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Abstract

Prompt engineering for LLMs remains complex,
with existing frameworks either hiding complex-
ity behind restrictive APIs or providing inflex-
ible canned patterns that resist customization —
making sophisticated agentic programming chal-
lenging. We present the Prompt Declaration Lan-
guage (PDL), a novel approach to prompt repre-
sentation that tackles this fundamental complex-
ity by bringing prompts to the forefront, enabling
manual and automatic prompt tuning while cap-
turing the composition of LLM calls together with
rule-based code and external tools. By abstract-
ing away the plumbing for such compositions,
PDL aims at improving programmer productivity
while providing a declarative representation that
is amenable to optimization. This paper demon-
strates PDL’s utility through a real-world case
study of a compliance agent. Tuning the prompt-
ing pattern of this agent yielded up to 4x perfor-
mance improvement compared to using a canned
agent and prompt pattern.

1. Introduction

Prompt engineering for large language models (LLMs) has
been notoriously difficult. Small prompt variations have an
outsized impact on the results, prompts are model dependent,
and prompting patterns are published informally. Recent
years have seen the rise of a variety of prompt programming
languages and frameworks. Low-level prompt languages,
such as Guidance (Microsoft, 2025), LMQL (Beurer-Kellner
et al., 2023), and SGLang (Zheng et al., 2023), give devel-
opers exact control over the prompts to express multi-turn
interactions with LLMs, and offer additional benefits such as
constrained decoding to help shape the output of LLMs, and
runtime performance optimizations (parallelism, KV prefix
caching). However, being low-level makes them ill-suited
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as a declarative representation. High-level prompt frame-
works such as LangChain/LangGraph (Chase et al., 2025),
LLama Stack (Meta, 2025), and others provide APIs encap-
sulating various prompting patterns, such as CoT (Wei et al.,
2022) and ReAct (Yao et al., 2023) or ReWoo (Xu et al.,
2023) that form the basis of agent development. Agentic
frameworks such as AutoGen (Wu et al., 2023) and Crew-
Al (Moura, 2025) have adopted the concept of agent as the
main organizing feature and have focused on the ReAct
agentic prompting pattern and its variations. Most of these
approaches bury prompts in imperative code or behind APIs,
making prompting patterns hard to customize. However,
in practice, prompting patterns need to be customized to
implement Al agents successfully and to maintain them as
the underlying LLMs evolve (Schluntz & Zhang, 2025).

The Prompt Declaration Language (PDL) is a program-
ming language for specifying LLM prompts and LLM-
based workflows and agents (Vaziri et al., 2024). At its
core, PDL is a declarative representation, written in YAML,
and captures the composition of model calls together with
rule-based traditional code. PDL brings prompts to the fore-
front and abstracts away the plumbing necessary for such
compositions. It provides a set of orthogonal language fea-
tures allowing developers to express their own prompting
patterns, and aims at improving programmer productivity.
As LLMs have evolved, their interface is no longer string
in and string out. Instead, their input is a structured list
of messages, consisting of role and content that capture
a history of multi-turn LLM interactions and tool calling.
The PDL interpreter accumulates such messages implicitly
and hides their underlying structure to free the developer
to think at a higher level of abstraction. PDL is a typed
language using JSON Schema (Pezoa et al., 2016) as types,
and can type-check both the input and output of models.
PDL types are seamlessly integrated with constrained de-
coding (Willard & Louf, 2023) in platforms and models that
support it, to ensure the shape of the output. PDL lever-
ages LiteLLM (BerryAl, 2025) to support a wide variety
of models and model providers. It also handles chat APIs —
the specific formatting of structured messages into strings —
seamlessly across models, making it easier to adapt a pro-
gram to use different models.

This paper first gives an overview of the PDL representation
for prompting patterns (Sec. 2). It then presents a real-world
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case study demonstrating the expressivity and usefulness
of PDL as a language for developing agents (Sec. 3). The
case study uses PDL in an agent for CISO IT compliance
task automation. It demonstrates a significant (up to 4x)
performance improvement across a series of models when
using PDL compared to an architecture that does not.

2. Introduction to PDL

At the heart of agents (Yao et al., 2023) is the ability to
decide when to use a tool, which one, and how. Figure 1(a)
shows a simple PDL program that uses one tool. The pro-
gram is written in YAML, which makes it easy to see prop-
erly formatted prompts. PDL adds enough scripting to allow
users to include not only their textual prompts in YAML, but
also entire prompting patterns. Lines 2 to 17 contain defini-
tions, in this case defining the tool (Wikipedia search) and
assigning it to variable search. Starting at line 18, we see
the blocks that constitute this program. In PDL, the program
computes a result while also implicitly maintaining and up-
dating a background context of messages. This context gets
used as input when making LLM calls. So each block has
a result, and also contributes that result to the background
context. Line 18 starts a text block: it takes each block in
the list, stringifies its result, and concatenates them as the
result of the text. Alternatively, an array block could be
used to generate an array of results instead; 1astof acts like
a sequence and returns the result of the last block (not shown
in this figure). Line 19 specifies the system prompt with a
message block (indicated by the content field). Notice how
YAML renders the longer prompt in a natural way, making
it more readable than if it had been buried in imperative
code. Line 26 defines a tools prompt, indicating the tools
available to the model. Line 28 uses a Jinja expression to
access the value of the attribute signature of the function
search that contains the signature of the tool extracted from
the function definition. Line 30 contains the query we wish
to send to the LLM.

Lines 31 to 34 show a model call, in this case, to a local Ol-
lama model, granite3.3:8b. PDL supports a wide variety
of models and model providers because it uses LiteLLM
as its backend. Line 31 defines variable actions to contain
the result of the model call. The input to this model call
is the context accumulated from executing the blocks so
far (system prompt, tools prompt, and user query). This
block could also contain any parameters we wish to send to
the model. Line 33 indicates that the output of the model
should be parsed as JSON, and line 34 specifies a type for
the output: a list of objects with two attributes, name and
arguments. The PDL interpreter automatically checks the
output against this type, and also uses the type to set up
appropriate parameters for constrained decoding on various
platforms, to make the LLM produce output of this shape.

description: tool use

1

2 defs:

3 search:

4 description: Wikipedia search

5 function:

6 topic:

7 type: string

8 description: Topic to search

9 return:

10 lang: python

11 code: |

12 import warnings, wikipedia

13 warnings.simplefilter ("ignore")

14 try:

15 result = wikipedia.summary("${ topic }")

16 except wikipedia.WikipediaException as e:

17 result = str(e)

18 text:

19 — role: system

20 content: >

21 You are a helpful AI assistant with access to the
22 following tools. If a tool does not exist in the
23 provided list of tools, notify the user that you
24 do not have the ability to fulfill the request.

25 contribute: [context]

26 — role: tools

27 content:

28 text: ${ [ search.signature ] }

29 contribute: [context]

30 — "What is the circumference of planet Earth?\n"
1 — def: actions

2 model: ollama_chat/granite3.3:8b

3 parser: json

34 spec: [{ name: str, arguments: { topic: str }}]
35 — "\n"

36 — if: ${ actions[0] .name == "search" }

37 then:

38 call: ${ search }

39 args:

40 topic: ${ actions[0].arguments.topic }
(a) Code

[{’name’: {*topic’: ’circumference of
Earth’ } }]

Earth’s circumference is the distance around Earth. Measured
around the equator, it is 40,075.017 km (24,901.461 mi). Mea-
sured passing through the poles, the circumference is 40,007.863

km (24,859.734 mi).

’search’, arguments’:

(b) Interpreter trace

Figure 1: Simple Tool Use in PDL

Line 36 is a conditional. Although PDL is a YAML-based
representation, it supports control structures such as con-
ditionals and loops. It also supports modularity and reuse
through function definitions and importing PDL code from
other files or libraries. This design choice enables entire
prompting patterns to be expressed in YAML, as opposed
to being split apart into YAML and, for example, Python,
as is typically the case. The if-statement checks to see
if the action returned by the LLM is a search, in which
case it calls the function search. The body of the func-
tion (defined in Lines 10-17) uses a Python code block to
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perform the Wikipedia search. PDL supports different kinds
of code blocks and allows the composition of LLMs and
code, abstracting away all the plumbing necessary for such
compositions. It is a representation that allows users to see
prompts in the forefront while developing prompting pat-
terns and agents. Because it is a higher-level representation,
it is also a good target for automated optimization. Spiess
et al. (2025) used PDL as a generation target for automated
prompt pattern search.

Figure 1(b) shows the output of the interpreter when this
program is executed. The output of the LLM call is shown
in green. The LLM chooses to use a tool and specifies the
arguments for the tool. The output of the code block is
shown in purple and is the output of the Wikipedia call.

3. Case Study

We used a real-world application for our case study: Chief
Information Security Officer (CISO) Compliance Agent,
which is an Al agent for automating IT compliance tasks.

Compliance tasks traditionally demand specialized expertise
due to their reliance on complex standards and internal orga-
nizational policies. While automation tools exist for routine
operations, policy assessment remains manual at large as
the compliance teams are mostly non-technical. Our CISO
Agent addresses this gap by combining LLM reasoning with
the ReAct pattern (Yao et al., 2023) to provide automated
programmatic development support to those teams. Upon
receiving new regulatory requirements, the agent compre-
hends their content, identifies the target systems, generates
and deploys necessary scripts, validates their outcomes, and
provides a comprehensive posture reporting.

The first version of our CISO Agent was implemented us-
ing a traditional ReAct pattern with CrewAlI (Moura, 2025).
We then experimented using PDL to introduce pattern and
prompts customization particularly needed with compact,
more affordable LLMs. Figure 2 shows the two archi-
tectures: (a) original ReAct pattern implementation, and
(b) PDL-based architecture optimized for compact LLMs.

In the original ReAct pattern, the task description is the first
input (Goal in Figure 2(a)). In the Think step, the LLM
receives the Goal and considers the best next action. This
step has two outputs: a natural language text for the next
action (Thought), and a tool to call in JSON format with
its parameters (ActionSpec). Then, in the Act step, the
specified tool is executed based on this ActionSpec data.
The result of this execution (ActionResult) is fed back into
Context in the Observe step. This updated Context is used
as another input for the next Think step. However, this
pattern often does not work well with smaller LLMs. A
typical failure example is that outputting Thought in natural
language and ActionSpec as a JSON string at the same time

‘ Think 1

(NL step) LM ‘
M
Think 2
LM
(Data step)
Resp Parser
Action
Spec
H Tool
Action
Result

Action
Result

Observe

(a) Original ReAct

(b) PDL-based

Iterate Iterate

Figure 2: CISO Agent Architecture

causes syntax errors in JSON output resulting in tool call
failures or hallucination of tool names in the ActionSpec.

As a solution to these problems, the CISO Agent devel-
opers devised a PDL-based agent architecture shown in
Figure 2(b).

First, since small models tend to produce corrupted Ac-
tionSpec if Thought and ActionSpec are output simultane-
ously, this new architecture splits Think into two stages,
Think1 (natural language step) which outputs Thought, and
Think?2 (data step) which outputs ActionSpec. Traditional
agent frameworks such as CrewAl lack the customization
capabilities that PDL provides for core agent workflow mod-
ification—a crucial differentiator.

Furthermore, even with the two-stage design, Think2
exhibits model-specific failures, for example, produc-
ing {"name": "abc"} while the expected format is
{"tool_name": "abc"}. Our PDL-based agent ad-
dresses these issues through a custom Response Parser that
correctly handles ActionSpec outputs, thus demonstrating
PDL’s flexibility, practical benefits, and its capabilities be-
yond the traditional frameworks scope.

Figure 3 presents performance evaluation results using I'T-
Bench (Jha et al., 2025), comparing the original and PDL-
based CISO Agent implementations. Both versions use
identical models and tools, differing only in agent archi-
tecture. The PDL implementation demonstrates consistent
improvements across all models, with particularly dramatic
gains in smaller models like granite3.2-8b, achieving 4 times
better performance.
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Figure 3: CISO Agent Evaluation for Original (blue) and
PDL-based (orange) Architecture.

Performance analysis reveals that PDL’s improvements stem
primarily from reduced tool call failures. Figure 4 displays
four Sankey diagrams representing approximately 200 eval-
uation tests per condition, illustrating the relationship be-
tween test success and tool call execution accuracy. The first
two diagrams (a) and (b) show results when using gpt4o-
2024-11-20, (a) corresponding to the original CrewAl im-
plementation, and (b) to the PDL-based implementation.
The important difference here is that the cases where the
tool was not called dropped from 22.4% to 2.4% in the PDL-
based implementation, leading to a significant increase in
overall task success rates.

Diagrams (c) and (d) show results when using granite3.2-8b-
instruct as the LLM. Here, cases where no tool was called
decreased from 53.5% to 35.4%, accounting for the 4 times
improvement mentioned above in the success rate.

These improvements result from PDL’s extensive LLM in-
teraction customization capabilities. The findings highlight
how PDL’s fine-grained control mechanisms prove essential
for optimizing Al agent performance, especially when using
smaller, resource-constrained language models.

4. Related Work

PDL is a domain-specific language (DSL): a program rep-
resentation that aims to be both easier to use (for program-
mers) and easier to transform (for code generators or op-
timizers) (Mernik et al., 2005) than general-purpose pro-
gramming languages such as Python. While PDL is not
the only DSL for prompting, other such DSLs such as
LMQL (Beurer-Kellner et al., 2023) or DSPy (Zheng et al.,
2023) are embedded in Python. In contrast, PDL is em-
bedded in the YAML data representation format, making it
easier to manipulate programmatically than Python’s rich
imperative syntax. Prompt optimizers such as DSPy (Khat-
tab et al., 2024) or EvoAgent (Yuan et al., 2024) rewrite

Tool Called (58.1%)
Failed (80.5%)

(a) Total (100.0%)
Original
(modelA) ml

Passed (19.5%)

|

Tool Not Called (22.4%)

Tool Called (69.8%)
Failed (72.2%)

(b) Total (100.0%)
PDL-based
(modelA)
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Figure 4: Tool Call Success Rate Comparison (modelA:
gpt40-2024-11-20, modelB: granite3.2-8b-instruct)

prompts to improve their predictive accuracy on a given
dataset and task. Unfortunately, unlike PDL, they gener-
ate a representation that is ill-suited for programmers to
read, let alone tweak further. Agent frameworks like Auto-
Gen (Wu et al., 2023) and CrewAl (Moura, 2025) have
built-in prompts for agents buried and scattered around the
framework implementation, making prompts difficult to
adapt for novel tasks or models. In contrast, PDL keeps
prompts at the forefront, with a unified representation that
encompasses prompts along with declarative agentic logic.

5. Conclusion

This paper introduced PDL, a novel prompt representation
that prioritizes prompt visibility while enabling seamless
composition of LLM calls with rule-based code. The real-
world case study demonstrated significant performance im-
provements through PDL implementation. In the future, we
will explore PDL as a target of LLM generation to show the
versatility of the representation as a way for developers to
express their prompting patterns, as well as for LLMs to
generate plans of action.
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Impact Statement

This paper presents research focused on advancing prompt-
ing techniques for large language models. The work carries
potential societal implications that fall within the general
scope of LLM development and deployment, none of which
requires specific emphasis in this context.
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