptation in LoRA, with differences shown
in Table 1. AdalLoRA (Zhang et al., 2023) performs
importance-based parameter pruning at training checkpoints
to gradually reduce ranks to a fixed target. DyLoRA
(Valipour et al., 2023) randomly samples ranks from a pre-
defined range for each training batch, with all samples in
the batch sharing the same rank. Both approaches, while
improving rank flexibility, are limited by either steps-level
pruning or random batch-level assignment, and neither sup-
ports dynamic rank selection at inference. On the other
hand, Flexi-LoRA enables true sample-level rank selection
by learning to map input complexity to appropriate ranks,
maintaining this adaptive behavior during both training and
inference.

Method Train Level  Inference
LoRA Fixed All Fixed
AdalL.oRA Selective Steps Fixed
DyLoRA Random Batch Fixed
Flexi-LoRA  Router  Sample Router

Table 1. Comparison of rank adaptation strategies across differ-
ent LoRA variants. “Train” indicates how ranks are determined
during training, “Level” shows the level of rank assignment, and
“Inference” specifies the rank selection mechanism at test time.
Only Flexi-LoRA maintains consistent router-based sample-level
dynamic rank allocation across both training and inference stages,
while existing methods use fixed ranks during inference regardless
of training dynamics. ”O” is our method.

3. Methods

Building upon previous work, we first introduce DyLoRA+,
an enhanced variant of DyLoRA that maintains consistent
rank dynamics by employing random batch-level rank se-
lection during both training and inference stages. While
DyLoRA+ demonstrates improved performance over the
original DyLoRA, its random rank allocation remains sub-
optimal as it fails to account for input-specific complexity
differences. We therefore propose Flexi-LoRA, a frame-
work that automatically adjusts the rank based on input
complexity. Our method consists of two key components: a
difficulty-aware router that maps inputs to appropriate rank
assignments and a flexible-rank LoRA training framework
that maintains consistent dynamic rank allocation during
both training and inference, as shown in Figure 2.

Router focuses on learning an optimal mapping R(h) :
R? — r; from input embeddings to rank assignments.
Given an input sequence x with mask m, we first com-
pute its token embeddings H € R™*¢ and obtain a pooled
embedding h = ), (m;H;)/ >, m;, where m; masks
padding tokens. We categorize training samples into diffi-
culty classes based on task-specific metrics: F1 scores for
MRQA datasets and accuracy for mathematical reasoning
tasks. The router is then optimized using a noise-added
cross-entropy objective: £(0) = — . y; log(R(h; + €)),
where € ~ N(0,0?) is Gaussian noise and y; denotes the
ground-truth difficulty label. The training data is balanced
between easy and hard samples to ensure uniform difficulty
evaluation.

Input-adaptive LoRA freezes the base model parameters
and optimize only the LoRA matrices. For input x, we first
obtain its token embeddings H° and pooled embedding h
following the same procedure as router training. The router
then predicts rank » = R(h), which is applied consistently
across all transformer layers. Within each batch, different
samples can be assigned different ranks based on their pre-
dicted difficulty, enabling dynamic resource allocation. For
each transformer layer [, we compute the LoRA update as
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Figure 2. Flexi-LoRA framework with input-adaptive rank selec-
tion. Router analyzes input embeddings and outputs rank assign-
ments (green arrows) for transformer layers. Red and blue trape-
zoids are LoRA’s A and B matrices, with color darkness indicating
rank magnitude (darker = rank 2, lighter = rank 8). The router
enables dynamic rank allocation based on input complexity while
maintaining efficient gradient flow through residual connections.

AW, = By, A, where A;, € R™*? and B;,. € RY*" are
dynamically reduced to the first r rows/columns. The layer
output is computed as H' = W, H'"1 + a,.(By - A H' 1),
where «, is a rank-specific scaling variable and H'~! is
the output from the previous layer. The model is trained to
minimize the task-specific loss Lo = — Y, log p(yi|z;),
where z; is the input sequence and y; is the corresponding
ground truth outputs. This design enables efficient batch
processing while allowing for input-dependent rank adapta-
tion.

4. Experimental Design

Datasets. We evaluate Flexi-LoRA on both QA and mathe-
matical reasoning tasks. For QA tasks, we conduct training
on datasets from the MRQA (Fisch et al., 2019) training set,
which unifies QA samples from SQuAD (Rajpurkar et al.,
2016), TriviaQA (Joshi et al., 2017), NewsQA (Trischler
et al., 2017), SearchQA (Dunn et al., 2017), HotpotQA
(Yang et al., 2018), and NaturalQuestions (Kwiatkowski
et al., 2019). Evaluation is performed on the MRQA test
set consisting of BioASQ (Partalas et al., 2013), DROP
(Dua et al., 2019), DuoRC (Saha et al., 2018), RACE (Lai
et al., 2017), RelationExtraction (Levy et al., 2017), and
TextbookQA (Kembhavi et al., 2017). For mathematical rea-
soning, we train on the GSM8K (Cobbe et al., 2021) subset
of the MetaMathQA (Yu et al., 2024) dataset and evaluate
on a diverse set of math benchmarks including GSM8K,
SVAMP (Patel et al., 2021), MultiArith (Roy & Roth, 2015),
and MAWPS (Koncel-Kedziorski et al., 2016). This de-
sign allows us to evaluate both in-distribution and out-of-

distribution generalization capabilities of our method.

Evaluation Metrices. We evaluate QA performance using
F1 and Exact Match (EM) scores. F1 computes the bal-
anced average of precision and recall between prediction
and ground truth, while EM measures exact string match.
For mathematical reasoning tasks, we use accuracy for
evaluation.

Gold Standard & Baselines. We compare against two
gold standards: full model fine-tuning and standard LoRA
with fixed rank. For baselines, we include AdaLoRA,
which adapts ranks through importance-based parameter
pruning while maintaining fixed inference ranks, and Dy-
LoRA, which randomly samples ranks from a predefined
range for each training batch but uses fixed ranks during in-
ference. Our Flexi-LoRA differs by enabling input-adaptive
rank selection during both training and inference.

Models. We employ LLaMA-3.2-1B-Instruct (Grattafiori
et al., 2024) as the base model for our main results and
include LLaMA-3.2-3B-Instruct to analyze model size in
ablation studies.

5. Results

5.1. Overview

Figure 3 illustrates the performance-efficiency trade-offs
across different parameter-efficient fine-tuning methods on
QA and mathematical reasoning tasks. Flexi-LoRA consis-
tently achieves superior performance while requiring fewer
parameters than competing approaches. Notably, DyLoRA
results are not visible from mathematical reasoning figures
due to substantially decreased performance, highlighting the
importance of maintaining consistency between training and
inference dynamics. AdaLLoRA shows competitive results
on specific tasks but fails to achieve a consistent advantage
across different domains. From a Pareto optimality perspec-
tive, Flexi-LoRA dominates all baselines and gold standards
by offering better performance at lower parameter counts,
positioning itself closest to the full fine-tuning performance
while maintaining parameter efficiency below 0.1% of total
model parameters. The following sections analyze these
results in detail across different task categories and provide
ablation studies to analyze the contributions of individual
components.

5.2. Question Answering

Table 2 presents the performance of different parameter-
efficient fine-tuning methods on six out-of-domain QA
datasets from the MRQA benchmark. We analyze these
results from multiple perspectives: (1) Overall Perfor-
mance: Flexi-LoRA (2,8) achieves the highest average F1
score (52.37%) and EM score (37.41%), outperforming
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Figure 3. Performance-efficiency trade-off across different parameter-efficient fine-tuning methods. Our methods (O) achieve superior
performance with fewer trainable parameters compared to both baseline methods (B) as well as gold standards (G). Results are shown for
QA tasks and mathematical tasks using LLaMA-3.2-1B-Instruct and 3B.

Gold Standard Baselines Ours
Full LoRA AdaLoRA DyLoRA DyLoRA+ Flexi-LoRA

Rank - 4 8 4 8 4 8 1-8 1,8 2,8

# 1.2B 851K 1703K 851K 1703K 851K 1703K 966K 304K 504K
F1 Score
BioASQ 69.81 64.85 66.22 63.62 65.12 60.01 52.40 65.21 65.75 65.82
DROP 47.15 37.88 36.03 32.79 34.35 43.59 38.26 36.32 37.27 37.52
DuoRC 4521 43.85 43.72 44.00 42.49 39.10 36.89 43.86 42.92 43.22
RACE 41.49 38.64 37.49 34.58 35.81 36.89 33.24 39.26 38.83 39.10
RE 84.11 74.97 76.41 74.51 75.73 81.02 78.70 75.47 76.47 76.83
TextbookQA 49.56 51.35 52.20 54.14 54.66 37.90 32.94 51.22 51.74 51.75
Average 56.22 51.92 52.01 50.61 51.36 49.75 45.40 51.89 52.16 52.37
Exact Match

BioASQ 49.13 42.02 42.61 40.29 40.35 34.24 27.52 41.88 41.42 41.48
DROP 35.46 25.81 23.08 20.15 21.49 30.07 24.01 23.61 24.55 25.01
DuoRC 35.57 32.37 31.51 32.37 30.77 27.71 24.58 32.31 30.44 30.71
RACE 29.37 24.03 22.99 20.62 22.10 21.81 16.61 24.92 24.48 24.77
RE 72.01 57.73 60.27 57.25 58.44 69.13 66.31 59.15 59.90 60.44
TextbookQA 40.98 4191 42.38 44.97 45.10 27.01 21.29 4191 42.04 42.04
Average 43.75 37.31 37.14 35.94 36.38 34.99 30.05 37.30 37.14 37.41

Table 2. Performance comparison on out-of-domain QA tasks from the MRQA benchmark using LL.aMA-3.2-1B-Instruct. F1 and Exact
Match (EM) scores are reported, comparing our proposed methods (Flexi-LoRA and DyLoRA+) against gold standards and baselines.
Flexi-LoRA (2,8) achieves the best average performance on both metrics while using fewer parameters than standard approaches. The "#”
row indicates the number of trainable parameters. Green (teal) and red (maroon) cell coloring is higher and lower scores respectively, with

deeper colors indicating larger performance differences.

both LoRA-8 with only 29.59% of LoRA-8’s parameters.
The performance gap between Flexi-LoRA and full fine-
tuning is considerably smaller than that of other parameter-
efficient methods, demonstrating its effectiveness in ap-
proaching full fine-tuning. (2) Stability Across Metrics:
Flexi-LoRA demonstrates consistency by achieving the best
average performance on both F1 and EM metrics simulta-
neously, unlike other methods that typically excel in one
metric. This dual-metric superiority indicates that Flexi-
LoRA produces outputs that are both semantically close
to ground truth (high F1) and syntactically precise (high
EM). (3) Dataset-Specific Analysis: Flexi-LoRA performs
particularly well on domain-specific and knowledge-based
tasks, while showing moderate improvements on informa-
tion extraction tasks. The adaptive rank allocation proves
beneficial for datasets requiring diverse reasoning capabili-

ties, suggesting Flexi-LoRA’s ability to assign appropriate
computational resources based on input complexity. (4)
Comparison with Other Dynamic Approaches: Flexi-
LoRA consistently outperforms DyLLoRA+, despite both
using dynamic ranks during inference, demonstrating the
importance of learned input-adaptive rank assignment ver-
sus the random assignment in DyLoRA+. DyLoRA shows
high variance across datasets (from 81.02% F1 on RE to
32.94% F1 on TextbookQA), highlighting instability issues
when training and inference dynamics are inconsistent. (5)
Rank Configuration Influence: The comparison between
Flexi-LoRA (1,8) and (2,8) configurations reveals that a
slight increase in the minimum rank (from 1 to 2) provides
modest but consistent performance improvements (from
52.16% to 52.37% F1), with a reasonable parameter in-
crease (from 304K to 504K). This suggests that while low
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ranks can handle simpler questions, maintaining a slightly
higher minimum rank improves robustness across diverse
question types. (6) Cross-Domain Generalization: On
out-of-domain test datasets, baseline methods exhibit incon-
sistent performance, excelling on specific domains while
decreasing on others. On the other hand, Flexi-LoRA main-
tains strong performance across all test datasets, suggesting
its input-adaptive parameter allocation learns more gener-
alized knowledge than static approaches that could overfit
to training domain characteristics. (7) Key Insights: These
results demonstrate that input-adaptive parameter allocation
provides dual benefits in QA tasks: improved performance
through parameter allocation and enhanced parameter ef-
ficiency through optimization of rank selection. The con-
sistent improvement across diverse datasets suggests that
question complexity varies substantially even within the
same task category, validating our input-adaptive approach.

5.3. Math Problems

Table 3 presents the performance of different fine-tuning
methods on mathematical reasoning tasks across two model
sizes. We analyze these results for task-specific characteris-
tics: (1) Overall Performance: Flexi-LoRA achieves the
highest average accuracy on both LLaMA-3.2-1B-Instruct
(66.56%) and LLaMA-3.2-3B-Instruct (84.00%), outper-
forming LoRA-8 (63.17% and 82.37%) while using only
31.29% and 33.40% of its parameters, respectively. The
performance gap between Flexi-LoRA and full fine-tuning
is narrower than other parameter-efficient methods, particu-
larly on the larger model. (2) Model Size Influence: Increas-
ing model size from 1B to 3B improves performance across
all methods, with Flexi-LoRA maintaining its advantage.
Notably, the absolute performance gap between Flexi-LoRA
and full fine-tuning decreases from 5.56% to 1.84%, sug-
gesting that input-adaptive approaches become even more
effective with larger models. (3) In-Domain vs. Out-of-
Domain: Flexi-LoRA shows strong generalization from
GSMBS8K (in-domain) to out-of-domain datasets. On the 1B
model, Flexi-LoRA achieves an average accuracy of 74.65%
on out-of-domain tasks (SVAMP, MultiArith, MAWPS),
compared to 42.30% on in-domain GSM8K, demonstrat-
ing cross-domain robustness. This is consistent across both
model sizes. (4) Dataset Complexity: Flexi-LoRA per-
forms exceptionally well on both elementary arithmetic
(MultiArith) and complex multi-step reasoning (GSMS8K),
indicating its ability to effectively handle varying levels of
mathematical complexity. The exceptional performance on
MultiArith (92.22%) approaches full fine-tuning (93.88%),
showcasing the method’s ceiling capability on reasoning
tasks. (5) DyLoRA Performance Decrease: DyLoRA
exhibits performance decrease on mathematical tasks (av-
erage 26.50% on 1B model). The 40.06% performance
gap between DyLoRA and Flexi-LoRA on math tasks high-

lights the influence of training-inference inconsistency on
sequential reasoning tasks. This decrease is substantially
more pronounced than in QA tasks, suggesting that mathe-
matical reasoning is particularly sensitive to dynamic rank
consistency. (6) Key Insights: These results demonstrate
that maintaining consistent training-inference dynamics is
important for mathematical reasoning tasks. The substan-
tial performance improvements (Flexi-LoRA outperforms
LoRA-8 by 3.39% on 1B) illustrate that input-adaptive pa-
rameter allocation provides greater benefits for problems
with higher complexity variance and stricter evaluation cri-
teria, compared to the modest gains observed on QA tasks.

5.4. Cross-Task Analysis

Comparing Flexi-LoRA’s performance on QA and math-
ematical reasoning tasks reveals important insights about
the relationship between task characteristics and parameter-
efficient fine-tuning approaches: (1) Task Nature Influ-
ence: Task characteristics influence adaptation strategy
efficacy. QA primarily involves information extraction,
whereas mathematical reasoning demands coherent com-
putational chains where early errors go through solutions.
This sequential dependency in math tasks necessitates con-
sistency between training and inference dynamics, unlike
the more information retrieval in QA. (2) Performance
Gain Difference: Flexi-LoRA’s improvement over LoORA-8
is substantially larger on mathematical tasks than on QA
tasks. This difference suggests that input-adaptive parame-
ter allocation yields greater benefits for sequential reasoning
tasks where capacity requirements vary between simple and
complex problems. (3) Error Analysis: QA and mathe-
matical reasoning tasks demonstrate distinct error behaviors.
QA permits partial correctness (evidenced by F1 scores ex-
ceeding EM scores), whereas math tasks produce binary
outcomes. This evaluation in mathematical reasoning high-
lights the benefits of input-adaptive approaches that allocate
capacity proportionally to problem complexity. (4) Input
Complexity Distribution: Flexi-LoRA’s superior perfor-
mance on mathematical tasks indicates more pronounced
complexity variations compared to QA. Math problems en-
compass a broader difficulty distribution, from elementary
arithmetic to multi-step reasoning, making them optimal
candidates for adaptive parameter allocation. (5) Cross-
Task Generalization: Flexi-LoRA’s consistent superior
performance across both QA and mathematical reasoning
tasks, despite their distinct nature and evaluation metrics,
validates the robustness and generality of our input-adaptive
approach. This multi-domain effectiveness indicates that the
underlying complexity-aware parameter allocation mecha-
nism learns fundamental aspects of language model adapta-
tion rather than utilizing task-specific characteristics. These
cross-task comparisons highlight that the benefits of input-
adaptive parameter allocation are not uniform across tasks,
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Gold Standard Baselines Ours
Full LoRA AdaLoRA DyLoRA DyLoRA+ Flexi-LoRA
Rank - 4 8 4 8 4 8 1-8 2,8
LaMA-3.2-1B-Instruct
# 1.2B 851K 1703K 851K 1703K 851K 1703K 953K 533K
GSM8K 57.31 42.15 41.31 45.71 4222 19.78 21.00 41.77 42.30
SVAMP 57.29 52.87 51.18 53.37 50.52 20.08 19.57 56.03 52.02
MultiArith 93.88 82.77 85.00 78.88 84.44 43.88 42.77 85.55 92.22
MAWPS 80.00 69.85 75.21 65.63 74.36 22.25 17.46 75.21 79.71
Average 72.12 61.91 63.17 60.90 62.89 26.50 25.20 64.64 66.56
LaMA-3.2-3B-Instruct
# 1.2B 2.29M 4.58M 2.29M 4.58M 2.29M 4.58M 2.60M 1.53M
GSM8K 75.20 65.95 69.37 71.49 72.32 60.04 60.87 70.43 69.90
SVAMP 78.30 66.29 74.47 75.91 77.80 67.48 64.87 74.71 77.09
MultiArith 100 97.77 99.44 90.55 95.55 75.00 82.22 92.77 100
MAWPS 89.85 84.50 86.19 83.66 88.45 69.57 65.63 86.47 89.01
Average 85.84 78.63 82.37 80.40 83.53 68.02 68.40 81.10 84.00

Table 3. Performance comparison on mathematical tasks using LLaMA-3.2-1B-Instruct and LLaMA-3.2-3B-Instruct models. Accuracy
scores (%) are reported across four benchmark datasets (GSM8K as in-domain and the others as out-of-domain), comparing our proposed
methods against gold standards and baselines. Flexi-LoRA achieves the best average performance on both model sizes while using fewer
parameters than standard approaches. The ”#” row indicates the number of trainable parameters. Green (teal) and red (maroon) cell
coloring is higher and lower scores respectively, with deeper colors indicating larger performance differences.

but instead depend on the task’s inherent complexity dis-
tribution and error passing dynamics. The more sequential
the reasoning required by a task, the greater the advantage
offered by Flexi-LoRA’s dynamic rank allocation.

5.5. Case Study

We present a qualitative analysis of model outputs to under-
stand the influence of different fine-tuning approaches on
mathematical reasoning tasks. Table 4 showcases two typi-
cal cases that show key differences between our proposed
methods and existing baselines. (1) Training-Inference
Consistency Influence: Table 4 reveals DyLoRA’s out-
puts mirror the Original model, indicating finetuning fail-
ure due to training-inference inconsistency (random rank
sampling during training versus fixed rank at inference).
On the other hand, DyLoRA+ successfully fine-tunes by
maintaining consistent random rank selection across both
stages. This difference demonstrates that dynamic con-
sistency between training and inference is important for
effective parameter-efficient finetuning. (2) Fine-tuning
Quality Indicators: Beyond correctness, fine-tuned mod-
els show qualitative improvements in reasoning. DyLoRA+
and Flexi-LoRA produce detailed step-by-step solutions and
follow output formatting ("The answer is:”"), while Original
and DyLoRA generate abbreviated responses that ignore
instruction requirements. These differences, detailed reason-
ing and instruction adherence, serve as reliable indicators of
successful finetuning. (3) Error Analysis: The cases reveal
three error types in mathematical reasoning: (a) conceptual
errors (Case 1: treating $4/carton as $4/serving, leading to
$3,600 vs $16), (b) arithmetic misunderstanding (Case 2:
2/5 times more” computed as 2 times more”), and (c) pro-
cess errors (correct intermediate steps but incomplete final
calculations). These errors go through multi-step reasoning,
showing initial mistakes. (4) Reasoning Quality Compar-
ison: Successful methods maintain accuracy throughout

reasoning chains. Case 2 illustrates this: LoRA correctly un-
derstands proportional relationships but fails in final answer,
while Flexi-LoRA completes all computational steps cor-
rectly. Early-stage errors in baseline approaches go through
the entire solution.

5.6. Ablation Studies

Figure 4 presents a comprehensive analysis analyzing key
variables that contribute to Flexi-LoRA’s effectiveness.
We examine four aspects of our approach: (1) Training-
Inference Rank Consistency is essential for performance,
as evidenced by DyLoRA’s decrease when using fixed ranks
at inference despite dynamic training. This confirms our
hypothesis that maintaining consistent rank dynamics is
important, especially for sequential reasoning tasks. (2)
Input-Adaptive vs. Random Selection comparison be-
tween Flexi-LoRA and DyLoRA+ demonstrates that learned
complexity-aware allocation consistently outperforms ran-
dom selection, validating the effectiveness of our router-
based approach. (3) Model Size Influences show that while
scaling from 1B to 3B parameters improves overall perfor-
mance across all methods, Flexi-LoRA maintains its relative
advantage, indicating that input-adaptive allocation remains
beneficial regardless of model size. (4) Task-Dependent
Sensitivity analysis reveals that mathematical reasoning
tasks exhibit higher sensitivity to rank dynamics than QA
tasks, with up to 39.44% performance gap between consis-
tent and inconsistent methods on math compared to 6.49%
on QA, illustrating how tasks with stricter evaluation crite-
ria and error passing benefit more from adaptive parameter
allocation.

5.7. Efficiency Analysis

Our analysis demonstrates Flexi-LoRA’s superior parameter
efficiency across multiple aspects. Figure 3 and Tables 2
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Question: Cynthia eats one serving of ice cream every night. She buys cartons of ice cream with 15 servings of ice cream per carton at a cost of $4.00 per carton. After
60 days, how much will she spend on ice cream? Standard Answer: 16

Original:

To find the total cost of ice cream, multiply the num-
ber of servings per carton by the number of cartons
Cynthia buys. 15 servings per carton * 60 cartons
=900 servings. 900 servings * $4.00 per serving =
$3,600. The answer is: $3,600.

DyLoRA (Baseline):

To find the total cost of ice cream, multiply the num-
ber of servings per carton by the number of cartons
Cynthia buys. 15 servings per carton * 60 cartons
=900 servings. 900 servings * $4.00 per serving =
$3600. The answer is: $3600.

DyLoRA+ (Ours):

Cynthia eats one serving of ice cream every night, so
in 60 days, she will eat 60 servings of ice cream.
Each carton of ice cream has 15 servings, so she will
buy 60/15 = 4 cartons of ice cream.

Each carton costs $4.00, so she will spend 4 * $4.00
=$16.00 on ice cream.

#H##HE 16

The answer is: 16

Question: Meredith is a freelance blogger who writes about health topics and submits to clients each day as her permanent job. A blog article takes an average of 4
hours to research and write about. Last week, she wrote 5 articles on Monday and 2/5 times more articles on Tuesday than on Monday. On Wednesday, she wrote twice
the number of articles she wrote on Tuesday. Calculate the total number of hours she spent writing articles in the three days. Standard Answer: 104

Original:

Meredith wrote 5 articles on Monday, 5 + 2(5) =
15 articles on Tuesday, and 2(15) = 30 articles on
Wednesday. The total number of hours she spent
writing articles is 4(5) + 4(15) + 4(30) = 20 + 60 +
120 = 200 hours.

LoRA (Gold Standard):

Meredith wrote 5 articles on Monday, which took 4
hours to research and write, so she spent 5 * 4 =20
hours writing on Monday.

On Tuesday, she wrote 2/5 times more articles than
on Monday, so she wrote 5 + (2/5*5)=5+2=7
articles.

On Wednesday, she wrote twice the number of articles
she wrote on Tuesday, so she wrote 7 * 2 = 14 articles.
In total, Meredith spent 20 + 7 + 14 = 41 hours writing
articles in the three days.

Flexi-LoRA (Ours):

Meredith wrote 5 articles on Monday, and 2/5 times
more articles on Tuesday, so she wrote 5 + (2/5)*5 =
5+ 2 =7 articles on Tuesday.

On Wednesday, she wrote twice the number of articles
she wrote on Tuesday, so she wrote 2*7 = 14 articles
on Wednesday.

In total, Meredith wrote 5 + 7 + 14 = 26 articles in
the three days.

Each article takes an average of 4 hours to research
and write about, so she spent 26%4 = 104 hours writ-

H#i## 41
The answer is: 41

ing articles in the three days.
it 104
The answer is: 104

Table 4. Case study comparing reasoning performance across different LoORA variants on mathematical problems for LLaMA-3.2-
1B-Instruct. Examples demonstrate how training-inference LoRA dynamics consistency influences problem solving: DyLoRA+ and
Flexi-LoRA correctly solve problems that confound baseline methods, with errors highlighted in red and correct steps in green. Flexi-
LoRA’s input-adaptive parameter allocation enables more accurate calculations and multi-step reasoning compared to static LoRA.
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Figure 4. Ablation study comparing performance influence of rank selection strategies across model sizes. Charts show performance on
QA tasks and mathematical reasoning tasks for LLaMA-3.2-1B-Instruct and 3B models. The methods are labeled as (B) for baseline
methods and (O) for our proposed methods. All methods use dynamic ranks during training but differ in inference approach: DyLoRA
uses fixed ranks (4 or 8), DyLoRA+ employs random rank selection, and Flexi-LoRA utilizes input-adaptive rank allocation. Results
demonstrate that Flexi-LoRA maintains its advantage regardless of model size and task type, confirming the benefits of input-adaptive
rank allocation and the consistency between training and inference rank dynamics.

and 3 quantify this advantage: Flexi-LoRA (2,8) achieves
the highest QA performance with only 504K trainable pa-
rameters, compared to 1703K for LoRA-8, a 70.40% param-
eter reduction while improving performance. Flexi-LoRA
(1,8) further reduces parameter count to 304K (17.85% of
LoRA-8) while maintaining competitive performance. This
efficiency improvement extends to mathematical reason-
ing tasks, where Flexi-LoRA outperforms LoRA-8 on 1B
models (66.56% vs. 63.17% accuracy) using only 533K

parameters (31.29% of LoRA-8’s 1703K). Regarding com-
putational overhead, Flexi-LoRA’s router consists of only
two layers that process the pooled input embedding once
per sequence, introducing negligible additional computation
compared to the base model computation. This minimal
overhead is substantially balanced by the parameter effi-
ciency gains, resulting in an overall more efficient finetuning
framework that demonstrates consistent advantages across
model sizes and tasks.
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6. Conclusions

This paper introduces Flexi-LoRA, an input-adaptive frame-
work that dynamically adjusts LoRA ranks based on ques-
tion complexity. We demonstrate that maintaining consistent
rank dynamics between training and inference is important
for finetuning models, particularly for sequential reasoning
tasks. Flexi-LoRA outperforms static LoORA while using
fewer parameters (29.6% for QA and 31.3% for math rea-
soning), with performance gains more pronounced on math-
ematical tasks requiring reasoning chains. These results
confirm that input-dependent parameter allocation enables
efficient capacity allocation while reducing parameter re-
dundancy, achieving benefits similar to mixture-of-experts
frameworks through a more streamlined method.

Future work could have several directions: (1) layer-specific
dynamic ranks to optimize parameter utilization at finer
level; (2) router frameworks learning hierarchical aspects
of input complexity; (3) integration with other parameter-
efficient techniques such as sparse fine-tuning.
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