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ABSTRACT

Diffusion models have dominated the field of large, generative image models, with
the prime examples of Stable Diffusion and DALL-E 3 being widely adopted.
These models have been trained to perform text-conditioned generation on vast
numbers of image-caption pairs and as a byproduct, have acquired general knowl-
edge about natural image statistics. However, when confronted with the task of
constrained sampling, e.g. generating the right half of an image conditioned on
the known left half, applying these models is a delicate and slow process, with
previously proposed algorithms relying on expensive iterative operations that are
usually orders of magnitude slower than text-based inference. This is counter-
intuitive, as image-conditioned generation should rely less on the difficult-to-learn
semantic knowledge that links captions and imagery, and should instead be achiev-
able by lower-level correlations among image pixels. In practice, inverse models
are trained or tuned separately for each inverse problem, e.g. by providing parts
of images during training as an additional condition, to allow their application
in realistic settings. However, we argue that this is not necessary and propose
an algorithm for fast-constrained sampling in large pre-trained diffusion models
(Stable Diffusion) that requires no expensive backpropagation operations through
the model and produces results comparable even to the state-of-the-art tuned mod-
els. Our method is based on a novel optimization perspective to sampling under
constraints and employs a numerical approximation to the expensive gradients,
previously computed using backpropagation, incurring significant speed-ups.

1 INTRODUCTION

The recent state-of-the-art in image generation has been dominated by diffusion-based, text-to-image
models (Rombach et al., 2022), which excel in translating input text prompts into images. However,
by training on millions of text-image pairs, these models have acquired some general knowledge
about the natural image space. Thus, besides from text-to-image generation, these models should
also be useful in other image-based inference tasks, such as inpainting, super-resolution etc., given
that their knowledge about image statistics can be induced.

Such efforts on utilizing text-to-image models on image-based inference tasks have focused on de-
vising ways to adapt pre-trained, text-guided models to the target task. The simplest approach is to
fine-tune the text-based model on the new image-based task (Xie et al., 2023; Wang et al., 2024),
with the downside of fine-tuning being unnecessarily expensive in smaller-scale scenarios. Alterna-
tively, a different set of algorithms has been developed that utilize only the pre-trained text-to-image
diffusion model, and modify the sampling process to infer the missing information (Chung et al.,
2023; Rout et al., 2023; Chung et al., 2024). These sampling-based approaches however come with
a significant increase in the computations needed.

As a practical example, in Figure 1 we select an image from the web and pose the task of inferring
the right half given the pixels in the left half. Based on the Stable Diffusion 1.5 model, we first
utilize a fine-tuned variant, trained to be conditioned on images and inpainting masks. Although the
inference is fast (4s) and relatively accurate with textures being correctly replicated on the right side
and no visible seams, this model required 440k steps of additional inpainting training, on top of the
initial SD 1.5 weights.
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Image Constraint Inpainting model Rout et al. (2023) Ours
(4s) (5min) (17s)

Figure 1: Half-image inpainting. Our method allows for fast and accurate inference of the missing
part of the image using the original pre-trained Stable Diffusion 1.5 model, which was not tuned
for this purpose. In contrast, previous inverse problem solvers are slow and fail to understand the
long-range correlations between the image pixels, or rely on models trained/tuned for each given
problem. The inpainting model used is the Stable Diffusion 1.5-inpainting fine-tuned model.

Secondly, we demonstrate the inpainting results of a recent sampling-based method, PSLD (Rout
et al., 2023). This algorithm requires backpropagating through the denoiser network multiple times
during inference, which increases the inference time to 5 minutes. Apart from speed, the method
fails to generate a realistic right half, with the generated image achieving an overall correct shape
but failing to use the right textures on the fur.

With the shortcomings of existing approaches in mind, we propose a new method for sampling from
pre-trained diffusion models under constraints which aims to provide both fast inference speeds
and high-quality results. We approach inference under a diffusion prior and a constraint from an
optimization perspective and find that (a) there is an alternative gradient update to the diffusion
latents during sampling that does not coincide with the gradient updates of previous approaches (b)
there is a fast numerical approximation that speeds up this optimization significantly. Our work
aims to make inference under constraints practical both by improving the synthesized images and
reducing the inference times to a reasonable range.

2 BACKGROUND

2.1 DENOISING DIFFUSION

Denoising diffusion models were proposed for image generation in Ho et al. (2020), where their
ability to generate diverse and high-quality samples was first showcased in the image space. The
original formulation views the training and inference process as a hierarchical latent variable model
xT → xT−1 → · · · → x1 → x0, where the final latent is distributed normally xT ∼ N(0, I) and
p(x0) represents the data distribution. After choosing a noise schedule at that defines the forward

transitions xt → xt+1, usually Gaussian centered at
√

at+1

at
xt and with variance (1 − at+1

at
), the

model is trained to reverse each individual step in the diffusion process.

Further iterations of denoising diffusion introduced class conditioning (Nichol & Dhariwal, 2021)
and classifier-free guidance (Ho & Salimans, 2022), which culminated in the development of Latent
Diffusion Models (Rombach et al., 2022). Latent diffusion proposed the large-scale training of text-
to-image diffusion models in the latent space of an image autoencoder, x0 = D(E(x0)). We note
that although we use latent diffusion models for all our experiments, we do not require additional
steps during inference to ensure consistency between the pixel and latent spaces, as is performed in
previous works (Rout et al., 2023; Chung et al., 2024).

2.2 GRADIENT DESCENT STEPS THROUGH BACKPROPAGATION

A number of recent approaches to solving inverse problems in denoising diffusion models have
been investigated in hope that pre-trained large models, which required significant investment, can
be used for inference directly, without additional tuning for each different inverse problem (Chung
et al., 2023; Rout et al., 2023; Chung et al., 2024). The most typical problem formulation is the
denoising generation of the sequence xT ,xT−1, ...,x1,x0 under the constraint on the final signal in
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the form Ax0 = y, or using a relaxed version that requires minimization of ||Ax0 − y||22, possibly
as part of the likelihood function p(y|x0) = N (y;Ax0, σ

2I). By Tweedie’s formula (Efron, 2011),
denoising diffusion models approximating ∇xt

log pt(xt) can be used to express the expected value
of x0, denoted as x̂0, but the addition of the constraint as if an additional observed variable y was
generated requires the addition of the term ∇xt

log p(y|x0).

At any rate, the regular denoising diffusion steps are altered so that at each t, the generated latent xt

is moved in the direction reducing the cost

C(xt) = (Ax̂0(xt)− y)T (Ax̂0(xt)− y). (1)

For example, in the case of inpainting applications, matrix A extracts a subsection of the pixels in
image x0 to be compared with a given target y. The estimated expected value of x0 at the end of
the chain is provided by the diffusion model as a nonlinear function x̂0(xt). Typically, these moves
are gradient descent moves, i.e. moves of xt in the direction

h = −∇xtC(xt) = −JTAT (Ax̂0 − y) = −JTe, J = ∇xt x̂0(xt), e = AT (Ax̂0 − y) (2)

Computation of the Jacobian J would be expensive both in memory and computation, so the gradient
is computed using backpropagation through C(xt), and we show its mathematical form here for
comparison with a different update we use in this paper. In Chung et al. (2023) and Chung et al.
(2024) for example, (several) gradient steps of this form are applied to xt at each step t of generation
before moving on to the next stage. As optimization of xt might reduce the total noise in the image
below what the denoising at t− 1 was trained for, the gradient steps moving xt towards optimizing
C(xt) are combined with adding additional noise, which could also be seen as a form of stochastic
averaging.

3 OUR APPROACH: NEWTON STEPS BASED ON THE INVERSE FUNCTION

Suppose that at the current point in denoising, (xt, x̂0), the function x̂0(xt) is locally invertible, i.e.
there is a unique, although unknown, inverse function xt(x̂0 + g), in the neighborhood of x̂0 (for
small ||g||), in which case ∇x̂0

xt = (∇xt
x0)

−1 = J−1. This assumption may seem obviously
wrong considering that denoising diffusion models are trained assuming that xt is distributed as
a Gaussian variable centered at x0, i.e. for a given x0 from the data distribution, many different
xt samples are feasible. However, x̂0 is a deterministic function represented by a neural network,
through which backpropagation can compute the update in (2). I.e., at least for the directions we
are interested in, unless the cost is already optimized, the perturbations in x̂0 will yield nonzero
perturbations in xt.

Using the first-order Taylor series we can approximate

xt(x̂0 + g) ≈ xt(x̂0) + (∇x̂0
xt)g = xt + J−1g (3)

for some small perturbation vector g.

Now suppose that, as in the Gauss-Newton method, xt should move as close as possible to some
target x′

t, i.e. we need to minimize

C(x̂0+g) = (xt(x̂0+g)−x′
t)

T (xt(x̂0+g)−x′
t) ≈ (xt+J−1g−x′

t)
T (xt+J−1g−x′

t) (4)

w.r.t. to the movement g of x̂0. Setting ∇gC(x̂0 + g) = 0 yields the system

(J−1)T (x′
t − xt) = (J−1)T (J−1)g (5)

x′
t − xt = h = Jg (6)

Thus, locally, within the validity of the first order approximation, g and h represent a pair of corre-
sponding movements in x̂0 and xt respectively, but here they are linked differently than in (2). The
semantics of the relationship here is that g is the best direction in x̂0 to approximate the target move
h in xt in the least squares sense. If we assume that g = −ϵe, where e is the error vector on x̂0 as
before in (2) and ϵ is a small constant used to make the first order approximation valid, we get

h = −ϵJe, (7)
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Figure 2: Sample pairs of pixels (i, j), (k, l) of the denoiser Jacobian ∇xt x̂0 = ∇xtE[x0|xt] for
different timesteps t. We use Stable Diffusion 1.5.

and so moving xt in this direction would mean moving it to the target x′
t that would require move-

ment of x̂0 in the direction opposite of the error vector e. For example, in the case of image
inpainting, the error vector (per pixel) e = AT (Ax̂0 − y) has zeros for pixels outside of the given
(constraint) area. So the move h in xt has to be such so that by searching for a compensatory move
in g in x̂0 the resulting move would not alter x̂0 in the areas outside of the constraint.

The direction of optimization we propose in (5) has at least two advantages over the usual gradient
descent update. First, the direction h can be computed numerically to save both on computation (2-
fold) and memory (2.5-fold) compared to using backpropagation on cost (1). To derive that update,
consider the function f(s) = x̂0(xt − se) where the variable s is scalar. Its derivative at s = 0 is

df

ds
= −Je, (8)

and so the direction h can be approximated numerically using the approximate derivative of f(s) at
s = 0

f ′ =
1

δ
[x̂0(xt + δe)− x̂0(xt)], (9)

h = −ϵJe ≈ ϵ

δ
[x̂0(xt + δe)− x̂0(xt)], (10)

requiring no backpropagation but instead, two forward passes through the network: one to compute
x̂0(xt) and another to compute x̂0 for the perturbed xt (in the negative direction of the error vector).

The second advantage comes from the asymmetry of the Jacobian J , as alluded to above. The
updates (2) and (5) optimize locally for different things unless J = JT . As described in 3.2
on inpainting, (5) is in the direction that would represent the textures in the constrained region
everywhere in the rest of the image as much as possible, whereas (5) only leads to copying some of
the texture into some parts of the rest of the image.

There is no theoretical reason for the Jacobian J to be asymmetric in pre-trained denoising dif-
fusion models in general. In fact, it very well could be symmetric as these models can be seen
in terms of score matching so that x̂0 approximates the true expectation E[x0|xt] =

1√
αt
[xt +

vt∇xt
log pt(xt)], and the gradient of this is indeed symmetric:

∇xt
E[x0|xt] =

1
√
αt

[I + vt∇2 log pt(xt)]. (11)

One could argue that a well-trained model x̂0(xt) should have its Jacobian equal to this. But whether
the denoising diffusion models are trained with score matching in mind or using the variational
method of Ho et al. (2020), they do not directly optimize to match the real score ∇xt log pt(xt) ev-
erywhere nor are they constrained to produce symmetric Jacobians, and as shown in 3.1 the Jacobian
for Stable Diffusion 1.5 is not symmetric, which we assume is the reasons why our optimization of
xt may be more suitable for some applications, as demonstrated in Section 4.

3.1 SYMMETRY OF THE JACOBIAN

In Figure 2 we verify the claim that the trained diffusion model’s Jacobian is not symmetric. We
again employ SD 1.5 and given a random input image from ImageNet, we scale it and add noise

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Sample Condition JTe Je

(a) (b) (c) (d)

Figure 3: Comparison between 5 gradient updates at t = 800 using a learning rate λ = 1.

Algorithm 1 The proposed algorithm for linear inverse problem solving.
Input: Pre-trained diffusion model x̂0(xt), diffusion schedule parameters ζt, κt, βt, operator A,
measurement y, step size δ, optimization iterations K, learning rate λ
xT ∼ N(0, I)
for t ∈ {T, T − s, T − 2s, . . . , s} do

while i < K do
e = AT (Ax̂0(xt)− y) ▷ Depends on the task
h = [x̂0(xt + δe)− x̂0(xt)]/δ
xt = xt + λh
i = i+ 1

end while
zt ∼ N(0, I)
xt−s = ζtxt + κtx̂0(xt) + βtzt ▷ Step using DDIM (Song et al., 2020) 1

end for
Return: x0

to get an intermediate latent of the diffusion process at different timesteps. We then pass the image
through the denoiser and compute the gradients ∂x̂k,l

0 /∂xi,j
t and ∂x̂i,j

0 /∂xk,l
t for randomly chosen

pixels (i, j), (k, l) using backpropagation. When plotting the gradients we see that the values deviate
from y = x, which would indicate a symmetric Jacobian.

3.2 DIFFERENCE BETWEEN GRADIENT DIRECTIONS

To highlight the difference between the two gradient updates of (2) and (5) we perform the experi-
ment showcased in Figure 3. We create a synthetic black-and-white grid image (Figure 3 (a)), which
we will pass to the diffusion model. We compute the diffusion latent at t = 800 by first blurring and
scaling the original image and then adding the appropriate magnitude noise. Then we aim to find
how the model intends to change the entire image when asked to add a red square in the middle. We
pose this as an inpainting task and compute the two different gradients when given a measurement
corresponding to the center patch of the image with an added red square (Figure 3 (b)). Starting
from the initial diffusion latent, we perform 5 gradient updates using the two different gradients and
visualize the final x̂0 produced by the model.

The resulting images show that the proposed direction (Figure 3 (d)) produces a more coherent
image that copies the newly introduced texture to the correct locations (intersections). The direction
given by backpropagation (Figure 3 (c))

1The diffusion schedule parameters ζt, κt that we use in our notation can be trivially computed from the
schedule variances at as described in DDIM.
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Inpaint (Freeform) SR (×8) Time
Method PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ (approx.)
Ours 22.20 0.275 30.45 22.29 0.428 73.05 2min
P2L (Chung et al., 2024) 21.99 0.229 32.82 23.38 0.386 51.81 30min
LDPS 21.54 0.332 46.72 23.21 0.475 61.09 8min
PSLD (Rout et al., 2023) 20.92 0.251 40.57 23.17 0.471 60.81 12min

Table 1: Quantitative evaluation (PSNR, LPIPS, FID) of free-form inpainting and superresolution
ImageNet.

4 EXPERIMENTS

4.1 INVERSE PROBLEMS

We validate our approach on ImageNet (Deng et al., 2009) by performing inpainting and super-
resolution. Following Chung et al. (2024), we randomly choose 1000 images from the 10k test
images of the ctest10k split. For the diffusion model, we use SD v1.5, which is pre-trained on
the LAION (Schuhmann et al., 2022) text-image dataset. All experiments were done on a single
NVIDIA RTX A5000 24GB GPU.

We use Stable Diffusion 1.5, a latent diffusion model, which spatially compresses the images by a
factor of 8. To demonstrate the versatility of our approach, we approach linear inverse problems from
two different angles. For inpainting, instead of decoding the latent into an image and comparing
it to the measurement in pixel space, we opt to dilate the pixel-level masks and directly perform
inpainting in the latent space. That means we ’discard’ some of the information in the given image
by only keeping 8 × 8 patches that do not overlap with the masked pixels. Consequently, we apply
the masking and un-masking operators, A and AT respectively, in the latent space and inpaint latent
values instead of pixels. Even with fewer pixels, our method performs better than existing methods
in inferring the missing information. We utilize the 10− 20% free-form masking from Saharia et al.
(2022) as the method of masking pixels.

For superresolution, we cannot work in the latent space as the operation of downsampling pixels
does not correspond to downsampling latents. Therefore, in order to compute the error direction
e we backpropagate the pixel-level constraint cost (AD(xt) − y)T (AD(xt) − y) through the
decoder network and utilize the resulting gradient w.r.t. the latent as the error direction. We note
that by setting e = −∂C(D(xt)/∂xt we only require backpropagation through the decoder model,
which is significantly less expensive than backpropagating through the denoiser network, as is done
in previous works. For both degradations, we also include additive white Gaussian noise with σy =
0.05.

In both experiments, we also find it useful to perform warm restarts of our algorithm. After running
Algorithm 1 from t = 1000 to t = 0, we reset the inferred x0 by adding the appropriate noise to
When superresolving, we add an additional perturbation to the gradient to avoid local minima. We
find that our approach quickly converged to blurry images, which satisfy completely the superres-
olution constraint, but do not contain the desired details and texture. A simple perturbation of the
gradient with random noise around the current x̂0 seems to be adequate in solving this issue. For
inpainting, this is not a problem, as the textures and overall fidelity of the inferred image are dictated
by the given regions.

In Figure 4 we showcase the qualitative performance of our algorithm compared to similar recent
works. In the case of inpainting our results show greater coherence with the rest of the image.
For superresolution, our method seems to introduce more new textures in the generated image,
which may not always align perfectly with the shown content (e.g. artifacts). In Table 1 we present
quantitative results by measuring PSNR, LPIPS and FID scores. Inpainting shows a clear advantage
for our approach, whereas superresolution struggles to improve significantly. It is important to
consider that for our results, the inference time is around 2 minutes, including the warm restarts,
whereas competing methods always require more than 4 times longer for a single image.
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Measurement GT DPS LDPS PSLD P2L Ours

Figure 4: Comparison between our method and other works. We directly use the images and results
from (Chung et al., 2024) since there is no code available to replicate their method. We run our
algorithm on the same ground truth images for inpainting the given ’gray region’ masks and ×8
super-resolution.

4.2 IMAGE LAYER INFERENCE

Our approach allows for fast inference of missing regions in a given image. With that in mind, we
go beyond inpainting and propose a new inference problem for pre-trained diffusion models, layer
inference. Given an input image x0, we aim to generate two new images x1

0, x2
0 and a pixel-wise

mask m that will satisfy x0 = mx1
0 + (1 − m)x2

0. We want the model to generate a possible
’decomposition’ of the input image into two layers, e.g. foreground and background along with the
blending mask.

We propose a simple algorithm to perform this task. The assumption is that pixels originating
from the same layer should have stronger correlations than pixels from different layers. To probe
this correlation given a soft mask m, we generate multiple possible images by sampling a binary
mask from the (0,1) values of m and performing inpainting. After running multiple iterations of
inpainting, we can then compute the likelihood of each pixel in the original image to belong in one
of the layers. We choose to model a layer image as Gaussian with per-pixel means and variances
dictated by the generated samples in that layer.

Instead of performing the full sampling process, we find that we can substitute each layer image with
the predicted x̂0(xt). To induce more variety to the x0 estimates, we perturb xt and help generate
multiple inpainting variations without running the full inference process. The mask is randomly
initialized with values in (0,1) and we choose to sample K = 5 images per layer.

In Figure 5 we provide qualitative results by running the layer inference algorithm on images from
the web. To guide each layer we also condition the denoiser x̂0(xt) on layer-specific text prompts
that describe the image content we want to select. The results show that we can control the separation
between the layers and get two images that describe different characteristics of the source image.
The key is the speed of our method in inferring the missing pixels; this inference would have been
computationally infeasible to perform with previous sampling-based approaches.

7
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Input Layer 1

dog, grass
m

an, road
grass, sky

Layer 2 Mask

lighthouse,
background

Figure 5: Given an input image we sample two new images which when blended with an inferred
mask, reconstruct the original input. Our approach allows us to perform decomposition of random
images from the web, guided by simple text prompts.

5 CONCLUSION

In this work, we presented a new algorithm for fast inference in pre-trained diffusion models under
constraints. Our novel approach exploits a different gradient update that has different qualitative
results and requires no expensive backpropagation operations through the model. Our method pro-
duces results comparable to the state-of-the-art with significantly less inference time. We also intro-
duce a new layer inference task, which is enabled by our fast and high-quality constrained sampling
algorithm. We believe that a fast and accurate method to sample from large pre-trained generative
image models, under any condition, can have the potential to enable countless downstream applica-
tions that rely on utilizing a strong image prior.
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