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ABSTRACT

Accurately identifying protein binding sites is essential for drug discovery, yet
existing computational methods often struggle to balance precision, recall, and scal-
ability. We introduce PickPocket, a deep learning model that integrates sequence-
derived evolutionary embeddings from ESM-2 with geometric structural representa-
tions from GearNet to predict ligand-binding sites at the proteome scale. PickPocket
leverages both residue-level sequence context and graph-based spatial relation-
ships, enabling it to generalize across diverse protein families while maintaining
high precision. Evaluated on the LIGYSIS benchmark, PickPocket outperforms
state-of-the-art methods, achieving the highest F1 score (0.42) and maintaining a
competitive Matthews Correlation Coefficient (MCC) (0.37). PickPocket effec-
tively predicts cryptic pockets, surpassing specialized models like PocketMiner
even without explicit training on ligand-induced conformational changes. Our
large-scale analysis of 356,711 proteins further demonstrates PickPocket’s ability
to identify novel binding sites across human drug targets. By combining evolution-
ary and geometric learning, PickPocket represents a scalable, data-driven approach
for structure-based drug discovery.

1 INTRODUCTION

Protein function is often modulated by small molecules or peptides that bind to specific surface
regions, altering structural dynamics and biochemical activity (Bedard et al., 2020). Identifying these
binding sites is a key step in rational drug discovery, as it guides molecular design and ensures target
selectivity (Ehrt et al., 2016). Traditional computational approaches for binding site detection include
molecular docking, geometric analyses, and physicochemical mapping, but these methods often
require prior knowledge of the binding region and may struggle with cryptic or allosteric sites (Zhang
et al., 2022; Davis et al., 2009). Advances in artificial intelligence and geometric deep learning have
enabled data-driven models to predict binding sites by leveraging protein structural features, sequence
conservation, and physicochemical properties, enhancing accuracy beyond rule-based algorithms.

We introduce PickPocket, a model that integrates structural and evolutionary insights for binding site
prediction. By combining evolutionary embeddings from ESM-2 (Lin et al., 2023) with geometric
representations from GearNet (Zhang et al., 2023b), our approach captures both sequence-derived
functional patterns and spatial relationships between residues. This fusion of protein language
models and graph neural networks (GNNs) enables robust binding site identification, particularly
for conserved and functionally relevant cavities. We demonstrate that PickPocket outperforms
existing methods on relevant benchmarks, offering a scalable solution for proteome-wide binding site
prediction.
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2 RELATED WORK

Binding site prediction has traditionally relied on geometric and biophysical methods. Fpocket
(Guilloux et al., 2009) employs Voronoi tessellation and alpha spheres to detect ligand-accessible
cavities, while Ligsite (Hendlich et al., 1997) uses a cubic Cartesian grid for solvent-accessible
region detection. PocketFinder (An et al., 2005) applies a Lennard-Jones potential map to identify
favorable interaction sites. Though efficient and interpretable, these methods depend on predefined
heuristics and struggle with conformational flexibility. Machine learning techniques improve upon
these approaches by leveraging statistical patterns. Classical methods such as PRANK (Krivák &
Hoksza, 2015) and P2Rank (Krivák & Hoksza, 2015; 2018) use decision trees and feature-based
classification, achieving higher accuracy than heuristic-based models but remain limited by hand-
engineered features. Deep learning advances binding site prediction further, with PUResNet (Kandel
et al., 2021; 2024) using 3D CNNs for voxelized protein structures, and GNN-based models like VN-
EGNN (Sestak et al., 2024) and GrASP (Smith et al., 2023) leveraging graph attention mechanisms to
capture molecular interactions. With the rise of representation learning in biology, methods such as IF-
SitePred (Carbery et al., 2024) leverage evolutionary information for residue classification, enhancing
binding site prediction by combining ESM-IF1 embeddings (Hsu et al., 2022) with LightGBM. This
sequence-informed approach mitigates structural inaccuracies, offering a scalable and generalizable
alternative. A more detailed outline of relevant works can be found in Appendix B.

3 METHODS

PickPocket’s architecture. PickPocket combines sequence and structural information using ESM-2
(Lin et al., 2023) and GearNet (Zhang et al., 2023b). ESM-2, a transformer-based protein language
model, processes the sequence through self-attention layers to generate residue embeddings. Fol-
lowing serial fusion (Zhang et al., 2023a), these embeddings serve as node features for GearNet,
which processes the protein structure as a graph where nodes represent residues and edges capture
their structural relationships. Both components leverage pretrained weights: ESM-2 from large-scale
sequence data and GearNet from residue type prediction (Zhang et al., 2023a). For binding site
prediction, we concatenate the outputs of both models and pass them through a two-layer MLP classi-
fier to generate per-residue binding probabilities. To assemble neighboring predicted residues into
cohesive pockets, we apply DBSCAN clustering. See Appendix C for a more in-depth explanation of
PickPocket’s architecture.

Training. We use the 2017 release of sc-PDB (Desaphy et al., 2015) as our training dataset, which
contains 4,782 proteins, and 6,326 ligands. Following Kandel et al. (2021) and Zhang et al. (2024),
we used their pre-clustered dataset based on UniProt IDs. We additionally filtered for single-chain
proteins under 1,022 residues, yielding 3,520 protein chains for training and validation.

4 RESULTS AND DISCUSSION

4.1 PICKPOCKET EFFECTIVELY LEARNS TO PREDICT BINDING POCKETS

To benchmark our model, we used LIGYSIS (Utgés & Barton, 2024), a curated resource for protein-
ligand binding site prediction. Unlike previous benchmarks, LIGYSIS aggregates binding interfaces
across multiple protein structures, includes diverse ligands, and prioritizes biological units for
functional relevance. After filtering chains with missing UniProt (Consortium, 2024) mappings, the
final set comprises 2,775 protein chains. To meet ESM-2 embedding constraints, proteins over 1,022
residues were cropped, excluding 7 pockets from evaluation.

The results show that PickPocket achieves the highest F1 score (0.42) and maintains a competitive
MCC of 0.37, outperforming existing deep learning-based methods such as PUResNet, GrASP,
and P2Rank CONS (Jakubec et al., 2022), as well as classical geometric approaches like fpocket,
PocketFinder, and Ligsite (Table 2). Additionally, we compute global rankings from metrics in Tables
2 and 3 for all methods. PickPocket demonstrates a well-balanced performance across the evaluated
metrics, securing the top rank in Top-N and F1 while maintaining strong rankings in MCC (2nd
place) and Top-N+2 (4th place). With an overall total ranking score of 8, PickPocket outperforms
other methods, highlighting its ability to consistently identify binding pockets with high precision.
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Table 1: Overall ranking of methods grouped by core method names (best rank per group), ordered
by total rank.

Method Group Top-N Top-N+2 F1 MCC Total

PickPocket 1 4 1 2 8
P2Rank (incl. CONS) 2 3 4 4 13
GrASP 4 5 3 3 15
PUResNet (incl. PRANK) 10 10 2 1 23
fpocket (incl. PRANK) 2 1 11 11 25
DeepPocket (incl. SEG, RESC) 5 2 10 8 25
Ligsite (incl. AA) 6 6 5 8 25
PocketFinder (incl. AA) 7 7 5 7 26
VN-EGNN (incl. NR) 7 9 7 5 28
Surfnet (incl. AA) 9 8 7 10 34
IF-SitePred (incl. RESC-NR) 11 11 7 6 35

Unlike methods such as fpocket, which achieves the best Top-N+2 ranking but struggles in F1 and
MCC, or PUResNet, which excels in MCC but ranks lower in other categories, PickPocket maintains
a competitive standing across all metrics. This balance suggests that PickPocket provides robust and
reliable pocket predictions without significant trade-offs in different performance aspects (Table 1).

4.2 PICKPOCKET PREDICTS CRYPTIC SITES WITHOUT SPECIFIC TRAINING

Identifying hidden binding pockets, such as cryptic or allosteric sites, remains a challenge in drug
discovery, as they often go undetected in static protein structures. These sites may be transient,
hidden in unbound states, or form only under specific conformations. Detecting them requires
integrating evolutionary, structural, and physicochemical information. We assessed PickPocket on
24 apo structures from the PocketMiner (Meller et al., 2023) test set, comparing predictions to holo
structures. Unlike PocketMiner, which relies on molecular dynamics-derived labels, PickPocket
predicts cryptic sites without direct supervision.

Analysis using precision-recall curves showed PickPocket outperformed PocketMiner for both apo
and holo structures, achieving higher AUC scores (0.617 vs 0.438 for apo; 0.656 vs 0.539 for
holo). PickPocket maintained superior precision across a broader recall range, particularly in apo
structures where cryptic pockets are harder to detect. This suggests effective capture of structural and
evolutionary signals correlating with cryptic site formation, even in unbound states. Interestingly,
PickPocket’s predictions were particularly enriched in regions undergoing substantial conformational
rearrangements upon ligand binding (Figure 1), aligning well with experimentally validated cryptic
pockets. This observation suggests that PickPocket effectively identifies pockets that are structurally
predisposed to ligand binding, reinforcing its utility in cryptic pocket discovery.

(a) Structural arrangement of LTA4H with cryptic
pocket in closed form. Region predicted by Pick-
Pocket in red.

(b) Structural arrangement of LTA4H with cryptic
pocket in open form. Region predicted by PickPocket
in red.

Figure 1: PickPocket accurately identifies binding sites in both conformations: (a) closed pocket
(PDB: 5NI6) and (b) open pocket (PDB: 5NIA).
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(a) Precision-Recall curve for apo structures. (b) Precision-Recall curve for holo structures.

Figure 2: Comparison of PickPocket and PocketMiner on apo (unbound) and holo (bound) structures
for cryptic pocket prediction. PickPocket consistently achieves superior performance, generalizing
across different protein conformations without requiring MD-derived labels.

This underscores the scalability and efficiency of PickPocket for proteome-wide cryptic site discovery,
offering a valuable alternative to simulation approaches while reducing computational costs.

4.3 SCALING BINDING SITE PREDICTION TO ALL HUMAN PROTEIN STRUCTURES

To evaluate the scalability and applicability of PickPocket, we predicted ligand-binding pockets
across all single-chain protein structures available in the Protein Data Bank (PDB) as of November
2024 (Berman et al., 2000; 2003). In total, we analyzed 356,711 individual chains, treating each
as an independent system. PickPocket identified at least one pocket in 76.2% of chains, with an
average of 3.08 pockets per target when at least one was detected. These values are influenced by the
choice of aggregation and clustering parameters, which can be adjusted to modulate sensitivity to
smaller pocket-like regions. Here, we adopted the sc-PDB distance threshold to ensure consistency
with established datasets. To assess PickPocket’s performance on predicted structures, we repeated
the analysis using AlphaFold2-generated (Jumper et al., 2021; Varadi et al., 2021) models of the
same protein chains. Predictions were obtained for 74.8% of structures, with 98.9% overlap in
pocket detection between experimental and predicted conformations. This consistency suggests
that PickPocket is robust to structural variations, making it applicable to both crystallographic and
computationally derived protein models.

To assess the conservation and structural variability of binding pockets across evolutionarily related
proteins, we analyzed three homologous superfamilies, selecting a representative structure for each
family. We retrieved all available homologs for these reference proteins, predicted binding pockets
using PickPocket, and superimposed the structures to evaluate pocket conservation based on centroid
distances. For metalloproteases (TldD/PmbA, N-terminal domain), we selected 1VPB, a putative
modulator of DNA gyrase (BT3649) from Bacteroides, and analyzed 11 homologous structures within
the superfamily. For GPCRs (family 2, extracellular hormone receptor domain), we used 7UZO, the
parathyroid hormone 1 receptor extracellular domain complexed with a peptide ligand, comparing it
to 191 homologous structures. For kinases (protein kinase-like domain superfamily), we selected
6OQO, a CDK6 complex with an experimental inhibitor, and examined 8,000 homologs from the
PDB. Binding pocket predictions were performed on the reference structures, while homologous
proteins were superimposed to compute the distance between pocket centroids. Among aligned
structures (defined as those with no missing atoms and at least 10 matching Cα residues), the average
RMSD between pocket centroids was 4.4 Å for metalloproteases, 5.92 Å for GPCRs, and 3.8 Å for
kinases.

The large-scale assessment of PickPocket across experimental and predicted structures demonstrates
its capacity to detect ligand-binding sites in diverse protein architectures. The high overlap between
pocket predictions in crystallographic and AlphaFold2-derived structures suggests that PickPocket
generalizes well across structural conformations, even in the absence of explicit holo-state training.
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This robustness is particularly relevant given the increasing reliance on computationally predicted
structures in drug discovery, where experimental data may be unavailable. However, the small
fraction of discrepancies highlights the potential influence of conformational flexibility, particularly
in cases where ligand-induced pocket formation is essential. The analysis of homologous superfam-
ilies further reveals how PickPocket captures both conserved and variable aspects of binding site
topology. The lower RMSD observed for kinases compared to GPCRs aligns with known functional
constraints, as kinases exhibit strong evolutionary pressure to maintain ATP-binding sites, whereas
GPCR extracellular domains undergo more structural variation to accommodate different ligands.
These findings suggest that PickPocket’s predictions are influenced by both structural rigidity and
evolutionary conservation.

4.4 PREDICTED POCKET EMBEDDINGS ENABLE BINDING SITE PAIRING

To assess whether pocket embedding similarity correlates with ligand compatibility, we docked 4,300
diverse compounds across selected receptor pairs and analyzed their embedding distances alongside
ligand-binding distributions (See Appendixes G.2 and G.3). Our analysis revealed that pockets with
lower embedding distances generally accommodate overlapping ligands, while those with higher
distances show minimal shared ligand preferences. More details in Appendix G.4

Low-distance pocket pairs demonstrated high ligand-binding overlap. For example, 6FW0 B –
2Z5Y A (Monooxygenase-Monooxygenase, Distance = 6.04) and 8F07 A – 8SKL A (Hydrolase-
Hydrolase, Distance = 14.82) showed strong ligand correlation. Interestingly, 7WCM R – 6FW0 A
(GPCR-Monooxygenase, Distance = 13.73) exhibited unexpected ligand compatibility, suggesting
conserved physicochemical properties. Most high-distance pairs showed minimal ligand overlap,
though 8SKL A – 7WCM A (Hydrolase-G-Protein, Distance = 37.96) was a notable exception,
showing strong ligand compatibility despite its high embedding distance. Further investigation of this
case can be found in Appendix G.4.

These findings demonstrate that embedding similarity can guide target expansion, particularly for
structurally related proteins. However, the results also indicate that additional descriptors may be
needed to refine ligand-based predictions, especially when considering cross-family compatibility.

(a) (b)

Figure 3: Docking scores for the selected proteins. (a) The docking difference for selected and
random pairs, demonstrating that smaller Euclidean distances correlate with more similar docking
scores. (b) The distribution of docking scores for the selected pairs, showing a concentration of
similar docking scores for these cases. Further details in Appendix G.3

5 CONCLUSIONS

PickPocket integrates evolutionary embeddings with graph-based structural representations to achieve
precise and scalable binding site prediction, addressing the limitations of traditional methods that
overpredict or rely on predefined heuristics. It consistently outperforms existing approaches in identi-
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fying ligand-binding sites while maintaining competitive performance in cryptic pocket detection,
surpassing PocketMiner despite the absence of explicit training on conformational rearrangements.

Beyond structural resemblance, PickPocket quantifies physicochemical compatibility using
embedding-based similarity metrics, providing a robust framework for assessing binding site conser-
vation and functional overlap. With high recall and precision, it achieves a 98.9% structural overlap
between PDB and AlphaFold2-derived models, demonstrating reliability across diverse protein struc-
tures. Its scalability and ability to infer ligand-binding potential from sequence and structural data
make it a powerful tool for data-driven drug discovery and functional proteome annotation. By
leveraging pocket embeddings, PickPocket enables large-scale binding site comparisons, advancing
target deorphanization, polypharmacology, and ligand repurposing.
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and Jian Tang. A systematic study of joint representation learning on protein sequences and
structures, 2023a. URL https://arxiv.org/abs/2303.06275.

Zuobai Zhang, Minghao Xu, Arian Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel Das,
and Jian Tang. Protein representation learning by geometric structure pretraining, 2023b. URL
https://arxiv.org/abs/2203.06125.

9

https://arxiv.org/abs/2302.12177
https://arxiv.org/abs/2302.12177
https://arxiv.org/abs/2303.06275
https://arxiv.org/abs/2203.06125


Published at the GEM workshop, ICLR 2025

A DATASETS

Training. The sc-PDB (Structural Chemogenomics Protein Data Bank) (Kellenberger et al., 2006;
Desaphy et al., 2015) is a curated dataset of druggable protein-ligand complexes extracted from the
PDB. Compared to datasets like PDBBind (Wang et al., 2004) and Binding MOAD (Hu et al., 2005;
Smith et al., 2019), sc-PDB emphasizes druggable sites and ligand diversity, making it a valuable
resource for computational drug design. The dataset used for training and validation is the 2017
release of sc-PDB database (Desaphy et al., 2015), which comprises 17,594 structures, 16,034 entries,
4,782 proteins, and 6,326 ligands. We used a subset of this dataset following PUResNet (Kandel
et al., 2021) and EquiPocket (Zhang et al., 2024), where structures were clustered based on their
Uniprot (Consortium, 2024) IDs, and protein structures with the longest sequences were selected
from each cluster. The training split follows VN-EGNN but with two additional constraints: proteins
longer than 1,022 residues were excluded due to ESM embedding limitations, and the dataset was
restricted to single-chain proteins only. These preprocessing steps resulted in a final dataset of 3,520
protein chains for training and validation.

Testing. We utilized the LIGYSIS dataset (Utgés & Barton, 2024), a curated resource for evalu-
ating protein–ligand binding site prediction methods. LIGYSIS comprises approximately 30,000
biologically relevant protein–ligand complexes, aggregating unique ligand-binding interfaces across
multiple structures of the same protein. The dataset includes diverse ligand types—ions, peptides,
nucleic acids, and small molecules—accounting for approximately 40% ion-binding sites, which are
largely absent in other benchmarks. LIGYSIS aggregates data from multiple structures of the same
protein, offering a comprehensive view of ligand-binding diversity.

For instance, human pancreatic alpha-amylase, represented by PDB entry 4GQQ in PDBbind, is
expanded in LIGYSIS to include 13 unique binding sites derived from 51 structures. This approach
significantly enhances dataset diversity, as indicated by a Shannon entropy of 8.8 in the ion-excluded
subset (LIGYSISNI), surpassing all other benchmark datasets. Compared to sc-PDBFULL, which
limits each protein to the most relevant ligand, LIGYSIS provides a richer representation of binding
site diversity.

Unlike prior datasets such as sc-PDBFULL, bMOADSUB, CHEN11, PDBbindREF, SC6K, HOLO4K,
and COACH420, LIGYSIS considers biological units instead of crystallographic asymmetric units,
ensuring that only functional macromolecular assemblies are represented. Redundant protein–ligand
interfaces, often inflated because of symmetry in crystallographic data, were systematically removed
by clustering ligand interaction sites based on their protein interaction fingerprints.

LIGYSIS diverges from HOLO4K and COACH420, which rely on asymmetric units, by avoiding
redundancy through a focus on biologically meaningful assemblies, improving the reliability of
benchmarking results. Additionally, it corrects overrepresentation in datasets such as SC6K by
ensuring non-redundant multimeric interactions and ligand diversity.

The final LIGYSIS benchmark set, after removing chains with missing residue mappings to UniProt,
comprises 2,775 protein chains. To accommodate the maximum input size for ESM-2 embeddings,
we crop proteins longer than 1022 residues to the first 1022 residues. Residues that were cropped are
excluded from the ground truth. This preprocessing step led to the exclusion of 7 pockets in total
from the LIGYSIS dataset.

B RELATED WORK

B.1 GEOMETRICAL AND BIOPHYSICAL METHODS

Geometrical methods have been extensively developed to address this challenge. One prominent
example is the fpocket algorithm (Guilloux et al., 2009), an open-source tool that employs Voronoi
tessellation and alpha spheres to detect binding cavities. The key concept behind fpocket is the use of
alpha spheres, which are defined as spheres that contact four atoms on their boundary without any
internal atoms. These alpha spheres serve as proxies for identifying regions likely to accommodate
ligands. The fpocket workflow begins with Voronoi tessellation to determine the alpha spheres
from the protein’s atomic coordinates. The identified alpha spheres are then filtered based on
size and clustered using proximity-based methods to form potential binding pockets. Finally, the
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detected pockets are scored and ranked using geometric and physicochemical descriptors, such as
hydrophobicity and alpha sphere density, to prioritize the most promising binding sites.

Another widely used geometrical method is Ligsite (Hendlich et al., 1997), which builds upon
the earlier POCKET (Levitt & Banaszak, 1992) algorithm to enhance accuracy and efficiency.
Ligsite utilizes a cubic Cartesian grid to identify pockets by detecting solvent-accessible regions
enclosed by protein atoms along the x, y, and z axes, as well as along the cubic diagonals. This
approach reduces the dependency on protein orientation, making it more robust. The grid points are
scored based on Protein-Solvent-Protein (PSP) events, where higher scores indicate deeper pockets.
Ligsite allows users to adjust parameters like grid resolution and pocket size thresholds to refine the
detection process. Its rigorous scanning method ensures precise identification of pocket shapes while
filtering out irrelevant surface irregularities. Notably, Ligsite is computationally efficient, capable of
processing medium-sized proteins in 5-10 seconds with a 0.5 Å grid resolution, making it suitable for
large-scale analyses.

PocketFinder (An et al., 2005) is a computational method that identifies and classifies ligand-
binding envelopes by leveraging a transformation of the Lennard-Jones potential derived from protein
structures. Unlike traditional approaches, PocketFinder predicts binding envelopes rather than surface
binding sites, without requiring prior knowledge of ligand identity. The method was tested on
large datasets of liganded (5,616) and unliganded (11,510) structures, achieving 96.8% accuracy
in identifying experimental binding sites with over 50% overlap in liganded structures and 95% in
unliganded ones, demonstrating robustness against conformational changes. PocketFinder combines
geometric and physicochemical principles, calculating a van der Waals potential map using a probe
atom, smoothing it iteratively, and contouring the resulting map to define binding envelopes. These
envelopes are filtered by size and sorted by volume, prioritizing significant binding sites. The method
also introduces a hierarchical clustering of predicted envelopes into a ”pocketome”, enabling the
analysis of binding site diversity across structural proteomes.

B.2 LEARNING-BASED METHODS

Computational methods have evolved from traditional geometric and biophysical approaches to more
advanced machine learning-based techniques.

Classical methods. PRANK (Krivák & Hoksza, 2015) is a post-processing algorithm designed to
enhance the ranking of predicted protein-ligand binding pockets by addressing the limitations of
traditional heuristic methods, which often fail to distinguish true binding pockets from false positives.
PRANK represents binding pockets as ”inner pocket points” sampled from the protein’s Connolly
surface within 4 Å of pocket-defining atoms. Each point is assigned a feature vector combining
residue-level properties, such as hydropathy, with atomic-level properties like partial charges and
ligand-binding propensities, along with additional metrics such as protrusion index and H-bond
information. A distance-weighted function aggregates these features into final point descriptors,
which are then evaluated by a Random Forest classifier trained to predict ligandability. Points near
known ligands serve as positives, while all others are negatives. Pockets are scored based on the
cumulative squared probabilities of their points being ligandable, enabling PRANK to effectively
differentiate true binding pockets from false positives. P2Rank (Krivák & Hoksza, 2018) builds
upon a machine learning framework to predict ligand-binding sites by leveraging chemical and
geometric features of protein solvent-accessible surfaces. Unlike template-based methods that rely on
known protein-ligand complexes, P2Rank infers ligand-binding potential directly from local surface
properties. This approach enables P2Rank to predict novel binding sites with high accuracy and
speed, achieving state-of-the-art performance on benchmark datasets like COACH420 and HOLO4K.
Its minimal preprocessing requirements, standalone nature, and ability to process proteins in seconds
make it highly suitable for automated pipelines and large-scale applications.

Convolutional Neural Networks. PUResNet (Kandel et al., 2021; 2024) advances protein-ligand
binding site prediction through its integration of 3D convolutional neural networks and residual
learning. Tackling challenges such as data imbalance and structural redundancy, PUResNet employs
a rigorous preprocessing pipeline that refines the sc-PDB dataset (Desaphy et al., 2015) by clustering
proteins based on UniProt IDs and selecting representative sequences to ensure diversity and eliminate
redundancy. Proteins are voxelized into 3D grids with each voxel encoding 18 atomic features, and
a U-Net-inspired architecture processes these grids using 3D convolutions. Residual connections
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throughout the encoder-decoder structure address vanishing gradient issues while preserving fine-
grained spatial details. The model is trained using Dice loss, optimized for imbalanced datasets,
and evaluated through k-fold cross-validation. As stated in Kandel et al. (2021; 2024), PUResNet
demonstrates state-of-the-art performance in metrics such as Distance Center-Center (DCC) and
Discretized Volume Overlap (DVO), excelling in predicting binding sites for unbound proteins.

Graph Neural Networks. VN-EGNN (Sestak et al., 2024) addresses key limitations of graph neural
networks (GNNs) (Scarselli et al., 2008; Satorras et al., 2021; Xu et al., 2018) in ligand-binding site
prediction, such as poor learning dynamics due to oversquashing and the absence of nodes dedicated
to geometric representations of binding pockets. By introducing virtual nodes, VN-EGNN enhances
information flow and captures complex spatial relationships through an extended heterogeneous
message-passing scheme. Its E(3)-equivariance ensures predictions remain consistent under geometric
transformations, critical for the irregular nature of protein structures. Unlike traditional methods that
infer binding site centers from segmented regions, VN-EGNN directly predicts these centers, aligning
virtual node coordinates to physical binding positions. This approach improves predictive accuracy,
as demonstrated by its superior performance in benchmarks like COACH420 and HOLO4K. GrASP
(Smith et al., 2023) transforms ligand-binding site prediction by leveraging graph attention networks
(GATs) to dynamically learn atomic and residue-level features. Proteins are encoded as graphs
where nodes represent atoms and edges capture spatial relationships. GrASP integrates multi-head
attention, advanced regularization techniques, and rotationally invariant GNNs to address challenges
like oversmoothing and enhance predictive precision. Trained on an expanded sc-PDB dataset,
GrASP employs an encoder-processor-decoder architecture to predict ligandable atoms, clustering
high-scoring atoms into discrete binding sites and ranking them with a refined metric adapted
from P2Rank. GrASP consistently outperforms competing methods in precision and computational
efficiency, excelling in metrics tailored for drug discovery.

Protein embeddings. IF-SitePred (Carbery et al., 2024) introduces a novel approach to protein-ligand
binding site prediction by combining embeddings from the ESM-IF1 protein language model (Hsu
et al., 2022) with LightGBM classifiers (Ke et al., 2017). Unlike traditional methods that rely on
all-atom features, IF-SitePred focuses on backbone-derived geometric properties, making it robust
to inaccuracies in predicted structures. The model classifies residues as binding or non-binding
using 512-dimensional embeddings that capture local residue environments. Binding residues are
mapped into three-dimensional space, where DBSCAN clustering identifies potential binding site
centers ranked by binding-labeled point density. This backbone-focused approach ensures resilience
to side-chain inaccuracies, which often hinder existing methods. Evaluation on paired PDB and
AlphaFold2 (Varadi et al., 2022) structures demonstrates IF-SitePred’s robust performance, achieving
a 93% top-3 success rate (DCA ≤ 4A) and outperforming traditional tools even on low-accuracy
structures (Carbery et al., 2024). Additionally, ensemble strategies leveraging molecular dynamics
conformations further enhance accuracy, highlighting the model’s capacity to exploit structural
diversity and generalize across novel ligand-binding sites.

C PICKPOCKET

C.1 ESM-GEARNET: JOINT SEQUENCE-STRUCTURE LEARNING

We propose PickPocket, a joint sequence-structure protein binding site prediction model that leverages
serial fusion of ESM-2 and GearNet (Zhang et al., 2023a). Serial fusion enables effective integration
of evolutionarily conserved patterns from sequences with geometric structural relationships by using
ESM-2’s contextual representations to initialize GearNet’s node features. This fusion strategy has
been shown to outperform parallel and cross fusion approaches while maintaining architectural
simplicity. By initializing GearNet with ESM-2’s pretrained sequence knowledge and using a
reduced learning rate for ESM-2 to preserve its pretrained representations during training, our model
effectively combines the complementary strengths of both sequence-based language modeling and
structure-based geometric learning for accurate pocket identification.

C.1.1 SEQUENCE REPRESENTATION WITH ESM-2

ESM-2 (Lin et al., 2023), a transformer-based protein language model, generates sequence embed-
dings for each residue in a protein sequence R = [r1, r2, . . . , rn]. The sequence embedding process
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begins by encoding each residue into an initial feature vector:

h
(0)
i = Embedding(ri) ∈ Rd,

where d is the embedding dimension. Through a stack of transformer layers, these embeddings are
refined using multi-head self-attention:
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The final layer produces sequence embeddings h(L) that capture contextual and evolutionary informa-
tion.

C.1.2 STRUCTURE REPRESENTATION WITH GEARNET

GearNet (Zhang et al., 2023b) processes the protein structure as a graph G = (V, E ,R), where nodes
represent residues and edges define their relationships. We establish three types of edges: sequential
edges connecting residues within distance of 3 in the primary sequence, spatial edges connecting
residues within 10Å, and k-nearest neighbor edges (k=10). Following serial fusion, each node is
initialized with its corresponding ESM-2 sequence embedding:

u
(0)
i = h

(L)
i

The structural information is integrated through 6 layers of message passing networks (hidden
dimension 512):
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where Nr(i) represents neighbors of node i connected by edge type r. The network incorporates
batch normalization and residual connections throughout these layers.

C.2 BINDING SITE PREDICTION ARCHITECTURE

C.2.1 MODEL INITIALIZATION

ESM-2 is initialized with its pretrained weights from large-scale protein sequence data, while GearNet
is initialized with the weights from residue type prediction (Zhang et al., 2023a). This pretraining
approach allows both models to leverage their respective pretrained knowledge of sequence and
structure.

C.2.2 RESIDUE-LEVEL CLASSIFICATION

The final residue representations are created by concatenating outputs from both ESM-2 and GearNet.
These are fed into a two-layer multilayer-perceptron (MLP) (Haykin, 1994) classifier:

hi = GELU(W1xi + b1)

yi = W2hi + b2

where yi represents the predicted binding probability for residue i.

C.2.3 POCKET EXTRACTION

After obtaining residue-level predictions, we employ DBSCAN (Ester et al., 1996) clustering to
identify cohesive binding pockets. Residues with binding probabilities exceeding 0.5 are considered
for clustering, using parameters eps = 5Å (maximum distance between two residues to be considered
neighbors) and min samples = 3 (minimum number of residues required to form a cluster). This
post-processing step helps identify contiguous regions that are likely to form functional binding sites.
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C.3 TRAINING-TESTING STRATEGY

C.3.1 TRAINING PROCESS

The training process jointly optimizes all components of the model using different learning rates: a
lower learning rate of 10−5 for the ESM-2 parameters, and 10−4 for both GearNet and MLP classifier
parameters. The model is trained using a smooth F1 loss function:

Lsmooth-F1 = 1− 2TP
2TP + FP + FN + ϵ

, (1)

where TP, FN, and FP represent true positives, false negatives, and false positives respectively. We
use the Adam optimizer with a batch size of 4. The smooth F1 loss helps balance the treatment of
positive and negative cases, making it particularly suitable for imbalanced datasets.
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D LIGYSIS RESULTS

PickPocket was evaluated against state-of-the-art binding site prediction methods using the LIGYSIS
benchmark, which provides a comprehensive dataset of ligand-binding sites across diverse protein
structures. For evaluating residue classification, specifically determining whether residues belong
to a binding site, we used standard metrics such as F1 score and Matthews Correlation Coefficient
(MCC). The results indicate that PickPocket achieves the highest F1 score (0.42) and maintains a
competitive Matthews Correlation Coefficient (MCC) of 0.37, outperforming existing deep learning-
based methods such as PUResNet, GrASP, and P2Rank CONS, as well as classical geometric
approaches like fpocket, PocketFinder, and Ligsite (Table 2). These findings highlight PickPocket’s
ability to balance precision and recall, making it a robust approach for identifying functionally
relevant binding pockets.

To assess its effectiveness in binding site detection, PickPocket was evaluated using Top-N recall as a
metric. Top-N recall measures the model’s ability to identify true binding sites among its top-ranked
predictions. A prediction is considered correct if the distance between the predicted pocket centroid
and the observed binding site centroid (DCC) is ≤ 12 Å. When evaluating recall, we consider both
the Top-N and Top-(N+2) ranked predictions, where N is the number of true binding sites in the
protein. Following the approach used in LIGYSIS, we compute the recall as:

Recall =
# of observed sites with a predicted site at DCC ≤ 12 Å

# of total observed sites

PickPocket achieves a Top-N recall of 48.9%, the highest among the benchmarked methods, out-
performing state-of-the-art approaches such as P2Rank, GrASP, and DeepPocket. Additionally, it
maintains a Top-N+2 recall of 53.3%, demonstrating consistent performance across different ranking
cutoffs (Table 3). These results highlight PickPocket’s superior ability to retrieve relevant binding
sites compared to previous methods.

Compared to other methods, PickPocket benefits from a combination of protein language models
and graph-based structural learning. The integration of ESM-2 embeddings allows it to incorporate
evolutionary information, which is known to be relevant for binding site detection. At the same time,
the use of GearNet enables it to capture spatial relationships between residues, complementing the
sequence-based information. This dual approach helps improve both recall and precision by identi-
fying functionally relevant binding sites while reducing the likelihood of detecting non-functional
surface cavities.

Table 2: Performance comparison ordered by F1 score.

Method F1 MCC

PickPocket 0.42 0.37
PUResNet 0.41 0.39
GrASP 0.39 0.34
P2Rank CONS 0.36 0.30
P2Rank 0.31 0.26
PocketFinder 0.31 0.22
Ligsite 0.31 0.21
VN-EGNN 0.29 0.26
IF-SitePred 0.29 0.24
Surfnet 0.29 0.20
DeepPocket SEG 0.27 0.21
fpocket 0.23 0.12

E CRYPTIC SITES PREDICTION

Identifying binding pockets that are not immediately apparent from static protein structures remains a
significant challenge in drug discovery. Many functionally relevant sites, such as cryptic pockets that
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Table 3: Recall performance ordered by Top-N recall.

Method Top-N Top-N+2

PickPocket 48.9 53.3
P2Rank CONS 48.8 53.9
fpocket PRANK 48.8 60.4
GrASP 48.0 49.9
P2Rank 46.7 51.9
DeepPocket RESC 46.6 58.1
Ligsite AA 44.9 49.0
VN-EGNN NR 44.5 46.1
PocketFinder AA 44.5 48.9
DeepPocket SEG-NR 43.4 49.4
Surfnet AA 43.3 47.4
PUResNet PRANK 40.8 41.1
fpocket 38.8 46.5
IF-SitePred RESC-NR 29.7 39.1

emerge upon ligand binding or allosteric sites that regulate protein activity from a distance, are often
missed by traditional structure-based methods. These pockets may be transient, hidden in unbound
structures, or only form under specific conformational states. Accurately detecting such sites requires
a model capable of integrating sequence-derived evolutionary information, structural flexibility, and
binding-relevant physicochemical features.

To evaluate PickPocket’s ability to predict cryptic binding sites, we analyzed 24 apo structures from
the PocketMiner test set and compared its predictions to the corresponding holo structures. Unlike
PocketMiner, which is explicitly trained to detect cryptic pockets using molecular dynamics derived
labels, PickPocket operates without direct supervision for cryptic site prediction.

Quantitative assessment of PickPocket’s capability in identifying cryptic pockets was performed
using Precision-Recall (PR) curves, comparing its performance against PocketMiner (Figures 2a and
2b). PickPocket consistently outperformed PocketMiner in both apo and holo structures, achieving
significantly higher AUC scores (0.617 and 0.656) compared to PocketMiner’s (0.438 and 0.539),
respectively.

The PR curves highlight that PickPocket maintains superior precision across a broader recall range,
particularly in the apo structures (Figure 2a), where cryptic pockets are inherently more challenging
to detect due to the absence of ligand-induced conformational rearrangements. The improved AUC
suggests that PickPocket effectively captures latent structural and evolutionary signals that correlate
with cryptic site formation, even in unbound states.

Table 4: Total Inference Time Comparison in CPU

Length PickPocket (s) PocketMiner (s)

150 residues 0.34 1.41
350 residues 0.51 1.34
1000 residues 1.44 1.52

In the holo structures (Figure 2b), where ligand-induced conformational changes reveal binding
pockets more explicitly, PickPocket continues to outperform PocketMiner. Its higher AUC (0.656)
indicates that it is capable of accurately localizing binding pockets even in cases where the pocket has
undergone a cryptic-to-open transition. The consistency in its performance across both apo and holo
structures suggests that PickPocket generalizes well to cryptic pocket identification without requiring
explicit cryptic pocket training.

Interestingly, PickPocket’s predictions were particularly enriched in regions undergoing substantial
conformational rearrangements upon ligand binding, aligning well with experimentally validated
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cryptic pockets. This observation suggests that PickPocket effectively identifies pockets that are
structurally predisposed to ligand binding, reinforcing its utility in cryptic pocket discovery.

This underscores the scalability and efficiency of PickPocket for proteome-wide cryptic site discovery,
offering a valuable alternative to MD-based approaches while significantly reducing computational
costs.

F ABLATION STUDIES

Table 5: Performance Metrics for Different Ablation

Ablation F1 Score MCC Top-N (%) Top-N+2 (%)

Freeze ESM 0.35 0.32 37.5 40.3
Freeze GearNet 0.40 0.35 47.3 51.5
No Freezing 0.42 0.37 48.9 53.3

To assess the relative contributions of sequence-based and structure-based features in PickPocket, we
conducted an ablation study by systematically freezing different components of our model during
training. Specifically, we evaluated three conditions: (i) freezing the ESM embeddings while allowing
GearNet and the classification head to update, (ii) freezing the GearNet encoder while updating ESM
embeddings and the classifier, and (iii) training all components without freezing any parameters. The
results of this experiment are summarized in Table 5.

When freezing ESM, the model achieved an F1 score of 0.35, an MCC of 0.32, and a Top-N recall
of 37.5%, the lowest among all tested configurations. This decline in performance suggests that
evolutionary embeddings from ESM provide essential residue-level contextual information that
significantly enhances binding site prediction. Without updating these embeddings, the model primar-
ily relies on structural features extracted by GearNet, which alone are insufficient for maximizing
prediction accuracy. The particularly low Top-N and Top-N+2 recall further indicate that the model
struggles to consistently rank correct binding sites among the top candidates when sequence-derived
information is not actively incorporated.

Freezing GearNet while allowing ESM embeddings to update resulted in improved performance
compared to freezing ESM. The F1 score increased to 0.40, and the MCC reached 0.35, while
Top-N recall improved to 47.3%. This result suggests that while structural representation learning is
beneficial, evolutionary embeddings alone capture a substantial portion of the predictive signal. The
relatively minor performance drop compared to the fully trainable model highlights the robustness of
ESM’s pretrained features, which retain essential sequence-derived patterns even when the structural
encoder remains static. However, the lower Top-N recall compared to the no-freezing condition
implies that structural refinement via GearNet enhances the model’s ability to prioritize true binding
pockets.

Allowing both ESM and GearNet to update during training yielded the highest overall performance,
with an F1 score of 0.42, an MCC of 0.37, and a Top-N recall of 48.9%. This configuration
demonstrated the strongest ability to correctly rank binding sites and identify residue-level features
indicative of ligand interaction. The improvements in Top-N and Top-N+2 recall indicate that inte-
grating both evolutionary and structural information leads to more reliable predictions. These results
confirm that PickPocket benefits from joint optimization of sequence and structure representations,
where evolutionary embeddings guide feature extraction while geometric learning refines residue
interactions.

The ablation study highlights the complementary nature of protein language models and geometric
graph learning for binding site prediction. ESM embeddings provide deep contextual insights derived
from large-scale evolutionary training, enabling the model to recognize conserved functional motifs
that may not be immediately apparent from structural data alone. On the other hand, GearNet captures
local residue-residue interactions, geometric constraints, and physicochemical properties, refining
predictions based on structural context.

Our findings suggest that sequence features alone provide a strong baseline for binding site identifica-
tion, as demonstrated by the relatively high performance of the freezing GearNet embeddings ablation.
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However, the inclusion of structural learning improves recall and pocket ranking, demonstrating the
added value of geometric deep learning in fine-tuning binding predictions. Conversely, removing
trainable sequence embeddings weakens the model’s ability to generalize, reinforcing the necessity
of evolutionary signals in identifying functionally relevant sites.

G PAIRING BINDING SITES WITH PICKPOCKET EMBEDDINGS

G.1 DOCKING PROTOCOL

We used the Glide (Halgren et al., 2004) software to perform SP docking on the selected structures.
In most cases, we positioned the grid by selecting the nearest point to the center of mass based on
predictions from PickPocket. In certain instances, we included additional residues to define a more
meaningful docking region for the compounds.

G.2 DIVERSITY DATASET

We selected compounds from the ZINC22 database Tingle et al. (2022) based on specific physico-
chemical properties and availability. The filtering criteria were:

• Molecular weight (MW) < 425 Da

• LogP < 5

• In stock as of 2022 (when the dataset was downloaded)

This initial filtering yielded approximately 9 million compounds. To obtain a representative subset,
we performed stratified sampling based on molecular weight. From this sampled set, additional
manual selection was conducted to ensure structural diversity.

G.3 SELECTED PAIRS AND EUCLIDEAN DISTANCES

To investigate the relationship between pocket embedding similarity and functional binding site
overlap, we selected a diverse set of protein chain pairs and computed their Euclidean distances in
the PickPocket embedding space. This analysis aimed to assess whether lower embedding distances
correlate with greater ligand-binding site similarity, potentially enabling target expansion and ligand
repurposing strategies.

We selected protein chains from distinct structural and functional categories to include a variety of
ligand-binding domains. Pairs were chosen based on:

• Protein functional annotation from UniProt and PDB metadata.

• Presence of at least one PickPocket-predicted binding site with a confidence score above
0.5.

• Structural classification based on SCOP/CATH domains to ensure representation across
different protein families.

• Diversity in molecular function, spanning hydrolases, monooxygenases, G-protein coupled
receptors (GPCRs), and non-binding stabilizers (NB-stabilizers).

For each selected protein pair, we extracted the PickPocket-generated pocket embeddings and
computed their Euclidean distances to quantify binding site similarity. The process involved the
following steps:

1. Pocket Representation: For each protein chain, we identified the top-ranked predicted
pocket based on PickPocket’s binding probability scores.

2. Feature Extraction: The pockets were represented as 4352-dimensional embeddings
derived from the final layer of the PickPocket model, averaging the representation.
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3. Distance Calculation: The Euclidean distance between the pocket embeddings of two
protein chains was computed as:

d(P1, P2) =

√√√√4352∑
i=1

(eP1,i − eP2,i)
2 (2)

where eP1,i and eP2,i represent the i-th feature in the respective pocket embeddings.
4. Functional Comparison: The functional annotations of the protein chains were retrieved

from UniProt, and their biological roles were compared to examine potential ligand-binding
overlap.

Table 6 presents the computed Euclidean distances for selected protein pairs alongside their functional
annotations. The distance values range from 6.04 (highly similar monooxygenases) to 37.96 (divergent
hydrolase-G-Protein pair). Low embedding distances generally corresponded to functionally related
proteins, supporting the hypothesis that PickPocket embeddings capture meaningful binding site
relationships. However, certain high-distance pairs (e.g., 7WCM R – 6FW0 A) exhibited unexpected
ligand compatibility.

Chain 1 Chain 2 Distance Function 1 Function 2

6fw0 B 2z5y A 6.04 monooxigenase monooxigenase
8f07 A 8skl A 14.82 hydrolase hydrolase
6fw0 B 7wcm N 37.07 monooxigenase nb-stabilizer
8skl A 7wcm A 37.96 hydrolase G-protein
7wcm R 6fw0 A 13.73 gpcr monooxigenase

6fw0 B 8f07 A 20.28 monooxigenase hydrolase
6fw0 B 8skl A 28.06 monooxigenase hydrolase
2z5y A 7wcm A 31.78 monooxigenase G-protein
6fw0 A 8skl A 19.21 monooxigenase hydrolase

Table 6: Chain Pairwise Scores and Functional Annotations

G.4 RESULTS FOR 8SKL A – 7WCM A

After superimposing the structures, we found that the high distance was influenced by a poor selection
of residues from PickPocket. While these residues were near the binding site, they were insufficient
to provide the resolution needed for accurate representations. Additionally, in the docking distance
plot, we observe that the compounds contributing the most to the low distance in scores are those
with high (closer to zero) docking scores. This suggests that even though the pocket exists in these
pairs, the ligands tend not to dock with enough meaningful contacts to obtain a better score.
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Figure 4: Pocket superposition of structures 8SKL A (blue) and 7WCM A (white). White surface
indicates the pocket obtained from PickPocket prediction and in orange the one added to successfully
perform docking.

(a) Distribution for the best 500 compounds in the
pair.

(b) Distribution for the worst 500 compounds in the
pair.

Figure 5: Distribution of docking score differences for the same compound across selected pairs. We
evaluate this using the top 500 and bottom 500 compounds based on docking scores.
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