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Abstract1

We introduce TANGO, a dynamical-systems framework for graph representation2

learning that steers node features via a learned energy landscape. At its core3

is a learnable Lyapunov function whose gradient defines an energy-decreasing4

direction, guaranteeing stability and convergence. To preserve flexibility, we add5

a learned tangential message-passing component that evolves features along en-6

ergy level sets. This orthogonal decomposition—gradient descent plus tangential7

evolution—enables effective signal propagation even in flat or ill-conditioned8

regions common in graph learning, mitigates oversquashing, and remains com-9

patible with diverse GNN backbones. Empirically, TANGO achieves strong10

performance across node and graph classification and regression benchmarks,11

validating jointly learned energy functions and tangential flows.12

1 Introduction13
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Figure 1: Illustration of TANGO dynamics
in a 2D feature space. We plot level sets of
a learned energy and visualize the energy-
descent direction (green), the learned tangen-
tial direction (blue), and their combination
(orange). The tangential component moves
along level sets while the descent component
reduces energy, enabling effective navigation
of the learned landscape.

Graph Neural Networks (GNNs) excel on graph-14

structured data [12] but struggle with depth and15

long-range interactions due to vanishing gradients16

[3], over-smoothing [13, 68, 80], and over-squashing17

[2, 22, 39, 40, 87]. Framing GNNs as continuous-18

time dynamical systems (neural ODEs) [3, 15, 30,19

74] enables stability analyses via diffusion [15],20

energy conservation [79], antisymmetric dynam-21

ics [39], and Hamiltonian flows [46]. Meanwhile,22

physics-informed architectures that encode conserva-23

tion or dissipation improve stability and interpretabil-24

ity [6, 10, 36]. The common thread is reliance on25

an energy functional minimized or preserved by the26

GNN—typically simple (e.g., Dirichlet) [80]; yet27

many natural processes require richer energies: pro-28

tein folding exhibits rugged, multi-funnel landscapes29

with multiple stable conformations and transition30

pathways [96], while complex reactions in computa-31

tional chemistry demand sophisticated potential en-32

ergy surfaces [82]. Energy-based models (EBMs)33

learn energies capturing data distributions for genera-34

tive modeling [25, 42, 57, 98]. In contrast, we learn a35

task-driven energy whose minimization solves down-36

stream tasks (e.g., node/graph classification). This raises a central question: How can we learn such an37

energy and leverage it within a GNN to guide representation dynamics? Our answer decomposes fea-38

ture evolution into two orthogonal flows: (i) a gradient-descent component that decreases the learned39

energy, and (ii) a tangential component that moves along its level sets, preserving energy—promoting40

stability, interpretability, and mitigating over-squashing.41
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Our Approach. We introduce TANGO, a constrained graph-dynamics framework that embeds a42

learnable Lyapunov energy into message passing. Updates decompose into two GNN-parameterized43

flows: (i) an energy-descent component driving convergence to task-relevant solutions, and (ii) a44

tangential, conservative component that preserves energy while retaining flexibility. Under mild45

assumptions, TANGO satisfies Lyapunov conditions, ensuring stable dynamics; the tangential flow46

mitigates oversquashing by enabling expressive yet controlled propagation. As illustrated in Figure 1,47

the descent direction (green) lowers energy, the tangential direction (blue) follows level sets, and48

their combination (orange) defines the full update. Across standard graph benchmarks, this structured49

decomposition delivers strong empirical performance—competitive with, and often surpassing, widely50

used baselines—while maintaining controlled, stable feature dynamics.51

2 Method52

As discussed in Section 1, our goal is to learn a task-driven energy function and use it to improve53

downstream graph learning via TANgential- and Gradient-step Optimization of node features; we54

therefore call our method TANGO. Section 2.1 outlines the blueprint of TANGO, Appendix B details55

the implementation, Section 2.2 analyzes its properties, and Appendix E discusses complexity. Math-56

ematical background and definitions of Lyapunov functions and stability are provided in Appendix A.57

Notations. Let G = (V, E) be a graph with n = |V| nodes and m = |E| edges, and let H(t) =58

[h1(t), . . . ,hn(t)]
⊤ ∈ Rn×d denote node features at continuous time t, where hv(t) ∈ Rd is the59

state of node v. Following dynamical-systems GNNs [3, 30, 39], in discrete architectures with finitely60

many layers we identify time t with depth ℓ and use H(t) and H(ℓ) interchangeably, as appropriate.61

2.1 Optimizing Features with Energy Tangential and Gradient Steps62

TANGO evolves node features via a dynamical system driven by a graph energy VG with two flows:63

dH(t)

dt
= −αG(H(t))∇HVG(H(t))︸ ︷︷ ︸

Energy Gradient Descent

+βG(H(t))TVG (H(t))︸ ︷︷ ︸
Tangential Direction

, (1)

where αG , βG ≥ 0 weight the flows, ∇HVG is the energy gradient, and TVG (H(t)) is an update64

direction orthogonal to it (i.e., tangential to level sets). Many orthogonal directions are possible;65

Appendix B details how we learn TVG and implement the system. By design, the first term decreases66

energy, while the tangential flow preserves it.67

Tangential Flow. Setting βG = 0 in Equation (1) yields pure energy–gradient flow—dissipative but68

often slow [9, 67] and restrictive for training. While generative models tolerate hundreds–thousands69

of steps, this is impractical for downstream learning because it implies as many effective layers—hard70

to train [71] and computationally costly. To accelerate minimization, we add a tangential flow along71

level sets of VG that preserves energy. As shown in Figure 1 and analyzed in Section 2.2, coupling72

this tangential flow with gradient descent yields a better descent direction and faster convergence.73

To obtain a direction orthogonal to ∇HVG(H(t)), let M(H(t)) be a predicted update. Define74

TVG (H(t)) = M(H(t))−
〈
M(H(t)), ∇̂HVG(H(t))

〉
· ∇HVG(H(t)), (2)

where ∇̂HVG(H(t)) is the normalized energy gradient. If ∇HVG(H(t)) = 0, set TVG (H(t)) =75

M(H(t)). The projection removes the component of M(H(t)) along the descent direction, ensuring76

TVG is orthogonal to ∇HVG . In Appendix B we specify the parameterization of TANGO as a GNN.77

2.2 Theoretical Properties of TANGO78

We analyze the continuous-time dynamics of TANGO in (1), focusing on (i) energy dissipation, (ii)79

feature evolution in flat energy landscapes, and (iii) the benefit of the tangential direction. Proofs80

appear in Appendix D. Throughout our analysis, we assume that (i) The input graph G = (V, E) is81

connected; (ii) VG(H(t)) is twice differentiable and bounded below. For brevity, we omit time/layer82

superscripts and write H for node features when clear from the context. We start by showing that83

TANGO is dissipative if ∥∇HVG(H)∥2 > 0, and αG ≥ 0 (obtained by design), corresponding to the84

Lyapunov stability criterion from Theorem 1.85

2



TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

(a) Initial Features (b) Gradient Flow (c) TANGO

Figure 2: Comparison of propagation behaviors between gradient flow and TANGO with 50 layers.
While gradient flow struggles propagating information through the bottleneck, our TANGO is effective.

Proposition 1 (Energy Dissipation). Suppose αG ≥ 0 and ∥∇HVG(H)∥2 > 0. Then the energy86

VG(H) is non-increasing along trajectories of Equation (1). Specifically,87

d

dt
VG(H) = −αG(H) ∥∇HVG(H)∥2 ≤ 0. (3)

We now show that unlike gradient flows, our TANGO admits evolution of node features in flat energy88

landscapes, a prime challenge in optimization techniques [9, 67].89

Proposition 2 (TANGO can Evolve Features in Flat Energy Landscapes). Suppose ∇HVG(H) = 0,90

and TVG (H) ̸= 0, then the TANGO flow in Equation (1) reads: dH
dt = βG(H)TVG (H). This implies91

that in contrast to gradient flows, the dynamics of TANGO can evolve even in regions where the92

energy landscape is flat.93

Theoretical Benefits of Using the Tangent Direction. TANGO combines two terms (see Equations (1)94

and (6)): the energy gradient ∇HVG(H
(ℓ)) and the tangential direction TVG (H). A natural question95

is: under what conditions does adding the tangential direction improve over plain gradient descent?96

We address this by first recalling a classic convergence result for gradient-based minimization.97

Proposition 3 (Convergence of Gradient Descent of a Scalar Function, Nocedal and Wright [67]).98

Let VG(·) be a scalar function and let H(ℓ+1) = H(ℓ) − α
(ℓ)
G (H(ℓ))∇HVG(H

(l)) be a gradient-99

descent iteration of the energy VG(·). Then, a linear convergence is obtained, with convergence rate:100

r = λmax−λmin

λmax+λmin
, where λmax is the maximal eigenvalue, and in the case of problems that involve the101

graph Laplacian, λmin is the second minimal eigenvalue, i.e., the first non-zero eigenvalue of the102

Hessian of VG(·).103

Proposition 3 shows that gradient descent struggles in ill-conditioned problems (large λmax/λmin),104

which is common in graph tasks where the Hessian inherits poor conditioning from the graph105

Laplacian—especially under oversquashing caused by bottlenecks [22, 38, 87]. As an alternative, we106

add an orthogonal flow to the gradient direction; the combined update direction is107

D = αG(H
(ℓ))∇HVG(H

(ℓ)) + βG(H
(ℓ))TVG (H

(ℓ)). (4)

The following proposition demonstrates that it is possible to learn T such that D becomes the Newton108

direction, which offers quadratic convergence [67].109

Proposition 4 (TANGO can learn a Quadratic Convergence Direction). Assume for simplicity that110

βG = 1, and that the Hessian of VG is invertible. Let D = αG(H
(ℓ))∇HVG(H

(ℓ)) + TVG (H
(ℓ)) with111 〈

TVG (H
(ℓ)), ∇̂HVG(H

(ℓ))
〉
= 0. Then, it is possible to learn a direction TVG (H

(ℓ)) and a step size112

αG such that D is the Newton direction, N = (∇2VG)
−1∇VG .113

Beyond improved global convergence, Newton’s method has local convergence independent of the114

Hessian condition number [9, 67]. Hence, if the tangential flow is learned to approximate the Newton115

direction, TANGO can overcome slow convergence in highly ill-conditioned landscapes—an effect116

well known in second-order methods and their approximations, such as conjugate gradients (CG)117

and L-BFGS [9, 67]. In graph learning, Proposition 4 is especially relevant to oversquashing [2, 22]:118

the graph Laplacian’s smallest eigenvalue is zero (for connected graphs) and the second smallest is119

near zero [7, 38, 50, 87], yielding poor conditioning; under these conditions, gradient-flow methods120

implicitly implemented by common GNNs [23] perform poorly, limiting information propagation121

between nodes. By enabling feature updates that approximate second-order information, TANGO122

actively mitigates oversquashing. We empirically validate this in Figure 2 by comparing TANGO with123

Dirichlet-energy minimization commonly used by baseline GNNs [23, 80]; details are in Appendix F.124
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Table 1: Test performance in five benchmarks from [29]. Shown is the mean ±std of 4 runs with
different random seeds. Highlighted are the top first, second, and third results.

Model ZINC-12k MNIST CIFAR10 PATTERN CLUSTER

MAE↓ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑
GCN [52] 0.367±0.011 90.705±0.218 55.710±0.381 71.892±0.334 68.498±0.976

GatedGCN [11] 0.282±0.015 97.340±0.143 67.312±0.311 85.568±0.088 73.840±0.326

EGT [49] 0.108±0.009 98.173±0.087 68.702±0.409 86.821±0.020 79.232±0.348

GPS [75] 0.070±0.004 98.051±0.126 72.298±0.356 86.685±0.059 78.016±0.180

GRIT [62] 0.059±0.002 98.108±0.111 76.468±0.881 87.196±0.076 80.026±0.277

TANGOGatedGCN 0.128±0.011 97.788±0.105 70.894±0.329 86.672±0.071 78.194±0.307

TANGOGPS 0.062±0.005 98.197±0.110 75.783±0.261 87.182±0.063 80.113±0.138

3 Experiments125

We consider synthetic long-range [39], LRGB [28], Dwivedi et al. [29], and heterophilic node126

classification [72]. TANGO consistently improves its backbones and is competitive with other GNN127

architectures. Experimental details are in Appendix F, and additional results are in Appendix G.128

Table 2: Mean test set log10(MSE)(↓) and std aver-
aged on 4 random weight initializations on Graph
Property Prediction. Lower is better. First, second,
and third best results for each task are color-coded.

Model Diameter SSSP Eccentricity

MPNNs
GatedGCN [11] 0.1348±0.0397 -3.2610±0.0514 0.6995±0.0302

GCN [52] 0.7424±0.0466 0.9499±0.0001 0.8468±0.0028

GAT [90] 0.8221±0.0752 0.6951±0.1499 0.7909±0.0222

GraphSAGE [44] 0.8645±0.0401 0.2863±0.1843 0.7863±0.0207

GIN [100] 0.6131±0.0990 -0.5408±0.4193 0.9504±0.0007

GCNII [16] 0.5287±0.0570 -1.1329±0.0135 0.7640±0.0355

DE-GNNs
DGC [73] 0.6028±0.0050 -0.1483±0.0231 0.8261±0.0032

GRAND [15] 0.6715±0.0490 -0.0942±0.3897 0.6602±0.1393

GraphCON [79] 0.0964±0.0620 -1.3836±0.0092 0.6833±0.0074

A-DGN [39] -0.5188±0.1812 -3.2417±0.0751 0.4296±0.1003

SWAN [40] -0.5981±0.1145 -3.5425±0.0830 -0.0739±0.2190

PH-DGN [46] -0.5385±0.0187 -4.2993±0.0721 -0.9348±0.2097

Transformers
GPS [75] -0.5121±0.0426 -3.5990±0.1949 0.6077±0.0282

Ours
TANGOGATEDGCN -0.6681±0.0745 -5.0626±0.0742 -1.7419±0.0106

TANGOGPS -0.9772±0.0518 -5.5263±0.0838 -2.1455±0.0033

Graph Property Prediction. We evaluate129

TANGO on the three graph property prediction130

tasks from Gravina et al. [39]—graph diam-131

eter, single-source shortest paths (SSSP), and132

node eccentricity on synthetic graphs—which133

require propagating information beyond im-134

mediate neighbors; performance thus reflects135

long-range interaction ability. Table 2 reports136

mean test log10(MSE), comparing TANGO to137

MPNNs, DE-GNNs, and transformer-based138

models. Across all tasks and variants, TANGO139

achieves the lowest (best) error. For eccen-140

tricity, TANGOGPS lowers error by > 1.2141

points vs. PH-DGN [46] and by > 2.0 vs.142

SWAN—both designed for long-radius prop-143

agation. These results validate TANGO’s ef-144

fectiveness at modeling long-range interac-145

tions and mitigating oversquashing. More-146

over, augmenting simple backbones such as147

GatedGCN with TANGO consistently outper-148

forms the baseline GatedGCN, indicating that149

TANGO enhances traditional MPNNs.150

GNN Benchmarking from Dwivedi et al. [29]. To further evaluate TANGO, we use the standard GNN151

benchmarks from Dwivedi et al. [29], widely used for SOTA evaluation [62]. For fair comparison, we152

follow Dwivedi et al. [29]’s training and evaluation protocols. Table 1 reports mean±std test metrics:153

MAE for ZINC-12k (regression) and accuracy(%) for all others. Across all benchmarks, TANGO154

consistently improves its backbone and often outperforms strong baselines.155

4 Conclusions156

TANGO is a framework for graph neural dynamics that jointly models an energy-descent direction157

and a tangential flow. Casting message passing through Lyapunov theory and continuous dynamics,158

TANGO unifies task-driven energy-based modeling with learnable tangential flows that accelerate159

energy minimization. The tangential component sustains feature evolution in flat or ill-conditioned160

landscapes—unlike pure gradient flows—and mitigates oversquashing. Empirically, TANGO attains161

strong performance across 15 synthetic and real-world benchmarks, outperforming message-passing,162

diffusion-based, and attention-based GNNs. Future work: integrate higher-order differential operators163

into the tangential mechanism and develop analysis/regularization for the learned energy landscape.164
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A Mathematical Background495

In this section, we provide a brief overview of Lyapunov stability theory, based on the classical496

treatment in Khalil and Grizzle [51], which underpins the design of our TANGO. This theory497

originates from control systems and differential equations, offering a principled way to assess whether498

trajectories of a dynamical system remain bounded and converge over time.499

Continuous Dynamical Systems. Let h(t) ∈ Rd denote the state of a dynamical system at time500

t ≥ 0, and consider a first-order ODE:501

dh(t)

dt
= F (h(t)), (5)

where F : Rd → Rd is a continuous vector field. A point h∗ is called an equilibrium if F (h∗) = 0.502

Definition 1 (Lyapunov Function). Let h∗ ∈ Rd be an equilibrium of the system in Equation (5). A503

continuously differentiable function V : Rd → R is called a Lyapunov function around h∗ if:504

1. V (h) ≥ 0 for all h in a neighborhood of h∗, and V (h∗) = 0;505

2. d
dtV (h(t)) = ∇hV (h(t))⊤F (h(t)) ≤ 0 in that neighborhood.506

The first condition ensures that V is lower-bounded by 0, i.e., that value of the Lyapunov function,507

sometimes also referred to as energy is non-negative, and the second that V does not increase along508

trajectories of the system.509

We now recall a classical [51] stability criterion for the dynamical system in Equation (5), based on510

the definition of a Lyapunov function, which we will later use to characterize the stability of our511

approach in Section 2.2.512

Theorem 1 (Lyapunov Stability). Let h∗ be an equilibrium of Equation (5) and let V be a Lyapunov513

function in a neighborhood N of h∗. If d
dtV (h(t)) ≤ 0 in N , then h∗ is Lyapunov stable.514

B Implementing TANGO Graph Neural Networks515

As outlined in Section 2.1, TANGO is defined by a continuous dynamical system. To obtain a GNN,516

we discretize Equation (1) with a forward Euler step—standard in GNNs [3, 15, 19, 30, 39]—yielding517

the layer518

H(ℓ+1) = H(ℓ) + ϵ
(
−αG(H

(ℓ))∇HVG(H
(ℓ)) + βG(H

(ℓ))TVG (H
(ℓ))

)
, (6)

for ℓ = 0, . . . , L−1, where ϵ > 0 is the Euler step size, ∇HVG(H
(ℓ)) is the gradient of the energy in519

Equation (8), and αG≥0, βG are learned scalars that balance descent and tangential terms predicted520

by GNNs described below.521

Energy Function. Given features H(ℓ), we implement VG via522

H̃(ℓ) = σ
(

ENERGYGNN(H(ℓ);G)
)
∈ Rn×d, (7)

where ENERGYGNN is a GNN (e.g., GatedGCN [11], GPS [75]) and σ is a pointwise nonlinearity.523

Per-node energy scores (MLP) are given by ṼG(H̃
(ℓ)) = MLPE(H̃

(ℓ)) ∈ Rn×1, and the graph-level524

energy is defined as:525

VG(H
(ℓ)) =

1

n

∑
v∈V

ṼG(H̃
(ℓ))2v ∈ R≥0. (8)

We also compute a bounded non-negative energy descent coefficient αG via global sum pooling [100]526

of H̃(ℓ), followed by an MLP and sigmoid:527

αG(H
(ℓ)) = SIGMOID

(
MLPα

(
SUMPOOL(H̃(ℓ))

))
. (9)

Tangential Update. We compute TVG (H
(ℓ)) with a dedicated GNN, TANGENTGNN. Given H(ℓ), it528

predicts a node-update direction529

M(ℓ) = σ
(

TANGENTGNN(H(ℓ);G)
)
. (10)

The energy-tangential component coefficient is then obtained via the orthogonal projection in Equa-530

tion (2). The tangential term is scaled by531

βG(H
(ℓ)) = MLPβ

(
SUMPOOL(M(ℓ))

)
. (11)
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C Related Work532

Deep GNNs and Dynamical Systems. A growing body of work interprets GNN layers as iterative533

updates in a dynamical system, providing a principled framework to analyze stability, control534

diffusion, and inform architectural design. Poli et al. [74] introduced Graph Neural ODEs, inspired535

by neural ODEs [17, 81], modeling node feature evolution via continuous-depth ODEs aligned536

with graph structure, enabling adaptive computation and improved performance in dynamic settings.537

Similarly, Xhonneux et al. [97] proposed Continuous GNNs, where feature channels evolve by538

differential equations, mitigating over-smoothing via infinite-depth limits. Follow-up works such as539

GODE [105], GRAND [15], PDE-GCND [30], and DGC [94] view GNN layers as discrete integration540

steps of the heat equation to control oversmoothing [13, 68, 69]. Extensions like PDE-GCNM [30]541

and GraphCON [79] add oscillatory components to preserve feature energy, while others leverage542

heat-kernel attention [21], anti-symmetry [39, 40], reaction-diffusion [19, 95], advection-reaction-543

diffusion [31] to enhance long-range or directional flow, and higher-order graph neuro ODE models544

[32]. A comprehensive overview is given in Han et al. [45]. Closely related, Di Giovanni et al. [23]545

interpret GNN layer updates as gradient flows of the Dirichlet energy, aligning message passing546

with energy minimization. In contrast, our TANGO learns a graph-adaptive, task-specific energy547

and introduces a novel descent mechanism combining energy gradients with a learnable tangential548

component, enabling more expressive dynamics than pure gradient flows.549

Learning Energy Functions in Neural Networks. Energy-based models (EBMs) provide a flexible550

framework in deep learning by learning an energy function whose low-energy regions correspond to551

areas with high probability for the data. They have been widely used in generative tasks such as image552

synthesis [25, 42, 57, 98] and graph generation [60, 77]. In contrast to these typically unsupervised553

settings, our work focuses on learning a task-driven energy function tailored to predictive objectives554

like node or graph classification. Here, inference corresponds to descending the learned energy555

landscape, whose minima align with correct outputs. Relatedly, Lyapunov functions—classical556

tools from control theory—have been used in neural networks to ensure stable learning or inference557

dynamics, e.g., by enforcing stability in Neural ODEs [78] or GNN-based controllers [33]. However,558

such approaches typically assume a fixed or implicit energy function rather than learning one. Our559

method, TANGO, bridges and extends these perspectives by learning a graph-adaptive, task-specific560

energy and introducing a novel optimization scheme. Crucially, our TANGO incorporates a learnable561

tangential component that accelerates energy minimization and enhances performance in graph562

learning tasks.563

Oversquashing in Graph Learning. Graph neural networks (GNNs) typically operate through564

message-passing mechanisms, aggregating information from local neighborhoods. While effective in565

capturing short-range dependencies, this design often leads to oversquashing, a phenomenon where566

signals from distant nodes are compressed into fixed-size representations, impeding the flow of long-567

range information [2, 22, 87]. This limitation poses a challenge in domains that demand rich global568

context, such as bioinformatics [4, 28] and heterophilic graphs [61, 92]. A range of strategies have569

been proposed to mitigate oversquashing. Graph rewiring approaches, such as SDRF [87], densify the570

graph to enhance connectivity prior to training. In contrast, methods like GRAND [15], BLEND [14],571

and DRew [43] adjust the graph structure dynamically based on node features. Transformer-based572

models offer another promising route by leveraging global attention to enable direct, long-range573

message passing. Examples include SAN [56], Graphormer [101], and GPS [76], which incorporate574

positional encodings, such as Laplacian eigenvectors [29] and random walk structural embeddings575

[27] to preserve structural identity. However, the quadratic complexity of full attention in these576

models raises scalability concerns, motivating interest in sparse attention mechanisms [20, 85, 102].577

An alternative line of work explores non-local dynamics to enhance expressivity without relying578

solely on attention. FLODE [64] employs fractional graph operators, QDC [63] uses quantum579

diffusion processes, and G2TN [88] models explicit diffusion paths to propagate information more580

effectively. While these approaches address the oversquashing bottleneck, they often come with581

increased computational demands due to dense propagation operators. For a broader overview of582

these techniques, see Shi et al. [83]. We note that the challenge of modeling long-range dependencies583

also arises in other domains, such as sequential architectures [41, 47].584

Optimization Techniques. The formulation of TANGO draws parallel with concepts that have585

been explored in the optimization literature, particularly in the design of dynamical systems that586

balance expressivity and convergence. While traditional gradient descent provides a robust and587
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interpretable mechanism for minimizing energy functions, its convergence rate can be limited588

in poorly conditioned settings [9, 67], which frequently arise in graph-based problems due to589

structural bottlenecks [2, 87]. Second-order approaches, such as Newton’s method, are known to590

accelerate convergence by incorporating curvature information, albeit at increased computational591

cost. The combination of energy gradient descent and a learned tangential component in TANGO592

suggests a learnable departure from purely first-order schemes. Rather than explicitly computing or593

approximating the Hessian, our framework enables the model to learn corrective update directions that594

are orthogonal to the descent path. This design implicitly aligns with the motivations behind quasi-595

Newton techniques like conjugate gradients and LBFGS [67], which aim to improve convergence by596

leveraging directional information that complements the gradient. From this perspective, TANGO597

can be viewed as embedding optimization-inspired dynamics within graph learning frameworks.598

This is particularly relevant in scenarios affected by oversquashing [22], where effective feature599

transmission often requires departing from strictly local, gradient-driven updates. By allowing energy-600

preserving tangential flows, TANGO introduces flexibility reminiscent of structured optimization601

methods, adapted to the graph learning domain.602

D Proofs of Theoretical Results603

In this section, we restate the theoretical results from Section 2.2 and provide their proofs. As in the604

main text, we assume the following throughout: (i) the input graph G = (V, E) is connected; (ii) the605

energy function VG(H(t)) is twice differentiable and bounded from below. For simplicity of notation,606

throughout this section, we omit the time or layer scripts and use the term H to denote node features607

when possible.608

Proposition 1 (Energy Dissipation). Suppose αG ≥ 0 and ∥∇HVG(H)∥2 > 0. Then the energy609

VG(H) is non-increasing along trajectories of Equation (1). Specifically,610

d

dt
VG(H) = −αG(H) ∥∇HVG(H)∥2 + βG(H)⟨TVG (H),∇HVG(H)⟩

= −αG(H) ∥∇HVG(H)∥2 ≤ 0.

Proof. By the chain rule,611

d

dt
VG(H) =

〈
∇HVG(H),

dH

dt

〉
.

Substituting the dynamics of Equation (1):612

d

dt
VG(H) = ⟨∇HVG(H), −αG(H)∇HVG(H) + βG(H)TVG (H)⟩

= −αG(H) ∥∇HVG(H)∥2 + βG(H) ⟨TVG (H), ∇HVG(H)⟩ .

As discussed in Section 2, we have by design, that613

⟨TVG (H), ∇HVG(H)⟩ = 0.

Therefore,614

d

dt
VG(H) = −αG(H) ∥∇HVG(H)∥2 .

Because αG(H) ≥ 0 by design, the energy is non-increasing, and assuming αG(H) > 0, the system615

is dissipative, i.e., its energy is decreasing.616

Proposition 2 (TANGO can Evolve Features in Flat Energy Landscapes). Suppose ∇HVG(H) = 0,
and TVG (H) ̸= 0, then the TANGO flow in Equation (1) reads:

dH

dt
= βG(H)TVG (H).

This implies that in contrast to gradient flows, the dynamics of TANGO can evolve even in regions617

where the energy landscape is flat.618
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Proof. Because ∇HVG(H) = 0, the first term in Equation (1) vanishes, and the TANGO dynamical619

system reads:620

dH

dt
= βG(H)TVG (H),

Assuming that TVG (H) ̸= 0, TANGO can continue evolving node features also in cases where621

∇HVG(H) = 0, i.e., where the energy landscape is flat.622

Proposition 3 (Convergence of Gradient Descent of a Scalar Function, Nocedal and Wright [67]). Let623

VG(·) be a scalar function and let H(ℓ+1) = H(ℓ) − α
(ℓ)
G (H(ℓ))∇HVG(H

(l)) be a gradient-descent624

iteration of the energy VG(·). Then, a linear convergence is obtained, with convergence rate:625

r =
λmax − λmin

λmax + λmin
,

where λmax is the maximal eigenvalue, and in the case of problems that involve the graph Laplacian,626

λmin is the second minimal eigenvalue, i.e., the first non-zero eigenvalue of the Hessian of VG(·).627

Proposition 4 (TANGO can learn a Quadratic Convergence Direction). Assume for simplicity that628

βG = 1, and that the Hessian of VG is invertible. Let D = αG(H
(ℓ))∇HVG(H

(ℓ)) + TVG (H
(ℓ)) with629 〈

TVG (H
(ℓ)), ∇̂HVG(H

(ℓ))
〉
= 0. Then, it is possible to learn a direction TVG (H

(ℓ)) and a step size630

αG such that D is the Newton direction, N = (∇2VG)
−1∇VG .631

Proof. We aim to construct a direction D = αG(H)∇HVG(H) + TVG (H) that matches the Newton632

direction:633

N =
(
∇2

HVG(H)
)−1 ∇HVG(H).

Recall that by design, we have that TVG (H) is orthogonal to the energy gradient, i.e.,634

⟨TVG (H), ∇HVG(H)⟩ = 0. Then, we can express a Newton direction by the decomposition:635

N = αG(H)∇HVG(H) + TVG (H).

Solving for the orthogonal component yields:636

TVG (H) = N− αG(H)∇HVG(H).

To enforce orthogonality, we require:637

⟨N− αG(H)∇HVG(H), ∇HVG(H)⟩ = 0.

Expanding and simplifying, we find:638

⟨N, ∇HVG(H)⟩ − αG(H) ∥∇HVG(H)∥2 = 0,

and the optimal step size is given by:639

αG(H) =
⟨N, ∇HVG(H)⟩
∥∇HVG(H)∥2

,

showing that it is possible to learn a Newton direction, i.e., a quadratic energy convergence direction.640

641

E Complexity and Runtimes642

Complexity. Each step of TANGO requires computing the gradient of the learned energy function643

VG(H
(ℓ)), that is defined in Equation (8). This involves two main operations: (i) forward and644

backward passes through the energy network ENERGYGNN, which contains Lenergy message-passing645

layers and an MLP; and (ii) automatic differentiation to compute ∇HVG(H
(ℓ)) with respect to the646

input node features. In parallel, the tangential flow direction TVG (H
(ℓ)) is obtained by projecting the647

vector field M(ℓ) computed by a separate TANGENTGNN with Ltangent layers onto the orthogonal648

complement of the normalized energy gradient, as shown in Equation (2). This projection is of649

computational cost of O(nd) per step, where n = |V| and d is the feature dimensionality. In addition,650

scalar coefficients αG and βG are computed from pooled node features using MLPs (Equations (9)651

and (11)). Assuming both ENERGYGNN and TANGENTGNN are message-passing architectures652
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with linear complexity in the number of nodes and edges, and setting Lenergy = Ltangent, the total653

complexity per layer becomes O(Lgnn · (n+m) · d), where Lgnn is the number of GNN layers used654

in each subnetwork and m = |E| is the number of edges. Unrolling the dynamics over L steps, the655

overall computational complexity of TANGO is:656

O (L · Lgnn · (|V|+ |E|) · d) .

Runtimes. We measure the runtimes of our TANGO using two backbones, GatedGCN and GPS,657

and compare it with the baseline backbone runtimes. In addition, we consider other methods like658

FAGCN [8] and CO-GNN [34] for a broad comparison of the runtimes of TANGO. For reference,659

we also refer to Table 7, where we compare the obtained downstream performance, which shows660

in many cases significant improvement using our TANGO variants compared with other considered661

methods. We measure the runtimes on the Questions dataset, using the same major hyperparameters662

for all methods (256 channels, 8 layers) to ensure fairness. The measurements were conducted on an663

NVIDIA RTX6000 Ada GPU with 48GB of memory.664

Table 3: Training runtimes (milliseconds per epoch) on the Questions dataset using an 8-layer
network with 256 channels on an NVIDIA RTX6000 Ada GPU.

Method GCN CO-GNN FAGCN GatedGCN GAT GPS(GatedGCN) TANGOGatedGCN TANGOGPS

Runtime (ms/epoch) 69.77 210.32 103.94 129.92 112.40 429.08 184.98 694.27

F Experimental Details665

In this section, we provide additional experimental details.666

Computational Resources. Our experiments are run on NVIDIA RTX6000 Ada with 48GB of667

memory. Our code is implemented in PyTorch [70], and will be publicly released upon acceptance.668

Baselines. We consider different classical and state-of-the-art GNN baselines. Specifically:669

• Classical MPNNs, i.e., GCN [52], GraphSAGE [44], GAT [90], GatedGCN [11], GIN [99],670

GINE [48], GCNII [16], and CoGNN [34];671

• Heterophily-specific models, i.e., H2GCN [103], CPGNN [104], FAGCN [8], GPR-GNN672

[18], FSGNN [65], GloGNN [58], GBK-GNN [24], and JacobiConv [93];673

• DE-DGNs, i.e., DGC [94], GRAND [15], GraphCON [79], A-DGN [39], and SWAN [40];674

• Graph Transformers, i.e., Transformer [26, 89], GT [84], SAN [55], GPS [76], GOAT [53],675

and Exphormer [85];676

• Higher-Order DGNs, i.e., DIGL [37], MixHop [1], and DRew [43].677

• SSM-based GNN, i.e., Graph-Mamba [91], GMN [5], and GPS+Mamba [5]678

F.1 Synthetic Example from Figure 2679

In the synthetic example in Figure 2, we demonstrate the effectiveness of TANGO in overcoming the680

oversquashing issue in GNNs. To do that, we consider a Barbell graph, where all node features are set681

to 0, besides the left-most node in the graph, which is set to 1, as shown in Figure 2(a). The goal is to682

allow the information to propagate through all nodes effectively. We do this by considering a gradient683

flow process of the Dirichlet energy using 50 layers (steps), as shown in Figure 2(b), where it is684

noticeable that the information is now flowing to the right part in the graph, because of the bottleneck685

between the two cliques. However, as we show in Figure 2(c), by considering our TANGO, which686

utilizes both an energy flow as well as a tangential flow, it is possible to effectively propagate the687

information through all the nodes in the graphs.688

F.2 Graph Property Prediction689

Dataset. We construct our benchmark following the protocol introduced by Gravina et al. [39]. Graph690

instances are synthetically generated from a variety of canonical topologies, including Erdős–Rényi,691

Barabasi-Albert, caveman, tree, and grid models. Each graph consists of 25 to 35 nodes, with692
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node features initialized as random identifiers sampled uniformly from the interval [0, 1). The693

prediction targets encompass several structural tasks: computing the shortest paths from a source694

node, estimating node eccentricity, and determining graph diameter. The complete dataset contains695

7,040 graphs, split into 5,120 for training, 640 for validation, and 1,280 for testing. These tasks696

inherently demand capturing long-range dependencies, as they involve global graph computations697

such as shortest path inference. As highlighted in Gravina et al. [39], traditional algorithms like698

Bellman-Ford or Dijkstra’s method require multiple rounds of message propagation, which motivates699

the need for expressive graph models. The benchmark graph families, such as caveman, tree, line,700

star, caterpillar, and lobster, frequently include structural bottlenecks that are known to induce701

oversquashing effects [87], posing additional challenges for message-passing-based GNNs.702

Experimental Setup. We adopt the same evaluation framework as Gravina et al. [39], including703

datasets, training routines, and hyperparameter spaces. Model training is conducted using the Adam704

optimizer for up to 1500 epochs, with early stopping triggered after 100 consecutive epochs of no705

improvement on the validation Mean Squared Error (MSE). Hyperparameters are selected via grid706

search, and performance is averaged over 4 independent runs with different random seeds for weight707

initialization. A summary of the hyperparameter grid used in our experiments is provided in Table 5.708

F.3 Graph Benchmarks from Dwivedi et al. [29]709

Dataset. To comprehensively assess the capabilities of TANGO, we evaluate its performance on710

a diverse set of graph learning benchmarks curated by Dwivedi et al. [29]. The benchmark suite711

includes: ZINC-12k, a molecular regression dataset containing chemical compounds, where the goal712

is to predict the constrained solubility of each molecule. Graphs represent molecular structures, with713

atoms as nodes and chemical bonds as edges. Node and edge features encode atom types and bond714

types, respectively. MNIST and CIFAR-10 superpixels are graph-structured versions of standard715

image classification datasets, where images are converted into sparse graphs of superpixels. Each716

superpixel forms a node, and edges are based on spatial adjacency. The tasks involve classifying digits717

(MNIST) and natural objects (CIFAR-10) based on graph-structured representations. CLUSTER and718

PATTERN are synthetic datasets designed to assess the relational inductive biases of graph neural719

networks. Both datasets are generated from a set of stochastic block models (SBMs). In CLUSTER,720

the task is to group nodes by community, while PATTERN involves identifying specific structural721

patterns within each graph. These datasets span a variety of domains: chemical, image, and synthetic722

graphs, and are commonly used to benchmark architectural innovations in GNNs [62]. We follow the723

official training, validation, and test splits provided by Dwivedi et al. [29], ensuring consistency in724

evaluation across models.725

Experimental Setup. We adhere to the training and evaluation protocol established in Dwivedi726

et al. [29]. For each dataset, we perform hyperparameter tuning via grid search, optimizing the727

corresponding evaluation metrics: Mean Absolute Error (MAE) for ZINC-12k, and classification728

accuracy for the remaining tasks. We use the AdamW optimizer and train all models for up to729

300 epochs, with early stopping based on validation performance. To ensure comparability with730

prior work, we respect the same parameter budgets used in the original benchmark and maintain the731

architectural constraints defined for fair evaluation. Each configuration is trained with three random732

seeds, and we report the average and standard deviation of the results. Hyperparameter ranges used733

in this set of experiments are summarized in Table 5.734

F.4 Long Range Graph Benchmark735

Dataset. To evaluate model performance on real-world graphs with significant long-range depen-736

dencies, we utilize the Peptides-func and Peptides-struct benchmarks introduced in Dwivedi et al.737

[28]. These datasets represent peptide molecules as graphs, where nodes correspond to heavy (non-738

hydrogen) atoms, and edges denote chemical bonds. Peptides-func is a multi-label classification task739

with 10 functional categories, including antibacterial, antiviral, and signaling-related properties. In740

contrast, Peptides-struct focuses on regression, targeting physical and geometric attributes such as741

molecular inertia (weighted by atomic mass and valence), atom pair distance extremes, sphericity, and742

average deviation from a best-fit plane. Together, the two datasets comprise 15,535 peptide graphs743

and roughly 2.3 million nodes. We adopt the official train/validation/test partitions from Dwivedi et al.744

[28] and report mean and standard deviation across three different random seeds for each experiment.745
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Experimental Setup. We follow the evaluation protocol established in Dwivedi et al. [28], including746

dataset usage, training strategy, and model capacity constraints. Hyperparameter tuning is carried out747

via grid search, optimizing for Average Precision (AP) in the classification task and Mean Absolute748

Error (MAE) in the regression task. All models are trained using the AdamW optimizer for up to 300749

epochs, with early stopping based on validation performance. To ensure fairness and comparability,750

all models adhere to the 500K parameter limit, in line with the settings of Dwivedi et al. [28] and751

Gutteridge et al. [43]. Each configuration is run three times with different weight initializations, and752

results are averaged. Details of the hyperparameter ranges considered can be found in Table 5.753

F.5 Heterophilic Node Classification754

Dataset. For evaluating performance in heterophilic graph settings, we consider five benchmark tasks755

introduced by Platonov et al. [72]: Roman-Empire, Amazon-Ratings, Minesweeper, Tolokers, and756

Questions. These datasets span a diverse range of domains and graph topologies. Roman-Empire is757

constructed from the Wikipedia article on the Roman Empire, where nodes represent words and edges758

capture either sequential adjacency or syntactic relations. The task is node classification with 18759

syntactic categories, and the underlying graph is sparse and chain-structured, suggesting the presence760

of long-range dependencies. Amazon-Ratings originates from Amazon’s product co-purchasing graph.761

Nodes correspond to products, linked if they are frequently bought together. The classification task762

involves predicting discretized average product ratings (five classes), with node features derived763

from fastText embeddings of product descriptions. Minesweeper is a synthetic dataset modeled764

as a 100 × 100 grid. Nodes represent individual cells, with edges connecting adjacent cells. A765

random 20% of nodes are labeled as mines, and the objective is to classify mine-containing cells766

based on one-hot features that encode the number of neighboring mines. Tolokers is based on the767

Toloka crowdsourcing platform [59], where each node is a worker (toloker), and edges indicate768

co-participation on the same project. The task involves binary classification to detect whether a769

worker has been banned, using node features from user profiles and performance metrics. Questions770

draws from user interaction data on Yandex Q, a question-answering forum. Nodes represent users,771

and edges capture answering interactions. The goal is to identify users who remain active, with input772

features derived from user-provided descriptions. A summary of dataset statistics is provided in773

Table 4.

Table 4: Statistics of the heterophilic node classification datasets.

Roman-empire Amazon-ratings Minesweeper Tolokers Questions

N. nodes 22,662 24,492 10,000 11,758 48,921
N. edges 32,927 93,050 39,402 519,000 153,540
Avg degree 2.91 7.60 7.88 88.28 6.28
Diameter 6,824 46 99 11 16
Node features 300 300 7 10 301
Classes 18 5 2 2 2
Edge homophily 0.05 0.38 0.68 0.59 0.84

774

Experimental Setup. Our experimental procedure aligns with that of Freitas et al. [35] and Platonov775

et al. [72]. We conduct a grid search to optimize model performance, using classification accuracy776

for the Roman-Empire and Amazon-Ratings tasks, and ROC-AUC for Minesweeper, Tolokers, and777

Questions. Each model is trained using the AdamW optimizer for a maximum of 300 epochs. Our778

experiments follow the official dataset splits provided by Platonov et al. [72]. For each model779

configuration, we perform multiple training runs with different random seeds and report the mean780

and standard deviation of the results. The hyperparameter grid explored in these experiments is781

summarized in Table 5.782

F.6 Hyperparameters783

In Table 5, we summarize the hyperparameter grids used for tuning our TANGO across different bench-784

marks. Alongside standard training hyperparameters such as learning rate, weight decay, and batch785

size, our method introduces several additional components. These include the number of unrolled786

steps L (corresponding to the depth of the energy-based dynamics), the hidden dimension d of node787

features, and the number of message-passing layers Lgnn used within the internal ENERGYGNN and788

TANGENTGNN modules. In all experiments, we share the architecture depth between ENERGYGNN789
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and TANGENTGNN. We also tune the step size ϵ used in the forward Euler update (Equation (6)),790

which controls the integration scale of the continuous dynamics. We explore multiple values of L791

to assess how the number of dynamical steps impacts long-range propagation across different tasks.792

Details of the complete hyperparameter grid can be found in Table 5.793

Table 5: Hyperparameter grids used during model selection for the different benchmark categories:
GraphPropPred (Diameter, SSSP, Eccentricity), LRGB (Peptides-func/struct), Graph Benchmarks
(ZINC-12k, MNIST, CIFAR-10, CLUSTER, PATTERN), and Node Classification (Roman-Empire,
Amazon-Ratings, Minesweeper, Tolokers, Questions).

Hyperparameter GraphPropPred LRGB Graph Benchmarks Node Classification

Unrolled steps L {1,5,10,20} {2,4,8,16,32} {2,4,8,16,32} {2,4,8,16,32}
GNN layers Lgnn {1,2,4,8,16} {1,2,4,8,16} {1,2,4,8,16} {1,2,4,8,16}
Feature dimension d {10, 20, 30} {64, 128,256} {64, 128, 256} {64, 128, 256}
Step size ϵ {0.001, 0.1, 1.0} {0.001, 0.1, 1.0} {0.001, 0.1, 1.0} {0.001, 0.1, 1.0}
Learning rate {1e-3, 1e-4} {1e-3, 1e-4} {1e-3, 1e-4} {1e-3, 1e-4}
Weight decay {0,1e-6, 1e-5} {0, 1e-6, 1e-5} {0, 1e-6, 1e-5} {0, 1e-6, 1e-5}
Activation function (σ) ReLU ELU, GELU, ReLU ELU, GELU, ReLU ELU, GELU, ReLU
Batch size {32,64,128} {32,64,128} {32, 64,128} N/A

G Additional Results and Comparisons794

G.1 Long-Range Benchmark795

We assess the performance of our method on the real-world long-range graph benchmark (LRGB)796

from [28], focusing on the Peptides-func and Peptides-struct datasets. We follow the experimental797

setting in [28], including the 500K parameter budget. All transformer baselines include positional798

and structural encodings. TANGO does not use additional encodings. The datasets consist of large799

molecular graphs derived from peptides, where the structure and function of a peptide depend on800

interactions between distant parts of the graph. Therefore, relying on short-range interactions, such801

as those captured by local message passing in GNNs, may not be sufficient to excel at this task.802

Table 6 provides a comparison of our TANGO model with a wide range of baselines. A broader803

comparison is presented in Table 10. The results indicate that TANGO outperforms standard MPNNs,804

transformer-based GNNs, DE-GNNs, and most Multi-hop GNNs.805

G.2 Heterophilic Node Classification806

We report and compare the performance of our TANGO with other recent benchmarks on the het-807

erophilic node classification datasets from Platonov et al. [72], in Table 7. As can be seen from the808

Table, TANGO offers strong performance that is similar or better than recent state-of-the-art methods,809

further demonstrating its effectiveness.810

G.3 Additional Comparisons811

The comparisons made in Section 3 offer a focused comparison with directly related methods as well812

as baseline backbones. In addition to that, we now provide a more comprehensive comparison in813

Table 10 and Table 11, to further facilitate a comprehensive comparison with recent methods. As can814

be seen, also under these comparisons, our TANGO offers strong performance.815

G.4 Ablation Study816

Setup. We conduct two key ablation studies to better understand the contributions of the energy817

function and the tangential flow in TANGO. Specifically, we aim to answer the following questions:818

(i) Does downstream performance benefit from incorporating a tangential term even when the819

underlying GNN is not the gradient of an energy function?820

(ii) Is the observed improvement due to the tangential nature of the added component, or simply due821

to additional parameters and network?822

To address these questions, we design two controlled experiments. For comprehensive coverage,823

we evaluate one representative dataset from each benchmark group: ZINC-12k, Roman-empire,824
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Table 6: Results for Peptides-func and Peptides-struct (3 training seeds). The first, second, and
third best scores are colored.

Model Peptides-func Peptides-struct
AP ↑ MAE ↓

MPNNs
GCN [52] 59.30±0.23 0.3496±0.0013

GINE [29] 54.98±0.79 0.3547±0.0045

GCNII [16] 55.43±0.78 0.3471±0.0010

GatedGCN [11] 58.64±0.77 0.3420±0.0013

Multi-hop GNNs
DIGL+MPNN+LapPE [37] 68.30±0.26 0.2616±0.0018

MixHop-GCN+LapPE [1] 68.43±0.49 0.2614±0.0023

DRew-GCN+LapPE [43] 71.50±0.44 0.2536±0.0015

Transformers
Transformer+LapPE [29] 63.26±1.26 0.2529±0.0016

SAN+LapPE [54] 63.84±1.21 0.2683±0.0043

GPS+LapPE [75] 65.35±0.41 0.2500±0.0005

DE-GNNs
GRAND [15] 57.89±0.62 0.3418±0.0015

GraphCON [79] 60.22±0.68 0.2778±0.0018

A-DGN [39] 59.75±0.44 0.2874±0.0021

SWAN [40] 67.51±0.39 0.2485±0.0009

PH-DGN [46] 70.12±0.45 0.2465±0.0020

Ours
TANGOGATEDGCN 68.92±0.40 0.2451±0.0006

TANGOGPS 70.21±0.43 0.2422±0.0014

Peptides-func, and Diameter. All experiments are run with two backbone architectures, GatedGCN825

and GPS. For reference, we also report the performance of the original backbones.826

Results. For ablation (i), we compare TANGO against a variant we call TANGO-NON-ENERGY,827

in which the gradient-based energy descent term ∇HVG(H
(ℓ)) in Equation (6) is replaced by inter-828

mediate node features from the same GNN backbone, as detailed in Equation (7). These features829

are computed using the same architecture but are not guaranteed to correspond to the gradient of830

any scalar energy function. This setup ensures fairness in capacity while removing the energy-based831

structure. As shown in Table 8, although both variants benefit from the inclusion of the tangential832

component, the full TANGO consistently outperforms TANGO-NON-ENERGY, confirming that833

leveraging a valid energy gradient contributes meaningfully to downstream performance.834

For ablation (ii), we isolate the effect of the tangential nature of the added direction. In this variant,835

denoted TANGO-NON-TANGENT, we use the same output from the tangential network as in836

Equation (10) but omit the orthogonal projection step defined in Equation (2). Thus, while we still837

introduce an additional GNN term into the dynamics, it is not explicitly orthogonal to the energy838

gradient. Our results in Table 9 show that while this variant improves the performance compared839

with the baseline backbone, it also results in a drop in performance compared to the full TANGO.840

This highlights the importance of the tangential constraint, and its contribution towards improving841

the utilization of the learned energy function, as discussed in Section 2.2. Together, these ablations842

underscore the importance of both components in our design: (i) the principled learned energy843

descent, and (ii) the structured tangential update, as crucial for effective and flexible feature evolution.844
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Table 7: Mean test set score and std averaged over the splits from Platonov et al. [72]. First, second,
and third best results for each task are color-coded. We mark each method once – if two variants are
among the leading methods, we mark the best-performing variant.

Model Roman-empire Amazon-ratings Minesweeper Tolokers Questions
Acc ↑ Acc ↑ AUC ↑ AUC ↑ AUC ↑

MPNNs
GAT 80.87±0.30 49.09±0.63 92.01±0.68 83.70±0.47 77.43±1.20

GAT-sep 88.75±0.41 52.70±0.62 93.91±0.35 83.78±0.43 76.79±0.71

Gated-GCN 74.46±0.54 43.00±0.32 87.54±1.22 77.31±1.14 76.61±1.13

GCN 73.69±0.74 48.70±0.63 89.75±0.52 83.64±0.67 76.09±1.27

CO-GNN(Σ, Σ) 91.57±0.32 51.28±0.56 95.09±1.18 83.36±0.89 80.02±0.86

CO-GNN(µ, µ) 91.37±0.35 54.17±0.37 97.31±0.41 84.45±1.17 76.54±0.95

SAGE 85.74±0.67 53.63±0.39 93.51±0.57 82.43±0.44 76.44±0.62

Graph Transformers
Exphormer 89.03±0.37 53.51±0.46 90.74±0.53 83.77±0.78 73.94±1.06

NAGphormer 74.34±0.77 51.26±0.72 84.19±0.66 78.32±0.95 68.17±1.53

GOAT 71.59±1.25 44.61±0.50 81.09±1.02 83.11±1.04 75.76±1.66

GPSGAT+Performer (RWSE) 87.04±0.58 49.92±0.68 91.08±0.58 84.38±0.91 77.14±1.49

GT 86.51±0.73 51.17±0.66 91.85±0.76 83.23±0.64 77.95±0.68

GT-sep 87.32±0.39 52.18±0.80 92.29±0.47 82.52±0.92 78.05±0.93

Heterophily-Designated GNNs
FAGCN 65.22±0.56 44.12±0.30 88.17±0.73 77.75±1.05 77.24±1.26

FSGNN 79.92±0.56 52.74±0.83 90.08±0.70 82.76±0.61 78.86±0.92

GBK-GNN 74.57±0.47 45.98±0.71 90.85±0.58 81.01±0.67 74.47±0.86

GloGNN 59.63±0.69 36.89±0.14 51.08±1.23 73.39±1.17 65.74±1.19

GPR-GNN 64.85±0.27 44.88±0.34 86.24±0.61 72.94±0.97 55.48±0.91

JacobiConv 71.14±0.42 43.55±0.48 89.66±0.40 68.66±0.65 73.88±1.16

Ours
TANGOGatedGCN 91.89±0.30 52.60±0.53 98.32±0.59 85.51±0.98 80.39±1.04

TANGOGPS 91.08±0.57 53.83±0.32 98.39±0.54 85.66±1.01 80.32±1.07

Table 8: Ablation study on the importance of using a gradient of an energy term in Equation (6).

Model ZINC-12k Roman-empire Peptides-func Diameter
MAE ↓ Acc. ↑ AP ↑ log10(MSE) ↓

GatedGCN 0.282±0.015 74.46±0.54 58.64±0.77 0.1348±0.0397

TANGO-NON-ENERGYGatedGCN 0.138±0.014 86.94±0.43 68.07±0.45 -0.5992±0.0831

TANGOGatedGCN 0.128±0.011 91.89±0.30 68.92±0.40 -0.6681±0.0745

GPS 0.070±0.004 87.04±0.58 65.35±0.41 -0.5121±0.0426

TANGO-NON-ENERGYGPS 0.067±0.004 89.00±0.61 67.58±0.39 -0.7178±0.0729

TANGOGPS 0.062±0.005 91.08±0.57 70.21±0.43 -0.9772±0.0518

Table 9: The importance of using a tangential term to the energy term in Equation (6).

Model ZINC-12k Roman-empire Peptides-func Diameter
MAE ↓ Acc. ↑ AP ↑ log10(MSE) ↓

GatedGCN 0.282±0.015 74.46±0.54 58.64±0.77 0.1348±0.0397

TANGO-NON-TANGENTGatedGCN 0.186±0.016 83.59±0.48 68.01±0.52 -0.2193±0.0899

TANGOGatedGCN 0.128±0.011 91.89±0.30 68.92±0.40 -0.6681±0.0745

GPS 0.070±0.004 87.04±0.58 65.35±0.41 -0.5121±0.0426

TANGO-NON-TANGENTGPS 0.066±0.010 88.57±0.72 67.33±0.59 -0.2916±0.0404

TANGOGPS 0.062±0.005 91.08±0.57 70.21±0.43 -0.9772±0.0518
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Table 10: Results for Peptides-func and Peptides-struct averaged over 3 training seeds. Baseline
results are taken from [28] and [43]. Re-evaluated methods employ the 3-layer MLP readout proposed
in [86]. Note that all MPNN-based methods include structural and positional encoding. ‡ means
3-layer MLP readout and residual connections are employed based on [86]. This table is an extended
version of the focused Table 6.

Model Peptides-func Peptides-struct
AP ↑ MAE ↓

MPNNs
GCN 59.30±0.23 0.3496±0.0013

GINE 54.98±0.79 0.3547±0.0045

GCNII 55.43±0.78 0.3471±0.0010

GatedGCN 58.64±0.77 0.3420±0.0013

Multi-hop GNNs
DIGL+MPNN 64.69±0.19 0.3173±0.0007

DIGL+MPNN+LapPE 68.30±0.26 0.2616±0.0018

MixHop-GCN 65.92±0.36 0.2921±0.0023

MixHop-GCN+LapPE 68.43±0.49 0.2614±0.0023

DRew-GCN 69.96±0.76 0.2781±0.0028

DRew-GCN+LapPE 71.50±0.44 0.2536±0.0015

DRew-GIN 69.40±0.74 0.2799±0.0016

DRew-GIN+LapPE 71.26±0.45 0.2606±0.0014

DRew-GatedGCN 67.33±0.94 0.2699±0.0018

DRew-GatedGCN+LapPE 69.77±0.26 0.2539±0.0007

Transformers
Transformer+LapPE 63.26±1.26 0.2529±0.0016

SAN+LapPE 63.84±1.21 0.2683±0.0043

GraphGPS+LapPE 65.35±0.41 0.2500±0.0005

Modified and Re-evaluated‡

GCN 68.60±0.50 0.2460±0.0007

GINE 66.21±0.67 0.2473±0.0017

GatedGCN 67.65±0.47 0.2477±0.0009

GraphGPS 65.34±0.91 0.2509±0.0014

DE-GNNs
GRAND 57.89±0.62 0.3418±0.0015

GraphCON 60.22±0.68 0.2778±0.0018

A-DGN 59.75±0.44 0.2874±0.0021

SWAN 67.51±0.39 0.2485±0.0009

Graph SSMs
Graph-Mamba 67.39±0.87 0.2478±0.0016

GMN 70.71±0.83 0.2473±0.0025

Ours
TANGOGATEDGCN 68.92±0.40 0.2451±0.0006

TANGOGPS 70.21±0.43 0.2422±0.0014
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Table 11: Mean test set score and std averaged over the splits from Platonov et al. [72]. This table is
an extended version of the focused Table 7. Baseline results are reported from [34, 61, 66, 72].

Model Roman-empire Amazon-ratings Minesweeper Tolokers Questions
Acc ↑ Acc ↑ AUC ↑ AUC ↑ AUC ↑

MPNNs
GAT 80.87±0.30 49.09±0.63 92.01±0.68 83.70±0.47 77.43±1.20

GAT-sep 88.75±0.41 52.70±0.62 93.91±0.35 83.78±0.43 76.79±0.71

GAT (LapPE) 84.80±0.46 44.90±0.73 93.50±0.54 84.99±0.54 76.55±0.84

GAT (RWSE) 86.62±0.53 48.58±0.41 92.53±0.65 85.02±0.67 77.83±1.22

GAT (DEG) 85.51±0.56 51.65±0.60 93.04±0.62 84.22±0.81 77.10±1.23

Gated-GCN 74.46±0.54 43.00±0.32 87.54±1.22 77.31±1.14 76.61±1.13

GCN 73.69±0.74 48.70±0.63 89.75±0.52 83.64±0.67 76.09±1.27

GCN (LapPE) 83.37±0.55 44.35±0.36 94.26±0.49 84.95±0.78 77.79±1.34

GCN (RWSE) 84.84±0.55 46.40±0.55 93.84±0.48 85.11±0.77 77.81±1.40

GCN (DEG) 84.21±0.47 50.01±0.69 94.14±0.50 82.51±0.83 76.96±1.21

CO-GNN(Σ, Σ) 91.57±0.32 51.28±0.56 95.09±1.18 83.36±0.89 80.02±0.86

CO-GNN(µ, µ) 91.37±0.35 54.17±0.37 97.31±0.41 84.45±1.17 76.54±0.95

SAGE 85.74±0.67 53.63±0.39 93.51±0.57 82.43±0.44 76.44±0.62

Graph Transformers
Exphormer 89.03±0.37 53.51±0.46 90.74±0.53 83.77±0.78 73.94±1.06

NAGphormer 74.34±0.77 51.26±0.72 84.19±0.66 78.32±0.95 68.17±1.53

GOAT 71.59±1.25 44.61±0.50 81.09±1.02 83.11±1.04 75.76±1.66

GPS 82.00±0.61 53.10±0.42 90.63±0.67 83.71±0.48 71.73±1.47

GPSGCN+Performer (LapPE) 83.96±0.53 48.20±0.67 93.85±0.41 84.72±0.77 77.85±1.25

GPSGCN+Performer (RWSE) 84.72±0.65 48.08±0.85 92.88±0.50 84.81±0.86 76.45±1.51

GPSGCN+Performer (DEG) 83.38±0.68 48.93±0.47 93.60±0.47 80.49±0.97 74.24±1.18

GPSGAT+Performer (LapPE) 85.93±0.52 48.86±0.38 92.62±0.79 84.62±0.54 76.71±0.98

GPSGAT+Performer (RWSE) 87.04±0.58 49.92±0.68 91.08±0.58 84.38±0.91 77.14±1.49

GPSGAT+Performer (DEG) 85.54±0.58 51.03±0.60 91.52±0.46 82.45±0.89 76.51±1.19

GPSGCN+Transformer (LapPE) OOM OOM 91.82±0.41 83.51±0.93 OOM
GPSGCN+Transformer (RWSE) OOM OOM 91.17±0.51 83.53±1.06 OOM
GPSGCN+Transformer (DEG) OOM OOM 91.76±0.61 80.82±0.95 OOM
GPSGAT+Transformer (LapPE) OOM OOM 92.29±0.61 84.70±0.56 OOM
GPSGAT+Transformer (RWSE) OOM OOM 90.82±0.56 84.01±0.96 OOM
GPSGAT+Transformer (DEG) OOM OOM 91.58±0.56 81.89±0.85 OOM
GT 86.51±0.73 51.17±0.66 91.85±0.76 83.23±0.64 77.95±0.68

GT-sep 87.32±0.39 52.18±0.80 92.29±0.47 82.52±0.92 78.05±0.93

Heterophily-Designated GNNs
CPGNN 63.96±0.62 39.79±0.77 52.03±5.46 73.36±1.01 65.96±1.95

FAGCN 65.22±0.56 44.12±0.30 88.17±0.73 77.75±1.05 77.24±1.26

FSGNN 79.92±0.56 52.74±0.83 90.08±0.70 82.76±0.61 78.86±0.92

GBK-GNN 74.57±0.47 45.98±0.71 90.85±0.58 81.01±0.67 74.47±0.86

GloGNN 59.63±0.69 36.89±0.14 51.08±1.23 73.39±1.17 65.74±1.19

GPR-GNN 64.85±0.27 44.88±0.34 86.24±0.61 72.94±0.97 55.48±0.91

H2GCN 60.11±0.52 36.47±0.23 89.71±0.31 73.35±1.01 63.59±1.46

JacobiConv 71.14±0.42 43.55±0.48 89.66±0.40 68.66±0.65 73.88±1.16

Graph SSMs
GMN 87.69±0.50 54.07±0.31 91.01±0.23 84.52±0.21 –
GPS + Mamba 83.10±0.28 45.13±0.97 89.93±0.54 83.70±1.05 –

Ours
TANGOGatedGCN 91.89±0.30 52.60±0.53 98.32±0.59 85.51±0.98 80.39±1.04

TANGOGPS 91.08±0.57 53.83±0.32 98.39±0.54 85.66±1.01 80.32±1.07
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