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ABSTRACT

Large Language Models (LLMs) exhibit remarkable capacities to store and
retrieve factual knowledge, yet the precise mechanisms by which they encode
and recall this information remain under debate. Two main frameworks have been
proposed to explain memory storage within transformer feed-forward layers: (1)
a key-value memory view, and (2) linear associative memories view. In this paper,
we investigate the extent to which the second MLP matrix in LLMs behaves
as a linear associative memory (LAM). By measuring pairwise angles between
input activation vectors that represent key-vectors in the LAM model, we find
that the second MLP matrix exhibits relatively higher orthogonality and minimal
cross-talk, supporting the LAM interpretation for generic retrieval. However,
we also discover that subject-token representations used in factual recall are
significantly less orthogonal, indicating greater interference and entanglement.
This implies that editing factual “memories” within these matrices may trigger
unintended side effects in other related knowledge. Our results highlight both
the promise and the pitfalls of viewing feed-forward layers as linear associative
memories, underscoring the need for careful strategies when modifying factual
representations in LLMs.

1 INTRODUCTION

Transformer language models have shown a remarkable ability to recall factual knowledge (Carlini
et al., 2022). Prior work has proposed two main frameworks to explain memory storage and
recall mechanisms in large language models: (1) feed-forward layers acting as key-value memories
(Geva et al., 2020), where factual information is stored as key-value associations in the multi-layer
perceptron (MLP) module of the transformer, and (2) linear associative memories (Bau et al., 2020;
Meng et al., 2022a), which model factual recall as the retrieval of stored associations via a linear
mapping.1

In the key-value memories framework (Geva et al., 2020), the MLP component within the
transformer’s feed-forward network (FFN) is hypothesized to function as a key-value store. Similar
to a database retrieval, the elements of the activation vector act as keys that select and retrieve stored
vectors, also known as values. Specifically, in this framework, the second weight matrix of the
MLP module which follows the non-linearity, is responsible for storing the value vectors. More
concretely, the columns of this matrix correspond to the stored values. This means that for GPT-2
XL (Radford et al., 2019), which has a hidden dimensionality of 1600 and contains 6400 columns
in the second MLP matrix, there are a total of 6400 vectors or values present in the vector store. The
keys are the individual elements of the vector activations produced by the first MLP matrix. Since
the first MLP matrix produces an intermediate vector of dimensionality 6400 for GPT-2 XL, there
are 6400 keys, each selecting whether to include a column from the second MLP matrix. Note that
in this view, a key is a scalar which retrieves a column of the second MLP matrix, and the final
output is a linear combination of columns of the second MLP matrix where the keys act as the scalar
coefficients in the combination. When the key is zero, the column vector is not a part of the linear
combination, and hence, can be understood as the value vector not being retrieved from the vector

1Note that while both these frameworks involve a key-value retrieval, we will refer to the framework
proposed in Geva et al. (2020) specifically as key-value memories in this paper.
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store. Thus, this view presents a very procedural view of understanding the matrix-vector products
happening within the FFN layer.

The linear associative memory view of fact recall (Bau et al., 2020; Meng et al., 2022a) differs
significantly from the procedural view of key-value memories. In this view, the second MLP matrix
in the FFN layer is hypothesized as a store of a very large number of value vectors which are referred
to as values. When a vector is multiplied by this matrix, it is supposed to retrieve exactly one of
these very large number of value vectors. The retrieval happens because each of these value vectors
is stored using nearly orthogonal key-vectors. Apart from being a store of a large number of vectors
which is much greater than the number of columns in the second MLP matrix, another difference
between the linear associative view of memories is that the key that retrieves one of these vectors is
also a vector.

An important aspect of an ideal linear associative memory (LAM) is the hypothesized orthogonality
of key-vectors used for retrieval. An ideal LAM has nearly orthogonal key-vectors. This
orthogonality property ensures perfect recall of value vectors and isolates each stored memory with
the other. If the orthogonality assumption is violated, memory recall becomes approximate and
may overlap with other memories. Understanding this crosstalk (lack of orthogonality) between
memories is essential for tasks like knowledge editing using methods like ROME (Meng et al.,
2022a; Gupta et al., 2024a) or MEMIT (Meng et al., 2022b) which use the linear associative memory
model for editing (Gupta et al., 2024c). A large crosstalk means that memories stored inside the MLP
matrices have significant overlaps, and editing one fact is likely to have large ripple effects (Cohen
et al., 2023). While this has been shown in prior work, in this paper we study the amount of crosstalk
within the stored memories under the LAM model and find the reason behind such ripple effects.

Specifically, we calculate the crosstalk between stored memories in large language models and
analyze how these memories deviate from ideal linear associative memories. We first show that
the second MLP-matrix in the FFN module has a larger amount of orthogonality of stored keys and
hence reduced crosstalk, showing that potential correctness of modeling the second MLP matrix in
the FFN as a LAM. We do this by finding the angle between activation vectors of random tokens
from different contexts. This is done for three representative LLMs - GPT-2 XL (Radford et al.,
2019), Pythia 6.9B (Biderman et al., 2023) and Llama2-7B (Touvron et al., 2023). We also show
that the second MLP matrices in Llama2-7B are the closest to ideal LAMs with the least amount of
crosstalk. Next, we analyze the orthogonality of key-vectors specifically in the case of fact recall,
where we find the angle between the activation vectors for the last subject token in a query. We find
that the amount of orthogonality goes down and see that there is a much larger crosstalk between
memories stored for fact recall. While our results show promise in modeling second MLP matrices
as linear associative memories, factual recall exhibits significant crosstalk, and editing facts in these
matrices may cause unintended consequences, as shown in prior work (Cohen et al., 2023; Gupta
et al., 2024b).

2 BACKGROUND : LINEAR ASSOCIATIVE MEMORIES

Linear associative memories (Kohonen, 1972) can be formulated as a mapping from an input
representation x to an output representation y, governed by a learned weight matrix W , which
functions as a memory store:

y = Wx (1)

where x ∈ Rdk represents the input to the matrix and also functions as the key for memory retrieval,
W ∈ Rdk×dv is the learned memory store, and y ∈ Rdv is the output or the retrieved memory.
W ∈ Rdk×dv functions as a linear associative memory if it can be approximately represented as the
following summation of outer products:

W ≈
N∑
i=1

vik
T
i (2)
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where ki are the key-vectors, vi are the values (stored representations), and N is the number of
stored associations. Here, N >> Rank(W ), which means that the number of associations stored
in the matrix is much larger than the rank of the matrix. A crucial part of an ideal linear associative
memory is the assumption of approximate orthogonality of the key-vectors. This orthogonality
enables retrieval of a specific memory m when the corresponding key is sent to the memory store
W . If the key-vectors are approximately orthogonal, a memory vm can be retrieved perfectly by a
simple matrix-vector product with the key km as shown:

Wkm ≈
N∑
i=1

vik
T
i km =

N∑
i=1

viδim = vm (3)

This ideal structure of W enables the retrieval of vi when x aligns with ki. However, in a non-ideal
case, stored representations may exhibit interference, leading to crosstalk between associations.
Crosstalk quantifies the degree of interference among stored representations. Ideally, if factual
associations were independent, they would satisfy:

kTi kj = 0 ∀ i ̸= j (4)

However, due to overlapping memory storage, factual associations are not strictly orthogonal. We
quantify this interference by computing the pairwise angle between stored vectors:

θi,j = cos−1

(
kTi kj

∥ki∥∥kj∥

)
(5)

where θi,j is the angle between the key-vectors ki and kj of the stored representations. High
crosstalk occurs when θi,j deviates significantly from 90 degrees, indicating a lack of independence
between memory units. In this paper, we quantify crosstalk by finding the average angle between
pairs of key-vectors.

3 METHODOLOGY

We study the appropriateness of matrices in the FFN modules functioning as ideal linear associative
memories. We do this for three different models: GPT-2 XL (1.5B parameters) Radford et al.
(2019), Llama2 (7B) Touvron et al. (2023), and the Pythia model family (70M-6.9B) Biderman
et al. (2023). We input multiple sentences into the models and extract their activation vectors at the
input of the second MLP matrix and at the input of the FFN module2. We analyze how well the
two MLP matrices within the FFN module represent ideal linear associative memories, that is, have
approximately orthogonal key-vectors that are input to the matrices. To do this, we calculate the
pairwise angles between intermediate activations at the same layer.

To study the pairwise angles between key-vectors, we use two datasets. First, we use 10,000
paragraphs from the Wikipedia corpus which are on average 150 tokens long and send them as input
to the model. We choose one token at random from the input paragraph and store its activations for
all layers being analyzed. This gives us 10,000 activation vectors at each layer. We then compute
the pairwise angle between 100k activation pairs per layer from the above collection. Second, we
use the CounterFact dataset Meng et al. (2022a) to specifically study how retrieval of value vectors
happens when factual questions are asked. Sentences in the CounterFact dataset are present in the
form of subject-relation-object triplets and we store the activation vector of the last subject token.
We then perform pairwise comparisons between subject tokens from different sentences, sample
100k such pairs, and find the angle between them. These subject token representations are used for
knowledge editing (Meng et al., 2022a;b) and we measure orthogonality between them to study their
effectiveness in recalling individual memories. If these subject tokens recall multiple memories,
then knowledge editing is not just editing one memory but multiple memories that have non-zero
interference.

2Input to the FFN module is the same as the input to the first MLP matrix within the FFN
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4 RESULTS AND DISCUSSION

4.1 COMPARISON OF INPUT LAYER AND SECOND MLP MATRIX

(a) GPT-2 XL FFN Input (b) Pythia 6.9B FFN Input (c) Llama2-7B FFN Input

(d) GPT-2 XL 2nd MLP Matrix (e) Pythia 6.9B 2nd MLP Matrix (f) Llama2-7B 2nd MLP Matrix

(g) GPT-2 XL 2nd MLP Matrix -
CounterFact

(h) Pythia 6.9B 2nd MLP Matrix -
CounterFact

(i) Llama2-7B 2nd MLP Matrix -
CounterFact

Figure 1: Comparison of pairwise angles for input layer and second MLP matrix for the Wikipedia
Dataset in the first two rows and CounterFact dataset in the third row.

We first study the behavior of the two matrices in the FFN module as ideal linear associative
memories. The experiment aims to quantify the average angle between pairs of activation vectors
at the input of both matrices in an FFN module. We first perform this analysis for the Wikipedia
dataset, where the activations analyzed belong to randomly selected tokens from different contexts.
The results for this are shown in Figure 1.

The first row in Figure 1 shows the average angle between pairs for representations at the input of
the first matrix in the FFN layers. We see a large deviation from the ideal linear associative memory
behavior, where the average angle deviates from 90 degrees by large amounts for all models. The
second row of Figure 1 shows the average angle between pairs of activations that are input to the
second MLP matrix. We immediately see that the average angle between the activations input to the
second MLP-matrix gets closer to 90 degrees compared to the first MLP matrix. This shows that the
second MLP matrix is functioning much closer to a linear associative memory in LLMs. However, it
is still not an ideal linear associative memory as the angles have a much larger range (80-90 degrees)
and hence still have a non-negligible amount of crosstalk. The behavior also depends on the models,
where the Llama2-7B models functions the closest to ideal linear associative memories with minimal
crosstalk compared to the other models. We also see a trend of increasing amount of orthogonality
of key-vectors as we go into deeper layers of all models. This shows that memories are more likely
to be independent in later layers and editing might be more localized in those layers.

Note that we select token activations from different contexts to calculate pairwise angles. When
activations from the same context or input sentence are selected, we observe high similarity and
consequently lower orthogonality. This is natural to observe due to a shared context, which leads to
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similar representations as activations of future tokens are a linear combination of prior tokens due to
the attention mechanism.

4.2 ANALYSIS FOR THE COUNTERFACT DATASET

In this experiment, we analyze the angle between the subject token activations of different fact
recall questions. The research question here is to study whether the key-vectors that query the
answers of different factual questions are more or less likely to be orthogonal than activations for
two tokens selected at random for two different contexts. If they are orthogonal from each other, this
would mean that editing memory corresponding to one key vector will not affect the recall of other
memories. If there is a large crosstalk, this means that editing one memory is likely to have a ripple
effect and possibly unintended consequences.

The results for this experiment can be seen in the third row of Figure 1. We see that for all the models,
the amount of orthogonality goes down comparing to activations of random Wikipedia tokens. This
means that the amount of crosstalk for factual recall tasks is larger compared to activations of two
tokens selected at random from different contexts. This deviation from orthogonality is largest for
GPT-2 XL in the early layers and Pythia. Llama2-7B still maintains the maximum orthogonality,
especially between layers 3-24. Although the angle between the representations is still not 90
degrees and likely to cause some crosstalk.

5 CONCLUSION AND DISCUSSION

In this paper, we demonstrate the appropriateness of modeling memory recall in LLMs as linear
associative memories. We show that as postulated in prior work, the second MLP matrix in the FFN
module can be modelled using ideal linear associative memories. We also show that while these
matrices have minimum crosstalk for randomly selected tokens, key-vectors responsible for factual
recall have a much larger dependence on each other. This means editing facts are likely to have
larger ripple effects compared to editing a random token. In practice, this would mean that editing
facts may not be as localized as is hypothesized in prior work Meng et al. (2022a). This may or may
not be desirable since in some instances we want specific consequences of a fact to also get edited,
while in some cases we don’t.
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A REVIEW: KEY-VALUE MEMORIES

The feed-forward layers in transformer models have been proposed to function as key-value memory
stores, where each layer maps input patterns to stored output distributions (Geva et al., 2020).
This framework presents a different view of memory storage from linear associative memories by
focusing on the role of activation patterns in retrieving stored information.

Each feed-forward network (FFN) layer in a transformer consists of two learned weight matrices:
K (keys) and V (values). Given an input representation x ∈ Rd, the feed-forward transformation is
defined as:

FFN(x) = f(x ·KT ) · V (6)

where K ∈ Rm×d represents the key matrix, V ∈ Rm×d is the value matrix, and f is a non-linearity
(typically ReLU or GELU). The term x·KT computes activation scores that determine which values
contribute to the final output.
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B IMPACT OF MODEL SCALE

(a) Pythia 70M FFN Input (b) Pythia 70M 2nd MLP Matrix

(c) Pythia 1B FFN Input (d) Pythia 1B 2nd MLP Matrix

(e) Pythia 6.9B FFN Input (f) Pythia 6.9B 2nd MLP Matrix

Figure 2: Comparison of pairwise angles for input layer and second MLP matrix across different
scales of Pythia models.

The Pythia model family, ranging from 70M to 6.9B parameters, shows clear differences in
how activation patterns change with model size. As seen in Figure 2a, smaller models have
more variability and less stable memory representations, which affects how well they can recall
information.

In the input layer, the 70M model quickly loses structure within the first six layers (Figure 2a).
As models grow, this pattern changes: the 1B model shows more stability in the middle layers
(Figure 2c), and the 6.9B model maintains more consistent patterns across layers (Figure 2e). Larger
models appear better at separating different pieces of information.

The second MLP matrix also changes with model size. In the 70M model, interference increases
as the layers deepen (Figure 2b). The 1B model shows less interference and more stable patterns
(Figure 2d), while the 6.9B model keeps patterns distinct across layers (Figure 2f).
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These results indicate that larger models handle memory better by maintaining more distinct
patterns. The second MLP matrix becomes more reliable as model size increases, reducing
interference and making it easier for the model to retrieve facts without confusion.

(a) Pythia 70M FFN Input Layer - CounterFact (b) Pythia 70M 2nd MLP Matrix - CounterFact

(c) Pythia 1B FFN Input - CounterFact (d) Pythia 1B 2nd MLP Matrix - CounterFact

(e) Pythia 6.9B FFN Input - CounterFact (f) Pythia 6.9B 2nd MLP Matrix - CounterFact

Figure 3: Comparison of pairwise angles for input layer and second MLP matrix across different
scales of Pythia models for CounterFact dataset.

The CounterFact dataset reveals similar trends in how memory representations change with model
scale. As shown in Figure 3a, smaller models exhibit more variability and less stable patterns. The
70M model, for instance, shows a sharp decline in structure across layers, indicating challenges in
maintaining distinct memory representations.

In the input layer, the 70M model quickly loses structure within the first six layers (Figure 3a). The
1B model shows more stability in the middle layers (Figure 3c), while the 6.9B model maintains
more consistent patterns across layers (Figure 3e). This suggests that larger models are better at
preserving the distinctions needed for accurate factual recall.

The second MLP matrix follows a similar pattern. The 70M model shows significant interference
as layers deepen (Figure 3b), while the 1B model exhibits more stable patterns (Figure 3d). The
6.9B model demonstrates the most consistent behavior across layers (Figure 3f). This consistency
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in larger models supports more reliable memory retrieval with less interference from unrelated
information.

These findings indicate that larger models perform better on factual recall tasks, with more stable
and distinct memory representations. The patterns observed align with the behavior seen in the
Wikipedia-based experiments, suggesting that model scale helps maintain clear distinctions between
memories across different contexts.

(a) GPT-2 XL FFN Input -
CounterFact (b) Llama FFN Input - CounterFact

(c) Pythia-6.9B FFN Input -
CounterFact

Figure 4: Comparison of pairwise angles for input layers across GPT-2 XL, Llama, and Pythia-6.9B
models using the CounterFact dataset.

The CounterFact dataset shows clear differences in how activation patterns change across GPT-2
XL, Llama, and Pythia-6.9B models. As seen in Figure 4a, GPT-2 XL exhibits a steady decline in
structure across layers, with less stable memory patterns over time. Llama maintains more consistent
patterns throughout, suggesting better memory organization across layers. Pythia-6.9B shows a
sharp drop initially, followed by more stable patterns in later layers.

These results indicate that while all three models show a decrease in structure early on, the patterns
of stabilization vary. Llama’s consistent patterns suggest more reliable memory retention, while
Pythia-6.9B shows more gradual changes across layers. GPT-2 XL maintains less stable patterns,
with more variation as layers deepen.
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