Understanding Secret Leakage Risks in Code LLMs:
A Tokenization Perspective

Meifang Chen* Zhe Yang' Huang Nianchen! Yizhan Huang* Yicen Li* Michael R. Lyu*

Abstract

Code secrets are sensitive assets for software developers, while their leakage im-
poses high risks to cybersecurity. While the rapid development of Al code as-
sistants powered by Code Large Language Models (CLLMs) revolutionizes the
landscape of software engineering, CLLMs are shown to inadvertently leak such
secrets due to a notorious memorization phenomenon. This study firstly reveals
that Byte-Pair Encoding (BPE) tokenization leads to unexpected behaviour of se-
cret memorization. Specifically, we discover that some secrets are among the eas-
iest for CLLMs to memorize, even though they look random. Our investigation
reveals that these secrets exhibit high character-level entropy, but low token-level
entropy. We coin the phenomena as gibberish bias. We identified the root of the
bias as the token distribution shift between the CLLM training data and the secret
data. We further discuss how gibberish bias manifests under the “larger vocabu-
lary” trend. To conclude the paper, we discuss potential mitigation strategies and
the broader implications for the current tokenizer design.

1 Introduction

Code Large Language Models (CLLMs) are revolutionizing the entire software development lifecy-
cle, impacting every phase from requirements analysis to deployment and maintenance. Recent aca-
demic advances, such as Qwen2.5-Coder [20], StarCoder2 [19], and Deepseek Coder [12], demon-
strate significant improvements in code generation, understanding, and reasoning across multiple
programming languages and tasks. These models have been evaluated on rigorous benchmarks
like HumanEval [4], LiveCodeBench [21], and others, showing state-of-the-art performance in code
synthesis, completion, and bug repairs. On the commercial side, tools like GitHub Copilot [10],
Amazon CodeWhisperer [2], and Cursor [6] have operationalized CLLMs by integrating the tech-
nology directly into real-world development environments to provide real-time coding assistance,
documentation generation, and automated testing. Such tools are widely adopted, for instance,
GitHub Copilot boasts over 15 million users, demonstrating a substantial increase of more than 4x
year-over-year [7]. It is reshaping developer workflows, reducing the need for boilerplate coding,
and enabling higher-level abstraction in software design.

However, the broad adoption of CLLMs is increasingly raising concerns in the community. Code
LLMs are shown to have strong capability of memorization — with proper prompts, they emit training
data verbatim. For instance, CLLMs may leak documentations, statements, logs, and configuration
files [42, 40, 29]. CLLMs may even memorize and leak code secrets. These secrets include API
keys to online services, private keys, passwords, and URLS, posing severe security and privacy risks.
The secrets appear in training corpus, since careless programmers push their secrets to code hosting

*The Chinese University of Hong Kong
TNanyang Technological University
HUniversity of Southern California

The Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop:
Deep Learning For Code in the Agentic Era.

Gibberish Bias

Secret String s . (=)
___occret oving £ BPE-based Tokenization \ —
[jQs8BxoQcutlsfSIvaY1 | —_— Generate

Prompt

[iQﬁSfochutleSlvqu] Adversary
] Query

/fﬁm 07 g % _’On%\’i“
Dataset o 7 * @

N ’/' Output

Developer
1 Commit

Source Code
Hosting Service

Figure 1: The risk map of secret leakage through CLLMs. The red box highlights the findings in
this papers.

services like GitHub. Therefore, with the exploding use of CLLMs, the topic is becoming important
in the Al safety community. We illustrate the risk in Fig. 1.

While most memorization works focus on prompting, training paradigms, and datasets of CLLMs,
this paper explores tokenization, an under-explored yet pivot component of CLLMs. Our research
is motivated by the recently discovered relationship between entropy and memorization score. The
work reveals that for a token sequence from the LLM training corpus, (an estimator) of entropy is lin-
early related to memorization score [17]. By applying the previous discovery to the memorization of
secrets, this study reveals that although some gibberish-like secrets (i.e., highly-randomized strings)
are high-entropy at the character-level, after tokenization, some secrets are encoded to low-entropy
token sequences, significantly reducing the difficulty. We coin the phenomenon as gibberish bias.
Our research results indicate that the risk of secret leakage is exacerbated with gibberish bias.

This study conducts a deeper exploration of gibberish bias. We found that gibberish bias should be
attributed to Byte-pair Encoding (BPE), the most popular tokenization strategy in (Code) LLMs. We
confirm that the root of gibberish bias — BPE is sensitive to distribution shift between train data and
inference (test) data well. We then discuss the bias under the current trend of “larger tokenizers.”
The final part of the paper discusses the mitigation strategy and its border implications for tokenizer
design.

Contribution summary.

1. This paper identifies a new risk in secret leakage through CLLMs: tokenizer might induce gib-
berish bias, and further exacerbate the secret leakage risk

2. This paper explores the roots of such bias: BPE is sensitive to the distribution shift between train
and test data.

3. This paper evaluates that the secret leakage risk is expected to manifest more under current “larger
tokenizer” trend.

4. The paper discusses the potential mitigation strategies, and broader implications to the commu-
nity.

2 Background

2.1 Tokenization of Code LLMs

In NLP, early explorations use word-level tokenization (e.g., word2vec [25]), assigning each distinct
word a unique index and embedding. This approach imposed a fixed vocabulary and sometimes
resulted in the failure to handle out-of-vocabulary (OOV) words [25]. Later, researchers developed
subword tokenization strategies that segment words into smaller units. The process typically include
three sequential stages: (/) Pre-tokenization: a preprocessing step that imposes rules on the raw
text, such as whitespace splitting, normalization, or restrictions on allowable character sequences.
(2) Vocabulary Construction: given a corpus and a target vocabulary size, an algorithm selects a set
of subword units that constitute the vocabulary, while strictly adhering to the pre-tokenization rules.

Code:

[name 1| _JVM| _Tests| & L int _command : ./|grad lew ._.check|—--|no|-da emon]

Secret:

[Jj Q 6 8 f B X0 | Q |cut| 1 5 f S 1 vu Y 1]

Figure 2: Use BPE to tokenize one line of normal code and secrets. Each token is a subword.

Each subword is regarded as a token. (3) Segmentation: using the constructed vocabulary, this step
operationalizes the mapping from raw text to subword sequences.

We note that before LLM training, model developers run stages (1) and (2) to establish the vocabu-
lary. The vocabulary should be strictly followed during all stages of LLM training (i.e., pre-training,
post-training). During CLLM training and inference, only stages (1) and (3) are applied. In decoder-
only LLMs, a tokenizer assigns an input string into a sequence of numerical IDs, which are further
transformed into embeddings via an embedding matrix.

The core of tokenization is the vocabulary construction algorithm, and the Byte-Pair Encoding
(BPE) [31, 9] is the de facto standard for LLMs since GPT-2 [30]. It is a greedy, data-driven
merge algorithm that iteratively combines the most frequent adjacent character or byte pairs from the
training corpus to build a subword vocabulary. Starting from individual symbols, BPE yields multi-
character tokens for frequent patterns (e.g., “ing”, “tion”) while splitting rare words into smaller
units. The total merging step is a hyper-parameter, and depends on the empirical decision of model
trainers.

Code LLMs, including Deepseek Coder, StarCoder2, Qwen2.5-Coder, generally employs BPE-
based tokenization, following the tokenizers on LLMs. For CLLM tokenizers, there are slight
changes towards code-related tasks. For example, many Code LLMs adapt vocabularies on code-
base to improve generation fidelity and ensure compilable output [38]. We further showcase how
tokenization works on an example string in Fig. 2.

2.2 Code Secrets and their Entropy

Software developers need secrets to authenticate these third-party services as part of system inte-
gration. The secrets include API keys, access tokens, and private keys. While secrets are sensitive
assets during software development, careless developers may hard-code secrets in their code, and
push them to online code hosting services like GitHub. Recent studies have shown that a vast amount
of secrets are exposed in public software repositories [3, 8, 24, 44, 41]. These secrets are collected
as part of the training corpus of CLLMs; hence, they might be accidentally leaked by CLLMs.

Table 1: Common secrets and their corresponding regex patterns.

Secret type Regex

AWS Access Key ID AKIA[0-9A-Z]{16}

Google API Key ATza[0-9A-Za-z-_]1{35}
Tencent Cloud Secret ID AKID[0-9a-zA-Z]{32}

GitHub Personal Access Token | ghp_[0-9a-zA-Z]{36}
Facebook Access Token EAACEdEoseOcBA[0-9A-Za-z]+

An important property of code secrets is that secrets typically exhibit high (char-level) entropy [32].
For human being, the strings look like gibberish. High entropy indicates high uniqueness. Con-
sequently, for online service providers, entropy is a pivotal design consideration on the security
of their secrets. Secrets typically follows a specifc format, hence can be characterized by regular
expressions. Table 1 presents examples of secrets of popular online services.

Mathematically, denote a secret as a sequence s = (s',s%, ..., s's‘), where each atomic element

could either be a char or token. Denote the set of all possible outcomes as V. Denote the expected

frequency of x as p(x), the entropy H of secret s is

H(s) £ =) p(x)log p(x) 1)

zeV

Taking GitHub personal access tokens "V [14] as an example, such tokens follow the format specified
by the regular expression ghp_[a-zA-Z0-9]1{363}. The char-level entropy for this token is 5.915
bits, which is close to maximal entropy 5.977 bits. We defer the detailed calculation to appendix B.

3 Motivating Study: BPE Is Insane on Secret Tokenization

Secrets are designed at character-level — the regular expression defines the secret format, and the
randomized part is random characters. However, CLLMs process these strings on token-level. This
section then presents a motivating study using visualizations, and reveals that BPE indeed results in
insane behaviors.

3.1 Case Study

This case study discusses the tokenization example in Figure 2. The figure illustrates how Deepseek
Coder [12] tokenizes a part of normal code and a secret (substring). We observe significant differ-
ence on token granularity: Although two strings present the same token count, the source code is
significantly longer measured in character-level length.

For typical source code, the tokenizer chunks text in a way that is much expected: a token typically
consists of multiple characters. Some words are split into shorter sub-words. For example, the
word “-daemon” is represented by two tokens, “-da” and “emon”. In contrast, the situation is much
different for secrets. Most of the tokens are one character. Other tokens are characters in length 2
and 3. Interestingly, the tokenizer identifies an English word “cut” in a gibberish-like string as a
token.

Even with one example, we could observe how BPE-based tokenization might induce gibberish bias.
Tokens of secrets are distributed in a highly non-uniform way. They include chars of length 1, 2,
3, maybe n > 10. Tokens of shorter char-lengths may appear with higher frequency, while longer
ones may be less frequent. In information theory, uniform distribution exhibits the maximal entropy
possible, and hence non-uniform random variables exhibit less entropy. With less entropy, secrets
are increasingly likely to be memorized. We leave the detailed calculation to Section 5.

3.2 Tokenizing 2-char secret sub-strings

To demonstrate how tokenizers perform
poorly on secrets, this section shows
the tokenization of a 2-char randomly-
generated string. The characters are se-
lected from a vocabulary of size 76, i.e.,
letters (a-z, A-Z), digits (0-9), and other
symbols. These chars are commonly used
by secrets. We enumerate all the combi-
nations of 2-char string given the vocabu-
lary. We examine each string whether it is
Digit Letter Symbol Digit Letter symbol encoded to one token (in yellow) or two to-
Emm Two tokens Single token I Two tokens Single token . .
kens (in brown) and presents the result in
Figure 3: Visualizing how Qwen2.5-Coder (left) and Figure 3. There is clearly a non-random
Deepseek Coder (right) tokenize a 2-char sub-string of ~ distribution of different encoding strate-
secrets. Denote the substring as a;as, a; corresponds ~ gies. In general, we observe certain char-
to the horizontal coordinates of a pixel, and ay corre- acter pairs that the tokenizer tends not to
sponds to the vertical coordinates of a pixel. split: (lowercase letter, lowercase letter),

Symbol
Symbol

Letter
Letter

Digit
Digit

V«Tokens” in “personal access tokens” refers to the strings for authentication purposes. Readers shall not
confuse with “tokens” used in (C)LLM tokenization.

(uppercase letter, uppercase letter), (sym-

bol, symbol), (letter, symbol). However,
as one easily finds out, many non-trivial corner cases exist. The overall decision boundary is
thus governed by a complex interplay of statistical heuristics. Similar patterns are observed on
the Deepseek Coder tokenizer.

4 Gibberish Bias

Section 3.1 demonstrated that on secrets, BPE-based tokenization may not function as ideally as
on normal data. In other words, it is potentially biased — we term it gibberish bias. This section
aims to formally describe gibberish bias using math notations. Inspired by several research works
on secret memorization, we characterize gibberish bias by memorization. Secret leakage has strong
implications to the community, since upon leakage, these credentials may grant an adversary access
to online services, bringing severe cybersecurity concerns.

4.1 Preliminaries: Entropy-Memorization Law

A recent LLM memorization work [17] has shown that entropy, the essential property that comes
with the design of code secrets, is closely related to memorization. The work discovers so-called
Entropy-Memorization Law, which could be formally described as follows.

Denote a fixed pre-trained LLM 6, prompt (a token sequence) p, the golden answer (a token se-
quence) s and a memorization score measuring the difference between LLM continuation and the
golden answer d(6(p), s).

The work studies two metrics, entropy and normalized entropy of the answer sequence, M (s),
and M (s). Note that the entropy notation is slightly twisted from H(s) in Equation 1. The subtle
difference lies on the outcome space V. Since LLMs process strings at token-level, V is defined over
tokens. Moreover, in Entropy-Memorization Law, the authors adopted a level-set based calculation
for V, where we skip due to space limit.

With the established entropy notation, normalized entropy quantifies how closely the entropy of a
sequence approaches the maximum possible entropy. Normalized entropy eliminates the effects of
sample space size. It is defined as

M(s) M(s)
Mupax(s) log|V|’

M(s) = 2)

Under specific conditions, a loose statement of Entropy-Memorization Law is:

1. M(s) is a proxy of d(6(p), s). The relation is positively linear.
2. M(s) is a proxy of d(6(p), s). The relation is negatively linear.

In other words, higher entropy of a token sequence indicates a lower chance of memorization. Higher
normalized entropy of a token sequence indicates a higher chance of memorization.

In this work, we are interested in studying the following metrics of the secret strings: character-level
entropy M (s), token-level entropy H (s), and the normalized entropy, and their normalized version

M(s), H(s).

4.2 Experiments

Experimental Setup. We adopt the same experimental setup with [17]. We use OLMo-1B [11],
a fully-open LLM with its training corpus Dolma [33]. In the experiments, we sampled 240k se-
quences from Dolma. We reproduce the results with the same algorithm adopted in [17]. We study
the zero-distance set (where memorization score is 0, or “perfect memorization) and try to identify
secret strings.

Experimental Results. Among all 847 instances within the zero-distance set, we identified 102
gibberish-like secrets through manual labeling. Some examples are shown below.

1 ESVX103url9YW1FW/TA9cshCEhtu7IKJ/p5s0J/gGpj7vbvFrAY/eIioQ6Dw23KjZ
2 PszYzqs83S3Ebmpi7/y/8M9eCI9OMRTZfduQ0YW76ig6S0SPNe41IG5LoP3FGBn2NORj
3 51laX06c1IbEbegDmzGPwGNTsHZmEy6QGznu5Sh2UCWvueywb2ee+CCE4zQiZstxU9

Listing 1: Three examples of gliberish generated by OLMo-1B.

We conduct analysis over four sets: gibberish, non-gibberish, zero-distance set and non-gibberish in
the zero distance set V. We adopt the entropy estimator and normalized entropy introduced in this
section over these three sets. The results of our analysis are summarized in the following table.

Table 2: Statistics of secret memorization at token-level (7) and char-level (C).

Unique Elements Entropy Normalized Entropy

T C T C T C
Zero-distance Set 3,661 105 7.834 5.110 | 0.662 0.761
Secrets 1,047 76 8.084 6.086 | 0.806 0.974
Non-Secrets 47,945 9,006 11.175 4.744 | 0.719 0.361
Non-Secrets in Zero-distance Set 2,897 105 7.329 4.966 | 0.637 0.740

The experimental results reveal the key findings: high character-level entropy does not necessar-
ily imply high token-level entropy. In fact, at the token-level, these secrets has significantly lower
entropy (8.804) than non-secrets (11.175); while at the char-level, these secrets have significantly
higher entropy (6.086) than non-secrets (4.744). Besides, if we calculate the difference delta be-
tween secrets and non-secrets, there is a significant gap on normalized entropy between token-level
(A =0.806 — 0.719 = 0.087) and character-level (A = 0.974 — 0.361 = 0.613).

It is observed that at the token-level, the 102 identified gibberish uses more than 1k different tokens.
On the contrary, at char-level, they are composed of 76 unique chars (i.e., A-Z, a-z, 0-9, and 14 other
chars). That showcases he outcome space size discrepancy between char-level and token-level, and
explains our finding.

The findings may deviate from our human intuition. A wrong logic chain of a human is: by the
Entropy-Memorization Law, secret strings are highly randomized; hence, they have high entropy
and are hard to memorize. The problem lies in the “high entropy property” naturally assumed by
our human beings — human beings perceive secrets at the character level. In contrast, for LLMs,
the entropy should be calculated over the token level. After tokenization, some high character-level
normalized entropy strings are transformed into low entropy ones. Hence, the EM-Law suggests
they should be easier to memorize than an average non-gibberish text.

We conclude this section with the full description of gibberish bias:

Gibberish bias

BPE-based tokenization transforms some of the high character-level entropy sequences into
low token-level entropy sequences.

The above results reveals an essential defect induced by tokenization. The findings leave an intrigu-
ing and important question: How does this happen? To explore the question, we discusses the design
issues on BPE, the tokenization strategy on every state-of-the-art (Code) LLMs in the next section.

5 How Does Tokenization Induce Gibberish Bias?

Experimental Setup The following experiments include tokenizers of three representative Code
LLMs: Deepseek Coder [12], Qwen2.5-Coder [20], and StarCoder2 [19]. The experiments involves
comparisons on two datasets: the “secret” dataset as introduced in Section 4 and the subsample
Stack V2 dataset [19]. Stack V2 is the training corpus of StarCoder?2.

"To clarify, non-secrets refers to the complement set of labeled secrets. Therefore, “non-secrets” may
include unlabeled secrets. Due to the large size of the sampled corpus, labeling on such an extensive scale is
not feasible at this stage of work.

LLM trainers typically construct a sample corpus that shares the distribution with the training data to
construct the vocabulary. Moreover, tokenizer design is fixed during the whole LLM training (and
inference) process. However, in terms of distribution, secret strings are essentially different from
the (Code) LLM training corpus. We regard that gibberish bias may stem from the distribution shift
between secrets and a typical (Code) LLLM training corpus. This also matches our intuition — secret
data are highly randomized, while the CLLM training corpus typically includes source code col-
lected from online code hosting services. Then this section aims to answer the question: Compared
with the token distribution of the code dataset to train CLLMs, how different is the distribution of
tokens in secrets?

N
N

@

o

l —— log_A freq_ratio | -3,

L
==,

Token Freg. of Dist. A (log scale)
&
g
==
— —
=
e

IS
o

—e— Deepseek Coder
Qwen2.5-Coder

!
»
o

A
Token Freg. of Dist. B (log scale)

A log_B_freq_ratio [=4

1000

100

T
' |
4o ¢

Frequency (log scale)

—

|
N«
o

1 2 3 9 10 >=11

Cha?’ Iengih of : toke7n (N-cghar)
i o Figure 5: Token distributions on the subsampled
Figure 4: The distribution of n-char tokens. Stack V2 dataset (Distribution A, in brown) and
the secret dataset (Distribution B, in yellow).

Following the idea in the case study (Sec. 3.1), we conduct tokenization on the secret dataset and
analyze the token composition of secrets. To be specific, we report the frequency of tokens based
on their character length (n) for all secret-related tokens in the dataset in Fig. 4. We observed
an exponential decrease in token frequency as character length n increases, as evident from the log-
scale y-axis. The overall distribution is long-tailed, leading to the low entropy of the token sequence.
Interestingly, we even found tokens with lengths of n > 11 characters, indicating the complexity of
the tokenization decision boundary.

Ideally, the token distribution of secrets should be uniform; but the observed distribution of BPE
tokens is long-tailed. From information theory, we know that uniform distribution achieves the
maximal entropy [32], while non-uniform distribution exhibits less entropy. The discrepancy of
token distributions supports the gibberish-bias claim.

Next, we are interested in the causes of the identified long-tail distribution. How do these long char-
length tokens form? We further sort the tokens on secret dataset by frequency, and compares them
with the frequency of the same token on a general CLLM dataset.

Fig. 5 ranks the most frequent 150 tokens on the secret dataset, and compares the frequency of
each token on the subsampled Stack V2 dataset. For both datasets, we employ the same tokenizer
StarCoder2. The tokens distribution of the secret dataset (yellow line), exhibits a much steeper and
more consistent drop-off in frequency for less common tokens compared to the Stack V2 (brown
line). This observed divergence in log-proportion frequencies strongly suggests a distribution shift
between the two datasets, particularly for tokens beyond the most frequent few. Setting the Stack
V2 as the reference data distribution, we further report the KL divergence between the secret dataset
and the Stack V2. The resulting KL divergence is 2.668, demonstrating the discrepancy.

Using a CLLM tokenizer, the token distribution of secret data is long-tailed — and such long-
tail distribution explains the low entropy of secrets, hence explains the claimed gibberish
bias. Further investigation confirms the significant distribution shift between secret data and
general CLLM training data.

6 Gibberish Bias With a Larger Tokenizer Vocabulary

There is a growing consensus in both academia and industry that larger models shall benefit from a
larger vocabulary [34, 15]. As the prevailing trends of building larger Code LLMs, it is believed that
CLLMs deserve large vocabularies. Tao et al.’s [34] work reveals that model parameters NV, and

the corresponding optimal vocabulary size NP approximately follow a power law. The authors
further find that almost all state-of-the-art general-purpose LLMs and Code LLMs use vocab sizes
smaller than the predicted optimal one. Then a question naturally arises: will a larger vocabulary
size induce more gibberish bias?

We build three new tokenizers of StarCoder2 (3B, 7B, and 15B) using the sub-sampled stack v2. We
follow the IsoFLOPs [34] approach to generate tokenizers in “optimal” vocabulary size. IsoFLOPs
analysis suggests that size 39367 for the 3B model, size 62280 for the 7B model, and size 93987 for
the 15B model. We then trained these tokenizers using the subsampled Stack V2 dataset, based on
the suggested size. For clarity of presentations, these tokenizers are named as SC-3B-o, SC-7B-o,
and SC-15B-o, correspondingly.

With three new tokenizers, we investigate gibberish bias on the secret dataset. Following [17], we
report entropy and normalized-entropy of these secrets introduced in Section 2.2 at the token-level.

Table 3: Entropy and normalized entropy of secrets when using different tokenizers. “Sec.” refers
to “Secrets”.

Entropy Normalized Entropy
SC-3B-o SC-7B-o SC-15B-o0 Char SC-3B-o SC-7B-o SC-15B-o Char
Sec. 6.931 7.076 7.145 6.086 0.777 0.774 0.773 0.974
Non-Sec. 9.136 9.355 9.575 4.745 0.721 0.714 0.708 0.361
Sec./Non-Sec. 0.759 0.756 0.746 1.283 1.079 1.085 1.092 2.695

To compare metrics on secrets and non-secrets, we use a “‘sec./non-sec.” ratio. Table 3 shows the
overall result. First, the results on new tokenizers converge with those of OLMo tokenizers discussed
in Section 4. Compared to non-secrets, secrets exhibit lower entropy at the token level and higher
entropy at the char level; secrets achieve almost maximal normalized entropy. Second, regarding
the sec./non-sec ratio, it is observed that the relative difference between secrets and non-secrets is
slightly expanding. For both entropy and normalized entropy metrics, the sec./non-sec ratio k eeps
deviating from the baseline ratio deviating from the baseline ratio 1. We summarize our findings in
this section as follows:

Gibberish bias tends to be more pronounced in models employing larger tokenizer vocabu-
laries.

7 Related Work

With the widespread adoption of Al-powered coding assistants, the memorization of sensitive data
by CLLM:s is a growing concern. Initial research focused on empirically demonstrating and quanti-
fying this risk. HCR [16] is a method proposed to test and validate the leakage of hard-coded creden-
tials from neural code completion tools using prompts derived from public GitHub files. Similarly,
Yang et al. [43] provided a systematic study showing CLLMs memorization a broad scope of data
related to code. A study [39] investigates how memorization leads to general code cloning, raising
concerns about copyright infringement and bug propagation. Other studies explore code clone as
implcations of memorization [5, 1]. Recent research probes the underlying mechanisms at a finer
granularity. For example, DESEC [28] addresses the problem from the decoding stage. However,
these prior works do not address the root cause of why some secrets are so readily memorized. Our
work addresses this fundamental issue from the perspective of the tokenization process. We explore
how standard tokenizers can inadvertently reduce the token-level entropy of secrets, making them
inherently more vulnerable to memorization.

8 Discussions

8.1 Implications on the Security of Secrets

Mitigating gibberish bias. Gibberish bias is grounded on the discrepancy of how secret strings
are processed at design stage (char-level) and CLLM inference stage (token-level). Therefore, a

Secret String Secret String

[jQ68BxoQeutisfSivuy1 | [jQ68MBxoQeutisfSIvuY1 |
1 BPE-based tokenization 1 Char-based tokenization
[jQ68fochutleSlvuY1] (1/Q68fBxo0Qcutl5fsivuYi]
High Memorization Score
e el High Entropy
| -
CILMS g }j:: é{:::i::“mon Score CLLMs \g
= ..A?
Memorization Score Memorization Score

Figure 6: Mitigation Strategy Visualized

promising solution to fix the gap and mitigate this to force character-wise tokenization for code
secrets. Recent research [37] demonstrates that token-level models can be reinterpreted at the char-
acter level through a search-based alignment algorithm. By reconstructing conditional distributions
over characters and employing beam search pruning for efficiency, this approach provides a prin-
cipled means to approximate character-level behavior, thereby mitigating discrepancies in model
processing. Fig 6 illustrates the overall idea.

The strategy aligns the discrepancy between two stages. Therefore, we expect it to eliminate the
gibberish bias. The strategy also draws inspiration from digit-wise tokenization on integers in
general-purpose LLMs. Such strategy is adopted in some LLLMs Llama-1 [35], Llama-2 [36], and
Mistral [22], aiming to arithmetic-related capabilities of LLM. Figure 6 presents the visualized mit-
igation strategy.

Implication on stakeholders of secret leakage. For online service providers who provide secrets
to users, they should be aware of the risk induced by tokenizers. For developers of code LLMs,
they should proactively adopt the above mitigation strategy to mitigate the risk. For academic re-
searchers, we advocate for red teaming strategies to understand every aspects of secret leakage.
Such open questions include: how can an adversary proactively and effectively exploit CLLMs to
extract secrets? We leave these for future explorations.

8.2 Implications on Tokenizer Design

Our study surfaces two structural drawbacks of standard BPE tokenizers:

1. Limited flexibility. BPE vocabulary is fixed prior to LLM pre-training; once fixed, Code LLM
trainers should strictly follow the vocabulary to segment words into subwords, and adding or remov-
ing vocabulary items without full model re-training is challenging and under-explored.

2. Sub-optimal compression utility under train-test distribution shift. BPE has its historical
origins in text compression, and it was brought to language models in 2016, since the community
believes that compression boosts the performance of LLMs [18]. On LLMs, BPE is a heuristic-
based algorithm to compress on the fraining distribution. Therefore, its compression rate on specific
test distributions may degrade. In fact, we expect such a train-test distribution shift to exist for every
downstream task of (Code) LLMs. Therefore, degradation of compression may affect downstream
performance and the robustness of CLLMs. Our study presents a corner case for these distribution
shifts, and shows the weird behavior of BPE.

In summary, BPE hurts downstream task performance, and such defects may not be easily miti-
gated due to limited flexibility in vocabulary. To effectively adapt CLLMs to different downstream
tasks, there have been a lot of efforts on CLLM post-training, agentic AI. We regard that an under-
appreciated direction is promising: fokenizer adaptation. These methods enable a change of vocab-
ulary without full re-training. Representative methods include [13, 26, 27].

As our final remark, most evaluations of BPE to date are empirical, and the reasons for its good
practical performance are not well understood in the whole Al community [23]. We then call for
principled theoretical investigations towards BPE for academic researchers.

References

[1] Ali Al-Kaswan and Maliheh Izadi. The (ab)use of Open Source Code to Train
Large Language Models . In 2023 IEEE/ACM 2nd International Workshop on Natural
Language-Based Software Engineering (NLBSE), pages 9-10, Los Alamitos, CA, USA,
May 2023. IEEE Computer Society. doi: 10.1109/NLBSE59153.2023.00008. URL
https://doi.ieeecomputersociety.org/10.1109/NLBSE59153.2023.00008.

[2] Amazon. Al code generator: Amazon Code Whisperer, July 2023. URL
https://aws.amazon.com/codewhisperer/.

[3] Setu Kumar Basak, Lorenzo Neil, Bradley Reaves, and Laurie Williams. Secret-
Bench: A Dataset of Software Secrets . In 2023 IEEE/ACM 20th International Con-
ference on Mining Software Repositories (MSR), pages 347-351, Los Alamitos, CA,
USA, May 2023. IEEE Computer Society. doi: 10.1109/MSR59073.2023.00053. URL
https://doi.ieeecomputersociety.org/10.1109/MSR59073.2023.00053.

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. 2021.

[5] Matteo Ciniselli, Luca Pascarella, and Gabriele Bavota. To what extent do deep
learning-based code recommenders generate predictions by cloning code from the train-
ing set? In Proceedings of the 19th International Conference on Mining Software

Repositories, MSR °22, page 167-178, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450393034. doi: 10.1145/3524842.3528440. URL
https://doi.org/10.1145/3524842.3528440.

[6] Cursor, Jul 2025. URL https://docs.cursor.com/welcome.

[7] Entrepreneur. Github surpasses over 15 million users: Microsoft, May 2025. URL
https://www.entrepreneur.com/en-in/news-and-trends/github-surpasses-over-15-million-users-mi

[8] Runhan Feng, Ziyang Yan, Shiyan Peng, and Yuanyuan Zhang. Automated detection of pass-
word leakage from public github repositories. In Proceedings of the 44th International Con-
ference on Software Engineering, pages 175-186, 2022.

[9] Philip Gage. A new algorithm for data compression. C Users J., 12(2):23-38, February 1994.
ISSN 0898-9788.

[10] GitHub. Github Copilot: Your AI pair programmer, July 2023. URL
https://github.com/features/copilot.

[11] Dirk Groeneveld, 1z Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerating
the science of language models. arXiv preprint arXiv:2402.00838, 2024.

[12] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, YK Li, et al. Deepseek-coder: When the large language model meets programming—
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

10

[13] HyoJung Han, Akiko Eriguchi, Haoran Xu, Hieu Hoang, Marine Carpuat, and Huda Khayral-
lah. Adapters for altering Ilm vocabularies: What languages benefit the most?, 2025. URL
https://arxiv.org/abs/2410.09644.

[14] Heather Harvey. Behind github’s new authentication token formats, Apr 2021. URL
https://github.blog/2021-04-05-behind-githubs-new-authentication-token-formats/.

[15] Hongzhi Huang, Defa Zhu, Banggu Wu, Yutao Zeng, Ya Wang, Qiyang Min,
and zhou Xun. Over-tokenized transformer: Vocabulary is generally worth scal-
ing. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=gbeZKej40m.

[16] Yizhan Huang, Yichen Li, Weibin Wu, Jianping Zhang, and Michael R Lyu. Your code secret
belongs to me: Neural code completion tools can memorize hard-coded credentials. Proceed-
ings of the ACM on Software Engineering, 1(FSE):2515-2537, 2024.

[17] Yizhan Huang, Zhe Yang, Meifang Chen, Jianping Zhang, and Michael R. Lyu. Entropy-
memorization law: Evaluating memorization difficulty of data in llms. arXiv preprint
arXiv:2507.06056, 2025.

[18] Yuzhen Huang, Jinghan Zhang, Zifei Shan, and Junxian He. Compression repre-
sents intelligence linearly. In First Conference on Language Modeling, 2024. URL
https://openreview.net/forum?id=SHMj84U5SH.

[19] Nvidia Hugging Face, ServiceNow. Starcoder 2 and the stack v2: The next generation. arXiv
preprint, 2024.

[20] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Ji-
ajun Zhang, Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint
arXiv:2409.12186, 2024.

[21] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contami-
nation free evaluation of large language models for code. arXiv preprint arXiv:2403.07974,
2024.

[22] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William EIl Sayed. Mistral 7b, 2023. URL
https://arxiv.org/abs/2310.06825.

[23] Lészl6 Kozma and Johannes Voderholzer. Theoretical analysis of byte-pair encoding. arXiv
preprint arXiv:2411.08671, 2024.

[24] Michael Meli, Matthew R McNiece, and Bradley Reaves. How bad can it git? characterizing
secret leakage in public github repositories. In NDSS, 2019.

[25] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space, 2013. URL https://arxiv.org/abs/1301.3781.

[26] Benjamin Minixhofer, Edoardo Maria Ponti, and Ivan Vulié. Zero-shot tokenizer transfer.
Advances in Neural Information Processing Systems, 37:46791-46818, 2024.

[27] Benjamin Minixhofer, Ivan Vuli¢, and Edoardo Maria Ponti. Universal Cross-
Tokenizer Distillation via Approximate Likelihood Matching, May 2025. URL
http://arxiv.org/abs/2503.20083. arXiv:2503.20083 [cs].

[28] Yuging Nie, Chong Wang, Kailong Wang, Guoai Xu, Guosheng Xu, and Haoyu Wang. De-
coding secret memorization in code llms through token-level characterization. arXiv preprint
arXiv:2410.08858, 2024.

[29] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri.
Asleep at the keyboard? assessing the security of github copilot’s code contributions. In 2022
IEEE Symposium on Security and Privacy (SP), pages 754-768. IEEE, 2022.

11

[30] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners. 2019.

[31] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words
with subword units. In Katrin Erk and Noah A. Smith, editors, Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1715-1725, Berlin, Germany, August 2016. Association for Computational Linguistics. doi:
10.18653/v1/P16-1162. URL https://aclanthology.org/P16-1162/.

[32] Claude Elwood Shannon. A mathematical theory of communication. In ACM SIGMO-
BILE Mobile Computing and Communications Review, volume 5, pages 3—55, 2001. doi:
10.1145/584091.584093.

[33] L. Soldaini, R. Kinney, A. Bhagia, D. Schwenk, D. Atkinson, R. Authur, and et al. Dolma: An
open corpus of three trillion tokens for language model pretraining research. arXiv preprint
arXiv:2402.00159, 2024.

[34] Chaofan Tao, Qian Liu, Longxu Dou, Niklas Muennighoff, Zhongwei Wan, Ping Luo, Min Lin,
and Ngai Wong. Scaling laws with vocabulary: Larger models deserve larger vocabularies. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=sKCKPr8cRL.

[35] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Tim-
othée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[36] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[37] Tim Vieira, Benjamin LeBrun, Mario Giulianelli, Juan Luis Gastaldi, Brian DuSell, John Ter-
illa, Timothy J. O’Donnell, and Ryan Cotterell. From language models over tokens to language
models over characters. In Forty-second International Conference on Machine Learning, 2025.
URL https://openreview.net/forum?id=sQSO0roNQZR.

[38] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. CodeT5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and generation. In
Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors,
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Process-
ing, pages 8696-8708, Online and Punta Cana, Dominican Republic, November 2021. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.685. URL
https://aclanthology.org/2021.emnlp-main.685/.

[39] Weibin Wu, Haoxuan Hu, Zhaoji Fan, Yitong Qiao, Yizhan Huang, Yichen Li, Zibin Zheng,
and Michael Lyu. An empirical study of code clones from commercial ai code generators.
Proceedings of the ACM on Software Engineering, 2(FSE):2874-2896, 2025.

[40] Weibin Wu, Haoxuan Hu, Zhaoji Fan, Yitong Qiao, Yizhan Huang, Yichen Li, Zibin
Zheng, and Michael Lyu. An empirical study of code clones from commercial ai code
generators. Proc. ACM Softw. Eng., 2(FSE), June 2025. doi: 10.1145/3729397. URL
https://doi.org/10.1145/3729397.

[41] Yuhang Wu, Zhaoxin Zhang, Zhengyi Li, Yuan Zhang, Min Yang, Hao Zhou, Xiaofeng
Wang, Linzhang Wang, Jianhua Li, Ziwen Zhu, and Xinhui Han. The skeleton keys: A
large-scale analysis of credential leakage in mini-apps. In Proceedings of the Network
and Distributed System Security Symposium (NDSS). Internet Society, February 5. URL
https://www.ndss-symposium.org/ndss-paper/the-skeleton-keys-a-large-scale-analysis-of-creden

[42] Zhou Yang, Zhipeng Zhao, Chenyu Wang, Jieke Shi, Dongsun Kim, Donggyun Han, and
David Lo. Unveiling memorization in code models. In Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, ICSE *24, New York, NY, USA, 2024. As-
sociation for Computing Machinery. ISBN 9798400702174. doi: 10.1145/3597503.3639074.
URL https://doi.org/10.1145/3597503.3639074.

12

[43] Zhou Yang, Zhipeng Zhao, Chenyu Wang, Jieke Shi, Dongsun Kim, Donggyun Han, and
David Lo. Unveiling memorization in code models. In Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, pages 1-13, 2024.

[44] Yue Zhang, Yuqing Yang, and Zhigiang Lin. Don’t leak your keys: Understanding, measur-
ing, and exploiting the appsecret leaks in mini-programs. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’23, page 2411-2425,
New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400700507.
doi: 10.1145/3576915.3616591. URL https://doi.org/10.1145/3576915.3616591.

A Ethics considerations

We contacted the authors in [17] to obtain the sampled dataset described in 4. We use the secrets data
solely for statistical computing (e.g. entropy). We retrain from utilizing the sensitive information at
any level.

B Example calculation of entropy

Following the discussions in Section 2.2, we consider the GitHub personal access token with regu-
lar expression ghp_[a-zA-Z0-9]1{363}. Assume the vocabulary is {A4,...,Z,a,...,2,0...9,_}.
Each char from the randomized part has equal expected number of appear 36- 6—12 = é—f .For “g, h,p",

the expected number of appearance is 1 + % = g—?. For “_”, the expected number of appearance is
1. Therefore, for each of g, h, p:

49/31 49
= = _ —_— = — ~ . 2.
p(g) = p(h) = p(p) 10 510 0.0395

FOI‘ TR

1
)= — = 0.02500.
p(0) 10

For each of the 59 “other” symbols:

18/31 18

Assume the base-2 entropy, the overall entropy is

H=- Zpi log p;

_[3 49 49 318118 18}
- 1240 *® 1240 " 1240 % 1240 1240 8 12401
— 5915 bits

For the sample space size (i.e., vocabulary size) 63, the maximal entropy is achieved by uniform
distribution. L)
Hpox = — — log — = 5.977.
» Z 63 % 63
The normalized entropy is
H/Hpax = 5.915/5.977 = 0.9896

Through the example, we learn that GitHub personal access token achieve around 99% of the maxi-
mal entropy.

13

