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Abstract

Low-rank adapters (LoRA) and their variants are popular parameter-efficient fine-tuning
(PEFT) techniques that closely match full model fine-tune performance while requiring
only a small number of additional parameters. These additional LoRA parameters are
specific to the base model being adapted. When the base model needs to be deprecated
and replaced with a new one, all the associated LoRA modules need to be re-trained.
Such re-training requires access to the data used to train the LoRA for the original
base model. This is especially problematic for commercial cloud applications where
the LoRA modules and the base models are hosted by service providers who may not
be allowed to host proprietary client task data. To address this challenge, we propose
Trans-LoRA— a novel method for lossless, nearly data-free transfer of LoRAs across
base models. Our approach relies on synthetic data to transfer LoRA modules. Using
large language models, we design a synthetic data generator to approximate the data-
generating process of the observed task data subset. Training on the resulting synthetic
dataset transfers LoRA modules to new models. We show the effectiveness of our
approach using both LLama and Gemma model families. Our approach achieves lossless
(mostly improved) LoRA transfer between models within and across different base
model families, and even between different PEFT methods, on a wide variety of tasks.

1 Introduction
The remarkable progress in language modeling has led to the development of Large Language Models
(LLMs) [16, 13, 4, 2], achieving high performance on general language tasks via scaling model parameters
to multi-billion sizes. Despite their great progress, even the largest and strongest LLMs [16] still
significantly benefit from fine-tuning to downstream tasks for enhanced specialization and consequent
performance improvement [50]. However, it is commonly difficult to gain the computational, memory,
and disk resources needed for fine-tuning and later hosting fine-tuned large-scale models, especially when
serving model customization APIs to numerous clients. Thus, a common approach to LLM finetuning
is to use parameter-efficient finetuning (PEFT) methods, the most widespread of which are Low-Rank
Adapters (LoRA) [31, 43], which only train a small number of additional parameters while freezing the
base pre-trained model. Using PEFT can lead to more efficient and compute-friendly training without
sacrificing final performance [31], as well as allowing efficient serving of large quantities of LoRA models
‘orbiting’ a common base model ‘core’ [56]. However, a LoRA model fine-tuned for a specific task is
tied to its base model and cannot be used without it, and also cannot be directly transferred to another
base model. This is quite problematic in commercial cloud model serving scenarios, where after the base
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Figure 1: Trans-LoRA overview. Examples from ‘boolean expressions’ BBH task illustrate the lower
diversity of raw synthetic samples compared to the original task data, which is fixed by our filtering
approach. The source model is used to: 1. train the source LoRA; 2. synthesize data for discriminator
training; and 3. train the (LoRA) discriminator. Then, the target model is used to synthesize data for
transfer (filtered by discriminator) and train target LoRA using the source LoRA teacher.

model needs to be deprecated and replaced by a newer LLM, the (potentially thousands of) clients’ LoRA
models need to be switched to the new base model. Naively, one would have to re-train all the LoRA
models, which, understandably, is a logistic nightmare given that clients’ proprietary task data is commonly
confidential and is not retained on the servers of the cloud service provider. Naturally, asking all of the
clients to re-send the data for re-training or retraining on their own is neither scalable nor practical.

In this work, we propose Trans-LoRA - an approach for ‘universal’ LoRA transfer offering an ability to
train LoRA models in a way that allows them to be transferred to new base models, and even to other
kinds of PEFT (e.g. LoRA [31]↔ DoRA [43] or PT[37]), in an automatic and centralized manner on the
model service provider side, while preserving or improving performance, and without the need to access
to the clients’ data used to train the original LoRAs. Our Trans-LoRA is based on using the source base
model LoRA to teach the target base model LoRA, while the main challenge is in obtaining the training
curriculum for such a transfer in a manner that is both data-free and sufficiently effective to guarantee
the resulting LoRA performance improvement beyond the maximum of the respective target base model
and the source LoRA performances. Surprisingly, in Trans-LoRA we demonstrate it is possible to obtain
an effective transfer curriculum for achieving these feats using synthetic data generated from the target
base model. However, this by itself is insufficient to obtain the specified guarantees. We discover in
Trans-LoRA that we need to additionally train a discriminator model for synthetic data filtering. Our
proposed discriminator is trained on a mix of synthetic and real data alongside the source LoRA model
and is optimized to ensure the filtered synthetic data most closely resembles the source LoRA training
distribution. We provide extensive evidence, insights, and ablations as to why the proposed Trans-LoRA
synthetic transfer curriculum works and is superior to the alternative curriculum-building approaches.

We perform numerous experiments confirming that our Trans-LoRA achieves the above guarantees while
transferring within and across the popular Llama2 [15] and Gemma [14] model families, popular LoRA
[31], DoRA [43], and Prompt Tuning [37] PEFT variants, and using a large variety of about 90 (language,
code, and math) tasks contained in popular datasets such as BBH [60], MMLU [28], GSM8K [10], MBPP
[5], and MBPP+ [41]. Notably, our Trans-LoRA not only achieves overall lossless transfer, it primarily
improves performance (by up to 10% in some cases) over the maximum among the fine-tuned source
model and the target base model performances, thus consistently achieving positive transfer! We perform
an ablation comparing to transfer using unfiltered synthetic data or random data from other sources. We
explore transferring between different PEFT variants (e.g., LoRA[31]↔DoRA[43] or PT[37]), as well
as multi-step transfer through an intermediate model (simulating multiple transfers due to consecutive
model deprecations), in all cases supporting the robustness and merits of our Trans-LoRA approach. We
also show that our Trans-LoRA positively benefits from scaling the synthetic data generation. Finally, we
provide further error analysis of Trans-LoRA and ways to mitigate some edge-case scenarios.

To the best of our knowledge, Trans-LoRA is the first approach to explore the automatic, nearly data-free,
and universal transferability of LoRA (or any other PEFT) models between base (LLM) models. The
effectiveness of our approach observed in numerous experiments and ablations strongly suggests that our
Trans-LoRA can be readily used for the said tasks in the challenging and yet very practical massive-scale
custom models serving cloud applications.
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2 Related Work
Parameter Efficient Finetuning (PEFT) has emerged as an important area of research, particularly
in the domain of transfer learning where the adaptation of large pre-trained models to specific tasks
without extensive retraining is a significant challenge [17, 39, 25, 12, 70]. The literature on PEFT spans
various approaches, each characterized by its strategy to modify a minimal number of parameters while
maintaining competitive performance. Many different PEFT methods have been proposed, spanning
Adapter Modules [30, 75, 26, 59], Prompt Tuning [37, 32] including multi-task variants [66], very popular
Low-Rank Adaptation techniques including LoRA [31], DoRA [43, 69, 54], NOLA [36] and others
[77, 33, 71]. A major challenge with PEFT techniques is that they do not transfer across base models
and our proposed approach addresses this challenge for the first time.

Knowledge Distillation (KD) is a technique where knowledge from a larger, typically more complex
model (teacher) is transferred to a smaller, more efficient model (student) [29, 21, 35, 51, 53, 45]. Additional
variants proposed include Self-Distillation [73, 3, 74, 47, 76] with same model as teacher and student, and
Weak to Strong Distillation [6, 63, 34] that can under some circumstance help the stronger model to avoid
overfitting [9]. While these approaches have shown promise in transferring between models, they still rely on
training corpus for the distillation making them challenging to apply in a data-free scenario. We see from our
experiments that producing a good set of data for distillation that would guarantee lossless transfer of PEFT
models between base models and/or PEFT types is challenging and addressed by our proposed approach.

Synthetic Data is increasingly used to train machine learning models [7, 49, 1, 52]. It has been used
in computer vision [20, 11, 24, 42, 62], language processing [23, 27, 64, 8, 55], and more recently
in instruction tuning and LLM alignment [65, 61, 67, 48, 46, 38, 58]. While synthetic data has been
researched for general model improvement, to the best of our knowledge we are the first to explore its
use for PEFT models transfer between base models and PEFT variants. As we show in our experiments
and ablations, lossless transfer can only be achieved with careful curation of synthetic data achieved in
our approach in an automatic and nearly source-data-free way. Additionally, we highlight that the synthetic
data filtering approach employed in Trans-LoRA can be orthogonally applied on top of any of the more
advanced synthetic data generation methods [72, 19, 44, 68].

3 Trans-LoRA
Given a pre-trained modelMs (dubbed the source model going forward) and a task-specific dataset,
D={xn,yn}Nn=1 of prompt (xn) and completion (yn) pairs, we assume that we have tunedMs on D
using a PEFT method (e.g., LoRA [31]), obtaining a task-adapted set of additional parameters θs (e.g.,
realized as a set of residual adapters in [31]). Next, given a distinct modelMt (the target model) and
access to only a small subset of ‘seed’ examples, D̄ ⊂D, our goal is to learn task-adapted parameters
θt forMt such that θt bestows similar or better capabilities onMt as those bestowed by θs onMs. In
Trans-LoRA we consider D̄ to be a very small set of demonstrations (|D̄|=5 in all experiments) explaining
the intent of the task and its I/O format. Keeping this tiny set of 5 samples D̄ does not violate the nearly
data-free property of our Trans-LoRA, as D̄ can be cleaned from proprietary information, retaining only
the core expected properties of the task.

3.1 Capabilities transfer through knowledge distillation on synthetic data

While D is unavailable when training θt forMt, we do have θs,Ms, and D̄ available to us. As such,
capabilities can be transferred between θs and θt via knowledge distillation, i.e., by tuning θt to match
the completions produced byMs with the task-adapted parameters θs. Unfortunately, naively distilling
on D̄ performs increasingly poorly with shrinking cardinality of D̄ and is often detrimental to a point
where the un-adaptedMt outperforms θt tuned on D̄. This is particularly so for |D̄|=5 (Section 4.3)
set by us as a requirement for Trans-LoRA to maintain its appealing nearly data-free aspect.

But if D̄ is insufficient, and the original task data cannot be retained, what should then be used as the
necessary input samples (outputs are not required) for the knowledge distillation? One attempt could just be
using random pieces of text from the web (e.g. from Wikipedia). However, these samples do not follow the
input distribution of the task and result in a poor transfer (Section 4.3). A key insight behind our approach
is that augmenting D̄ with carefully synthesized data,Dsyn, allows for effective learning of θt. However,
interestingly, naive synthesis (e.g. fromMt) using D̄ as demonstrations is by itself insufficient (Section 4.3)
to produce the set of inputs for lossless transfer, that is for guaranteeingMt+θt outperforms both the

3



Figure 2: Detailed breakdown of Trans-LoRA. Task Finetuning is done beforehand and produces the
source LoRA for the source model and the discriminator. Task Transfer utilizes the source LoRA and
discriminator to transfer the LoRA onto the target model and produce the target LoRA.

non-tunedMt and theMs+θs as desired. We find that in addition to following the task distribution
(which can be approximated via synthesizing from D̄ as demonstrations), the synthetic data must also
adhere to one additional important requirement - it must also follow the distribution used to sample the
original training setD out of all possible task data. Clearly, this marginal distribution P of just the inputs
{xn} of the training samples in D would intuitively correspond to the ‘comfort zone’ of the intended
teacher modelMs+θs (that learned from observing D and not the entire task data). Hence making it
more likely forMs+θs to produce higher quality outputs for the transfer for inputs sampled from P.

Using above intuitions, we build a synthetic data simulator that generates data Dsyn that is statistically
indistinguishable from the observed task dataD and is used for the aforementioned knowledge distillation
at the time of transfer. Drawing inspiration from GAN [20], our simulator consists of a generator and
a discriminator, described in greater detail below. While the generator part of the simulator is achieved
by an LLM endowed with our designed prompt and using the tiny D̄ as in-context demonstrations, the
discriminator is a separate PEFT model trained once alongside the training of θs on D and kept for all
future transfers. Hence we can safely assume access toD for discriminator training. Discriminator training
does not require knowledge of the target modelMt.

Data synthesis via a large language model generator. We use an instruction-tuned LLMMgen and
prompt it to generate prompt and completion pairs similar to those in D̄. In our experiments, we used
the target modelMt itself forMgen, but any model capable of following detailed instructions can be
used in its place. See Appendix A.1 for the prompt we used for data synthesis.

Data filtration via a large language model discriminator. To train a discriminator that would be able to
effectively filter synthetic data, determining how close a synthetic sample is to the marginal distribution of
the inputs inD, we need a synthetic sample set. This synthetic sample set is to serve as ‘negatives’ for the
discriminator training while the ‘real’ inputs fromD serve as positives. As stated above, during subsequent
transfers of the PEFT model to future modelsMt we use theseMt models themselves for the synthetic data
generator. However, we do not have access to them during the discriminator training (as it is trained in paral-
lel to the source PEFT model). Hence, we use synthetic data generated fromMs for our discriminator train-
ing and surprisingly find that the resulting discriminator generalizes well to filter synthetic data for a variety
of unseen downstream generators (Mt) as evaluated in our experiments (Section 4). For our discriminator,
we use an LLM,Mϕ

disc, endowed with a small set of learnable parameters, ϕ. We learn ϕ by optimizing,

ϕ∗=argmax
ϕ

Ex∼D[logpMϕ
disc

(“yes” | t(x))]+Ex∼Ms
[logpMϕ

disc
(“no” | t(x))], (1)

where, we use t(x) to represent the prompt, “x \n Is the above question from NAME dataset?”
and replace NAME with a short descriptor identifying the dataset from whichD is drawn; and x∼Ms

represents sampling from our synthetic data generation process for the task as explained above (with
Ms as the generator LLM in this case). See Appendix A.1 for the specific prompts we used. In our
experiments, we used the source modelMs and LoRA to instantiateMϕ

disc.
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Table 1: BigBench-Hard (BBH) collection averaged zero-shot results. The accuracies listed are averages
of all 27 tasks from this collection. Evaluated using LM-Eval Harness [18].

Source
Model

Target
Model

Discriminator
Model

Source Model
LoRA Acc.

Target Model
no LoRA Acc. Ours

Llama-2-7b Llama-2-13b Llama-2-7b 43.32 37.85 43.41
Gemma-2b Gemma-7b Gemma-2b 31.84 37.75 43.61
Llama-2-7b Gemma-7b Gemma-2b 43.32 37.75 45.41
Llama-2-7b Gemma-7b Llama-2-7b 43.32 37.75 44.12

CuratingDsyn. At the time of PEFT transfer, we createDsyn by filtering generations fromMgen with
the trained discriminator,Mϕ∗

disc. We incorporate x∼Mgen intoDsyn ifMϕ∗

disc is unable to recognize x
as a synthetic sample, i.e., pMϕ∗

disc
(“yes” | t(x))>pMϕ∗

disc
(“no” | t(x)). Otherwise we discard x. We repeat

this rejection sampling procedure till the cardinality ofDsyn equals that ofD.

We summarize our overall Trans-LoRA algorithm in Algorithm 1 and Figure 2.

4 Experiments

Algorithm 1 Trans-LoRA

Require: D̄, θs,Mt,Mϕ∗

disc
Mgen←Mt

Dsyn←∅
while |Dsyn|< |D| do

s← generate(Mgen,D̄)
if verify(Mϕ∗

disc, s) then
Dsyn←Dsyn∪{s}

end if
end while
Initialize θt

H←CrossEntropyLoss()
while θt not converged do
L←H(θt(Dsyn),θs(Dsyn))
θt←update(θt,L)

end while
Figure 3: Transferred LoRA accuracy vs.
source LoRA accuracy on BBH tasks. Details
the rows of Table 1. Bottom left: row 3; Bottom
right: row 4.

4.1 Experimental Setup
We have evaluated the effectiveness of our Trans-LoRA on two popular LLM families: Llama-2 [15]
and Gemma [14], using 86 tasks from a large variety of topics from the following popular benchmarks:
BigBench-Hard (BBH)[60] (27 reasoning tasks), Massive Multitask Language Understanding (MMLU)[28]
(57 knowledge tasks), Mostly Basic Python Problems (MBPP)[5] (1 code task), and Grade School Math 8K
(GSM8K)[10] (1 math task). BBH is a collection of 27 tasks where pre-existing LLMs could not outperform
human evaluators. The tasks cover many different formats including multiple-choice, question answering,
and short response. MMLU consists of 57 multiple-choice QA tasks testing common academic subjects with
several difficulty levels. MBPP is a set of Python code generation problems with given problem descriptions
and test cases. We also report results on MBPP+[41], which is built upon MBPP with more strict evaluations
and added test cases. GSM8K dataset consists of a large number of grade school math problems. Due
to the large number of training samples in GSM8K, we only pick the first 250 samples for fine-tuning our
source LoRA models, and keep the number of filtered synthetic samples to 250 as in our other experiments.

More specifically, we attempted 4 groups of experiments of LoRA transfer on each collection of tasks: 1.
transfer from Llama2-7b to Llama2-13b with Llama2-7b based discriminator; 2. transfer from Gemma-2b
to Gemma-7b with Gemma-2b based discriminator; 3. transfer from Llama2-7b to Gemma-7b with
Gemma-2b based discriminator; and 4. transfer from Llama2-7b to Gemma-7b with Llama2-7b based
discriminator. We used the chat versions of Llama and the base versions of Gemma, thus exploring both
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Table 2: Massive Multitask Language Understanding (MMLU) collection averaged zero-shot results.
Accuracies are averages of all 57 tasks from this collection. Evaluated using LM-Eval Harness [18].

Source
Model

Target
Model

Discriminator
Model

Source Model
LoRA Acc.

Target Model
no LoRA Acc. Ours

Llama-2-7b Llama-2-13b Llama-2-7b 45.89 53.72 55.09
Gemma-2b Gemma-7b Gemma-2b 42.34 60.45 61.23
Llama-2-7b Gemma-7b Gemma-2b 45.89 60.45 61.12
Llama-2-7b Gemma-7b Llama-2-7b 45.89 60.45 61.22

Figure 4: Transferred LoRA accuracy vs. source
LoRA accuracy on MMLU tasks. Details the
rows of Table 2. Bottom left: row 3; Bottom
right: row 4.

Figure 5: Scaling the number of synthetic
samples generated through Trans-LoRA. Total
training iterations in each experiment are kept
identical for fair comparison. Done on BBH
with Gemma-2b to Gemma-7b transfer and
Gemma-2b as discriminator.

within and across chat and base models LoRA transfer. We evaluate BBH, MMLU, and GSM8K using
the Language Model Evaluation Harness [18], and we evaluate MBPP/MBPP+ using Evalplus [40]. We
evaluate all our models under the zero-shot setting.

Hyperparameter-wise, we search the learning rate between 2∗10−4 and 2∗10−5 on the validation set
using the AdamW optimizer with no weight decay and a linear learning rate scheduler without warmup.
We end up adopting 2∗10−4 for MMLU and 2∗10−5 for all other tasks. We use a fixed 20 epochs
for BBH, MBPP, and GSM8K and 10 epochs for MMLU. We train on the default LoRA configuration
(adapters built only on query and value matrices of attention block) with effective batch size 8 (gradient
accumulation used for larger models). We run on 1 V100 40GB GPU per transfer task. Each task takes
on average 10 hours to finish. All tasks can be parallelized. 4

4.2 Main Results
In Tables 1 to 4, we summarize the results for each task collection (BBH, MMLU, MBPP, and GSM8K
respectively) for each source and target model combination. We test each task individually, and the results
in each table are obtained by averaging over all the tasks in the respective collection. We observe that
the LoRA models transferred by our Trans-LoRA consistently outperform both the source LoRAs and
the target base models, demonstrating that our transfer is indeed lossless. Moreover, this suggests that our
Trans-LoRA is effective at combining the information from LoRAs on a weaker source base model with the
improved capabilities of a stronger target base model to create LoRAs on the target that are more powerful
than both of them. And our Trans-LoRA is nearly data-free requiring almost no access to original tasks
training data (beyond the 5 seed examples). We see that our Trans-LoRA consistently attains successful
LoRA transfer independently of a specific combination of source, target, discriminator models, or the
initial relative performance difference between the fine-tuned source LoRAs and the target base-models.
We note that the performance increase of our transferred model is relatively smaller on MMLU compared
to other tasks. As MMLU tasks are more knowledge-focused, we believe the pretraining is more influential

4Our code is provided in Supplementary and will be released upon acceptance. See Appendix A.3.
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Table 3: Mostly Basic Python Problems (MBPP) zero-shot results. Presented in format of (standard MBPP
evaluation / more strict MBPP+ evaluation). Evaluated using Evalplus [40].

Source
Model

Target
Model

Discriminator
Model

Source Model
LoRA Acc.

Target Model
no LoRA Acc. Ours

Llama-2-7b Llama-2-13b Llama-2-7b 27.2/25.0 37.1/31.7 39.7/34.4
Gemma-2b Gemma-7b Gemma-2b 41.1/33.9 37.9/32.1 50.0/40.6
Llama-2-7b Gemma-7b Gemma-2b 27.2/25.0 37.9/32.1 48.7/42.0
Llama-2-7b Gemma-7b Llama-2-7b 27.2/25.0 37.9/32.1 48.7/42.0

Table 4: Grade School Math 8K (GSM8K) no chain-of-thought prompting results.
Source
Model

Target
Model

Discriminator
Model

Source Model
LoRA Acc.

Target Model
no LoRA Acc. Ours

Llama-2-7b Llama-2-13b Llama-2-7b 19.64 28.86 30.70
Gemma-2b Gemma-7b Gemma-2b 14.94 40.64 44.58
Llama-2-7b Gemma-7b Gemma-2b 19.64 40.64 42.30
Llama-2-7b Gemma-7b Llama-2-7b 19.64 40.64 41.62

Table 5: Distillation curriculum ablations on 27 tasks of the BigBench-Hard (BBH) collection.

Model Config

Source
Model
PEFT
Acc.

Target
Model

no PEFT
Acc.

Random
Wikipedia

Unfiltered
Synthetic

Data

5 Seed
Samples Ours

Source: Llama-2-7b
Target: Llama-2-13b

Discriminator: Llama-2-7b
43.32 37.85 37.32 41.95 39.82 43.41

Table 6: Trans-LoRA for transferring between different base models and different PEFT methods on
BigBench-Hard (BBH). Accuracies are zero-shot averaged results of all tasks from this collection.

Source
Model

Target
Model

Discriminator
Model

Source
Model
PEFT
Acc.

Target
Model

no PEFT
Acc.

Ours

Gemma-2b (LoRA) Gemma-7b (LoRA) Gemma-2b 31.84 37.75 43.61
Gemma-2b (LoRA) Gemma-7b (DoRA) Gemma-2b 31.84 37.75 40.74
Gemma-2b (DoRA) Gemma-7b (LoRA) Gemma-2b 33.07 37.75 41.81
Gemma-2b (DoRA) Gemma-7b (DoRA) Gemma-2b 33.07 37.75 41.40
Gemma-2b (LoRA) Gemma-7b (PT) Gemma-2b 31.84 37.75 43.99

Gemma-2b (PT) Gemma-7b (LoRA) Gemma-2b 33.25 37.75 38.14
Gemma-2b (PT) Gemma-7b (PT) Gemma-2b 33.25 37.75 42.90

than the finetuning for MMLU. We also experimentally verified that increasing finetuning epochs (without
adding more synthetic data) on MMLU does not lead to further improvements.

For more details, Figures 3 and 4 show a detailed distribution of LoRA transfer results for each task from
the BBH and MMLU collections. We see that in both cases, the majority of data points are near or above
the y=x line (the dotted line), indicating our transferred target LoRAs match or outperform the source
ones. These individual task distributions demonstrate the robustness of our Trans-LoRA. We analyze the
few outliers in Section 5.

4.3 Ablation Experiments
Distillation Data Here we evaluate the effect of the choice of the input data for distillation. As varying
kinds of transfer on numerous tasks is time and resource-consuming, we run this ablation only on BBH
tasks and the ‘between Llama-2 models transfer’ (most challenging, smallest gains) objective. Results are
summarized in Table 5. We compare distilling the source LoRAs on: (1) random Wikipedia text; (2) raw
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Table 7: Continuous transfer on several models on BigBench-Hard (BBH). We transfer from source model
to intermediate model, then from intermediate model to target model, all using the same discriminator
model. Accuracies are zero-shot averaged results of all tasks from this collection.

Model Config

Source
Model
LoRA
Acc.

Intermediate
Model

no LoRA
Acc.

Our
Transferred
Intermediate

Model

Target
Model

no LoRA
Acc.

Our
Transferred

Target
Model

Source: Llama-2-7b
Intermediate: Llama-2-13b

Target: Gemma-7b
Discriminator: Llama-2-7b

43.32 37.85 43.41 37.75 45.04

Table 8: Experiments on T5 models and 3 additional tasks, where our results are reported on Trans-LoRA
transfer from T5-L finetuned LoRA to T5-XL base model.

Dataset T5-L Finetuned T5-XL Base Ours

Coqa 32.60 55.84 61.44
Newsroom 85.09 84.19 85.70
Squadv2 95.40 96.32 98.48

synthesized samples without discriminator filtering; (3) only the 5 seed samples used for data synthesis;
and (4) our Trans-LoRA. From Table 5, we see that our Trans-LoRA outperforms other baselines by a large
margin, indicating that: (a) synthetic data designed to mimic task data is highly beneficial, and random
or seed data does not suffice; and (b) discriminator filtering is effective providing good gains over raw
synthetic data. These results further verify our hypothesis on the importance of the proximity of distillation
inputs to the original training data.

Other PEFT Methods To further illustrate the robustness and wide applicability of our Trans-LoRA,
we test its ability to transfer non-LoRA PEFT models. In particular, we apply our Trans-LoRA to
Weight-Decomposed Low-Rank Adaptation (DoRA)[43], and Prompt Tuning (PT) [37]. For DoRA, we
use the same set of hyperparameters as LoRA, and for Prompt Tuning we use a higher learning rate of
2∗10−3 and initialization text provided in Appendix A.2. Table 6 indicates that despite the change of
the specific PEFT approach, we can achieve satisfactory results upon transfer.

Continuous Transfer To further verify the practical use-case of using our Trans-LoRA for several trans-
fers in a row, we evaluate continuous transfer, where the LoRA model is transferred from source to target
via an intermediate model. The discriminator model is kept the same throughout this process, closely mim-
icking real-world application scenarios where the discriminator model needs to be re-used for all subsequent
transfers. From Table 7, we see that continuous transfer does not lead to degradation in performance. This
result proves the robustness and practicality of our Trans-LoRA, where the client only needs to deliver the
discriminator and trained PEFT once to allow for multiple future transfers to different future base models.

Scaling the amount of Synthetic Samples Another advantage of our Trans-LoRA is the theoretically
unlimited data synthesis process. In all previous experiments, we kept the number of filtered synthetic
samples to be the same as the number of samples in the original training dataset (set to 250). We show in
Figure 5 that our Trans-LoRA exhibits good scaling behavior w.r.t. the number of filtered samples generated,
which gives the user the freedom to balance the trade-off between final task accuracy and total compute.

Additional experiments To demonstrate the effectiveness of our approach on a wider range of tasks
and models, we performed additional experiments on T5 series model and 3 additional tasks. The results
are shown in Table 8.
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Table 9: Maximum mean discrepancy(MMD) comparing filtered and unfiltered synthetic data with original
dataset using first 4 tasks of BBH. Smaller values indicate smaller distance to original dataset.

Task Name Filtered Data MMD Unfiltered Data MMD

boolean expressions 0.7155 1.3072
causal judgement 0.2255 0.7714

date understanding 0.2438 0.8282
disambiguation QA 0.2097 0.9231

5 Analysis

5.1 Cost analysis

Our Trans-LoRA relies on training an additional discriminator. We summarize the empirical cost associated
with this process and demonstrate that it only incurs a negligible overhead. Discriminator training typically
takes just 1 epoch to reach over 90% accuracy. LoRAs were trained for 20 epochs in our experiments which
was empirically observed to produce the best performance for the source LoRA models. Given that both
discriminator training and LoRA training used equal number of samples per epoch (half real half synthetic
for discriminator training, full real data for LoRA training), the cost of training discriminator is only around
1/20 of the training cost of LoRA modules. Synthetic data generation for training discriminators took
less than 5 minutes for most tasks on a single V100 (for all base models). These costs are almost negligible
compared to training the source LoRAs.

5.2 Distribution of filtered synthetic data
In order to provide a more direct understanding of the difference between filtered synthetic samples from
our Trans-LoRA and unfiltered raw synthetic samples, we encode each sample into vector representation
using a MPNet encoder [57] and calculate maximum mean discrepancy [22] on the encoded representations.
The maximum mean discrepancy can be viewed as a measure of distance between two high dimensional
distributions, or in other words how much of the original distribution can be explained by the given
distribution. We run this analysis on the first 4 BBH tasks with synthetic data filtered by their respective
Llama2-7b discriminators from the Llama2-7b to Llama2-13b LoRA transfer experiment. From Table 9,
we clearly observe lower MMD values for our filtered synthetic data, confirming the utility of the
discriminators employed in our Trans-LoRA.

To prove that the data we generate through Trans-LoRA is fundamentally different from the original data
and the discriminator in Trans-LoRA does not simply memorize original samples, we performed further
analysis on the us_foreign_policy task under MMLU. We find the closest pair of questions from the real
data and our synthesized data under the embedding space of a pretrained MPNet. This closest pair has a
Euclidean distance of 0.604, which indicates that there is absolutely no overlap between synthetic samples
and real samples. This closest pair consists of: “What were the implications of the Cold War for American
exceptionalism?” (real) and “What was the significance of the Cold War to the development of American
foreign policy?” (synthesized). These questions are asking for completely different aspects of the subject.
We also exhibit the T-SNE plot on the embeddings in Appendix (Figure 7). Although the distributions
of synthetic data and real data are similar, they do not share any identical points.

5.3 Error Analysis
We see from Figures 3 and 4 that for very few of our 86 evaluated tasks, the performance of LoRAs
transferred by our Trans-LoRA may become lower than the baseline. In this section, we take a closer look
at one such specific example task: Disambiguation-QA from BBH to analyze why this occurred.

Insufficient understanding of task Example comparison of problematic synthetic vs. real task data
is in Figure 6. The generated synthetic question is not valid because none of the answers is correct. In
this example, the generator model does not seem to have correctly understood the task intent; rather, it
just mimicked the pattern of the real samples. We observe similar failed samples for (the few) other tasks
residing under the Figures 3 and 4 diagonals.

Solution We observe that increasing the number of real samples used to prompt the data synthesis (i.e.,
increasing |D̄|) can effectively help the generator model to learn the inherent reasoning and structuring
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In the following sentences,
explain the antecedent of the
pronoun (which thing the pro-
noun refers to), or state that
it is ambiguous.
Sentence: Everyone in the class
had to wear a uniform except
for Sarah, who had to wear
something else.
Options:
(A) The uniform
(B) Something else
(C) Ambiguous

In the following sentences,
explain the antecedent of the
pronoun (which thing the pro-
noun refers to), or state that
it is ambiguous.
Sentence: Alex tells us that
they could not meet.
Options:
(A) Alex could not meet
(B) We could not meet
(C) Ambiguous

Figure 6: Comparison of problematic synthetic sample (left) and real sample (right) from disambiguation-qa
task.

Figure 7: T-SNE plot of MPNet embeddings from us_foreign_policy (MMLU) dataset; Red points are
our filtered synthetic data, blue points are real data.

of the task questions. Increasing the number of samples from 5 to 15 on disambiguation-qa, for example,
leads to much more robust and realistic synthetic samples and significantly improved (up by 13%)
performance. Thus, we recommend tuning the number of seed samples for synthesis when generated
samples are not logically coherent and do not follow the task intent.

For more detailed analysis of our synthetic samples, we include a T-SNE plot of our samples under a
pretrained embedding space in Figure 7.

6 Conclusions and Limitations
In this paper, we propose Trans-LoRA, an approach capable of nearly data-free LoRA model transfer
between different base models (and even supporting transfer between different PEFT configurations)
without requiring access to original task data. Trans-LoRA achieves equivalent or better performance when
compared with the source LoRA and the target base model. To our knowledge, this paper is the first to
explore the very practical use case of transferability of PEFT models. We hope that the success of our
approach will inspire future explorations in this exciting research direction.

Limitations Our Trans-LoRA requires synthesizing data before the transfer requiring small, yet additional,
compute. A promising future direction is to explore ways of direct PEFT transfer, without additional
computation. Additionally, we discussed a potential limitation in task understanding by the synthesizer,
observed in a few cases, and offered a path to mitigate it. We work with LLMs in our experiments, and
although LLMs can sometimes produce harmful content, we rely on their authors for proper alignment.
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A Appendix

A.1 Prompt Examples

Figure 8: Example prompt used in data synthesis for boolean expressions task from BBH.

Here are 10 examples:
1. True and False or ( not True ) is
2. not not True and not False or True is
3. not False and False or False or False is
4. True or False or not True or False is
5. not not ( False and not False ) is
6.
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Figure 9: Example prompt used in data filteration for boolean expressions task from BBH.

Answer in as few words as possible.
True and False or ( not True ) is
Is the above question from the boolean expressions
dataset?

A.2 Prompt Tuning Initialization

Figure 10: Initialization for prompt tuning.

Answer the following question correctly:

A.3 Code

Our code is available at https://github.com/raywang4/TransLoRA.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: All of our claims have been verified in Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to viola-

tions of these assumptions (e.g., independence assumptions, noiseless settings, model well-
specification, asymptotic approximations only holding locally). The authors should reflect
on how these assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low
or images are taken in low lighting. Or a speech-to-text system might not be used reliably
to provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [NA]
Justification: We do not include any theoretical result in our paper, and we verify our proposed
approach through extensive experiments.
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include a detailed description of our method in Section 3. We have provided
the settings of our experiments (including hyperparameters, models, evaluation methods, etc.)
in Section 4.1 and the code in Appendix A.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate
the results, access to a hosted model (e.g., in the case of a large language model), releasing
of a model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature
of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the
model (e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
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Justification: Our code is available at Appendix A.3 and would be released upon acceptance.
All datasets we use are publicly available with citations included. Our evaluation metrics are
standard (open source, properly linked and provided with the code) and properly documented.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: We provide our settings in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide plots (Figure 3 and Figure 4) that describe the detailed statistical
distribution of all data points to show the statistical significance of our results in full detail.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We describe the compute we use (including GPU, memory, and time of execution)
in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully reviewed the Code of Ethics and confirm that this research
follows it completely.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: In Section 1 and Section 6, we discuss the potential social impact of our research,
in particular how it impacts current client-service provider relation.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for op-
timizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology
is being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any data or models with a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with neces-

sary safeguards to allow for controlled use of the model, for example by requiring that users
adhere to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?
Answer: [Yes]
Justification: We have authored the code and cited all relevant work used in this paper in our
References section.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: We provide detailed comments in our code and a README file for documentation.
See Appendix A.3.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their submis-

sions via structured templates. This includes details about training, license, limitations, etc.
• The paper should discuss whether and how consent was obtained from people whose asset

is used.
• At submission time, remember to anonymize your assets (if applicable). You can either

create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or research with human subjects is performed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: No crowdsourcing or research with human subjects is performed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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