
TANGO: Graph Neural Dynamics via Learned Energy and
Tangential Flows

Moshe Eliasof
University of Cambridge

United Kingdom
me532@cam.ac.uk

Eldad Haber
University of British Columbia

Canada
ehaber@eoas.ubc.ca

Carola-Bibiane Schönlieb
University of Cambridge

United Kingdom
cbs31@cam.ac.uk

Abstract
We introduce TANGO, a dynamical-systems framework for graph representation
learning that steers node features via a learned energy landscape. At its core
is a learnable Lyapunov function whose gradient defines an energy-decreasing
direction, guaranteeing stability and convergence. To preserve flexibility, we add
a learned tangential message-passing component that evolves features along en-
ergy level sets. This orthogonal decomposition—gradient descent plus tangential
evolution—enables effective signal propagation even in flat or ill-conditioned
regions common in graph learning, mitigates oversquashing, and remains com-
patible with diverse GNN backbones. Empirically, TANGO achieves strong
performance across node and graph classification and regression benchmarks,
validating jointly learned energy functions and tangential flows.

1 Introduction

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

Feature 1

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F
ea

tu
re

2

Current Feature

Minimum Energy

Energy Descent

Tangential Direction

Tango (Ours)

Figure 1: Illustration of TANGO dynamics
in a 2D feature space. We plot level sets of
a learned energy and visualize the energy-
descent direction (green), the learned tangen-
tial direction (blue), and their combination
(orange). The tangential component moves
along level sets while the descent component
reduces energy, enabling effective navigation
of the learned landscape.

Graph Neural Networks (GNNs) excel on graph-
structured data [12] but struggle with depth and
long-range interactions due to vanishing gradients
[3], over-smoothing [13, 68, 79], and over-squashing
[2, 22, 39, 40, 86]. Framing GNNs as continuous-
time dynamical systems (neural ODEs) [3, 15, 30,
73] enables stability analyses via diffusion [15],
energy conservation [78], antisymmetric dynam-
ics [39], and Hamiltonian flows [46]. Meanwhile,
physics-informed architectures that encode conserva-
tion or dissipation improve stability and interpretabil-
ity [6, 10, 36]. The common thread is reliance on
an energy functional minimized or preserved by the
GNN—typically simple (e.g., Dirichlet) [79]; yet
many natural processes require richer energies: pro-
tein folding exhibits rugged, multi-funnel landscapes
with multiple stable conformations and transition
pathways [95], while complex reactions in computa-
tional chemistry demand sophisticated potential en-
ergy surfaces [81]. Energy-based models (EBMs)
learn energies capturing data distributions for genera-
tive modeling [25, 42, 57, 97]. In contrast, we learn a
task-driven energy whose minimization solves down-
stream tasks (e.g., node/graph classification). This raises a central question: How can we learn such
an energy and leverage it within a GNN to guide representation evolution throughout layers? Our
answer decomposes feature evolution into two orthogonal flows: (i) a gradient-descent component

, TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows (Extended Abstract). Presented at
the Fourth Learning on Graphs Conference (LoG 2025), Hybrid Event, December 10–12, 2025.

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

that decreases the learned energy, and (ii) a tangential component that moves along its level sets,
preserving energy—promoting stability, interpretability, and mitigating over-squashing.

Our Approach. We introduce TANGO, a constrained graph-dynamics framework that embeds a
learnable Lyapunov energy into message passing. Updates decompose into two GNN-parameterized
flows: (i) an energy-descent component driving convergence to task-relevant solutions, and (ii) a
tangential, conservative component that preserves energy while retaining flexibility. Under mild
assumptions, TANGO satisfies Lyapunov conditions, ensuring stable dynamics; the tangential flow
mitigates oversquashing by enabling expressive yet controlled propagation. As illustrated in Figure 1,
the descent direction (green) lowers energy, the tangential direction (blue) follows level sets, and
their combination (orange) defines the full update. Across standard graph benchmarks, this structured
decomposition delivers strong empirical performance—competitive with, and often surpassing, widely
used baselines—while maintaining controlled, stable feature dynamics.

2 Method
As discussed in Section 1, our goal is to learn a task-driven energy function and use it to improve
downstream graph learning via TANgential- and Gradient-step Optimization of node features; we
therefore call our method TANGO. Section 2.1 outlines the blueprint of TANGO, Appendix B details
the implementation, Section 2.2 analyzes its properties, and Appendix E discusses complexity. Math-
ematical background and definitions of Lyapunov functions and stability are provided in Appendix A.

Notations. Let G = (V, E) be a graph with n = |V| nodes and m = |E| edges, and let H(t) =
[h1(t), . . . ,hn(t)]

⊤ ∈ Rn×d denote node features at continuous time t, where hv(t) ∈ Rd is the
state of node v. Following dynamical-systems GNNs [3, 30, 39], in discrete architectures with finitely
many layers we identify time t with depth ℓ and use H(t) and H(ℓ) interchangeably, as appropriate.

2.1 Optimizing Features with Energy Tangential and Gradient Steps

TANGO evolves node features via a dynamical system driven by a graph energy VG with two flows:

dH(t)

dt
= −αG(H(t))∇HVG(H(t))︸ ︷︷ ︸

Energy Gradient Descent

+βG(H(t))TVG (H(t))︸ ︷︷ ︸
Tangential Direction

, (1)

where αG , βG ≥ 0 weight the flows, ∇HVG is the energy gradient, and TVG (H(t)) is an update
direction orthogonal to it (i.e., tangential to level sets). Many orthogonal directions are possible;
Appendix B details how we learn TVG and implement the system. By design, the first term decreases
energy, while the tangential flow preserves it.

Tangential Flow. Setting βG = 0 in Equation (1) yields pure energy–gradient flow—dissipative but
often slow [9, 67] and restrictive for training. While generative models tolerate hundreds–thousands
of steps, this is impractical for downstream learning because it implies as many effective layers—hard
to train [71] and computationally costly. To accelerate minimization, we add a tangential flow along
level sets of VG that preserves energy. As shown in Figure 1 and analyzed in Section 2.2, coupling
this tangential flow with gradient descent yields a better descent direction and faster convergence.

To obtain a direction orthogonal to ∇HVG(H(t)), let M(H(t)) be a predicted update. Define

TVG (H(t)) = M(H(t))−
〈
M(H(t)), ∇̂HVG(H(t))

〉
· ∇HVG(H(t)), (2)

where ∇̂HVG(H(t)) is the normalized energy gradient. If ∇HVG(H(t)) = 0, set TVG (H(t)) =
M(H(t)). The projection removes the component of M(H(t)) along the descent direction, ensuring
TVG is orthogonal to ∇HVG . In Appendix B we specify the parameterization of TANGO as a GNN.

2.2 Theoretical Properties of TANGO

We analyze the continuous-time dynamics of TANGO in (1), focusing on (i) energy dissipation, (ii)
feature evolution in flat energy landscapes, and (iii) the benefit of the tangential direction. Proofs
appear in Appendix D. Throughout our analysis, we assume that (i) The input graph G = (V, E) is
connected; (ii) VG(H(t)) is twice differentiable and bounded below. For brevity, we omit time/layer

2

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

(a) Initial Features (b) Gradient Flow (c) TANGO

Figure 2: Comparison of propagation behaviors between gradient flow and TANGO with 50 layers.
While gradient flow struggles propagating information through the bottleneck, our TANGO is effective.

superscripts and write H for node features when clear from the context. We start by showing that
TANGO is dissipative if ∥∇HVG(H)∥2 > 0, and αG ≥ 0 (obtained by design), corresponding to the
Lyapunov stability criterion from Theorem 1.
Proposition 1 (Energy Dissipation). Suppose αG ≥ 0 and ∥∇HVG(H)∥2 > 0. Then the energy
VG(H) is non-increasing along trajectories of Equation (1). Specifically,

d

dt
VG(H) = −αG(H) ∥∇HVG(H)∥2 ≤ 0. (3)

We now show that unlike gradient flows, our TANGO admits evolution of node features in flat energy
landscapes, a prime challenge in optimization techniques [9, 67].
Proposition 2 (TANGO can Evolve Features in Flat Energy Landscapes). Suppose ∇HVG(H) = 0,
and TVG (H) ̸= 0, then the TANGO flow in Equation (1) reads: dH

dt = βG(H)TVG (H). This implies
that in contrast to gradient flows, the dynamics of TANGO can evolve even in regions where the
energy landscape is flat.

Theoretical Benefits of Using the Tangent Direction. TANGO combines two terms (see Equations (1)
and (6)): the energy gradient ∇HVG(H

(ℓ)) and the tangential direction TVG (H). A natural question
is: under what conditions does adding the tangential direction improve over plain gradient descent?
We address this by first recalling a classic convergence result for gradient-based minimization.
Proposition 3 (Convergence of Gradient Descent of a Scalar Function, Nocedal and Wright [67]).
Let VG(·) be a scalar function and let H(ℓ+1) = H(ℓ) − α

(ℓ)
G (H(ℓ))∇HVG(H

(l)) be a gradient-
descent iteration of the energy VG(·). Then, a linear convergence is obtained, with convergence rate:
r = λmax−λmin

λmax+λmin
, where λmax is the maximal eigenvalue, and in the case of problems that involve the

graph Laplacian, λmin is the second minimal eigenvalue, i.e., the first non-zero eigenvalue of the
Hessian of VG(·).
Proposition 3 shows that gradient descent struggles in ill-conditioned problems (large λmax/λmin),
which is common in graph tasks where the Hessian inherits poor conditioning from the graph
Laplacian—especially under oversquashing caused by bottlenecks [22, 38, 86]. As an alternative, we
add an orthogonal flow to the gradient direction; the combined update direction is

D = αG(H
(ℓ))∇HVG(H

(ℓ)) + βG(H
(ℓ))TVG (H

(ℓ)). (4)

The following proposition demonstrates that it is possible to learn T such that D becomes the Newton
direction, which offers quadratic convergence [67].
Proposition 4 (TANGO can learn a Quadratic Convergence Direction). Assume for simplicity that
βG = 1, and that the Hessian of VG is invertible. Let D = αG(H

(ℓ))∇HVG(H
(ℓ)) + TVG (H

(ℓ)) with〈
TVG (H

(ℓ)), ∇̂HVG(H
(ℓ))

〉
= 0. Then, it is possible to learn a direction TVG (H

(ℓ)) and a step size

αG such that D is the Newton direction, N = (∇2VG)
−1∇VG .

Beyond improved global convergence, Newton’s method has local convergence independent of the
Hessian condition number [9, 67]. Hence, if the tangential flow is learned to approximate the Newton
direction, TANGO can overcome slow convergence in highly ill-conditioned landscapes—an effect
well known in second-order methods and their approximations, such as conjugate gradients (CG)
and L-BFGS [9, 67]. In graph learning, Proposition 4 is especially relevant to oversquashing [2, 22]:
the graph Laplacian’s smallest eigenvalue is zero (for connected graphs) and the second smallest is
near zero [7, 38, 50, 86], yielding poor conditioning; under these conditions, gradient-flow methods

3

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

Table 1: Test performance in five benchmarks from [29]. Shown is the mean ±std of 4 runs with
different random seeds. Highlighted are the top first, second, and third results.

Model ZINC-12k MNIST CIFAR10 PATTERN CLUSTER

MAE↓ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑
GCN [52] 0.367±0.011 90.705±0.218 55.710±0.381 71.892±0.334 68.498±0.976

GatedGCN [11] 0.282±0.015 97.340±0.143 67.312±0.311 85.568±0.088 73.840±0.326

EGT [49] 0.108±0.009 98.173±0.087 68.702±0.409 86.821±0.020 79.232±0.348

GPS [74] 0.070±0.004 98.051±0.126 72.298±0.356 86.685±0.059 78.016±0.180

GRIT [62] 0.059±0.002 98.108±0.111 76.468±0.881 87.196±0.076 80.026±0.277

TANGOGatedGCN 0.128±0.011 97.788±0.105 70.894±0.329 86.672±0.071 78.194±0.307

TANGOGPS 0.062±0.005 98.197±0.110 75.783±0.261 87.182±0.063 80.113±0.138

implicitly implemented by common GNNs [23] perform poorly, limiting information propagation
between nodes. By enabling feature updates that approximate second-order information, TANGO
actively mitigates oversquashing. We empirically validate this in Figure 2 by comparing TANGO with
Dirichlet-energy minimization commonly used by baseline GNNs [23, 79]; details are in Appendix F.

3 Experiments
We consider synthetic long-range [39], LRGB [28], Dwivedi et al. [29], and heterophilic node
classification [72]. TANGO consistently improves its backbones and is competitive with other GNN
architectures. Experimental details are in Appendix F, and additional results are in Appendix G.
Throughout our experiments, we color the top 3 performing models. In case more than one variant of
our TANGO is among them, we mark only the best variant.

Table 2: Mean test set log10(MSE)(↓) and std aver-
aged on 4 random weight initializations on Graph
Property Prediction. Lower is better. First, second,
and third best results for each task are color-coded.

Model Diameter SSSP Eccentricity

MPNNs
GatedGCN [11] 0.1348±0.0397 -3.2610±0.0514 0.6995±0.0302

GCN [52] 0.7424±0.0466 0.9499±0.0001 0.8468±0.0028

GAT [89] 0.8221±0.0752 0.6951±0.1499 0.7909±0.0222

GraphSAGE [44] 0.8645±0.0401 0.2863±0.1843 0.7863±0.0207

GIN [98] 0.6131±0.0990 -0.5408±0.4193 0.9504±0.0007

GCNII [16] 0.5287±0.0570 -1.1329±0.0135 0.7640±0.0355

DE-GNNs
DGC [73] 0.6028±0.0050 -0.1483±0.0231 0.8261±0.0032

GRAND [15] 0.6715±0.0490 -0.0942±0.3897 0.6602±0.1393

GraphCON [78] 0.0964±0.0620 -1.3836±0.0092 0.6833±0.0074

A-DGN [39] -0.5188±0.1812 -3.2417±0.0751 0.4296±0.1003

SWAN [40] -0.5981±0.1145 -3.5425±0.0830 -0.0739±0.2190

PH-DGN [46] -0.5385±0.0187 -4.2993±0.0721 -0.9348±0.2097

Transformers
GPS [74] -0.5121±0.0426 -3.5990±0.1949 0.6077±0.0282

Ours
TANGOGATEDGCN -0.6681±0.0745 -5.0626±0.0742 -1.7419±0.0106

TANGOGPS -0.9772±0.0518 -5.5263±0.0838 -2.1455±0.0033

Graph Property Prediction. We evaluate
TANGO on the three graph property prediction
tasks from Gravina et al. [39]—graph diam-
eter, single-source shortest paths (SSSP), and
node eccentricity on synthetic graphs—which
require propagating information beyond im-
mediate neighbors; performance thus reflects
long-range interaction ability. Table 2 reports
mean test log10(MSE), comparing TANGO to
MPNNs, DE-GNNs, and transformer-based
models. Across all tasks and variants, TANGO
achieves the lowest (best) error. For eccen-
tricity, TANGOGPS lowers error by > 1.2
points vs. PH-DGN [46] and by > 2.0 vs.
SWAN—both designed for long-radius prop-
agation. These results validate TANGO’s ef-
fectiveness at modeling long-range interac-
tions and mitigating oversquashing. More-
over, augmenting simple backbones such as
GatedGCN with TANGO consistently outper-
forms the baseline GatedGCN, indicating that
TANGO enhances traditional MPNNs.

GNN Benchmarking from Dwivedi et al. [29]. To further evaluate TANGO, we use the standard GNN
benchmarks from Dwivedi et al. [29], widely used for SOTA evaluation [62]. For fair comparison, we
follow Dwivedi et al. [29]’s training and evaluation protocols. Table 1 reports mean±std test metrics:
MAE for ZINC-12k (regression) and accuracy(%) for all others. Across all benchmarks, TANGO
consistently improves its backbone and often outperforms strong baselines.

Ablation Studies. In Appendix G.4 we provide ablation studies to understand the different design
choices and components in our TANGO. In particular, we provide experiments to answers two
questions. (i) Does downstream performance benefit from incorporating a tangential term even when

4

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

the underlying GNN is not the gradient of an energy function?; and (ii) Is the observed improvement
due to the tangential nature of the added component, or simply due to additional parameters and
network?

4 Conclusions
TANGO is a framework for graph neural dynamics that jointly models an energy-descent direction
and a tangential flow. Casting message passing through Lyapunov theory and continuous dynamics,
TANGO unifies task-driven energy-based modeling with learnable tangential flows that accelerate
energy minimization. The tangential component sustains feature evolution in flat or ill-conditioned
landscapes—unlike pure gradient flows—and mitigates oversquashing. Empirically, TANGO attains
strong performance across 15 synthetic and real-world benchmarks, outperforming message-passing,
diffusion-based, and attention-based GNNs. Future work: integrate higher-order differential operators
into the tangential mechanism and develop analysis/regularization for the learned energy landscape.

5

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

References
[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman,

Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph
convolutional architectures via sparsified neighborhood mixing. In International Conference
on Machine Learning, pages 21–29. PMLR, 2019. 17, 21

[2] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=i80OPhOCVH2. 1, 3, 14, 15

[3] Álvaro Arroyo, Alessio Gravina, Benjamin Gutteridge, Federico Barbero, Claudio Gallicchio,
Xiaowen Dong, Michael Bronstein, and Pierre Vandergheynst. On vanishing gradients, over-
smoothing, and over-squashing in gnns: Bridging recurrent and graph learning. arXiv preprint
arXiv:2502.10818, 2025. URL https://arxiv.org/abs/2502.10818. 1, 2, 13

[4] Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov,
Gyu Rie Lee, Jue Wang, Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al. Accurate
prediction of protein structures and interactions using a three-track neural network. Science,
373(6557):871–876, 2021. 14

[5] Ali Behrouz and Farnoosh Hashemi. Graph Mamba: Towards Learning on Graphs with State
Space Models, 2024. URL https://arxiv.org/abs/2402.08678. 17

[6] Ravinder Bhattoo, Sayan Ranu, and N. M. Anoop Krishnan. Learning articulated rigid
body dynamics with lagrangian graph neural networks. In Advances in Neural Information
Processing Systems, volume 35, pages 29789–29800, 2022. URL https://arxiv.org/
abs/2209.11588. 1

[7] Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing
in gnns through the lens of effective resistance. In Proceedings of the 40th International
Conference on Machine Learning, pages 2528–2547. PMLR, 2023. 3

[8] Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in
graph convolutional networks. Proceedings of the AAAI Conference on Artificial Intelligence,
35(5):3950–3957, May 2021. doi: 10.1609/aaai.v35i5.16514. URL https://ojs.aaai.
org/index.php/AAAI/article/view/16514. 17

[9] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004. 2, 3, 15

[10] Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message passing neural PDE
solvers. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=vSix3HPYKSU. 1

[11] Xavier Bresson and Thomas Laurent. Residual Gated Graph ConvNets. arXiv preprint
arXiv:1711.07553, 2018. 4, 13, 17, 21, 25

[12] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021. 1

[13] Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv preprint
arXiv:2006.13318, 2020. 1, 14

[14] Benjamin Chamberlain, James Rowbottom, Davide Eynard, Francesco Di Giovanni, Xiaowen
Dong, and Michael Bronstein. Beltrami flow and neural diffusion on graphs. In Advances in
Neural Information Processing Systems, volume 34, 2021. 14

[15] Benjamin Paul Chamberlain, James Rowbottom, Maria Gorinova, Stefan Webb, Emanuele
Rossi, and Michael M Bronstein. GRAND: Graph neural diffusion. In International Conference
on Machine Learning (ICML), pages 1407–1418. PMLR, 2021. 1, 4, 13, 14, 17, 21, 25

[16] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and Deep
Graph Convolutional Networks. In Hal Daumé III and Aarti Singh, editors, Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 1725–1735. PMLR, 13–18 Jul 2020. 4, 17, 21, 25

[17] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems, pages 6571–
6583, 2018. 14

6

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://arxiv.org/abs/2502.10818
https://arxiv.org/abs/2402.08678
https://arxiv.org/abs/2209.11588
https://arxiv.org/abs/2209.11588
https://ojs.aaai.org/index.php/AAAI/article/view/16514
https://ojs.aaai.org/index.php/AAAI/article/view/16514
https://openreview.net/forum?id=vSix3HPYKSU
https://openreview.net/forum?id=vSix3HPYKSU

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

[18] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=n6jl7fLxrP. 17

[19] Jeongwhan Choi, Seoyoung Hong, Noseong Park, and Sung-Bae Cho. Gread: Graph neural
reaction-diffusion networks. In ICML, 2023. 13, 14

[20] Krzysztof Choromanski, Marcin Kuczynski, Jacek Cieszkowski, Paul L. Beletsky, Konrad M.
Smith, Wojciech Gajewski, Gabriel De Masson, Tomasz Z. Broniatowski, Antonina B. Gorny,
Leszek M. Kaczmarek, and Stanislaw K. Andrzejewski. Performers: A new approach to
scaling transformers. Proceedings of the 37th International Conference on Machine Learning
(ICML), pages 2020–2031, 2020. URL https://arxiv.org/abs/2009.14743. 14

[21] Krzysztof Choromanski, Han Lin, Haoxian Chen, Tianyi Zhang, Arijit Sehanobish, Valerii
Likhosherstov, Jack Parker-Holder, Tamas Sarlos, Adrian Weller, and Thomas Weingarten.
From block-toeplitz matrices to differential equations on graphs: towards a general theory
for scalable masked transformers. In Proceedings of the 39th International Conference on
Machine Learning, volume 162, pages 3962–3983. PMLR, 2022. 14

[22] Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Liò, and
Michael Bronstein. On over-squashing in message passing neural networks: the impact of
width, depth, and topology. In Proceedings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org, 2023. 1, 3, 14, 15

[23] Francesco Di Giovanni, James Rowbottom, Benjamin P. Chamberlain, Thomas Markovich, and
Michael M. Bronstein. Graph neural networks as gradient flows. In International Conference
on Learning Representations (ICLR), 2023. URL https://arxiv.org/abs/2206.10991.
4, 14

[24] Lun Du, Xiaozhou Shi, Qiang Fu, Xiaojun Ma, Hengyu Liu, Shi Han, and Dongmei Zhang.
Gbk-gnn: Gated bi-kernel graph neural networks for modeling both homophily and heterophily.
In Proceedings of the ACM Web Conference 2022, WWW ’22, page 1550–1558, New York,
NY, USA, 2022. Association for Computing Machinery. ISBN 9781450390965. doi: 10.1145/
3485447.3512201. URL https://doi.org/10.1145/3485447.3512201. 17

[25] Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models. In
Advances in Neural Information Processing Systems, volume 32, 2019. 1, 14

[26] Vijay Prakash Dwivedi and Xavier Bresson. A Generalization of Transformer Networks to
Graphs. AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021. 17

[27] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=wTTjnvGphYj. 14

[28] Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long Range Graph Benchmark. In Advances in Neural Informa-
tion Processing Systems, volume 35, pages 22326–22340. Curran Associates, Inc., 2022. 4,
14, 19, 20, 23

[29] Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning
Research, 24(43):1–48, 2023. 4, 14, 18, 21

[30] Moshe Eliasof, Eldad Haber, and Eran Treister. PDE-GCN: Novel architectures for graph
neural networks motivated by partial differential equations. Advances in Neural Information
Processing Systems, 34:3836–3849, 2021. 1, 2, 13, 14

[31] Moshe Eliasof, Eldad Haber, and Eran Treister. Feature transportation improves graph neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages
11874–11882, 2024. 14

[32] Moshe Eliasof, Eldad Haber, Eran Treister, and Carola-Bibiane B Schönlieb. On the temporal
domain of differential equation inspired graph neural networks. In International Conference
on Artificial Intelligence and Statistics, pages 1792–1800. PMLR, 2024. 14

[33] Brandon C Fallin, Cristian F Nino, Omkar Sudhir Patil, Zachary I Bell, and Warren E Dixon.
Lyapunov-based graph neural networks for adaptive control of multi-agent systems. arXiv
preprint arXiv:2503.15360, 2025. 14

7

https://openreview.net/forum?id=n6jl7fLxrP
https://arxiv.org/abs/2009.14743
https://arxiv.org/abs/2206.10991
https://doi.org/10.1145/3485447.3512201
https://openreview.net/forum?id=wTTjnvGphYj
https://openreview.net/forum?id=wTTjnvGphYj

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

[34] Ben Finkelshtein, Xingyue Huang, Michael M. Bronstein, and Ismail Ilkan Ceylan. Cooperative
Graph Neural Networks. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=ZQcqXCuoxD. 17, 24

[35] Scott Freitas, Yuxiao Dong, Joshua Neil, and Duen Horng Chau. A large-scale database for
graph representation learning. In J. Vanschoren and S. Yeung, editors, Proceedings of the
Neural Information Processing Systems Track on Datasets and Benchmarks, volume 1, 2021.
19

[36] Han Gao, Matthew J Zahr, and Jian-Xun Wang. Physics-informed graph neural galerkin
networks: A unified framework for solving pde-governed forward and inverse problems.
Computer Methods in Applied Mechanics and Engineering, 390:114502, 2022. 1

[37] Johannes Gasteiger, Stefan Weiß enberger, and Stephan Günnemann. Diffusion Improves
Graph Learning. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. 17, 21

[38] Jhony H Giraldo, Konstantinos Skianis, Thierry Bouwmans, and Fragkiskos D Malliaros.
On the trade-off between over-smoothing and over-squashing in deep graph neural networks.
In Proceedings of the 32nd ACM international conference on information and knowledge
management, pages 566–576, 2023. 3

[39] Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. Anti-Symmetric DGN: a stable
architecture for Deep Graph Networks. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=J3Y7cgZOOS. 1, 2, 4,
13, 14, 17, 18, 21, 25

[40] Alessio Gravina, Moshe Eliasof, Claudio Gallicchio, Davide Bacciu, and Carola-Bibiane
Schönlieb. On oversquashing in graph neural networks through the lens of dynamical systems.
In The 39th Annual AAAI Conference on Artificial Intelligence, 2025. 1, 4, 14, 17, 21, 25

[41] Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with
structured state spaces. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=uYLFoz1vlAC. 15

[42] Qiushan Guo, Yifan Zhang, Yifan Wang, Yizhou Wang, and Hongsheng Li. Egc: Image
generation and classification via a diffusion energy-based model. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 12345–12354, 2023. 1, 14

[43] Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni.
Drew: Dynamically rewired message passing with delay. In International Conference on
Machine Learning, pages 12252–12267. PMLR, 2023. 14, 17, 19, 21, 23

[44] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, page 1025–1035. Curran Associates Inc., 2017. ISBN 9781510860964. 4,
17, 25

[45] Andi Han, Dai Shi, Lequan Lin, and Junbin Gao. From continuous dynamics to graph neural
networks: Neural diffusion and beyond. arXiv preprint arXiv:2310.10121, 2023. 14

[46] Simon Heilig, Alessio Gravina, Alessandro Trenta, Claudio Gallicchio, and Davide Bacciu.
Port-Hamiltonian Architectural Bias for Long-Range Propagation in Deep Graph Networks.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=03EkqSCKuO. 1, 4, 21, 25

[47] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9
(8):1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735. 15

[48] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and
Jure Leskovec. Strategies for Pre-training Graph Neural Networks. In International Con-
ference on Learning Representations, 2020. URL https://openreview.net/forum?id=
HJlWWJSFDH. 17

[49] Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-
attention as a replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 655–665, 2022. 4

8

https://openreview.net/forum?id=ZQcqXCuoxD
https://openreview.net/forum?id=J3Y7cgZOOS
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=03EkqSCKuO
https://openreview.net/forum?id=03EkqSCKuO
https://openreview.net/forum?id=HJlWWJSFDH
https://openreview.net/forum?id=HJlWWJSFDH

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

[50] Adarsh Jamadandi, Celia Rubio-Madrigal, and Rebekka Burkholz. Spectral graph pruning
against over-squashing and over-smoothing. In Advances in Neural Information Processing
Systems, 2024. 3

[51] Hassan K Khalil and Jessy W Grizzle. Nonlinear systems, volume 3. Prentice hall Upper
Saddle River, NJ, 2002. 13

[52] T. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
Proceedings of the International Conference on Learning Representations, 2016. 4, 17, 21, 25

[53] Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C. Bayan Bruss, and Tom Goldstein.
GOAT: A global transformer on large-scale graphs. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceed-
ings of the 40th International Conference on Machine Learning, volume 202 of Proceed-
ings of Machine Learning Research, pages 17375–17390. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/kong23a.html. 17

[54] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information
Processing Systems, 34:21618–21629, 2021. 21

[55] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information
Processing Systems, 34:21618–21629, 2021. 17

[56] Sven Kreuzer, Michael Reiner, and Stefan D. D. De Villiers. Sant: Structural attention networks
for graphs. Proceedings of the 38th International Conference on Machine Learning (ICML),
2021. 14

[57] Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’Aurelio Ranzato, and Fu-Jie Huang. A
tutorial on energy-based learning. Predicting structured data, 1(0):1–59, 2006. 1, 14

[58] Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining
Qian. Finding global homophily in graph neural networks when meeting heterophily. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
Sabato, editors, Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 13242–13256. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.press/v162/li22ad.html. 17

[59] Daniil Likhobaba, Nikita Pavlichenko, and Dmitry Ustalov. Toloker Graph: Interaction of
Crowd Annotators, February 2023. URL https://doi.org/10.5281/zenodo.7620796.
19

[60] Meng Liu, Keqiang Yan, Bora Oztekin, and Shuiwang Ji. GraphEBM: Molecular graph
generation with energy-based models. In Energy Based Models Workshop - ICLR 2021, 2021.
URL https://openreview.net/forum?id=Gc51PtL_zYw. 14

[61] Sitao Luan, Chenqing Hua, Qincheng Lu, Liheng Ma, Lirong Wu, Xinyu Wang, Minkai Xu,
Xiao-Wen Chang, Doina Precup, Rex Ying, Stan Z. Li, Jian Tang, Guy Wolf, and Stefanie
Jegelka. The heterophilic graph learning handbook: Benchmarks, models, theoretical analysis,
applications and challenges, 2024. URL https://arxiv.org/abs/2407.09618. 14, 24

[62] Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates,
Philip Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing.
In International Conference on Machine Learning, pages 23321–23337. PMLR, 2023. 4, 18

[63] Thomas Markovich. Qdc: Quantum diffusion convolution kernels on graphs, 2023. 14
[64] Sohir Maskey, Raffaele Paolino, Aras Bacho, and Gitta Kutyniok. A fractional graph laplacian

approach to oversmoothing. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=kS7ED7eE74. 14

[65] Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Simplifying approach to node
classification in graph neural networks. Journal of Computational Science, 62:101695,
2022. ISSN 1877-7503. doi: https://doi.org/10.1016/j.jocs.2022.101695. URL https:
//www.sciencedirect.com/science/article/pii/S1877750322000990. 17

[66] Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph
transformers. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=HhbqHBBrfZ. 24

9

https://proceedings.mlr.press/v202/kong23a.html
https://proceedings.mlr.press/v162/li22ad.html
https://doi.org/10.5281/zenodo.7620796
https://openreview.net/forum?id=Gc51PtL_zYw
https://arxiv.org/abs/2407.09618
https://openreview.net/forum?id=kS7ED7eE74
https://www.sciencedirect.com/science/article/pii/S1877750322000990
https://www.sciencedirect.com/science/article/pii/S1877750322000990
https://openreview.net/forum?id=HhbqHBBrfZ

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

[67] J. Nocedal and S. Wright. Numerical Optimization. Springer, New York, 1999. 2, 3, 15, 16
[68] Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass

filters. arXiv preprint arXiv:1905.09550, 2019. 1, 14
[69] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for

node classification. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=S1ldO2EFPr. 14

[70] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019. 17

[71] Jie Peng, Runlin Lei, and Zhewei Wei. Beyond over-smoothing: Uncovering the trainability
challenges in deep graph neural networks. In Proceedings of the 33rd ACM International
Conference on Information and Knowledge Management, pages 1878–1887, 2024. 2

[72] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. A critical look at the evaluation of GNNs under heterophily: Are we re-
ally making progress? In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=tJbbQfw-5wv. 4, 19, 20, 22, 24

[73] Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, and
Jinkyoo Park. Graph neural ordinary differential equations. arXiv preprint arXiv:1911.07532,
2019. URL https://arxiv.org/abs/1911.07532. 1, 4, 14, 25

[74] Petr Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer (graphgps). In
Advances in Neural Information Processing Systems, volume 35, pages 28877–28890, 2022.
URL https://arxiv.org/abs/2205.12454. 4, 13, 21, 25

[75] Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. Advances in
Neural Information Processing Systems, 35, 2022. 14, 17

[76] Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao,
Houssam Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, et al. Graph neural
networks for materials science and chemistry. Communications Materials, 3(1):93, 2022. 14

[77] Ivan Dario Jimenez Rodriguez, Aaron Ames, and Yisong Yue. Lyanet: A lyapunov framework
for training neural odes. In International conference on machine learning, pages 18687–18703.
PMLR, 2022. 14

[78] T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael
Bronstein. Graph-coupled oscillator networks. In International Conference on Machine
Learning, pages 18888–18909. PMLR, 2022. 1, 4, 14, 17, 21, 25

[79] T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A Survey on Oversmooth-
ing in Graph Neural Networks. arXiv preprint arXiv:2303.10993, 2023. 1, 4

[80] Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential
equations. Journal of Mathematical Imaging and Vision, 62:352–364, 2020. 14

[81] Hans M Senn and Walter Thiel. Qm/mm methods for biomolecular systems. Angewandte
Chemie International Edition, 48(7):1198–1229, 2009. 1

[82] Dai Shi, Andi Han, Lequan Lin, Yi Guo, and Junbin Gao. Exposition on over-squashing prob-
lem on gnns: Current methods, benchmarks and challenges. arXiv preprint arXiv:2311.07073,
2023. 15

[83] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun.
Masked label prediction: Unified message passing model for semi-supervised classifica-
tion. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International Joint Confer-
ence on Artificial Intelligence, IJCAI-21, pages 1548–1554. International Joint Confer-
ences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/ijcai.2021/214. URL
https://doi.org/10.24963/ijcai.2021/214. Main Track. 17

[84] Behzad Shirzad, Amir M. Rahmani, and Marzieh Aghaei. Exphormer: Sparse attention for
graphs. Proceedings of the 40th International Conference on Machine Learning (ICML), 2023.
14, 17

10

https://openreview.net/forum?id=S1ldO2EFPr
https://openreview.net/forum?id=tJbbQfw-5wv
https://arxiv.org/abs/1911.07532
https://arxiv.org/abs/2205.12454
https://doi.org/10.24963/ijcai.2021/214

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

[85] Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go?
reassessing the long-range graph benchmark. In The Second Learning on Graphs Conference,
2023. URL https://openreview.net/forum?id=rIUjwxc5lj. 23

[86] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.
In International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=7UmjRGzp-A. 1, 3, 14, 15, 18

[87] Csaba Toth, Darrick Lee, Celia Hacker, and Harald Oberhauser. Capturing graphs with
hypo-elliptic diffusions. In Advances in Neural Information Processing Systems, 2022. 14

[88] A. Vaswani et al. Attention is all you need. Advances in Neural Information Processing
Systems, 30, 2017. 17

[89] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. In International Conference on Learning Represen-
tations, 2018. URL https://openreview.net/forum?id=rJXMpikCZ. 4, 17, 25

[90] Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph
sequence modeling with selective state spaces. arXiv preprint arXiv:2402.00789, 2024. 17

[91] Kun Wang, Guibin Zhang, Xinnan Zhang, Junfeng Fang, Xun Wu, Guohao Li, Shirui Pan, Wei
Huang, and Yuxuan Liang. The heterophilic snowflake hypothesis: Training and empowering
gnns for heterophilic graphs. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, KDD ’24, page 3164–3175, New York, NY, USA,
2024. Association for Computing Machinery. ISBN 9798400704901. doi: 10.1145/3637528.
3671791. 14

[92] Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
Sabato, editors, Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 23341–23362. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.press/v162/wang22am.html. 17

[93] Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Dissecting the Diffusion Process
in Linear Graph Convolutional Networks. In Advances in Neural Information Processing
Systems, volume 34, pages 5758–5769. Curran Associates, Inc., 2021. 14, 17

[94] Yuelin Wang, Kai Yi, Xinliang Liu, Yu Guang Wang, and Shi Jin. ACMP: Allen-cahn message
passing with attractive and repulsive forces for graph neural networks. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=4fZc_79Lrqs. 14

[95] Peter G Wolynes. Recent successes of the energy landscape theory of protein folding and
function. Quarterly reviews of biophysics, 38(4):405–410, 2005. 1

[96] Louis-Pascal Xhonneux, Meng Qu, and Jian Tang. Continuous graph neural networks. In
Proceedings of the 37th International Conference on Machine Learning, pages 10432–10441,
2020. URL https://proceedings.mlr.press/v119/xhonneux20a.html. 14

[97] Jianwen Xie, Yuting Lu, Ruiqi Gao, Honglak Zhuang, and Ying Nian Wu. A theory of
generative convnet. International Conference on Machine Learning, pages 2635–2644, 2016.
1, 14

[98] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph
neural networks? In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=ryGs6iA5Km. 4, 13, 17, 25

[99] Zhitao Ying and Jure Leskovec. Graphormer: A transformer for graphs. Proceedings of the
43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, 2021. 14

[100] Manzil Zaheer, Guru prasad G. H., Lihong Wang, S. V. K. N. L. Wang, Yujia Li, Jakub
Konečný, Shalmali Joshi, Danqi Chen, Jennifer R. R., Zhenyu Zhang, Shalini Devaraj, and
Srinivas Narayanan. Bigbird: Transformers for longer sequences. Proceedings of the 37th
International Conference on Machine Learning (ICML), pages 12168–12178, 2020. URL
https://arxiv.org/abs/2007.14062. 14

11

https://openreview.net/forum?id=rIUjwxc5lj
https://openreview.net/forum?id=7UmjRGzp-A
https://openreview.net/forum?id=7UmjRGzp-A
https://openreview.net/forum?id=rJXMpikCZ
https://proceedings.mlr.press/v162/wang22am.html
https://openreview.net/forum?id=4fZc_79Lrqs
https://openreview.net/forum?id=4fZc_79Lrqs
https://proceedings.mlr.press/v119/xhonneux20a.html
https://openreview.net/forum?id=ryGs6iA5Km
https://arxiv.org/abs/2007.14062

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

[101] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra.
Beyond homophily in graph neural networks: Current limitations and effective designs. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 7793–7804. Curran Associates, Inc., 2020.
17

[102] Jiong Zhu, Ryan A. Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K. Ahmed, and Danai
Koutra. Graph neural networks with heterophily. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(12):11168–11176, May 2021. doi: 10.1609/aaai.v35i12.17332. URL
https://ojs.aaai.org/index.php/AAAI/article/view/17332. 17

[103] Juntang Zhuang, Nicha Dvornek, Xiaoxiao Li, and James S Duncan. Ordinary differential
equations on graph networks. 2020. 14

12

https://ojs.aaai.org/index.php/AAAI/article/view/17332

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

A Mathematical Background
In this section, we provide a brief overview of Lyapunov stability theory, based on the classical
treatment in Khalil and Grizzle [51], which underpins the design of our TANGO. This theory
originates from control systems and differential equations, offering a principled way to assess whether
trajectories of a dynamical system remain bounded and converge over time.

Continuous Dynamical Systems. Let h(t) ∈ Rd denote the state of a dynamical system at time
t ≥ 0, and consider a first-order ODE:

dh(t)

dt
= F (h(t)), (5)

where F : Rd → Rd is a continuous vector field. A point h∗ is called an equilibrium if F (h∗) = 0.
Definition 1 (Lyapunov Function). Let h∗ ∈ Rd be an equilibrium of the system in Equation (5). A
continuously differentiable function V : Rd → R is called a Lyapunov function around h∗ if:

1. V (h) ≥ 0 for all h in a neighborhood of h∗, and V (h∗) = 0;

2. d
dtV (h(t)) = ∇hV (h(t))⊤F (h(t)) ≤ 0 in that neighborhood.

The first condition ensures that V is lower-bounded by 0, i.e., that value of the Lyapunov function,
sometimes also referred to as energy is non-negative, and the second that V does not increase along
trajectories of the system.

We now recall a classical [51] stability criterion for the dynamical system in Equation (5), based on
the definition of a Lyapunov function, which we will later use to characterize the stability of our
approach in Section 2.2.
Theorem 1 (Lyapunov Stability). Let h∗ be an equilibrium of Equation (5) and let V be a Lyapunov
function in a neighborhood N of h∗. If d

dtV (h(t)) ≤ 0 in N , then h∗ is Lyapunov stable.

B Implementing TANGO Graph Neural Networks
As outlined in Section 2.1, TANGO is defined by a continuous dynamical system. To obtain a GNN,
we discretize Equation (1) with a forward Euler step—standard in GNNs [3, 15, 19, 30, 39]—yielding
the layer

H(ℓ+1) = H(ℓ) + ϵ
(
−αG(H

(ℓ))∇HVG(H
(ℓ)) + βG(H

(ℓ))TVG (H
(ℓ))

)
, (6)

for ℓ = 0, . . . , L−1, where ϵ > 0 is the Euler step size, ∇HVG(H
(ℓ)) is the gradient of the energy in

Equation (8), and αG≥0, βG are learned scalars that balance descent and tangential terms predicted
by GNNs described below.

Energy Function. Given features H(ℓ), we implement VG via

H̃(ℓ) = σ
(

ENERGYGNN(H(ℓ);G)
)
∈ Rn×d, (7)

where ENERGYGNN is a GNN (e.g., GatedGCN [11], GPS [74]) and σ is a pointwise nonlinearity.
Per-node energy scores (MLP) are given by ṼG(H̃

(ℓ)) = MLPE(H̃
(ℓ)) ∈ Rn×1, and the graph-level

energy is defined as:

VG(H
(ℓ)) =

1

n

∑
v∈V

ṼG(H̃
(ℓ))2v ∈ R≥0. (8)

We also compute a bounded non-negative energy descent coefficient αG via global sum pooling [98]
of H̃(ℓ), followed by an MLP and sigmoid:

αG(H
(ℓ)) = SIGMOID

(
MLPα

(
SUMPOOL(H̃(ℓ))

))
. (9)

Tangential Update. We compute TVG (H
(ℓ)) with a dedicated GNN, TANGENTGNN. Given H(ℓ), it

predicts a node-update direction

M(ℓ) = σ
(

TANGENTGNN(H(ℓ);G)
)
. (10)

13

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

The energy-tangential component coefficient is then obtained via the orthogonal projection in Equa-
tion (2). The tangential term is scaled by

βG(H
(ℓ)) = MLPβ

(
SUMPOOL(M(ℓ))

)
. (11)

Notably, while the depths of TANGENTGNN and ENERGYGNN can be different, for simplicity of
hyper-parameter tuning, throughout our experiments, we use the same number of layers for both.

C Related Work
Deep GNNs and Dynamical Systems. A growing body of work interprets GNN layers as iterative
updates in a dynamical system, providing a principled framework to analyze stability, control
diffusion, and inform architectural design. Poli et al. [73] introduced Graph Neural ODEs, inspired
by neural ODEs [17, 80], modeling node feature evolution via continuous-depth ODEs aligned
with graph structure, enabling adaptive computation and improved performance in dynamic settings.
Similarly, Xhonneux et al. [96] proposed Continuous GNNs, where feature channels evolve by
differential equations, mitigating over-smoothing via infinite-depth limits. Follow-up works such as
GODE [103], GRAND [15], PDE-GCND [30], and DGC [93] view GNN layers as discrete integration
steps of the heat equation to control oversmoothing [13, 68, 69]. Extensions like PDE-GCNM [30]
and GraphCON [78] add oscillatory components to preserve feature energy, while others leverage
heat-kernel attention [21], anti-symmetry [39, 40], reaction-diffusion [19, 94], advection-reaction-
diffusion [31] to enhance long-range or directional flow, and higher-order graph neuro ODE models
[32]. A comprehensive overview is given in Han et al. [45]. Closely related, Di Giovanni et al. [23]
interpret GNN layer updates as gradient flows of the Dirichlet energy, aligning message passing
with energy minimization. In contrast, our TANGO learns a graph-adaptive, task-specific energy
and introduces a novel descent mechanism combining energy gradients with a learnable tangential
component, enabling more expressive dynamics than pure gradient flows.

Learning Energy Functions in Neural Networks. Energy-based models (EBMs) provide a flexible
framework in deep learning by learning an energy function whose low-energy regions correspond to
areas with high probability for the data. They have been widely used in generative tasks such as image
synthesis [25, 42, 57, 97] and graph generation [60, 76]. In contrast to these typically unsupervised
settings, our work focuses on learning a task-driven energy function tailored to predictive objectives
like node or graph classification. Here, inference corresponds to descending the learned energy
landscape, whose minima align with correct outputs. Relatedly, Lyapunov functions—classical
tools from control theory—have been used in neural networks to ensure stable learning or inference
dynamics, e.g., by enforcing stability in Neural ODEs [77] or GNN-based controllers [33]. However,
such approaches typically assume a fixed or implicit energy function rather than learning one. Our
method, TANGO, bridges and extends these perspectives by learning a graph-adaptive, task-specific
energy and introducing a novel optimization scheme. Crucially, our TANGO incorporates a learnable
tangential component that accelerates energy minimization and enhances performance in graph
learning tasks.

Oversquashing in Graph Learning. Graph neural networks (GNNs) typically operate through
message-passing mechanisms, aggregating information from local neighborhoods. While effective in
capturing short-range dependencies, this design often leads to oversquashing, a phenomenon where
signals from distant nodes are compressed into fixed-size representations, impeding the flow of long-
range information [2, 22, 86]. This limitation poses a challenge in domains that demand rich global
context, such as bioinformatics [4, 28] and heterophilic graphs [61, 91]. A range of strategies have
been proposed to mitigate oversquashing. Graph rewiring approaches, such as SDRF [86], densify the
graph to enhance connectivity prior to training. In contrast, methods like GRAND [15], BLEND [14],
and DRew [43] adjust the graph structure dynamically based on node features. Transformer-based
models offer another promising route by leveraging global attention to enable direct, long-range
message passing. Examples include SAN [56], Graphormer [99], and GPS [75], which incorporate
positional encodings, such as Laplacian eigenvectors [29] and random walk structural embeddings
[27] to preserve structural identity. However, the quadratic complexity of full attention in these
models raises scalability concerns, motivating interest in sparse attention mechanisms [20, 84, 100].
An alternative line of work explores non-local dynamics to enhance expressivity without relying
solely on attention. FLODE [64] employs fractional graph operators, QDC [63] uses quantum
diffusion processes, and G2TN [87] models explicit diffusion paths to propagate information more

14

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

effectively. While these approaches address the oversquashing bottleneck, they often come with
increased computational demands due to dense propagation operators. For a broader overview of
these techniques, see Shi et al. [82]. We note that the challenge of modeling long-range dependencies
also arises in other domains, such as sequential architectures [41, 47].

Optimization Techniques. The formulation of TANGO draws parallel with concepts that have
been explored in the optimization literature, particularly in the design of dynamical systems that
balance expressivity and convergence. While traditional gradient descent provides a robust and
interpretable mechanism for minimizing energy functions, its convergence rate can be limited
in poorly conditioned settings [9, 67], which frequently arise in graph-based problems due to
structural bottlenecks [2, 86]. Second-order approaches, such as Newton’s method, are known to
accelerate convergence by incorporating curvature information, albeit at increased computational
cost. The combination of energy gradient descent and a learned tangential component in TANGO
suggests a learnable departure from purely first-order schemes. Rather than explicitly computing or
approximating the Hessian, our framework enables the model to learn corrective update directions that
are orthogonal to the descent path. This design implicitly aligns with the motivations behind quasi-
Newton techniques like conjugate gradients and LBFGS [67], which aim to improve convergence by
leveraging directional information that complements the gradient. From this perspective, TANGO
can be viewed as embedding optimization-inspired dynamics within graph learning frameworks.
This is particularly relevant in scenarios affected by oversquashing [22], where effective feature
transmission often requires departing from strictly local, gradient-driven updates. By allowing energy-
preserving tangential flows, TANGO introduces flexibility reminiscent of structured optimization
methods, adapted to the graph learning domain.

D Proofs of Theoretical Results
In this section, we restate the theoretical results from Section 2.2 and provide their proofs. As in the
main text, we assume the following throughout: (i) the input graph G = (V, E) is connected; (ii) the
energy function VG(H(t)) is twice differentiable and bounded from below. For simplicity of notation,
throughout this section, we omit the time or layer scripts and use the term H to denote node features
when possible.
Proposition 1 (Energy Dissipation). Suppose αG ≥ 0 and ∥∇HVG(H)∥2 > 0. Then the energy
VG(H) is non-increasing along trajectories of Equation (1). Specifically,

d

dt
VG(H) = −αG(H) ∥∇HVG(H)∥2 + βG(H)⟨TVG (H),∇HVG(H)⟩

= −αG(H) ∥∇HVG(H)∥2 ≤ 0.

Proof. By the chain rule,
d

dt
VG(H) =

〈
∇HVG(H),

dH

dt

〉
.

Substituting the dynamics of Equation (1):

d

dt
VG(H) = ⟨∇HVG(H), −αG(H)∇HVG(H) + βG(H)TVG (H)⟩

= −αG(H) ∥∇HVG(H)∥2 + βG(H) ⟨TVG (H), ∇HVG(H)⟩ .

As discussed in Section 2, we have by design, that

⟨TVG (H), ∇HVG(H)⟩ = 0.

Therefore,
d

dt
VG(H) = −αG(H) ∥∇HVG(H)∥2 .

Because αG(H) ≥ 0 by design, the energy is non-increasing, and assuming αG(H) > 0, the system
is dissipative, i.e., its energy is decreasing.

15

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

Proposition 2 (TANGO can Evolve Features in Flat Energy Landscapes). Suppose ∇HVG(H) = 0,
and TVG (H) ̸= 0, then the TANGO flow in Equation (1) reads:

dH

dt
= βG(H)TVG (H).

This implies that in contrast to gradient flows, the dynamics of TANGO can evolve even in regions
where the energy landscape is flat.

Proof. Because ∇HVG(H) = 0, the first term in Equation (1) vanishes, and the TANGO dynamical
system reads:

dH

dt
= βG(H)TVG (H),

Assuming that TVG (H) ̸= 0, TANGO can continue evolving node features also in cases where
∇HVG(H) = 0, i.e., where the energy landscape is flat.

Proposition 3 (Convergence of Gradient Descent of a Scalar Function, Nocedal and Wright [67]). Let
VG(·) be a scalar function and let H(ℓ+1) = H(ℓ) − α

(ℓ)
G (H(ℓ))∇HVG(H

(l)) be a gradient-descent
iteration of the energy VG(·). Then, a linear convergence is obtained, with convergence rate:

r =
λmax − λmin

λmax + λmin
,

where λmax is the maximal eigenvalue, and in the case of problems that involve the graph Laplacian,
λmin is the second minimal eigenvalue, i.e., the first non-zero eigenvalue of the Hessian of VG(·).
Proposition 4 (TANGO can learn a Quadratic Convergence Direction). Assume for simplicity that
βG = 1, and that the Hessian of VG is invertible. Let D = αG(H

(ℓ))∇HVG(H
(ℓ)) + TVG (H

(ℓ)) with〈
TVG (H

(ℓ)), ∇̂HVG(H
(ℓ))

〉
= 0. Then, it is possible to learn a direction TVG (H

(ℓ)) and a step size

αG such that D is the Newton direction, N = (∇2VG)
−1∇VG .

Proof. We aim to construct a direction D = αG(H)∇HVG(H) + TVG (H) that matches the Newton
direction:

N =
(
∇2

HVG(H)
)−1 ∇HVG(H).

Recall that by design, we have that TVG (H) is orthogonal to the energy gradient, i.e.,
⟨TVG (H), ∇HVG(H)⟩ = 0. Then, we can express a Newton direction by the decomposition:

N = αG(H)∇HVG(H) + TVG (H).

Solving for the orthogonal component yields:

TVG (H) = N− αG(H)∇HVG(H).

To enforce orthogonality, we require:

⟨N− αG(H)∇HVG(H), ∇HVG(H)⟩ = 0.

Expanding and simplifying, we find:

⟨N, ∇HVG(H)⟩ − αG(H) ∥∇HVG(H)∥2 = 0,

and the optimal step size is given by:

αG(H) =
⟨N, ∇HVG(H)⟩
∥∇HVG(H)∥2

,

showing that it is possible to learn a Newton direction, i.e., a quadratic energy convergence direction.

16

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

E Complexity and Runtimes
Complexity. Each step of TANGO requires computing the gradient of the learned energy function
VG(H

(ℓ)), that is defined in Equation (8). This involves two main operations: (i) forward and
backward passes through the energy network ENERGYGNN, which contains Lenergy message-passing
layers and an MLP; and (ii) automatic differentiation to compute ∇HVG(H

(ℓ)) with respect to the
input node features. In parallel, the tangential flow direction TVG (H

(ℓ)) is obtained by projecting the
vector field M(ℓ) computed by a separate TANGENTGNN with Ltangent layers onto the orthogonal
complement of the normalized energy gradient, as shown in Equation (2). This projection is of
computational cost of O(nd) per step, where n = |V| and d is the feature dimensionality. In addition,
scalar coefficients αG and βG are computed from pooled node features using MLPs (Equations (9)
and (11)). Assuming both ENERGYGNN and TANGENTGNN are message-passing architectures
with linear complexity in the number of nodes and edges, and setting Lenergy = Ltangent, the total
complexity per layer becomes O(Lgnn · (n+m) · d), where Lgnn is the number of GNN layers used
in each subnetwork and m = |E| is the number of edges. Unrolling the dynamics over L steps, the
overall computational complexity of TANGO is:

O (L · Lgnn · (|V|+ |E|) · d) .

Runtimes. We measure the runtimes of our TANGO using two backbones, GatedGCN and GPS,
and compare it with the baseline backbone runtimes. In addition, we consider other methods like
FAGCN [8] and CO-GNN [34] for a broad comparison of the runtimes of TANGO. For reference,
we also refer to Table 7, where we compare the obtained downstream performance, which shows
in many cases significant improvement using our TANGO variants compared with other considered
methods. We measure the runtimes on the Questions dataset, using the same major hyperparameters
for all methods (256 channels, 8 layers) to ensure fairness. The measurements were conducted on an
NVIDIA RTX6000 Ada GPU with 48GB of memory.

Table 3: Training runtimes (milliseconds per epoch) on the Questions dataset using an 8-layer
network with 256 channels on an NVIDIA RTX6000 Ada GPU.

Method GCN CO-GNN FAGCN GatedGCN GAT GPS(GatedGCN) TANGOGatedGCN TANGOGPS

Runtime (ms/epoch) 69.77 210.32 103.94 129.92 112.40 429.08 184.98 694.27

F Experimental Details
In this section, we provide additional experimental details.

Computational Resources. Our experiments are run on NVIDIA RTX6000 Ada with 48GB of
memory. Our code is implemented in PyTorch [70], and will be publicly released upon acceptance.

Baselines. We consider different classical and state-of-the-art GNN baselines. Specifically:

• Classical MPNNs, i.e., GCN [52], GraphSAGE [44], GAT [89], GatedGCN [11], GIN [98],
GINE [48], GCNII [16], and CoGNN [34];

• Heterophily-specific models, i.e., H2GCN [101], CPGNN [102], FAGCN [8], GPR-GNN
[18], FSGNN [65], GloGNN [58], GBK-GNN [24], and JacobiConv [92];

• DE-DGNs, i.e., DGC [93], GRAND [15], GraphCON [78], A-DGN [39], and SWAN [40];
• Graph Transformers, i.e., Transformer [26, 88], GT [83], SAN [55], GPS [75], GOAT [53],

and Exphormer [84];
• Higher-Order DGNs, i.e., DIGL [37], MixHop [1], and DRew [43].
• SSM-based GNN, i.e., Graph-Mamba [90], GMN [5], and GPS+Mamba [5]

F.1 Synthetic Example from Figure 2

In the synthetic example in Figure 2, we demonstrate the effectiveness of TANGO in overcoming the
oversquashing issue in GNNs. To do that, we consider a Barbell graph, where all node features are set
to 0, besides the left-most node in the graph, which is set to 1, as shown in Figure 2(a). The goal is to

17

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

allow the information to propagate through all nodes effectively. We do this by considering a gradient
flow process of the Dirichlet energy using 50 layers (steps), as shown in Figure 2(b), where it is
noticeable that the information is now flowing to the right part in the graph, because of the bottleneck
between the two cliques. However, as we show in Figure 2(c), by considering our TANGO, which
utilizes both an energy flow as well as a tangential flow, it is possible to effectively propagate the
information through all the nodes in the graphs.

F.2 Graph Property Prediction

Dataset. We construct our benchmark following the protocol introduced by Gravina et al. [39]. Graph
instances are synthetically generated from a variety of canonical topologies, including Erdős–Rényi,
Barabasi-Albert, caveman, tree, and grid models. Each graph consists of 25 to 35 nodes, with
node features initialized as random identifiers sampled uniformly from the interval [0, 1). The
prediction targets encompass several structural tasks: computing the shortest paths from a source
node, estimating node eccentricity, and determining graph diameter. The complete dataset contains
7,040 graphs, split into 5,120 for training, 640 for validation, and 1,280 for testing. These tasks
inherently demand capturing long-range dependencies, as they involve global graph computations
such as shortest path inference. As highlighted in Gravina et al. [39], traditional algorithms like
Bellman-Ford or Dijkstra’s method require multiple rounds of message propagation, which motivates
the need for expressive graph models. The benchmark graph families, such as caveman, tree, line,
star, caterpillar, and lobster, frequently include structural bottlenecks that are known to induce
oversquashing effects [86], posing additional challenges for message-passing-based GNNs.

Experimental Setup. We adopt the same evaluation framework as Gravina et al. [39], including
datasets, training routines, and hyperparameter spaces. Model training is conducted using the Adam
optimizer for up to 1500 epochs, with early stopping triggered after 100 consecutive epochs of no
improvement on the validation Mean Squared Error (MSE). Hyperparameters are selected via grid
search, and performance is averaged over 4 independent runs with different random seeds for weight
initialization. A summary of the hyperparameter grid used in our experiments is provided in Table 5.

F.3 Graph Benchmarks from Dwivedi et al. [29]

Dataset. To comprehensively assess the capabilities of TANGO, we evaluate its performance on
a diverse set of graph learning benchmarks curated by Dwivedi et al. [29]. The benchmark suite
includes: ZINC-12k, a molecular regression dataset containing chemical compounds, where the goal
is to predict the constrained solubility of each molecule. Graphs represent molecular structures, with
atoms as nodes and chemical bonds as edges. Node and edge features encode atom types and bond
types, respectively. MNIST and CIFAR-10 superpixels are graph-structured versions of standard
image classification datasets, where images are converted into sparse graphs of superpixels. Each
superpixel forms a node, and edges are based on spatial adjacency. The tasks involve classifying digits
(MNIST) and natural objects (CIFAR-10) based on graph-structured representations. CLUSTER and
PATTERN are synthetic datasets designed to assess the relational inductive biases of graph neural
networks. Both datasets are generated from a set of stochastic block models (SBMs). In CLUSTER,
the task is to group nodes by community, while PATTERN involves identifying specific structural
patterns within each graph. These datasets span a variety of domains: chemical, image, and synthetic
graphs, and are commonly used to benchmark architectural innovations in GNNs [62]. We follow the
official training, validation, and test splits provided by Dwivedi et al. [29], ensuring consistency in
evaluation across models.

Experimental Setup. We adhere to the training and evaluation protocol established in Dwivedi
et al. [29]. For each dataset, we perform hyperparameter tuning via grid search, optimizing the
corresponding evaluation metrics: Mean Absolute Error (MAE) for ZINC-12k, and classification
accuracy for the remaining tasks. We use the AdamW optimizer and train all models for up to
300 epochs, with early stopping based on validation performance. To ensure comparability with
prior work, we respect the same parameter budgets used in the original benchmark and maintain the
architectural constraints defined for fair evaluation. Each configuration is trained with three random
seeds, and we report the average and standard deviation of the results. Hyperparameter ranges used
in this set of experiments are summarized in Table 5.

18

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

F.4 Long Range Graph Benchmark

Dataset. To evaluate model performance on real-world graphs with significant long-range depen-
dencies, we utilize the Peptides-func and Peptides-struct benchmarks introduced in Dwivedi et al.
[28]. These datasets represent peptide molecules as graphs, where nodes correspond to heavy (non-
hydrogen) atoms, and edges denote chemical bonds. Peptides-func is a multi-label classification task
with 10 functional categories, including antibacterial, antiviral, and signaling-related properties. In
contrast, Peptides-struct focuses on regression, targeting physical and geometric attributes such as
molecular inertia (weighted by atomic mass and valence), atom pair distance extremes, sphericity, and
average deviation from a best-fit plane. Together, the two datasets comprise 15,535 peptide graphs
and roughly 2.3 million nodes. We adopt the official train/validation/test partitions from Dwivedi et al.
[28] and report mean and standard deviation across three different random seeds for each experiment.

Experimental Setup. We follow the evaluation protocol established in Dwivedi et al. [28], including
dataset usage, training strategy, and model capacity constraints. Hyperparameter tuning is carried out
via grid search, optimizing for Average Precision (AP) in the classification task and Mean Absolute
Error (MAE) in the regression task. All models are trained using the AdamW optimizer for up to 300
epochs, with early stopping based on validation performance. To ensure fairness and comparability,
all models adhere to the 500K parameter limit, in line with the settings of Dwivedi et al. [28] and
Gutteridge et al. [43]. Each configuration is run three times with different weight initializations, and
results are averaged. Details of the hyperparameter ranges considered can be found in Table 5.

F.5 Heterophilic Node Classification

Dataset. For evaluating performance in heterophilic graph settings, we consider five benchmark tasks
introduced by Platonov et al. [72]: Roman-Empire, Amazon-Ratings, Minesweeper, Tolokers, and
Questions. These datasets span a diverse range of domains and graph topologies. Roman-Empire is
constructed from the Wikipedia article on the Roman Empire, where nodes represent words and edges
capture either sequential adjacency or syntactic relations. The task is node classification with 18
syntactic categories, and the underlying graph is sparse and chain-structured, suggesting the presence
of long-range dependencies. Amazon-Ratings originates from Amazon’s product co-purchasing graph.
Nodes correspond to products, linked if they are frequently bought together. The classification task
involves predicting discretized average product ratings (five classes), with node features derived
from fastText embeddings of product descriptions. Minesweeper is a synthetic dataset modeled
as a 100 × 100 grid. Nodes represent individual cells, with edges connecting adjacent cells. A
random 20% of nodes are labeled as mines, and the objective is to classify mine-containing cells
based on one-hot features that encode the number of neighboring mines. Tolokers is based on the
Toloka crowdsourcing platform [59], where each node is a worker (toloker), and edges indicate
co-participation on the same project. The task involves binary classification to detect whether a
worker has been banned, using node features from user profiles and performance metrics. Questions
draws from user interaction data on Yandex Q, a question-answering forum. Nodes represent users,
and edges capture answering interactions. The goal is to identify users who remain active, with input
features derived from user-provided descriptions. A summary of dataset statistics is provided in
Table 4.

Table 4: Statistics of the heterophilic node classification datasets.

Roman-empire Amazon-ratings Minesweeper Tolokers Questions

N. nodes 22,662 24,492 10,000 11,758 48,921
N. edges 32,927 93,050 39,402 519,000 153,540
Avg degree 2.91 7.60 7.88 88.28 6.28
Diameter 6,824 46 99 11 16
Node features 300 300 7 10 301
Classes 18 5 2 2 2
Edge homophily 0.05 0.38 0.68 0.59 0.84

Experimental Setup. Our experimental procedure aligns with that of Freitas et al. [35] and Platonov
et al. [72]. We conduct a grid search to optimize model performance, using classification accuracy
for the Roman-Empire and Amazon-Ratings tasks, and ROC-AUC for Minesweeper, Tolokers, and
Questions. Each model is trained using the AdamW optimizer for a maximum of 300 epochs. Our
experiments follow the official dataset splits provided by Platonov et al. [72]. For each model

19

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

configuration, we perform multiple training runs with different random seeds and report the mean
and standard deviation of the results. The hyperparameter grid explored in these experiments is
summarized in Table 5.

F.6 Hyperparameters

In Table 5, we summarize the hyperparameter grids used for tuning our TANGO across different bench-
marks. Alongside standard training hyperparameters such as learning rate, weight decay, and batch
size, our method introduces several additional components. These include the number of unrolled
steps L (corresponding to the depth of the energy-based dynamics), the hidden dimension d of node
features, and the number of message-passing layers Lgnn used within the internal ENERGYGNN and
TANGENTGNN modules. In all experiments, we share the architecture depth between ENERGYGNN
and TANGENTGNN. We also tune the step size ϵ used in the forward Euler update (Equation (6)),
which controls the integration scale of the continuous dynamics. We explore multiple values of L
to assess how the number of dynamical steps impacts long-range propagation across different tasks.
Details of the complete hyperparameter grid can be found in Table 5.

Table 5: Hyperparameter grids used during model selection for the different benchmark categories:
GraphPropPred (Diameter, SSSP, Eccentricity), LRGB (Peptides-func/struct), Graph Benchmarks
(ZINC-12k, MNIST, CIFAR-10, CLUSTER, PATTERN), and Node Classification (Roman-Empire,
Amazon-Ratings, Minesweeper, Tolokers, Questions).

Hyperparameter GraphPropPred LRGB Graph Benchmarks Node Classification

Unrolled steps L {1,5,10,20} {2,4,8,16,32} {2,4,8,16,32} {2,4,8,16,32}
GNN layers Lgnn {1,2,4,8,16} {1,2,4,8,16} {1,2,4,8,16} {1,2,4,8,16}
Feature dimension d {10, 20, 30} {64, 128,256} {64, 128, 256} {64, 128, 256}
Step size ϵ {0.001, 0.1, 1.0} {0.001, 0.1, 1.0} {0.001, 0.1, 1.0} {0.001, 0.1, 1.0}
Learning rate {1e-3, 1e-4} {1e-3, 1e-4} {1e-3, 1e-4} {1e-3, 1e-4}
Weight decay {0,1e-6, 1e-5} {0, 1e-6, 1e-5} {0, 1e-6, 1e-5} {0, 1e-6, 1e-5}
Activation function (σ) ReLU ELU, GELU, ReLU ELU, GELU, ReLU ELU, GELU, ReLU
Batch size {32,64,128} {32,64,128} {32, 64,128} N/A

G Additional Results and Comparisons
G.1 Long-Range Benchmark

We assess the performance of our method on the real-world long-range graph benchmark (LRGB)
from [28], focusing on the Peptides-func and Peptides-struct datasets. We follow the experimental
setting in [28], including the 500K parameter budget. All transformer baselines include positional
and structural encodings. TANGO does not use additional encodings. The datasets consist of large
molecular graphs derived from peptides, where the structure and function of a peptide depend on
interactions between distant parts of the graph. Therefore, relying on short-range interactions, such
as those captured by local message passing in GNNs, may not be sufficient to excel at this task.

Table 6 provides a comparison of our TANGO model with a wide range of baselines. A broader
comparison is presented in Table 10. The results indicate that TANGO outperforms standard MPNNs,
transformer-based GNNs, DE-GNNs, and most Multi-hop GNNs.

G.2 Heterophilic Node Classification

We report and compare the performance of our TANGO with other recent benchmarks on the het-
erophilic node classification datasets from Platonov et al. [72], in Table 7. As can be seen from the
Table, TANGO offers strong performance that is similar or better than recent state-of-the-art methods,
further demonstrating its effectiveness.

G.3 Additional Comparisons

The comparisons made in Section 3 offer a focused comparison with directly related methods as well
as baseline backbones. In addition to that, we now provide a more comprehensive comparison in
Table 10 and Table 11, to further facilitate a comprehensive comparison with recent methods. As can

20

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

Table 6: Results for Peptides-func and Peptides-struct (3 training seeds). The first, second, and
third best scores are colored.

Model Peptides-func Peptides-struct
AP ↑ MAE ↓

MPNNs
GCN [52] 59.30±0.23 0.3496±0.0013

GINE [29] 54.98±0.79 0.3547±0.0045

GCNII [16] 55.43±0.78 0.3471±0.0010

GatedGCN [11] 58.64±0.77 0.3420±0.0013

Multi-hop GNNs
DIGL+MPNN+LapPE [37] 68.30±0.26 0.2616±0.0018

MixHop-GCN+LapPE [1] 68.43±0.49 0.2614±0.0023

DRew-GCN+LapPE [43] 71.50±0.44 0.2536±0.0015

Transformers
Transformer+LapPE [29] 63.26±1.26 0.2529±0.0016

SAN+LapPE [54] 63.84±1.21 0.2683±0.0043

GPS+LapPE [74] 65.35±0.41 0.2500±0.0005

DE-GNNs
GRAND [15] 57.89±0.62 0.3418±0.0015

GraphCON [78] 60.22±0.68 0.2778±0.0018

A-DGN [39] 59.75±0.44 0.2874±0.0021

SWAN [40] 67.51±0.39 0.2485±0.0009

PH-DGN [46] 70.12±0.45 0.2465±0.0020

Ours
TANGOGATEDGCN 68.92±0.40 0.2451±0.0006

TANGOGPS 70.21±0.43 0.2422±0.0014

be seen, also under these comparisons, our TANGO offers strong performance. We also report the
results for Table 2 without applying log10 in Table 12

G.4 Ablation Study

Setup. We conduct two key ablation studies to better understand the contributions of the energy
function and the tangential flow in TANGO. Specifically, we aim to answer the following questions:

(i) Does downstream performance benefit from incorporating a tangential term even when the
underlying GNN is not the gradient of an energy function?

(ii) Is the observed improvement due to the tangential nature of the added component, or simply due
to additional parameters and network?

To address these questions, we design two controlled experiments. For comprehensive coverage,
we evaluate one representative dataset from each benchmark group: ZINC-12k, Roman-empire,
Peptides-func, and Diameter. All experiments are run with two backbone architectures, GatedGCN
and GPS. For reference, we also report the performance of the original backbones.

Results. For ablation (i), we compare TANGO against a variant we call TANGO-NON-ENERGY,
in which the gradient-based energy descent term ∇HVG(H

(ℓ)) in Equation (6) is replaced by inter-
mediate node features from the same GNN backbone, as detailed in Equation (7). These features
are computed using the same architecture but are not guaranteed to correspond to the gradient of
any scalar energy function. This setup ensures fairness in capacity while removing the energy-based
structure. As shown in Table 8, although both variants benefit from the inclusion of the tangential
component, the full TANGO consistently outperforms TANGO-NON-ENERGY, confirming that
leveraging a valid energy gradient contributes meaningfully to downstream performance.

For ablation (ii), we isolate the effect of the tangential nature of the added direction. In this variant,
denoted TANGO-NON-TANGENT, we use the same output from the tangential network as in
Equation (10) but omit the orthogonal projection step defined in Equation (2). Thus, while we still
introduce an additional GNN term into the dynamics, it is not explicitly orthogonal to the energy
gradient. Our results in Table 9 show that while this variant improves the performance compared
with the baseline backbone, it also results in a drop in performance compared to the full TANGO.
This highlights the importance of the tangential constraint, and its contribution towards improving
the utilization of the learned energy function, as discussed in Section 2.2. Together, these ablations
underscore the importance of both components in our design: (i) the principled learned energy
descent, and (ii) the structured tangential update, as crucial for effective and flexible feature evolution.

21

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

Table 7: Mean test set score and std averaged over the splits from Platonov et al. [72]. First, second,
and third best results for each task are color-coded. We mark each method once – if two variants are
among the leading methods, we mark the best-performing variant.

Model Roman-empire Amazon-ratings Minesweeper Tolokers Questions
Acc ↑ Acc ↑ AUC ↑ AUC ↑ AUC ↑

MPNNs
GAT 80.87±0.30 49.09±0.63 92.01±0.68 83.70±0.47 77.43±1.20

GAT-sep 88.75±0.41 52.70±0.62 93.91±0.35 83.78±0.43 76.79±0.71

Gated-GCN 74.46±0.54 43.00±0.32 87.54±1.22 77.31±1.14 76.61±1.13

GCN 73.69±0.74 48.70±0.63 89.75±0.52 83.64±0.67 76.09±1.27

CO-GNN(Σ, Σ) 91.57±0.32 51.28±0.56 95.09±1.18 83.36±0.89 80.02±0.86

CO-GNN(µ, µ) 91.37±0.35 54.17±0.37 97.31±0.41 84.45±1.17 76.54±0.95

SAGE 85.74±0.67 53.63±0.39 93.51±0.57 82.43±0.44 76.44±0.62

Graph Transformers
Exphormer 89.03±0.37 53.51±0.46 90.74±0.53 83.77±0.78 73.94±1.06

NAGphormer 74.34±0.77 51.26±0.72 84.19±0.66 78.32±0.95 68.17±1.53

GOAT 71.59±1.25 44.61±0.50 81.09±1.02 83.11±1.04 75.76±1.66

GPSGAT+Performer (RWSE) 87.04±0.58 49.92±0.68 91.08±0.58 84.38±0.91 77.14±1.49

GT 86.51±0.73 51.17±0.66 91.85±0.76 83.23±0.64 77.95±0.68

GT-sep 87.32±0.39 52.18±0.80 92.29±0.47 82.52±0.92 78.05±0.93

Heterophily-Designated GNNs
FAGCN 65.22±0.56 44.12±0.30 88.17±0.73 77.75±1.05 77.24±1.26

FSGNN 79.92±0.56 52.74±0.83 90.08±0.70 82.76±0.61 78.86±0.92

GBK-GNN 74.57±0.47 45.98±0.71 90.85±0.58 81.01±0.67 74.47±0.86

GloGNN 59.63±0.69 36.89±0.14 51.08±1.23 73.39±1.17 65.74±1.19

GPR-GNN 64.85±0.27 44.88±0.34 86.24±0.61 72.94±0.97 55.48±0.91

JacobiConv 71.14±0.42 43.55±0.48 89.66±0.40 68.66±0.65 73.88±1.16

Ours
TANGOGatedGCN 91.89±0.30 52.60±0.53 98.32±0.59 85.51±0.98 80.39±1.04

TANGOGPS 91.08±0.57 53.83±0.32 98.39±0.54 85.66±1.01 80.32±1.07

Table 8: Ablation study on the importance of using a gradient of an energy term in Equation (6).

Model ZINC-12k Roman-empire Peptides-func Diameter
MAE ↓ Acc. ↑ AP ↑ log10(MSE) ↓

GatedGCN 0.282±0.015 74.46±0.54 58.64±0.77 0.1348±0.0397

TANGO-NON-ENERGYGatedGCN 0.138±0.014 86.94±0.43 68.07±0.45 -0.5992±0.0831

TANGOGatedGCN 0.128±0.011 91.89±0.30 68.92±0.40 -0.6681±0.0745

GPS 0.070±0.004 87.04±0.58 65.35±0.41 -0.5121±0.0426

TANGO-NON-ENERGYGPS 0.067±0.004 89.00±0.61 67.58±0.39 -0.7178±0.0729

TANGOGPS 0.062±0.005 91.08±0.57 70.21±0.43 -0.9772±0.0518

Table 9: The importance of using a tangential term to the energy term in Equation (6).

Model ZINC-12k Roman-empire Peptides-func Diameter
MAE ↓ Acc. ↑ AP ↑ log10(MSE) ↓

GatedGCN 0.282±0.015 74.46±0.54 58.64±0.77 0.1348±0.0397

TANGO-NON-TANGENTGatedGCN 0.186±0.016 83.59±0.48 68.01±0.52 -0.2193±0.0899

TANGOGatedGCN 0.128±0.011 91.89±0.30 68.92±0.40 -0.6681±0.0745

GPS 0.070±0.004 87.04±0.58 65.35±0.41 -0.5121±0.0426

TANGO-NON-TANGENTGPS 0.066±0.010 88.57±0.72 67.33±0.59 -0.2916±0.0404

TANGOGPS 0.062±0.005 91.08±0.57 70.21±0.43 -0.9772±0.0518

22

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

Table 10: Results for Peptides-func and Peptides-struct averaged over 3 training seeds. Baseline
results are taken from [28] and [43]. Re-evaluated methods employ the 3-layer MLP readout proposed
in [85]. Note that all MPNN-based methods include structural and positional encoding. ‡ means
3-layer MLP readout and residual connections are employed based on [85]. This table is an extended
version of the focused Table 6.

Model Peptides-func Peptides-struct
AP ↑ MAE ↓

MPNNs
GCN 59.30±0.23 0.3496±0.0013

GINE 54.98±0.79 0.3547±0.0045

GCNII 55.43±0.78 0.3471±0.0010

GatedGCN 58.64±0.77 0.3420±0.0013

Multi-hop GNNs
DIGL+MPNN 64.69±0.19 0.3173±0.0007

DIGL+MPNN+LapPE 68.30±0.26 0.2616±0.0018

MixHop-GCN 65.92±0.36 0.2921±0.0023

MixHop-GCN+LapPE 68.43±0.49 0.2614±0.0023

DRew-GCN 69.96±0.76 0.2781±0.0028

DRew-GCN+LapPE 71.50±0.44 0.2536±0.0015

DRew-GIN 69.40±0.74 0.2799±0.0016

DRew-GIN+LapPE 71.26±0.45 0.2606±0.0014

DRew-GatedGCN 67.33±0.94 0.2699±0.0018

DRew-GatedGCN+LapPE 69.77±0.26 0.2539±0.0007

Transformers
Transformer+LapPE 63.26±1.26 0.2529±0.0016

SAN+LapPE 63.84±1.21 0.2683±0.0043

GraphGPS+LapPE 65.35±0.41 0.2500±0.0005

Modified and Re-evaluated‡

GCN 68.60±0.50 0.2460±0.0007

GINE 66.21±0.67 0.2473±0.0017

GatedGCN 67.65±0.47 0.2477±0.0009

GraphGPS 65.34±0.91 0.2509±0.0014

DE-GNNs
GRAND 57.89±0.62 0.3418±0.0015

GraphCON 60.22±0.68 0.2778±0.0018

A-DGN 59.75±0.44 0.2874±0.0021

SWAN 67.51±0.39 0.2485±0.0009

Graph SSMs
Graph-Mamba 67.39±0.87 0.2478±0.0016

GMN 70.71±0.83 0.2473±0.0025

Ours
TANGOGATEDGCN 68.92±0.40 0.2451±0.0006

TANGOGPS 70.21±0.43 0.2422±0.0014

23

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

Table 11: Mean test set score and std averaged over the splits from Platonov et al. [72]. This table is
an extended version of the focused Table 7. Baseline results are reported from [34, 61, 66, 72].

Model Roman-empire Amazon-ratings Minesweeper Tolokers Questions
Acc ↑ Acc ↑ AUC ↑ AUC ↑ AUC ↑

MPNNs
GAT 80.87±0.30 49.09±0.63 92.01±0.68 83.70±0.47 77.43±1.20

GAT-sep 88.75±0.41 52.70±0.62 93.91±0.35 83.78±0.43 76.79±0.71

GAT (LapPE) 84.80±0.46 44.90±0.73 93.50±0.54 84.99±0.54 76.55±0.84

GAT (RWSE) 86.62±0.53 48.58±0.41 92.53±0.65 85.02±0.67 77.83±1.22

GAT (DEG) 85.51±0.56 51.65±0.60 93.04±0.62 84.22±0.81 77.10±1.23

Gated-GCN 74.46±0.54 43.00±0.32 87.54±1.22 77.31±1.14 76.61±1.13

GCN 73.69±0.74 48.70±0.63 89.75±0.52 83.64±0.67 76.09±1.27

GCN (LapPE) 83.37±0.55 44.35±0.36 94.26±0.49 84.95±0.78 77.79±1.34

GCN (RWSE) 84.84±0.55 46.40±0.55 93.84±0.48 85.11±0.77 77.81±1.40

GCN (DEG) 84.21±0.47 50.01±0.69 94.14±0.50 82.51±0.83 76.96±1.21

CO-GNN(Σ, Σ) 91.57±0.32 51.28±0.56 95.09±1.18 83.36±0.89 80.02±0.86

CO-GNN(µ, µ) 91.37±0.35 54.17±0.37 97.31±0.41 84.45±1.17 76.54±0.95

SAGE 85.74±0.67 53.63±0.39 93.51±0.57 82.43±0.44 76.44±0.62

Graph Transformers
Exphormer 89.03±0.37 53.51±0.46 90.74±0.53 83.77±0.78 73.94±1.06

NAGphormer 74.34±0.77 51.26±0.72 84.19±0.66 78.32±0.95 68.17±1.53

GOAT 71.59±1.25 44.61±0.50 81.09±1.02 83.11±1.04 75.76±1.66

GPS 82.00±0.61 53.10±0.42 90.63±0.67 83.71±0.48 71.73±1.47

GPSGCN+Performer (LapPE) 83.96±0.53 48.20±0.67 93.85±0.41 84.72±0.77 77.85±1.25

GPSGCN+Performer (RWSE) 84.72±0.65 48.08±0.85 92.88±0.50 84.81±0.86 76.45±1.51

GPSGCN+Performer (DEG) 83.38±0.68 48.93±0.47 93.60±0.47 80.49±0.97 74.24±1.18

GPSGAT+Performer (LapPE) 85.93±0.52 48.86±0.38 92.62±0.79 84.62±0.54 76.71±0.98

GPSGAT+Performer (RWSE) 87.04±0.58 49.92±0.68 91.08±0.58 84.38±0.91 77.14±1.49

GPSGAT+Performer (DEG) 85.54±0.58 51.03±0.60 91.52±0.46 82.45±0.89 76.51±1.19

GPSGCN+Transformer (LapPE) OOM OOM 91.82±0.41 83.51±0.93 OOM
GPSGCN+Transformer (RWSE) OOM OOM 91.17±0.51 83.53±1.06 OOM
GPSGCN+Transformer (DEG) OOM OOM 91.76±0.61 80.82±0.95 OOM
GPSGAT+Transformer (LapPE) OOM OOM 92.29±0.61 84.70±0.56 OOM
GPSGAT+Transformer (RWSE) OOM OOM 90.82±0.56 84.01±0.96 OOM
GPSGAT+Transformer (DEG) OOM OOM 91.58±0.56 81.89±0.85 OOM
GT 86.51±0.73 51.17±0.66 91.85±0.76 83.23±0.64 77.95±0.68

GT-sep 87.32±0.39 52.18±0.80 92.29±0.47 82.52±0.92 78.05±0.93

Heterophily-Designated GNNs
CPGNN 63.96±0.62 39.79±0.77 52.03±5.46 73.36±1.01 65.96±1.95

FAGCN 65.22±0.56 44.12±0.30 88.17±0.73 77.75±1.05 77.24±1.26

FSGNN 79.92±0.56 52.74±0.83 90.08±0.70 82.76±0.61 78.86±0.92

GBK-GNN 74.57±0.47 45.98±0.71 90.85±0.58 81.01±0.67 74.47±0.86

GloGNN 59.63±0.69 36.89±0.14 51.08±1.23 73.39±1.17 65.74±1.19

GPR-GNN 64.85±0.27 44.88±0.34 86.24±0.61 72.94±0.97 55.48±0.91

H2GCN 60.11±0.52 36.47±0.23 89.71±0.31 73.35±1.01 63.59±1.46

JacobiConv 71.14±0.42 43.55±0.48 89.66±0.40 68.66±0.65 73.88±1.16

Graph SSMs
GMN 87.69±0.50 54.07±0.31 91.01±0.23 84.52±0.21 –
GPS + Mamba 83.10±0.28 45.13±0.97 89.93±0.54 83.70±1.05 –

Ours
TANGOGatedGCN 91.89±0.30 52.60±0.53 98.32±0.59 85.51±0.98 80.39±1.04

TANGOGPS 91.08±0.57 53.83±0.32 98.39±0.54 85.66±1.01 80.32±1.07

24

TANGO: Graph Neural Dynamics via Learned Energy and Tangential Flows

Table 12: Mean test set MSE (↓) and std averaged on 4 random weight initializations on Graph
Property Prediction. Lower is better. First, second, and third best results for each task are color-
coded.

Model Diameter SSSP Eccentricity

MPNNs
GatedGCN [11] 1.363955±0.124683 5.483e-04±6.489e−05 5.006106±0.348115

GCN [52] 5.525862±0.592928 8.910457±0.002052 7.027486±0.045308

GAT [89] 6.638959±1.149565 4.955643±1.710477 6.178741±0.315841

GraphSAGE [44] 7.319813±0.675865 1.933303±0.820429 6.113642±0.291398

GIN [98] 4.102986±0.935300 0.287872±0.277933 8.920722±0.014379

GCNII [16] 3.378314±0.443395 0.073638±0.002289 5.807644±0.474727

DE-GNNs
DGC [73] 4.006822±0.046130 0.710722±0.037803 6.700389±0.049370

GRAND [15] 4.693534±0.529556 0.805008±0.722347 4.572987±1.466786

GraphCON [78] 1.248533±0.178241 0.041343±8.758e−04 4.822808±0.082176

A-DGN [39] 0.302831±0.126350 5.732e-04±9.912e−05 2.689057±0.621036

SWAN [40] 0.252290±0.066515 2.867e-04±5.480e−05 0.843529±0.425363

PH-DGN [46] 0.289401±0.012461 5.020e-05±8.334e−06 0.116198±0.056107

Transformers
GPS [74] 0.307539±0.030167 2.518e-04±1.130e−04 4.052285±0.263127

Ours
TANGOGATEDGCN 0.214734±0.036836 8.658e-06±1.479e−06 0.018118±4.422e−04

TANGOGPS 0.105390±0.012570 2.976e-06±5.743e−07 0.007153±5.435e−05

25

	1 Introduction
	2 Method
	2.1 Optimizing Features with Energy Tangential and Gradient Steps
	2.2 Theoretical Properties of Tango

	3 Experiments
	4 Conclusions
	A Mathematical Background
	B Implementing Tango Graph Neural Networks
	C Related Work
	D Proofs of Theoretical Results
	E Complexity and Runtimes
	F Experimental Details
	F.1 Synthetic Example from fig:signalcomparison
	F.2 Graph Property Prediction
	F.3 Graph Benchmarks from dwivedi2023benchmarking
	F.4 Long Range Graph Benchmark
	F.5 Heterophilic Node Classification
	F.6 Hyperparameters

	G Additional Results and Comparisons
	G.1 Long-Range Benchmark
	G.2 Heterophilic Node Classification
	G.3 Additional Comparisons
	G.4 Ablation Study

