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Abstract

Federated Learning (FL) faces significant challenges due to data heterogeneity
across distributed clients. To address this, we propose FedGMKD, a novel frame-
work that combines knowledge distillation and differential aggregation for efficient
prototype-based personalized FL without the need for public datasets or server-side
generative models. FedGMKD introduces Cluster Knowledge Fusion, utilizing
Gaussian Mixture Models to generate prototype features and soft predictions on
the client side, enabling effective knowledge distillation while preserving data
privacy. Additionally, we implement a Discrepancy-Aware Aggregation Technique
that weights client contributions based on data quality and quantity, enhancing
the global model’s generalization across diverse client distributions. Theoretical
analysis confirms the convergence of FedGMKD. Extensive experiments on bench-
mark datasets, including SVHN, CIFAR-10, and CIFAR-100, demonstrate that
FedGMKD outperforms state-of-the-art methods, significantly improving both
local and global accuracy in Non-IID data settings.

1 Introduction

Federated Learning (FL) is a transformative approach to collaborative machine learning that allows
multiple participants to train a shared model while maintaining data privacy by keeping datasets
decentralized. This architecture mitigates privacy risks, particularly in sensitive domains such as
healthcare and finance[3, 5, 6, 14, 23, 26]. FL enables clients to contribute to the global model
without transferring raw data, reducing communication overhead while ensuring privacy. However,
the Non-IID (non-independent and identically distributed) nature of client data poses challenges
for model convergence and consistency. Heterogeneous data leads to divergence in model updates,
slowing convergence and degrading performance across clients[14, 15, 23].

Personalized Federated Learning (pFL) has emerged as a solution to tailor models to individual
client data distributions, improving local accuracy while maintaining global robustness[7, 8, 37].
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However, traditional pFL approaches relying on knowledge distillation (KD) often require public
datasets, raising privacy concerns and complicating implementation[1, 9]. Straggler inefficiencies in
traditional aggregation methods also delay convergence[25], highlighting the need for more effective
pFL frameworks[29, 40].

To address these challenges, we propose FedGMKD, a novel framework that integrates Cluster
Knowledge Fusion (CKF) and a Discrepancy-Aware Aggregation Technique (DAT) to enhance both
local and global model performance. Our approach introduces several key innovations: first, by
employing Gaussian Mixture Models (GMM), we generate prototype features and soft predictions
for each class at the client side, which are aggregated at the server without the need for public
datasets, thus preserving data privacy and effectively addressing the Non-IID problem. Second,
DAT adjusts the aggregation process by weighting prototype features and soft predictions based
on both the quality and the quantity, rather than the quantity, of client data, thus enhancing the
global model’s ability to generalize across diverse client data distributions. Furthermore, we conduct
a rigorous theoretical analysis of the convergence and convergence rate of FedGMKD, providing
strong guarantees for its effectiveness. Finally, experimental results on multiple benchmark datasets
demonstrate that FedGMKD not only achieves state-of-the-art accuracy in local and global models
but also significantly improves efficiency, making it highly effective in addressing the heterogeneity
challenge while maintaining computational feasibility.

2 Related Work

2.1 Heterogeneity in Federated Learning

FL techniques have evolved significantly to address the challenges posed by the non-IID nature of
data across diverse clients. Methods such as FedProx [22], Scaffold [15], and FedAlign [27] have
substantially advanced the reduction of client-side bias by refining local updates to achieve better
alignment with the global model. Nevertheless, these methods often rely on simplified assumptions
about the underlying data distributions, which may prove inadequate in handling extreme variations
in data heterogeneity, such as severe data imbalance and non-overlapping feature spaces. On the
server side, solutions like FedOpt [32] and Agnostic Federated Learning [28] attempt to dynamically
adjust aggregation strategies based on client contributions. However, despite these innovations,
they continue to face significant challenges with scalability and often incur high computational
costs, which limit their applicability in large-scale, highly diverse networks [20, 33, 38]. Moreover,
approaches such as FedMix [39], which introduce synthetic data generation to approximate IID
conditions, still struggle to accurately replicate the complex and highly variable data distributions
encountered in real-world scenarios, particularly in non-IID environments.

2.2 Personalized Federated Learning

Personalization in federated learning has emerged as a crucial strategy to cater to diverse client-
specific data characteristics. Strategies range from adapting global models for local refinement
(e.g., FedPer [2] and Per-FedAvg [8]) to fully personalized approaches like MOCHA [34], pFedMe
[35], and Ditto [21]. These personalized models often perform well on local data but can diverge
significantly from the global model, leading to challenges in maintaining a cohesive learning strategy
across the network. Additionally, the resource demands for training individualized models can be
prohibitive, especially in scenarios with limited computational and bandwidth resources [7, 25].

2.3 Knowledge Distillation and Prototype Learning in FL

Knowledge distillation and prototype learning have made notable contributions to federated learning
by enabling more efficient model training and facilitating knowledge transfer across distributed
networks. KD-based approaches, such as FedMD [18] and FedDF [24], allow for the compression
of model knowledge into more efficient representations, thereby reducing communication costs
and enhancing scalability. However, these methods necessitate meticulous tuning of distillation
parameters to achieve a balance between model complexity and performance [11]. FedProto [36]
introduces prototype learning by aggregating class prototypes from clients to improve generalization
across heterogeneous datasets. However, while FedProto improves local validation accuracy, it shows
minimal improvement in global performance. As an extension of FedProto, FedHKD [4] integrates
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knowledge distillation by introducing the concept of “hyper-knowledge”, which involves sending
the mean representations of both feature and soft predictions from clients to the server for global
aggregation. While FedHKD significantly enhances client-side personalized model performance
without relying on public datasets [4], it focuses mainly on improving the client models. It does not
introduce substantial advancements in hyper-knowledge extraction techniques, nor does it achieve dual
improvement for both client and server performance in theory, as knowledge distillation predominantly
benefits the client-side models. Building upon FedHKD, our research addresses these limitations
by not only improving the knowledge distillation process by prototype feature and soft predictions
extraction but also benefiting the server-side models by using DAT. This ensures simultaneous
improvement in both global model performance and client models.

3 Methodology

3.1 Problem Formulation

In the context of FL, we consider a scenario involving n distinct clients, each holding a private
dataset {D1,D2, . . . ,Dn}, where each dataset reflects a potentially unique subset of the overall
class distributions. This setup illustrates the fundamental Non-IID data challenge in FL, where the
heterogeneity of each client’s dataset Di complicates the task of learning a generalized global model.
Each client optimizes a local model wi by minimizing a local loss function Fi, which is typically
expressed as the empirical risk over its dataset Di:

Fi(wi) =
1

|Di|
∑
x∈Di

ℓ(wi, x), (1)

where ℓ denotes the loss function measuring the prediction error on an instance x.

To combine these local models into a global model, the FedAvg algorithm, introduced by McMahan
et al. [26], applies a weighted averaging scheme based on the size of each client’s dataset:

Wr =
1

N

n∑
i=1

|Di|wr
i , (2)

where Wr represents the parameters of the global model after the r-th aggregation round, wr
i denotes

the parameters of the i-th client’s model in the r-th round, and N is the total number of samples
across all clients, N =

∑n
i=1|Di|. Our objective with FedGMKD is to tailor personalized models wi

for each client i that not only achieve high accuracy on locally specific data but also enhance a global
model W that excels across diverse client distributions. This task becomes particularly challenging in
the presence of heterogeneous data, as naive aggregation approaches tend to diminish the effectiveness
of the global model. FedHKD [4] has demonstrated significant success in addressing this issue by
using hyper-knowledge distillation, which improves both global and personalized models through
the exchange of mean representations and soft predictions. Inspired by this approach, FedGMKD
enhances model performance on both the client and server sides by introducing Cluster Knowledge
Fusion (CKF) based on Gaussian Mixture Models (GMM) for prototype feature and soft predictions
generation and Discrepancy-Aware Aggregation Technique (DAT) based on data quality. This dual
mechanism not only improves local model performance through better feature representation but also
refines the global model by leveraging high-quality aggregated knowledge across clients, thereby
effectively addressing the challenges posed by non-IID data distributions in federated learning.

3.2 Utilizing Cluster Knowledge Fusion

In Federated Learning (FL), traditional Knowledge Distillation (KD) techniques often rely on
transferring knowledge from a complex central model (teacher) to simpler client models (students).
This process typically requires a public dataset to generate soft labels representing the teacher’s
predictions in FL. Meanwhile, this approach raises significant privacy concerns and faces challenges,
especially in Non-IID data environments, where the heterogeneity of client data exacerbates these
issues, reducing the effectiveness of traditional KD methods in FL. To address these challenges and
inspired by hyper-knowledge of FedHKD [4], we propose a Clustered Knowledge Fusion (CKF)
approach based on Gaussian Mixture Models (GMM). CKF clusters client updates according to data
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similarity, generating prototype features and soft predictions for each class, which are then aggregated
at the server. These aggregated results form a synthetic dataset that serves as the foundation for
knowledge distillation, enabling efficient knowledge transfer between the server and clients. Unlike
traditional KD approaches, CKF not only eliminates the reliance on public datasets but also leverages
client-specific representations, effectively addressing the Non-IID data problem and improving overall
FL performance.

In the context of federated image classification, each client i processes raw image data xi through a
feature extraction function Fϕi , producing a feature representation hi, and a classifier function Cωi

which maps hi into a soft prediction vector zi:

hi = Fθi(xi), zi = Softmax (Cψi
(hi)) , (3)

where Fθi(·) and Cψi
(·) represent the feature extractor and classification function for client i,

respectively. The feature vector hi encodes the latent features of the input data, and zi represents the
soft prediction vector, indicating the probability distribution over the classes.

When the features and soft predictions have been extracted, GMM are employed to cluster client
updates based on data similarity prior to aggregation.

The responsibility γm(xji ) indicates the probability that the data point xji (which can be a feature
vector or a soft prediction vector) belongs to the m-th Gaussian component. It is calculated as:

γm(xji ) =
πm · N (xji ;¯m,Σm)∑M
s=1 πs · N (xji ;¯s,Σs)

, (4)

Here, πm represents the mixture coefficient of the m-th Gaussian component, where
∑M
m=1 πm = 1.

The term N (xji ;¯m,Σm) denotes the Gaussian probability density function evaluated at xji , with
¯m being the mean vector and Σm being the covariance matrix of the m-th Gaussian component.
The denominator sums over all M Gaussian components, normalizing the responsibility values so
that they sum to 1 across all components. These responsibility values indicate the contribution of
each Gaussian component to the data point xji , and they are later used to compute the prototype
features and soft predictions by weighting the means and predictions of each Gaussian component.
Using the responsibility values, the prototype features and soft predictions for class j in the local
dataset of client i are calculated as follows:

ĥji =

M∑
m=1

γm(hji )¯mj
, q̂ji =

M∑
m=1

γm(zji )zmj
, (5)

where ĥji denotes the prototype feature for class j at client i, synthesized from the cluster knowledge,
and q̂ji represents the prototype soft prediction for class j at client i, calculated based on the responsi-
bility values. Here, ¯mj represents the mean vector of the m-th Gaussian component for class j, and
zmj represents the soft prediction vector corresponding to the m-th Gaussian component.

CKF is derived by integrating these GMM-based prototype features and their corresponding prototype
soft predictions. For class j in the local dataset of client i, CKF is defined by combining the prototype
features and their prototype soft prediction:

Kj
i = (ĥji , q̂

j
i ). (6)

If there are j classes, then the full CKF of client i is:

Ki =

J⋃
j=1

(
ĥji , q̂

j
i

)
(7)

A flow diagram illustrating the computation of CKF is provided in Supplementary Section A.1.
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3.3 Discrepancy-Aware Aggregation Technique

The aggregation phase in FedGMKD amalgamates CKF from each client to construct a global
representation of CKF for a given class j at each iteration r + 1. For the given class j, the global
CKF represented by the aggregated prototype features Hr+1

j and soft predictions Qr+1
j . These are

calculated as follows:

Hr+1
j =

n∑
i=1

w′
i · ĥ

j,r
i , Qr+1

j =

n∑
i=1

w′
i · q̂

j,r
i , (8)

where w′
i is the weight corresponding to client i’s contribution, reflecting both the volume and the

quality of the data contributed by client i.

In traditional FL approaches such as FedAvg, the server aggregates models by averaging the parame-
ters submitted by each client. This method assumes that data across different clients are identically
and independently distributed (IID). However, tin real-world applications, this assumption often fails
due to Non-IID data distributions, leading to sub-optimal global models when client data varies sig-
nificantly in distribution and relevance. Most existing methods primarily weight client contributions
based on data volume, neglecting the quality of the data, which can further exacerbate this issue.

To address these challenges, FedGMKD introduces a Discrepancy-Aware Aggregation method that
evaluates both the volume and the quality of data each client contributes. This is achieved by
quantifying how well the local data aligns with the global data distribution. The aggregation process
is refined by incorporating a measure of the discrepancy between local model prototype predictions
and the aggregated global prototype predictions, thereby enhancing the robustness and accuracy of
the federated model.

To begin, the initial weights for each client and class are calculated based on the proportion of samples
for that class across all clients:

winit
i,j =

N j
i∑n

i=1 N
j
i

, (9)

where N j
i is the number of samples of class j in client i’s local dataset. This ensures that the initial

weight winit
i,j reflects the proportion of class j samples that client i contributes to the global dataset for

that class.

After this, the final aggregation weights are adjusted based on the discrepancies between the local and
global data distributions. This discrepancy is quantified using the Kullback-Leibler (KL) divergence
and is balanced by the initial weight winit

i,j for each category j:

w′
i =

ReLU
(
winit
i,j − a · dji + b

)
∑n
i=1 ReLU

(
winit
i,j − a · dji + b

) , (10)

where winit
i,j is the initial weight for class j on client i, reflecting the proportion of class j samples

contributed by client i to the global dataset. dji represents the KL divergence between the client and
server distributions for class j, and a and b are adjustment parameters that control the sensitivity of
the weight updates based on the discrepancies.

The KL divergence dji between the client i’s local distribution and the server’s global distribution for
class j is calculated as follows:

dji = DKL

(
q̂ji ∥ Q̂j

)
= q̂ji log

q̂ji
Q̂j

, (11)

where q̂ji and Q̂j are the predicted probabilities for class j in the local client i and the global server
distributions, respectively. This KL divergence measures the discrepancy between the local and
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global predictions specifically for class j, allowing the model to adjust the aggregation weights based
on this class-specific difference.

For each class j, the global CKF is computed by aggregating the local CKF from all clients using
the discrepancy-aware weights w′

i. These global CKF values, represented by Hr+1
j and Qr+1

j ,
encapsulate the collective knowledge from all clients for class j. After calculating the global CKF for
each class j, the complete global CKF, denoted as Gr+1, is constructed by taking the union of the
global CKF for all classes:

Gr+1 =

j⋃
j=1

(
Hr+1
j ,Qr+1

j

)
, (12)

This complete global CKF Gr+1 serves as the updated global knowledge representation, which is
used to guide future iterations of model updates. A flow diagram illustrating the computation of DAT
is provided in Supplementary Section A.2.

3.4 Local Training Objective Function

After the server completes the aggregation, the updated global CKF Gr+1 is sent to the clients
selected for the next FL round to aid in their local training. For client i, with dataset Di, the local
training objective integrates the empirical risk with regularization terms designed to align the local
model with the global CKF. The loss function for client i is defined as:

(13)
L(Di,wi) =

1

|Di|
∑

(xk,yk)∈Di

ℓ (Cψi
(Fθi(xk)) , yk)

+ λ
1

|Di|
∑

(xk,yk)∈Di

∥∥Fθi(xk)−Hr+1
yk

∥∥2
2
+

γ

n

n∑
j=1

∥∥∥∥∥Cψi

(
Hr+1
j

)
T

−
Qr+1
j

T

∥∥∥∥∥
2

2

.

where |Di| denotes the number of samples in the dataset owned by client i, ℓ(Cψi , yk) denotes the
cross-entropy loss function, ∥·∥22 denotes the Euclidean norm, and λ and γ are hyper-parameters.
Note that Hr+1

yk
represents the global prototype feature for class j, and Qr+1

j denotes the global
soft predictions for class j at iteration r + 1. The term Cψi

(Hr+1
j ) represents the local classifier’s

predictions on the global prototype feature Hr+1
j and T is the temperature of KD.

The loss function consists of three terms: the empirical risk formed using predictions and ground-truth
labels, and two regularization terms that utilize the global CKF. The first term is the empirical risk,
represented by the cross-entropy loss function. This term encourages the local model to perform
well on its own data. The second term, known as the feature alignment loss, aligns the local feature
extractor with the global CKF by minimizing the squared Euclidean distance between the local
feature representations Fθi(xk) and the globally aggregated CKF features Hr+1

yk
. This regularization

encourages the local feature extractor to produce similar feature representations to the global prototype
features for each corresponding class, improving consistency between the local and global models.
The third term, called the knowledge alignment loss, ensures predictive consistency across federated
learning by minimizing the discrepancy between the local classifier’s predictions on the global
prototype features and the global soft predictions for each class j. Specifically, by using Euclidean
distance, which is non-negative and convex, these terms effectively regularize the local models to be
more consistent with the global CKF.

3.5 Overall Framework of FedGMKD

FedGMKD integrates CKF and DAT to enhance both local and global model performance. The
framework operates iteratively, as outlined in Algorithm 1. The server initializes the global model
W0 = (F 0, C0), where F 0 and C0 denote the parameters of the global feature extractor and classifier,
respectively. The global CKF G0 is also initialized, comprising global prototype features and soft
predictions for each class. At each global epoch, the server transmits the global model Wr−1 and
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global CKF Gr−1 to the selected clients. Clients update their local models by minimizing a composite
loss function comprising three components: (1) the empirical risk, representing the cross-entropy
between predicted and ground truth labels; (2) the feature alignment loss, measured by the Euclidean
distance between local and global prototype features; and (3) the knowledge alignment loss, measured
by the Euclidean distance between local classifier outputs on global prototype features and the global
soft predictions. Upon completing local training, clients compute local CKF and transmit these, along
with their updated models, back to the server. The server aggregates the received CKF using DAT,
which adjusts client contributions based on data volume and quality. The global CKF and model are
updated accordingly. This process repeats across multiple federated learning rounds.

Algorithm 1 FedGMKD

Require: Distributed datasets across n clients, D = {D1, D2, . . . , Dn}; client participation rate µ;
hyper-parameters λ and γ; temperature T ; number of global epochs Rr.

Ensure: Updated global model WRr+1 and personalized local models
{wRr+1

1 ,wRr+1
2 , . . . ,wRr+1

i }.
1: Server initializes the global model W0 and global CKF G0 for each class.
2: for r = 1 to Rr do
3: Server selects i clients for participation.
4: Server broadcasts Wr−1 and Gr−1 to the selected clients.
5: for each selected client i do
6: Client i initializes local model wr−1

i from Wr−1.
7: if r == 1 then
8: Client i updates wr

i using Equation 1.
9: Client i computes initial CKF Kr

i using Equations 3, 4, 5, 6, and 7.
10: else
11: Client i updates wr

i using Equation 13, incorporating Gr−1.
12: Client i computes CKF Kr

i using Equations 3, 4, 5, 6, and 7, and computes divergence
dri for each class using Equation 11.

13: end if
14: Client i sends wr

i , Kr
i , and dri (if r > 1) back to the server.

15: end for
16: if r == 1 then
17: Server averages CKFs and models from clients to update global CKF Gr+1 and global

model Wr+1 using Equations 8, 9 and 12.
18: else
19: Server computes weights for each class of each client using Equation 10.
20: Server updates global CKF Gr+1 using Equations 8 and 12 based on the computed

weights.
21: Server updates global model Wr+1 using weighted averaging of the models.
22: end if
23: Server sends Wr+1, Gr+1 (if r > 1) back to client i.
24: end for
25: return Updated global model WRr+1 and local models {wRr+1

1 ,wRr+1
2 , . . . ,wRr+1

i }.

3.6 Convergence Analysis

Given the Non-IID nature of data across clients in FedGMKD, we establish two theorems to describe
the framework’s convergence under well-defined mathematical assumptions.

Theorem 1: FedGMKD Convergence

Under Assumptions 1-5 (A.6.1), for any client i, after R global communication rounds, the expected
global loss function is bounded as:

1

R

R∑
r=1

n∑
i=1

w′
iE

[
∥∇Fi(w

r
i )∥2

]
≤ F (W1)− F ∗

ηR2
+ σ2 +

LηRG2

2
, (14)
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The detailed proof is provided in A.6.3.

Theorem 2: FedGMKD Convergence Rate

Under Assumptions 1-5 (A.6.1), for any client i, after R global communication rounds, the conver-
gence rate of the global loss function F (W) is bounded as follows:

F (WR)− F ∗ ≤ C1

R
+ C2, (15)

where F (W) is the global loss function, F ∗ represents the lower bound of F (W), and C1 and C2

are constants that depend on variance σ2, Lipschitz constant L, learning rate η, and the number of
local steps.

The detailed proof is provided in A.6.3.

4 Experiments

4.1 Datasets

We evaluate FedGMKD on three widely used FL benchmark datasets, selected to cover a range of
task complexities, demonstrating the method’s robustness and scalability.

SVHN [30]: The Street View House Numbers (SVHN) dataset consists of over 600,000 labeled digit
images from street scenes. It presents varied imaging conditions, such as lighting and background
differences, making it useful for testing under non-IID scenarios. Despite these variations, SVHN is
considered relatively simple due to its large dataset size and clear digit images.

CIFAR-10 [17]: CIFAR-10 comprises 60,000 32x32 color images across 10 classes, with 6,000
images per class. It is a standard benchmark for image classification in both centralized and federated
learning, providing moderate complexity due to the diverse nature of the images.

CIFAR-100 [17]: Similar to CIFAR-10 but with 100 classes, CIFAR-100 contains 60,000 images
with 600 images per class. It poses a more challenging task, given the finer granularity and increased
class variability, making it especially difficult in federated learning with non-IID data.

4.2 Models

For our experiments, we adopt the ResNet18 architecture [10], which has consistently demonstrated
superior performance across a wide range of learning tasks, outperforming traditional Convolutional
Neural Networks (CNNs). ResNet18 incorporates residual connections to effectively address the
vanishing gradient issue, enabling the training of deeper networks while maintaining computational
efficiency.

4.3 Baselines

To establish a comprehensive comparison, our evaluation includes a diverse set of baselines, encom-
passing both well-established methods and recent advances in federated learning. These baselines
include: FedAvg [26], the foundational algorithm in federated learning; FedProx [22], addressing
data heterogeneity; MOON [19], focusing on model personalization; FedMD [18] and FedGen [40],
which utilize public datasets and generative models, respectively, to enhance performance under
Non-IID conditions; FedProto [36] and PFL [13], which employ prototype and clustering learning
methods to handle data disparities in federated learning; and FjORD [12], which introduces an
ordered dropout mechanism to enable fair and accurate federated learning under heterogeneous target
distributions.

4.4 Experimental Setting

The models were implemented and run using PyTorch [31] with 2 NVIDIA A100 GPUs. The Adam
optimizer [16] was used for model training in all experiments. The learning rate was initialized to
0.001 and decreased every 10 iterations with a decay factor of 0.5, while the hyper-parameter in
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Adam was set to 0.5. The number of global communication rounds was set to 50, and the number of
local epochs was set to 3. The size of a data batch was set to 64, and the participating rate of clients
was set to 1. For all datasets (SVHN [30], CIFAR-10, and CIFAR-100 [17]), the latent dimension of
data representation was set to 32.

Hyper-parameters: For the FedProx [22] algorithm, the hyper-parameter µprox was set to 0.5. For
the MOON [19] algorithm, the proximal term’s hyper-parameter µmoon was set to 1. In FedGen [40], a
Multi-Layer Perception (MLP)-based architecture with a hidden dimension of 512 was employed for
the generative model. Latent, noise, and input/output dimensions were tailored to each dataset, and
the generative model was trained for 5 epochs per global round. The ratio of the generative batch-size
to the training batch-size was 0.5 (generative batch-size set to 32). Parameters αgenerative and βgenerative
were initialized at 10 with a decay factor of 0.98 per global round. FedMD [18] used a regularization
hyper-parameter λmd of 0.05, and the public dataset size matched the clients’ local training dataset
size. FedProto [36] had a regularization parameter λproto set to 0.05. For FPL [13], the regularization
parameter λFPL was set to 0.1, with the number of prototypes per class fixed at 10. For FjORD [12],
the unique dropout rate δ was set to 0.5, and the temperature for knowledge distillation Tfjord was set
to 0.7, following the original paper’s settings. Finally, in our proposed FedGMKD, hyper-parameters
λ and γ were set to 0.6. The clustering centers were dynamically adjusted between 2-7 based on the
data distribution in each category, with the parameters a and b for differential aggregation both set to
0.2, and the temperature T for knowledge distillation was set to 0.6.

4.5 Results

Table 1: Results on data partitions generated from Dirichlet distribution with the concentration
parameter β = 0.5. The number of clients is 10, 20, and 50; the clients utilize 10%, 20%, and 50% of
the datasets. A single client’s averaged wall-clock time per round is measured across 2 A100 GPUs
in a parallel manner. The reported local and global accuracies are the averages of the last 5 rounds.

Dataset Scheme Local Acc Global Acc Avg Time (S) Pub Data

10 20 50 10 20 50

SVHN FedAvg 84.29 85.20 85.67 81.98 87.32 89.72 168.44 No
FedProx 85.25 86.38 86.08 81.71 87.40 88.74 229.17 No
Moon 84.11 85.43 85.43 81.95 86.90 88.97 358.14 No
FedGen 85.18 85.10 84.96 81.96 86.02 88.52 205.37 No
FedMD 85.45 85.90 86.31 82.04 87.30 89.91 611.33 Yes
FedProto 85.58 86.44 86.85 81.34 86.97 89.79 346.13 No
FPL 85.37 86.02 85.87 79.81 85.64 88.76 522.83 No
FjORD 85.13 85.97 86.21 81.56 85.09 89.36 380.74 No
FedGMKD 86.26 87.43 87.16 82.64 87.78 90.17 312.52 No

CIFAR10 FedAvg 55.75 58.76 61.51 46.62 52.61 51.53 98.94 No
FedProx 57.46 58.91 62.94 47.97 53.13 56.04 126.56 No
Moon 58.61 59.12 62.42 46.89 50.16 57.29 221.19 No
FedGen 59.46 60.17 61.03 48.09 51.55 52.62 122.35 No
FedMD 60.15 62.05 63.37 48.32 53.73 57.69 410.19 Yes
FedProto 59.77 62.85 64.98 48.97 50.88 57.12 229.40 No
FPL 60.95 62.74 64.49 47.19 52.04 58.35 295.97 No
FjORD 59.62 63.36 63.61 49.18 53.22 58.74 252.34 No
FedGMKD 61.78 64.04 65.69 49.78 55.16 60.31 251.55 No

CIFAR100 FedAvg 15.39 17.10 21.09 14.51 18.98 22.21 97.02 No
FedProx 16.45 17.56 21.91 16.06 19.67 23.35 120.36 No
Moon 15.46 18.03 21.25 15.19 18.16 21.37 201.91 No
FedGen 14.08 17.05 19.54 14.88 19.05 23.16 148.58 No
FedMD 13.25 19.03 21.93 15.96 19.20 23.75 482.76 Yes
FedProto 15.70 18.63 22.50 15.38 17.13 18.72 206.12 No
FPL 15.93 18.24 21.96 15.37 18.19 21.59 373.09 No
FjORD 15.94 19.91 22.60 16.93 21.45 22.86 226.73 No
FedGMKD 17.16 20.96 23.57 16.97 21.56 24.63 275.60 No
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The proposed method, FedGMKD, consistently demonstrates superior performance across the bench-
mark datasets, both in terms of local and global accuracy, often outperforming other federated
learning methods. On the SVHN dataset, FedGMKD significantly improves both local and global test
accuracies over FedAvg across different client counts. Compared to FedProto, FedGMKD exhibits
notable improvements, with local accuracy gains ranging from 0.31% to 0.99%, and global accuracy
improvements ranging from 0.38% to 1.3%. When compared to FPL, FedGMKD demonstrates even
more substantial improvements, with local accuracy gains of 0.89% to 1.41%, and global accuracy
gains of 1.41% to 2.83%. FjORD performs competitively in this dataset, showing results second only
to FedGMKD, particularly in global accuracy. However, FedGMKD still outperforms FjORD by up
to 1.46% in local accuracy and 2.69% in global accuracy, demonstrating its advantage in Non-IID
environments.

On CIFAR-10, FedGMKD achieves substantial improvements over FedAvg, with local accuracy
increases of 4.18% to 6.03% and global accuracy gains of 2.55% to 8.78%. FedGMKD also surpasses
FedProto and FPL, showing gains of up to 2.01% in local accuracy and 4.28% in global accuracy
compared to FedProto, and up to 1.3% in local accuracy and 3.12% in global accuracy compared
to FPL. In this case, while FjORD also performs well, FedGMKD remains superior, particularly in
terms of global accuracy, further showcasing the robustness of the proposed approach in handling
Non-IID data. Meanwhile, on CIFAR-100, FedGMKD achieves significant gains over FedAvg,
FedProx, and FPL in both local and global accuracies across all client counts. FedGMKD shows local
accuracy improvements of 1.23% to 2.72% compared to FPL, and global accuracy gains of 1.6% to
3.37%. FjORD’s performance in CIFAR-100, while strong in some settings, is still notably behind
FedGMKD, particularly as the number of clients increases, where FedGMKD’s clustering-based
approach becomes increasingly effective.

In terms of computational efficiency, FedGMKD incurs a modest increase in training time compared
to FedAvg but remains competitive given its substantial accuracy improvements. Compared to Fed-
Prox, FedGMKD shows comparable or slightly better training efficiency while maintaining superior
accuracy. FedGMKD is also significantly more efficient than FPL, achieving better accuracy with
reduced computational overhead. FjORD shows efficiency similar to FedProto but requires more time
than FedGMKD on SVHN and CIFAR10. Overall, FedGMKD strikes an optimal balance between
accuracy and computational requirements.The additional computational burden of FedGMKD is
justified by the substantial gains in local and global accuracy through CKF and DAT. These improve-
ments suggest that FedGMKD offers a highly effective and efficient solution for real-world federated
learning scenarios, particularly in the presence of Non-IID data distributions.

5 Conclusion

This paper presents FedGMKD, a novel federated learning framework that addresses data heterogene-
ity without requiring public datasets and complex server-side models. Through Cluster Knowledge
Fusion (CKF) and Discrepancy-Aware Aggregation Technique (DAT), FedGMKD achieves superior
local and global accuracy across various benchmark datasets, outperforming methods like FedAvg,
FedProto, and FPL. Meanwhile, theoretical convergence guarantees and experimental results validate
its effectiveness. While FedGMKD introduces moderate computational overhead, the accuracy
gains justify this cost. Future work will focus on improving computational efficiency and scalability
to better handle large, complex datasets, enhancing its applicability to broader federated learning
scenarios.
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A Supplementary

A.1 Flow Diagram Demonstrating the Computation of CKF

The flow diagram in Figure 1 illustrates the process of computing Cluster Knowledge Fusion (CKF)
within the Federated Learning (FL) framework. This process integrates feature extraction, Gaussian
Mixture Model (GMM) clustering, and the synthesis of prototype features and soft predictions from
clients. Following this, aggregation occurs at the server using the Discrepancy-Aware Aggregation
Technique (DAT), facilitating the alignment of global knowledge with local client distributions.

Figure 1: Flow diagram demonstrating the computation of Cluster Knowledge Fusion (CKF) in
Federated Learning. The diagram highlights the steps involved in extracting features, generating
soft predictions, and performing GMM clustering to compute prototype features and predictions,
followed by the aggregation of CKF at the server.

As shown in Figure 1, the computation of CKF begins at each participating client after local training.
Each client, i, first fine-tunes its local model consisting of a feature extractor Fθi(·) and a classifier
Cψi(·). The CKF computation for class j occurs in three major steps: the feature extractor processes
raw input data to generate latent data representations for each class (e.g., bird, airplane, horse). These
data representations capture the essential features of the input data at the client level. Using the
generated data representations, GMM clustering is applied to compute the prototype features for each
class. Concurrently, the classifier generates soft predictions for these data representations, which are
also clustered using GMM to derive prototype soft predictions for each class. After obtaining the
prototype features and soft predictions for each class, they are aggregated to form the CKF. The CKF
encapsulates the most representative features and soft predictions for each class, thereby summarizing
the local client knowledge in a form that is robust and suitable for global aggregation at the server.
In this way, CKF computation reduces the redundancy inherent in the client data while maintaining
critical data characteristics, ensuring that local model updates are aligned with class-specific feature
distributions. The CKF values are then transmitted to the server, where the DAT is employed to merge
the CKF across clients, resulting in a robust global CKF that reflects the diverse data distributions
across the FL network.

A.2 Flow Diagram Demonstrating the Computation of DAT

The flow diagram in Figure 2 illustrates the process of computing the Discrepancy-Aware Aggregation
Technique (DAT) within the Federated Learning (FL) framework. This technique enhances the
aggregation of Cluster Knowledge Fusion (CKF) from clients by incorporating both data quantity
and quality, ensuring that the global CKF is a robust representation aligned with diverse local client
distributions.

As shown in Figure 2, the computation of DAT begins by calculating an initial weight for each client’s
CKF. Each client’s initial weight winit

i,j for class j is derived based on the proportion of samples for
that class relative to the total samples across all clients, reflecting each client’s contribution in terms
of data volume. This initial aggregation step combines CKF from all clients to generate preliminary
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Figure 2: Flow diagram demonstrating the computation of Discrepancy-Aware Aggregation Technique
(DAT) in Federated Learning. The diagram details the steps involved in computing initial weights,
aggregating soft predictions, calculating discrepancies, and performing the final aggregation of CKF
at the server.

aggregated soft predictions. Following this, the server evaluates the alignment between each client’s
local data distribution and the preliminary global soft predictions by calculating the Kullback-Leibler
(KL) divergence dji for each client i and class j. This discrepancy measure serves to quantify
the quality of each client’s CKF, indicating how closely each client’s data aligns with the global
distribution. Based on the calculated discrepancies, the server adjusts the initial weights, producing
the final aggregation weights w′

i for each client. These final weights balance the data volume and data
quality, allowing clients with more aligned distributions to have a greater influence in the aggregation
process. Finally, the server aggregates the CKFs from all clients using the discrepancy-aware weights
w′
i, resulting in a robust global CKF for each class. This global CKF incorporates the essential

knowledge from all clients while accounting for variations in data quality, effectively addressing the
challenges posed by Non-IID data distributions in FL.

A.3 Visualization of FedGMKD

The flow diagram in Figure 3 illustrates the iterative process of CKF computation and model
aggregation DAT within the FedGMKD framework. This visualization helps clarify the operational
phases of training local models, extracting CKF, and DAT aggregating updates at the server, leading
to a refined global model.

In Figure 3, the FedGMKD process is visualized as follows: During Global Round 1, clients (e.g.,
Client i and Client n) train their local models using their private data and extract CKF from these
models. The local CKF and model updates are then sent to the server. Upon receiving updates from
all participating clients, the server employs the DAT to aggregate the local CKF and model updates,
refining both the global CKF and the global model.

In subsequent rounds (e.g., Global Round 2 through Global Round T ), the server broadcasts the
updated global CKF and global model to the clients. Each client integrates the global CKF into its
local training process, updating its model based on both the global CKF and its own local data. After
training, the clients extract new CKF values from their updated models and send these back to the
server for further DAT aggregation. This iterative process continues across multiple global rounds,
progressively refining both the global model and CKF to account for the diversity and heterogeneity
of client data, thereby improving the personalization and generalization of the federated learning
model.

By leveraging CKF at each iteration, the FedGMKD framework ensures that the global model retains
a balanced understanding of the local client data distributions while adapting to the variations in
the feature and label spaces across different clients. This process addresses the challenges posed by
non-IID data, leading to a more robust and well-personalized federated learning system.

15



Figure 3: Visualization of the FedGMKD framework. Each client trains a local model and extracts
CKF using its local data. The server aggregates the CKF and model updates using Discrepancy-Aware
Aggregation Technique (DAT) to improve the global CKF and model. This process iterates over
multiple global rounds.

A.4 Ablation Study

A.4.1 Handling Data Heterogeneity

To evaluate the robustness of FedGMKD in addressing data heterogeneity, we conducted experiments
on the CIFAR-10 and SVHN datasets under varying degrees of Non-IID conditions, controlled by the
Dirichlet distribution parameter β. A smaller β indicates greater heterogeneity in the data distribution,
with clients typically possessing only one or two classes in their local datasets; a larger β suggests a
more homogeneous distribution of data across clients. Specifically, when β = 0.2, the local datasets
exhibit high heterogeneity, whereas β = 5 produces nearly homogeneous datasets.

For these experiments, we utilized datasets from Torchvision, where the global test dataset was
directly obtained by loading the standard test sets for CIFAR-10 and SVHN without any sampling.
To create the local datasets, we partitioned each dataset into n clients (where n denotes the number of
clients) using a Dirichlet distribution with parameter β. Each client’s dataset was subsequently divided
into a local training set and a local test set in a 75%/25% split. The results of these experiments,
which compare the performance of various methods under β = 0.2 and β = 5 settings for both
CIFAR-10 and SVHN, are summarized in Table 2.

The results presented in Table 2 demonstrate that FedGMKD consistently surpasses other federated
learning techniques, especially under challenging heterogeneous data settings. Under the high
heterogeneity scenario (β = 0.2), FedGMKD exhibits notable improvements. On CIFAR-10, it
achieves the highest local accuracy of 74.34%, representing an increase of 3.4% over FedAvg, 1.93%
over FedProto, and 2.26% over FPL. Moreover, FedGMKD attains the best global accuracy of
44.79%, outperforming FedProto and FPL by 7.43% and 2.72%, respectively. These significant
improvements emphasize the ability of CKF and DAT to handle highly heterogeneous client data
while capturing essential features. When the data is more homogeneous (β = 5), FedGMKD
maintains its superior performance. For instance, it achieves the highest global accuracy of 53.84%
on CIFAR-10, outperforming FedAvg by 1.12% and FPL by 0.19%, showcasing its effective model
alignment even in near-homogeneous settings.

On the SVHN dataset, FedGMKD also demonstrates its robustness across varying heterogeneity
levels. Under the high heterogeneity setting (β = 0.2), it achieves a local accuracy of 87.29%,
outperforming FedAvg by 1.33% and FedProto by 0.71%. In terms of global accuracy, FedGMKD
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Table 2: Performance of different schemes on CIFAR-10 and SVHN datasets under various data
heterogeneity settings controlled by Dirichlet distribution parameter β.

Scheme CIFAR-10 SVHN

Local Acc Global Acc Local Acc Global Acc
β = 0.2 β = 5 β = 0.2 β = 5 β = 0.2 β = 5 β = 0.2 β = 5

FedAvg 70.94% 43.85% 44.78% 52.72% 85.96% 79.55% 55.46% 86.28%
FedProx 71.15% 43.72% 44.59% 52.56% 86.08% 80.01% 56.36% 86.41%
FedMD 71.56% 45.91% 43.84% 52.95% 87.31% 79.74% 72.89% 86.29%
FedGen 71.32% 42.08% 40.64% 51.61% 85.45% 78.71% 64.42% 86.01%
Moon 71.65% 44.77% 43.43% 52.11% 85.66% 78.91% 66.65% 86.37%
FedProto 72.41% 46.12% 37.36% 52.81% 86.58% 79.84% 69.31% 86.81%
FPL 72.08% 47.11% 42.07% 53.65% 85.49% 79.82% 67.72% 86.02%
FedGMKD 74.34% 46.81% 44.79% 53.84% 87.29% 80.41% 70.11% 86.94%

shows a substantial improvement of 14.65% over FedAvg, with a global accuracy of 70.11%. Under
the more homogeneous setting (β = 5), FedGMKD continues to deliver top performance, achieving
a local accuracy of 80.41% and a global accuracy of 86.94%, outperforming FedProto by 0.57% in
local accuracy and by 0.13% in global accuracy.

These results underscore the effectiveness of FedGMKD in addressing both extreme heterogeneity
and more homogeneous environments. Its ability to consistently improve both local and global
accuracy across different datasets highlights the robustness of the CKF and DAT techniques. By
leveraging these mechanisms, FedGMKD captures high-quality local model representations while
optimizing the aggregation process, ensuring better personalization and improved global performance
in federated learning.

A.4.2 Evaluation of Component Effectiveness in FedGMKD

In this section, we perform an ablation study to assess the contributions of the CKF and DAT within our
FedGMKD framework. We compare the performance of FedGMKD with its variants—FedGMKD
using only CKF and FedGMKD using only DAT—and a baseline method, FedAvg, on CIFAR-10 and
SVHN datasets under different data heterogeneity settings, controlled by the Dirichlet distribution
parameter β. The results are presented in Table 3.

Table 3: Performance of different schemes on CIFAR-10 and SVHN datasets under various data
heterogeneity settings controlled by Dirichlet distribution parameter β.

Scheme CIFAR-10 SVHN

Local Acc Global Acc Local Acc Global Acc
β = 0.2 β = 5 β = 0.2 β = 5 β = 0.2 β = 5 β = 0.2 β = 5

FedAvg 70.94 43.85 44.84 52.72 85.96 79.55 55.46 86.28
FedGMKD (Only CKF) 73.74 46.06 41.66 53.07 86.86 80.18 69.02 86.35
FedGMKD (Only DAT) 73.39 42.42 45.65 52.33 86.41 79.84 69.93 86.45
FedGMKD 74.34 46.81 44.79 53.84 87.29 80.41 70.11 86.84

Table 3 shows that FedGMKD, incorporating both CKF and DAT, consistently outperforms the
baseline FedAvg method under various data heterogeneity conditions. On the CIFAR-10 dataset with
high heterogeneity (β = 0.2), FedGMKD achieves an improvement of approximately 3.4% in local
accuracy over FedAvg, while the variants utilizing only CKF and only DAT show improvements of
2.8% and 2.45%, respectively. Similarly, on the SVHN dataset under the same high heterogeneity,
FedGMKD achieves a 1.33% increase in local accuracy and a substantial 14.65% increase in global
accuracy over FedAvg. The CKF-only and DAT-only variants also show significant improvements
over FedAvg.

For the CIFAR-10 dataset with high heterogeneity (β = 0.2), FedGMKD using only CKF achieves a
local accuracy of 73.74%, while FedGMKD using only DAT reaches a global accuracy of 45.65%.
These results indicate that CKF plays a crucial role in improving local model accuracy by effectively
leveraging client-specific data characteristics, whereas DAT ensures that local improvements are
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properly aggregated into the global model. On the SVHN dataset, CKF alone results in a local
accuracy of 86.86% and a global accuracy of 69.02%, outperforming the DAT-only variant in local
accuracy but not in global accuracy. This suggests that CKF is particularly beneficial in highly
non-IID settings where local data characteristics are vital for model performance.

Nevertheless, the full integration of both CKF and DAT in FedGMKD consistently yields the highest
performance across all metrics and settings. For example, on the SVHN dataset with β = 0.2,
FedGMKD achieves a local accuracy of 87.29% and a global accuracy of 70.11%, outperforming
both the CKF-only and DAT-only variants. This demonstrates that CKF and DAT work synergistically
to enhance both local and global model performance, making FedGMKD robust and effective in
diverse data environments.

A.4.3 Impact of Model Complexity

In addition to our previous experiments, we conducted an ablation study to assess the impact of model
complexity by using the ResNet-50 architecture in comparison with ResNet-18 on the CIFAR-10
dataset. The goal was to explore how a deeper network affects local and global model performance
in the context of federated learning. Table 4 summarizes the performance of FedGMKD and other
baseline methods using both ResNet-18 and ResNet-50.

Table 4: Comparison of performance for various schemes on CIFAR-10 using ResNet-18 and
ResNet-50 architectures.

Scheme Acc (ResNet-18) Acc (ResNet-50)
Local Acc Global Acc Local Acc Global Acc

FedAvg 61.78 49.78 41.69 49.58
FedProx 64.04 55.16 43.25 49.67
FedMD 62.05 53.73 43.34 49.85
FedGen 60.17 51.55 42.81 48.99
FedProto 62.85 50.88 43.35 49.98
Moon 62.74 52.04 42.05 48.52
FPL 62.74 52.04 43.71 49.78
FedGMKD 65.69 60.31 46.27 50.48

As shown in Table 4, FedGMKD consistently outperforms other federated learning methods under
both ResNet-18 and ResNet-50 configurations. However, there are noticeable differences in per-
formance between the two architectures. For ResNet-50, while FedGMKD achieves the highest
local and global accuracies among all methods, the performance does not exceed that of ResNet-18.
Specifically, FedGMKD achieves a local accuracy of 46.27% and a global accuracy of 50.48% with
ResNet-50, compared to 65.69% and 60.31%, respectively, with ResNet-18. The primary reason for
the reduced performance of ResNet-50 in comparison to ResNet-18 lies in the increased model com-
plexity and the corresponding challenges in federated learning environments. Deeper networks like
ResNet-50 require more training epochs and greater communication bandwidth between the server
and clients due to the larger number of parameters. The federated learning framework, particularly
under constrained network conditions and limited communication rounds, may not be able to fully
exploit the representational power of ResNet-50. Additionally, deeper models tend to require more
iterations to converge, and given the fixed number of global communication rounds, ResNet-50 might
not have had sufficient time to fully optimize in this federated setting.

While ResNet-50 offers higher theoretical representational power, practical considerations such as
communication efficiency and the number of training rounds needed to achieve convergence limit
its effectiveness in federated learning. FedGMKD with ResNet-50 still outperforms other schemes,
demonstrating the robustness of our framework. However, the results suggest that balancing model
complexity with communication and computational constraints is crucial in federated settings. Future
work may explore strategies to mitigate these challenges, such as adaptive aggregation techniques
and personalized model training strategies, to further improve the performance of deeper models like
ResNet-50 in federated learning.
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A.4.4 Hyperparameter Exploration in FedGMKD

This section explores the effect of varying the regularization coefficients λ and γ within the FedGMKD
framework on the CIFAR-10 dataset with 10 clients over 50 epochs. Table 5 summarizes the local
and global accuracy for different combinations of λ and γ, while also providing baseline comparisons
with FedAvg, FedProto, and FPL.

Table 5: FedGMKD performance with varying λ and γ values on CIFAR-10 dataset (10 clients, 50
epochs).

Scheme λ γ Local Acc (%) Global Acc (%)
FedGMKD 0.06 0 60.14 48.17

0.06 0.02 60.32 49.44
0.06 0.04 60.99 49.48
0.06 0.06 61.78 49.98
0.06 0.08 60.27 48.64
0.06 0.10 60.14 49.97

0 0.06 60.73 48.72
0.02 0.06 60.33 48.21
0.04 0.06 61.01 49.47
0.08 0.06 60.93 49.69
0.10 0.06 59.86 47.52

FedAvg - - 55.75 46.62
FedProto - - 59.77 48.97
FPL - - 60.95 47.19

As shown in Table 5, FedGMKD demonstrates strong performance across a range of λ and γ values.
The highest local and global accuracies are achieved with λ = 0.06 and γ = 0.06, resulting in a local
accuracy of 61.78% and a global accuracy of 49.98%.

FedGMKD consistently outperforms the baseline methods FedAvg, FedProto, and FPL across all
configurations, particularly at the optimal setting (λ = 0.06, γ = 0.06), where it achieves a local
accuracy improvement of 6.03% and a global accuracy improvement of 3.36% over FedAvg. This
indicates that FedGMKD’s CKF and DAT mechanisms effectively handle Non-IID data and improve
both local and global model performance.

The sensitivity analysis indicates that while FedGMKD performs well across different settings, fine-
tuning λ and γ is crucial for maximizing performance. The robustness of FedGMKD is highlighted
by its stable accuracy across various configurations, though the results suggest that balancing the
feature alignment (λ) and prediction alignment (γ) terms is key to optimizing performance. This
balance allows FedGMKD to maintain consistency between local and global models and handle
diverse data distributions effectively.

A.4.5 Comparison Between Hyper-Knowledge Averaging with DAT and FedGMKD

In this section, we present a comparison between an approach that utilizes the hyper-knowledge
concept from FedHKD—specifically averaging features and soft predictions—and our proposed
FedGMKD framework. Both methods incorporate the Discrepancy-Aware Aggregation Technique
(DAT) across CIFAR-10, SVHN, and CIFAR-100 datasets with varying numbers of clients. Table 6
summarizes the local and global accuracy results for both methods, demonstrating the differences in
their effectiveness when applied to non-IID federated learning scenarios.

As shown in Table 6, FedGMKD consistently outperforms the method based on hyper-knowledge
averaging with DAT across all datasets and client configurations. The GMM-based approach in
FedGMKD allows for the extraction of more precise prototype features and soft predictions by
clustering data points according to their similarity. This clustering technique captures the inherent
structure and diversity within the data better than the simple averaging of features and soft predictions
derived from hyper-knowledge. By leveraging these GMM-derived prototypes, FedGMKD provides
a richer and more representative set of features for aggregation, leading to superior performance in
both local and global metrics.
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Table 6: Comparison of Hyper-Knowledge Averaging with DAT and FedGMKD on CIFAR-10,
SVHN, and CIFAR-100 datasets with β = 0.5.

Dataset Clients FedGMKD Acc (%) HK with DAT Acc (%)
Local Global Local Global

CIFAR-10 10 61.78 49.78 60.33 48.96
20 64.04 55.16 62.31 52.67
50 65.69 60.31 64.23 58.64

SVHN 10 86.26 82.64 85.91 81.45
20 87.43 87.78 86.75 87.69
50 87.16 90.17 86.98 89.78

CIFAR-100 10 17.16 16.97 16.12 16.09
20 20.96 21.56 19.71 20.69
50 23.57 24.63 22.44 23.82

Furthermore, while both methods use the discrepancy-aware aggregation technique (DAT) to weight
client contributions, FedGMKD’s clustering-based feature extraction aligns more closely with client
data distributions. This alignment ensures that the global model benefits from a more accurate and rel-
evant integration of client data, particularly in highly heterogeneous settings. The close performance
in global accuracy between the two methods in some configurations shows that DAT effectively
mitigates client discrepancies; however, the advantage of using GMMs for prototype generation
becomes evident as FedGMKD achieves consistently higher global accuracy, demonstrating the
effectiveness of its integrated CKF and DAT mechanisms.

A.4.6 Evaluation on IMDB Dataset

To further assess the adaptability of FedGMKD across different data modalities, we conducted
experiments on the IMDB (Internet Movie Database) dataset, a prominent benchmark in natural
language processing (NLP) used for sentiment analysis tasks. The IMDB dataset comprises a large
collection of movie reviews, presenting a significant challenge for federated learning due to the
inherent diversity of client data distributions. Sentiment analysis in particular requires models to
generalize effectively across these distributed datasets.

The experimental setup mirrored the structure of previous evaluations, utilizing 10 clients over the
course of 50 training epochs. As the task shifted from computer vision to NLP, the model architecture
was updated from ResNet-18 to BERT (Bidirectional Encoder Representations from Transformers), a
model widely recognized for its effectiveness in text-based tasks like sentiment analysis. BERT’s
ability to capture contextual embeddings makes it particularly well-suited for handling the complexity
of the IMDB dataset. Evaluation metrics included local accuracy, global accuracy, and the average
computation time per client.

Table 7: Performance of different schemes on IMDB dataset using BERT model (10 clients, 50
epochs).

Scheme Local Acc (%) Global Acc (%) Avg Time (s)
FedAvg 83.71 50.52 411.95
FedProx 83.75 48.50 438.52
FedMD 83.87 48.29 700.73
FedGen 83.54 49.16 471.35
FedProto 84.13 49.72 586.77
FPL 83.96 50.12 665.29
FedGMKD 85.11 51.58 677.79

Table 7 shows that FedGMKD consistently outperforms other federated learning algorithms in terms
of both local and global accuracy on the IMDB dataset. FedGMKD achieves the highest local
accuracy of 85.11% and the highest global accuracy of 51.58%, indicating its robustness in handling
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non-vision datasets. In particular, the results highlight the effectiveness of CKF and DAT in adapting
to text-based tasks. While the average computation time for FedGMKD is slightly higher due to the
complexity of BERT, the gains in both local and global accuracy justify the computational overhead.
These findings underscore the versatility of FedGMKD, demonstrating that it can generalize well to
NLP tasks and effectively handle different data modalities, further validating its broader applicability
across federated learning scenarios.

A.5 Feature Representations

In this section, we present an ablation study comparing the t-SNE visualizations of feature representa-
tions obtained using different federated learning methods: FedAvg, FedProto, FPL, and FedGMKD.
These experiments were conducted with 10 clients and a data heterogeneity parameter (β) of 0.5 on
the CIFAR-10 dataset. The primary aim is to evaluate how effectively each method learns to separate
feature representations by class, as visualized using t-SNE.

(a) FedAvg (b) FedProto

(c) FPL (d) FedGMKD

Figure 4: Qualitative comparison of t-SNE visualization among FedAvg, FedProto, FPL and
FedGMKD. Compared with other methods, the feature distribution of the FedGMKD is more
compact within each category, and more discriminative across classes.

In the FedAvg method (Figure 4a), feature representations are widely dispersed with significant
overlap between classes. Although FedAvg captures some class-specific features, the resulting
feature clusters are neither distinct nor compact, indicating weak separation between the classes.
This is expected, as FedAvg primarily averages model parameters without specific focus on class
differentiation or feature compactness.

The FedProto method (Figure 4b), while not explicitly clustering features, introduces prototype-
based learning where class prototypes guide the learning process. The t-SNE visualization shows
slightly more distinct feature distributions compared to FedAvg, reflecting an improvement in feature
separation. However, since FedProto emphasizes prototyping over clustering, some overlap between
class features still persists, suggesting room for more effective inter-class separation.
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FPL (Figure 4c) shows clustering behavior very similar to FedAvg, with large overlaps between
clusters and less distinct boundaries. The feature separation is minimal, and the clusters are not as
compact as those in FedProto. This indicates that FPL struggles to produce clear, discriminative
class-specific features, making its clustering quality less ideal compared to FedProto.

FedGMKD (Figure 4d) demonstrates the most compact and well-separated feature representations.
The t-SNE visualization shows that FedGMKD’s CKF successfully generates class-specific prototypes
that contribute to tight and distinct feature clusters. This clear separation highlights how CKF, along
with the DAT, enhances feature learning across clients, leading to superior class separation and
making FedGMKD the most effective method in terms of feature representation quality.

A.6 Convergence Analysis of FedGMKD

A.6.1 Assumptions

To prove the convergence of FedGMKD, we introduce the following assumptions:

Assumption 1 (Lipschitz Continuity of the Local Loss Function): The local loss function
L(Di,wr

i ) at each client i is L-smooth, meaning that its gradient is Lipschitz continuous with
a constant L > 0. Formally, for any wa

i ,w
b
i , we have:

∥∇L(Di,wa
i )−∇L(Di,wb

i )∥≤ L∥wa
i −wb

i∥. (16)
This ensures that the local loss function is smooth, and the gradient changes gradually for any two
parameter vectors.

Assumption 2 (Unbiased Gradient and Bounded Variance): The gradient estimation at each
client i is unbiased with bounded variance. Specifically, for any wr

i , the expectation of the local
gradient equals the true global gradient at the global parameter wR, and the variance of the gradient
is bounded by a constant σ2:

E[∇L(Di,wr
i )] = ∇L(wR), (17)

and
E[∥∇L(Di,wr

i )−∇L(wR)∥2] ≤ σ2. (18)

Assumption 3 (Bounded Gradient Norm): The gradient of the local loss function L(Di,wr
i ) is

bounded. There exists a constant G > 0 such that:
∥∇L(Di,wr

i )∥≤ G, ∀i, r. (19)

Assumption 4 (Bounded Discrepancy in KL Divergence): The Kullback-Leibler (KL) divergence
between the local model’s predictions and the global model’s predictions for each class is bounded.
For any client i and class j, the KL divergence dji between the local soft prediction q̂ji and the global
soft prediction Q̂j satisfies:

dji = DKL(q̂
j
i ∥ Q̂j) ≤ Dmax

KL . (20)
This ensures that the discrepancy between local and global models is controlled.

Assumption 5 (Cluster Knowledge Fusion Convergence): The Gaussian Mixture Model (GMM)-
based clustering used in Cluster Knowledge Fusion (CKF) converges to a stable clustering of client
updates. Let M be the number of Gaussian components (to avoid conflict with global round notation),
and let γm(xji ) represent the responsibility of the m-th Gaussian component for a data point xji . After
a sufficient number of iterations, we assume:

M∑
m=1

γm(xji ) = 1 and ĥji =

M∑
m=1

γm(hji )¯mj
. (21)

A.6.2 Lemma

Lemma 1

Lemma 1: Under Assumptions 1-5 A.6.1, after R local training epochs at global round r + 1, the
local loss function can be bounded as follows:

E[L(Di,wr+R
i )] ≤ L(Di,wr

i )− ηRE[∥∇L(Di,wr
i )∥2] +

Lη2RG2

2
+

η2σ2

2
, (22)
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where L is the Lipschitz constant from Assumption 1, σ2 is the variance bound from Assumption 2,
G is the bound on the gradient norm from Assumption 3, and η is the learning rate.

Proof:

In each communication round r, client i performs R local updates based on stochastic gradient
descent (SGD) on its local dataset Di. The local training objective for client i is defined as:

(23)
L(Di,wi) =

1

|Di|
∑

(xk,yk)∈Di

ℓ (Cψi
(Fθi(xk)) , yk)

+ λ
1

|Di|
∑

(xk,yk)∈Di

∥∥Fθi(xk)−Hr+1
yk

∥∥2
2
+

γ

n

n∑
j=1

∥∥∥∥∥Cψi

(
Hr+1
j

)
T

−
Qr+1
j

T

∥∥∥∥∥
2

2

.

First, we use the Lipschitz continuity of the gradient (Assumption 1). This assumption implies that
the loss function L(Di,w) is L-smooth. Formally:

L(Di,w1) ≤ L(Di,w2) +∇L(Di,w2)
T (w1 −w2) +

L

2
∥w1 −w2∥2. (24)

We set w1 = wr+j+1
i and w2 = wr+j

i . Substituting these into the Lipschitz continuity condition:

L(Di,wr+j+1
i ) ≤ L(Di,wr+j

i ) +∇L(Di,wr+j
i )T (wr+j+1

i −wr+j
i ) +

L

2
∥wr+j+1

i −wr+j
i ∥2.

(25)

The SGD update rule is given by:

wr+j+1
i = wr+j

i − η∇L(Di,wr+j
i ), (26)

where η is the learning rate. Substituting this into the previous equation:

L(Di,wr+j+1
i ) ≤ L(Di,wr+j

i )− η∥∇L(Di,wr+j
i )∥2+Lη2

2
∥∇L(Di,wr+j

i )∥2. (27)

To analyze the expected change in the loss, we take the expectation on both sides with respect to the
randomness of the gradient:

E
[
L(Di,wr+j+1

i )
]
≤ E

[
L(Di,wr+j

i )
]
−ηE

[
∥∇L(Di,wr+j

i )∥2
]
+
Lη2

2
E
[
∥∇L(Di,wr+j

i )∥2
]
.

(28)

According to Assumption 2 (Unbiased Gradient and Bounded Variance), the gradient is an unbiased
estimator of the true gradient, and its variance is bounded:

E
[
∥∇L(Di,wr+j

i )−∇L(w)∥2
]
≤ σ2. (29)

We decompose the expected squared gradient norm as follows:

E
[
∥∇L(Di,wr+j

i )∥2
]
= ∥∇L(Di,wr+j

i )∥2+Var
(
∇L(Di,wr+j

i )
)
. (30)

Thus:
E
[
∥∇L(Di,wr+j

i )∥2
]
≤ ∥∇L(Di,wr+j

i )∥2+σ2. (31)

To understand the cumulative effect of R local updates, we sum the inequalities over j = 0 to
j = R− 1:

E[L(Di,wr+R
i )] ≤ L(Di,wr

i )− η

R−1∑
j=0

E[∥∇L(Di,wr+j
i )∥2] + Lη2

2

R−1∑
j=0

E[∥∇L(Di,wr+j
i )∥2].

(32)
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From Assumption 3 (Bounded Gradient Norm), ∥∇L(Di,wr+j
i )∥≤ G for all j. Substituting this

bound:
R−1∑
j=0

E[∥∇L(Di,wr+j
i )∥2] ≤ R(G2 + σ2). (33)

Substituting this result into the inequality:

E[L(Di,wr+R
i )] ≤ L(Di,wr

i )− ηRE[∥∇L(Di,wr
i )∥2] +

Lη2R(G2 + σ2)

2
. (34)

Lemma 2

Lemma 2: Under Assumptions 1-5 A.6.1, the global loss function after one global aggregation step
at round r + 1 can be bounded as:

E[F (Wr+1)] ≤ F (Wr)− ηR

(
1− Lη

2

) n∑
i=1

w′
iE

[
∥∇Fi(w

r
i )∥2

]
+

Lη2σ2

2
, (35)

where F (W) is the global loss function, Fi(wi) is the local loss function for client i, w′
i are the

discrepancy-aware weights, and σ2 is the variance bound from Assumption 2.

Proof:

The global model after aggregation at round r + 1 is computed as:

Wr+1 =

n∑
i=1

w′
iw

r+R
i , (36)

where w′
i are the discrepancy-aware weights based on each client’s data quality and quantity, and

wr+R
i represents the model parameters after R local updates for client i.

We express the global loss function at time r + 1 in terms of the aggregated client models:

F (Wr+1) =

n∑
i=1

w′
iFi(w

r+R
i ), (37)

where Fi(w
r+R
i ) is the local loss function value for client i after R local updates.

From Lemma 1, we have:

E
[
Fi(w

r+R
i )

]
≤ Fi(w

r
i )− ηRρE

[
∥∇Fi(w

r
i )∥2

]
+

Lη2R(G2 + σ2)

2
, (38)

where ρ represents the cosine similarity between the gradients and L, σ2, and G are constants derived
from the assumptions.

Taking the expectation over all clients and substituting the bound from Lemma 1:

E[F (Wr+1)] =

n∑
i=1

w′
iE

[
Fi(w

r+R
i )

]
. (39)

Substituting the inequality from Lemma 1 into this expression:

E[F (Wr+1)] ≤
n∑
i=1

w′
i

[
Fi(w

r
i )− ηRρE

[
∥∇Fi(w

r
i )∥2

]
+

Lη2R(G2 + σ2)

2

]
. (40)

Recall that the global loss function at time r is:

F (Wr) =

n∑
i=1

w′
iFi(w

r
i ). (41)
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Substituting this into the inequality:

E[F (Wr+1)] ≤ F (Wr)− ηRρ

n∑
i=1

w′
iE

[
∥∇Fi(w

r
i )∥2

]
+

Lη2R
∑n
i=1 w

′
i(G

2 + σ2)

2
. (42)

According to Assumption 2 (Unbiased Gradient and Bounded Variance), we can further refine the
variance term:

n∑
i=1

w′
iσ

2 = σ2, (43)

since the weights w′
i sum to 1. Therefore:

E[F (Wr+1)] ≤ F (Wr)− ηRρ

n∑
i=1

w′
iE

[
∥∇Fi(w

r
i )∥2

]
+

Lη2σ2

2
. (44)

The factor ρ represents the alignment of the gradient directions across clients. In practice, ρ can vary,
but for worst-case analysis, we set ρ = 1 to provide a conservative bound. Substituting ρ = 1:

E[F (Wr+1)] ≤ F (Wr)− ηR
n∑
i=1

w′
iE

[
∥∇Fi(w

r
i )∥2

]
+

Lη2σ2

2
. (45)

We rearrange the expression to factor out the learning rate η and the Lipschitz constant L:

E[F (Wr+1)] ≤ F (Wr)− ηR

(
1− Lη

2

) n∑
i=1

w′
iE

[
∥∇Fi(w

r
i )∥2

]
+

Lη2σ2

2
. (46)

A.6.3 Theorem

Theorem 1: FedGMKD Convergence

Under Assumptions 1-5 A.6.1, for any client i, after R global communication rounds, the expected
global loss function is bounded as:

1

R

R∑
r=1

n∑
i=1

w′
iE

[
∥∇Fi(w

r
i )∥2

]
≤ F (W1)− F ∗

ηR2
+ σ2 +

LηRG2

2
, (47)

where F (W) is the global loss function, F ∗ is the lower bound of the global objective function, η is
the learning rate, R is the number of global updates, L is the Lipschitz constant from Assumption
1, σ2 is the variance bound on the gradient from Assumption 2, and G is the upper bound on the
gradient norm from Assumption 3.

As R → ∞, the global loss function converges to a neighborhood around a stationary point, with the
size of the neighborhood bounded by:

σ2 +
LηRG2

2
. (48)

Proof:

The global model update after aggregation at round r + 1 is defined as:

Wr+1 =

n∑
i=1

w′
iw

r+R
i , (49)

where w′
i are the discrepancy-aware weights, and wr+R

i are the parameters of client i after R local
updates.

The global loss function after aggregation is:

F (Wr+1) =

n∑
i=1

w′
iFi(w

r+R
i ), (50)
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where Fi(w
r+R
i ) denotes the local loss function of client i after R local updates.

From Lemma 2, we know:

E[F (Wr+1)] ≤ F (Wr)− ηR

(
1− Lη

2

) n∑
i=1

w′
iE

[
∥∇Fi(w

r
i )∥2

]
+

Lη2σ2

2
. (51)

Let ∆r denote the change in the global loss function:

∆r = F (Wr)− E[F (Wr+1)]. (52)

Substituting the result from Lemma 2:

∆r ≥ ηR

(
1− Lη

2

) n∑
i=1

w′
iE

[
∥∇Fi(w

r
i )∥2

]
− Lη2σ2

2
. (53)

This inequality indicates the amount by which the global loss function decreases in expectation after
one round of global aggregation.

We sum the inequality ∆r ≥ . . . over r = 1 to R:
R∑
r=1

∆r = F (W1)− E[F (WR+1)]. (54)

Substituting the inequality for ∆r:

F (W1)− E[F (WR+1)] ≥ ηR

(
1− Lη

2

) R∑
r=1

n∑
i=1

w′
iE

[
∥∇Fi(w

r
i )∥2

]
− Lη2σ2R

2
. (55)

Rearrange the inequality to isolate the sum of the expected gradient norms:

ηR

(
1− Lη

2

) R∑
r=1

n∑
i=1

w′
iE

[
∥∇Fi(w

r
i )∥2

]
≤ F (W1)− E[F (WR+1)] +

Lη2σ2R

2
. (56)

To find the average over R rounds, divide both sides by ηR
(
1− Lη

2

)
R:

1

R

R∑
r=1

n∑
i=1

w′
iE

[
∥∇Fi(w

r
i )∥2

]
≤ F (W1)− E[F (WR+1)]

ηR
(
1− Lη

2

)
R

+
Lησ2

2
(
1− Lη

2

) . (57)

Assuming that F (W) is bounded below by F ∗, such that:

F (WR+1) ≥ F ∗, (58)

we substitute this bound into the inequality:

1

R

R∑
r=1

n∑
i=1

w′
iE

[
∥∇Fi(w

r
i )∥2

]
≤ F (W1)− F ∗

ηR
(
1− Lη

2

)
R

+
Lησ2

2
(
1− Lη

2

) . (59)

As R → ∞, the term F (W1)−F∗

ηR(1−Lη
2 )R

tends to zero. Therefore:

lim
R→∞

1

R

R∑
r=1

n∑
i=1

w′
iE

[
∥∇Fi(w

r
i )∥2

]
≤ Lησ2

2
(
1− Lη

2

) . (60)

Since η is chosen such that 1 − Lη
2 > 0, this shows that the global loss function converges to a

neighborhood around a stationary point with the size of the neighborhood given by:

σ2 +
LηRG2

2
. (61)
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Theorem 2: FedGMKD Convergence Rate

Under Assumptions 1-5 A.6.1, for any client i, after R global communication rounds, the convergence
rate of the global loss function F (W) is bounded as follows:

F (WR)− F ∗ ≤ C1

R
+ C2, (62)

where F (W) is the global loss function, F ∗ represents the lower bound of F (W), and C1 and C2

are constants that depend on variance σ2, Lipschitz constant L, learning rate η, and the number of
local steps.

As R → ∞, the global loss function converges to a neighborhood around a stationary point.

Proof:

To establish the convergence rate of F (W), we begin with Lemma 2:

E[F (Wr+1)] ≤ F (Wr)− η

(
1− Lη

2

) n∑
i=1

w′
iE[∥∇Fi(w

r
i )∥2] +

Lη2σ2

2
. (63)

Define the decrease in the global loss function after one global round as:
∆r = F (Wr)− E[F (Wr+1)]. (64)

Substituting the result from Lemma 2:

∆r ≥ η

(
1− Lη

2

) n∑
i=1

w′
iE[∥∇Fi(w

r
i )∥2]−

Lη2σ2

2
. (65)

This equation indicates that the decrease in the global loss function F (W) after each round is
proportional to the squared gradient norm and controlled by the variance and Lipschitz constant.

We sum ∆r over r = 1 to R:
R∑
r=1

∆r = F (W1)− E[F (WR+1)]. (66)

Substituting the inequality for ∆r:

F (W1)− E[F (WR+1)] ≥ η

(
1− Lη

2

) R∑
r=1

n∑
i=1

w′
iE[∥∇Fi(w

r
i )∥2]−

Lη2σ2R

2
. (67)

This inequality now relates the total decrease in the global loss function to the sum of the squared
gradients over all rounds.

We rearrange the equation to isolate the sum of the expected gradient norms:

η

(
1− Lη

2

) R∑
r=1

n∑
i=1

w′
iE[∥∇Fi(w

r
i )∥2] ≤ F (W1)− F ∗ +

Lη2σ2R

2
. (68)

Dividing by η
(
1− Lη

2

)
R We divide both sides of the inequality by η

(
1− Lη

2

)
R to find the

average squared gradient norm over R rounds:

1

R

R∑
r=1

n∑
i=1

w′
iE[∥∇Fi(w

r
i )∥2] ≤

F (W1)− F ∗

η
(
1− Lη

2

)
R

+
Lησ2

2
(
1− Lη

2

) . (69)

Define C1 = F (W1)−F∗

η(1−Lη
2 )

and C2 = Lησ2

2(1−Lη
2 )

. Substituting these constants:

1

R

R∑
r=1

n∑
i=1

w′
iE[∥∇Fi(w

r
i )∥2] ≤

C1

R
+ C2. (70)
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As R → ∞, the term C1

R → 0. This indicates that the average squared gradient norm converges to
C2.

Given that C2 is bounded, the behavior of F (W) over R rounds implies:

F (WR)− F ∗ ≤ C1

R
+ C2. (71)

This shows that the global loss function F (W) converges at a rate proportional to 1
R , plus an

asymptotic constant C2 that defines the neighborhood around the stationary point.

As R → ∞, the term C1

R diminishes, and the global model converges to a neighborhood around the
stationary point defined by C2.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly outline the contributions of FedGMKD,
including the introduction of Cluster Knowledge Fusion (CKF) and Differential Aggrega-
tion Technique (DAT). These claims are supported by theoretical analyses and extensive
experimental results as detailed in Sections 1 and 3.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 4 and supplementary A.4.3 discuss potential limitations, such as the
computational overhead associated with CKF and DAT, and the scalability of FedGMKD in
extremely large federated networks.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The theoretical results are fully detailed in Section 3.6, with all necessary
assumptions and complete proofs provided in the supplementary material A.6.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 4 provides comprehensive details on the experimental setup, including
datasets, models, baselines, and hyperparameters. Additional details and scripts are provided
in the supplementary material to ensure reproducibility.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have provided code and data in the supplementary material, along with
detailed instructions for reproducing the experiments.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4.4 specifies all relevant training and testing details, including data
splits, hyperparameters, and optimizer settings.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The paper does not report error bars or statistical significance tests. The
primary focus was on comparing the performance metrics (e.g., accuracy) across different
methods without including statistical analysis of the results.
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 4 specifies all relevant training and testing details, including data splits,
hyperparameters, and optimizer settings.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics, ensuring data privacy
and ethical conduct throughout the study.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section 4 discusses the broader impacts of the proposed method, highlighting
potential positive applications in privacy-preserving machine learning and possible negative
impacts, such as computational overhead.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This research does not involve the release of high-risk models or datasets.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used are properly credited, and their licenses are respected, as
detailed in Section 4 and the supplementary material.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets introduced in this research are thoroughly documented, with
detailed instructions provided in the supplementary material.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This research does not involve crowdsourcing or human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This research does not involve human subjects.
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