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Abstract

Word alignment has been dominated until re-
cently by GIZA++, a statistical method based
on the 30-year-old IBM models. New meth-
ods primarily rely on large machine translation
models, massively multilingual language mod-
els, or supervision. We introduce Embedding-
Enhanced GIZA++, and outperform GIZA++
without any of the aforementioned factors.
Taking advantage of monolingual embedding
spaces of source and target language only,
we exceed GIZA++’s performance in every
tested scenario for three languages pairs. In
the lowest-resource setting, we outperform
GIZA++ by 8.5, 10.9, and 12 AER for Ro-En,
De-En, and En-Fr, respectively. We release our
code at www.blind-review.code.

1 Introduction

Once ubiquitous, word alignment is no longer a
step in typical machine translation (MT) using neu-
ral models, but is still important for low-resource
and unsupervised MT methods (e.g. Lample et al.,
2018; Artetxe et al., 2019) that use statistical MT
because it can be trained using less data (Koehn
et al., 2003; Koehn and Knowles, 2017; Sennrich
and Zhang, 2019). Alignments are also useful for
annotation transfer (e.g. Yarowsky and Ngai, 2001;
Rasooli et al., 2018) and as a post-processing step
to reinsert markup (e.g. Miiller, 2017).

GIZA++ (Och, 2003), a statistical alignment
model, has been the most commonly used tool for
word alignment quality for 20 years and is based
the IBM translation models that are yet a decade
older (Brown et al., 1993). Though a handful of
neural systems have outperformed GIZA++, these
rely on large MT models (e.g. Chen et al., 2020;
Zenkel et al., 2020; Stengel-Eskin et al., 2019),
massively multilingual language models (e.g. Sa-
bet et al., 2020; Dou and Neubig, 2021; Garg
et al., 2019b), supervision from human-annotated
alignments (Nagata et al., 2020), or combinations

of the above. Though successful on the large
high-resource data sets on which they are trained
and tested, NMT models notoriously require large
amounts of bitext for adequate performance.

We introduce Embedding-Enhanced GIZA++
(EE-GIZA++), an improvement to GIZA++ with-
out any of the aforementioned factors. EE-GIZA++
biases GIZA++ to align semantically similar words
from a shared embedding space. We outperform
GIZA++ in all tested settings on three languages
pairs. EE-GIZA++ is particularly well-suited for
very low-resource scenarios; using only ~500 lines
of bitext, it outperforms GIZA++ by 10.9 AER and
12.0 AER for De-En and Fr-En, respectively.

2 Related Work

Recent work involves using neural translation mod-
els to guide or extract alignments, viewing attention
as a proxy for alignment (e.g. Peter et al., 2017; Li
et al., 2018; Garg et al., 2019b; Zenkel et al., 2019,
2020; Chen et al., 2020). Because neural models
are notoriously data-hungry, they often fail in low-
resource settings (our focus).

Other aligners use massive multilingual lan-
guage models with contextualized embeddings
such as mBERT (Devlin et al., 2019). Reminiscent
of our approach, Dou and Neubig (2021) calculate
a probability distribution over possible alignments
from a finetuned mBERT embedding space and ex-
tract alignments using optimal transport. Like us,
Sabet et al. (2020) experiment with mapped mono-
lingual embedding spaces, but exceed the GIZA++
baseline only when using spaces such as mBERT
and XLM-R (Conneau et al., 2020). Nagata et al.
(2020) use mBERT and require supervision with
human-annotated alignments.

Like us, Pourdamghani et al. (2018) im-
prove low-resource alignment with word vectors.
Jalili Sabet et al. (2016) also use nearest-neighbors
in a word embedding space to alter IBM Model 1,
but their performance does not match ours.
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Figure 1: Proposed Method: Embedding-Enhanced GIZA++. 1) Map monolingual embeddings to crosslingual
space. Calculate CSLS for cooccurring words and take softmax to calculate a probability distribution (p_map). 2)
Use statistical aligner to calculate separate probability distribution over cooccuring words (p_align). 3) Interpolate
the distributions with weight proportional to source word’s frequency. Normalize. 4) Replace the statistical model’s
translation probability table with updated probability distribution. 5) Repeat Steps 2-4 for each iteration of EM.

3 Background

Let S be a source-language sentence of tokens
(s1, 82, ..., Sm) and T be a target-language sentence
(t1,t2,...,t;). Alignments are defined as A C
{(s,t) € S x T'} where each s, ¢ are meaningfully
related—usually, translations of one another. Per-
formance is typically measured with Alignment Er-
ror Rate (AER) (Och and Ney, 2000a).

3.1 GIZA++

GIZA++ is a popular statistical alignment and MT
toolkit (Och and Ney, 2000b, 2003) which imple-
ments IBM Models 1-5 (Brown et al., 1993) and
the HMM Model (Vogel et al., 1996), trained us-
ing expectation-maximization (EM). The default
training setup is to run five iterations each of IBM
Model 1, HMM, Model 3, and Model 4. GIZA++
is highly effective at aligning frequent words in a
corpus, but error-prone for infrequent words.

IBM Models The IBM models developed more
than 30 years ago for MT are useful for alignment.
IBM Model 1 relies on lexical translation proba-
bilities p(f|e) for source word e and target word
f- Model 2 adds an alignment model p(j | 7,1, m),
predicting source position j from target position
i of sentences with lengths m and [, respectively.
Model 3 adds a fertility model. Model 4 and the
HMM Model replace the alignment with a relative

reordering model. After training, the most likely
alignment can be computed for a sentence pair.

3.2 Monolingual Embedding Space Mapping

Non-contextual vector representations of words
(“word embeddings", “word vectors") are ubiqui-
tous in modern NLP (e.g. Mikolov et al., 2013; Bo-
janowski et al., 2017). Word vectors trained on
monolingual data alone embed the word into an N-
dimensional monolingual embedding space, where
distance and angle have meaning. Mapping mono-
lingual embedding spaces to a shared crosslingual
space is common, particularly for bilingual lexicon

induction and cross-lingual information retrieval.

Procrustes Problem Techniques that map mono-
lingual embedding spaces to a crosslingual space
typically solve a variation of the generalized Pro-
crustes problem (e.g., Artetxe et al., 2018b; Con-
neau et al., 2018; Patra et al., 2019; Ramirez et al.,
2020). Given word embedding matrices X,Y &
R™*4 where z € X, y € Y are word vectors in
source and target languages, the goal is to find the
map W € R?*? that minimizes distances for each
pair (z,y) known to be translations:

argmin|| XW —Y||r
W

When restricting W to be orthogonal ((WW 7T = I),
Schonemann (1966) showed that the closed-form



solution is W = VU™, where UXV is the singular
value decomposition of Y7 X

After mapping X and Y to a shared space with
W, translations are extracted via nearest-neighbor
search. A popular distance metric is cross-domain
similarity local scaling (CSLS) to mitigate the “hub-
ness problem" (Conneau et al., 2018).

4 Method

GIZA++ is highly effective at inducing the cor-
rect alignment for frequent words when parallel
resources are abundant, but is error-prone for rare
words. Because word embeddings can be trained
on large amounts of monolingual data, rare words
from a parallel corpus may be well-enough repre-
sented in a large monolingual corpus that reason-
able word embeddings can be trained. Our key in-
sight is that for infrequent words, finding a transla-
tion via nearest-neighbors in a shared embedding
space may be more reliable than using a statistical
aligner. We thus incorporate embedding space map-
ping into GIZA++ training, giving more or less in-
fluence to the statistical aligner depending on word
frequency. Figure 1 shows the method.

1. Map embedding spaces. Word embedding
spaces X and Y for source and target language,
respectively, are mapped to a crosslingual space
using VecMap.

2. Calculate translation probability distribu-
tion from mapped spaces. Let Coy (x) be the
words from the target language that cooccur with
source word x in the corpus. For each x, we calcu-
late a probability distribution over possible align-
ments from Coy (x) with a softmax over the CSLS
scores.! We use the mapped embedding spaces for
source and target languages for CSLS.

exp (CSLS(z,y)/7)
Pl e (CSLS(e.4)/7)

y’€Coy ()

3. Integrate with GIZA++. Recall that IBM
Models 1, 3, 4, and HMM maintain a lexical trans-
lation table of pyjign(y|x) for every cooccurring
source-target word pair.

During training of IBM Model 1 and the HMM
Model, we interpolate the lexical translation table
with embedding-based translation probabilities af-
ter each iteration of EM. For each cooccurring pair

"We use 7 = 0.1.

(x,y), calculate:

Pmap (y])
freq(x)
where freq(x) is the raw frequency of x in the
source-side of the corpus and A is a hyperparameter.
The effect of this is that p,,qy, is given more weight
for infrequent words, in accordance with our goal
to trust the embedding space mapper for infrequent
words and the statistical aligner for frequent words.
We then normalize over cooccuring words:

score(x,y)

p(yl) 5

yi€Coy ()

We update GIZA++’s lexical translation table with
the new value from Equation 1 for all cooccurring
pairs, then begin the next iteration of EM.? This
process is repeated for all iterations of IBM Model
1 and HMM model training. IBM Model 3 and 4
are trained as usual. Integrating probabilites from
DPmap into IBM Models 3 and 4 is for future work.

score(z,y) = A + Patign (Y| )

€]

score(x,y;)

Steps 1-3 are done in source—target and
target—source directions. Alignments are sym-
metrized with grow-diag-final (Koehn et al., 2003).

S Experimental Setup

We use the same training setup as previous work>
(Garg et al., 2019b; Zenkel et al., 2019, 2020; Chen
et al., 2020; Dou and Neubig, 2021). Training cor-
pora for German-English (De-En), English-French
(En-Fr), and Romanian-English (Ro-En) are 1.9M,
1.1M, and 448K lines, respectively. Test sets are
508, 447, and 248 lines, respectively. Validation
sets do not exist, so we tune A on a 1M-line sub-
set of De-En.* )\ is set to 10,000. We use the
VecMap® (Artetxe et al., 2018a) implementation
of CSLS and SciPy for some utility functions and
softmax calculation (Virtanen et al., 2020; Harris
et al., 2020). For pretrained monolingual word
embedding spaces, we use the publicly-available
Wikipedia word vectors trained using fastText from
(Bojanowski et al., 2017)°. We limit vocabulary
to 200,000. Embedding mapping is done with
VecMap (unsupervised).

%If a word from the bitext is not present in the word em-
bedding space, its translation probability is not updated.
3github.com/lilt/alignment-scripts Data:
(Mihalcea and Pedersen, 2003; Koehn, 2005; Vilar et al., 2006)
4 Approx. average size of training data for all languages.
Sgithub.com/artetxem/vecmap
®https://fasttext.cc/docs/en/
pretrained-vectors.html
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De-En Ro-En En-Fr
Corpus Size | GIZA++ Ours | GIZA++  Ours | GIZA++ Ours
TestSet | 442  333(-10.9) | 428  343(-85) | 269  14.9(-12.0)
1000 | 410  3L1(-99) | 415  33.6(-7.9)| 200  114(-8.6)
2000 | 377 29.1(-86) | 396 329(-6.7)| 172 101(-7.1)
5000 | 345  269(-76) | 382 320(-62)| 140  85(-55)
10,000 | 319  255(-6.4) | 361  304(-57)| 117 = 75(-4.2)
20,000 | 293 24.2(-51) | 352  303(-49)| 100  71(-29
50,000 | 266  22.6(-4.0) | 342  29.7(-45)| 86 6.3(-2.3)
100,000 | 254  21.9(-3.5) | 334  293(41)| 18 6.1(-1.7)
200,000 | 240  21.2(-2.8) | 327  294(33)| 70 58(-1.2)
500,000 | 21.6  20.3(-1.3) | 265 255(-1.0)| 6.1 5.7(-0.4)
1,000,000 | 207 20.1(-0.6) n/a n/a 6.1 5.5(-0.6)
1,900,000 20.6 19.9 (-0.7) n/a n/a n/a n/a

Table 1: Main Results. Alignment Error Rate (AER) of EE-GIZA++ vs. GIZA++ baseline (lower is better). Test set
is included in corpus size. Ro-En 500K is full 448K training set. Bidirectional, symmetrized (grow-diag-final).

6 Results

Main results are in Table 1. EE-GIZA++ consis-
tently outperforms GIZA++ by a large margin in
every tested scenario. When aligning the test set
alone with no additional bitext, our method outper-
forms GIZA++ by 8.5 AER for Ro-En, 10.9 AER
for De-En, and 12 AER for En-Fr.
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Figure 2: Visualization of Main Results. Alignment
Error Rate (AER) of EE-GIZA++ vs. GIZA++ baseline
for increasing amounts of training data. Lower is better.

Supplemental Results: High-Resource We
compare EE-GIZA++ with existing models in high-
resource settings (full training set). These use addi-
tional resources like mBERT or data-hungry NMT
models that likely fail in low-resource settings (our
focus). We perform on-par. Notably, Garg et al.
(2019a) use GIZA++ output as supervision. EE-
GIZA++ performs better than GIZA++, so AER
might improve if supervised with our alignments.

Statistical Baselines De-En Ro-En En-Fr

GIZA++ 206 265 6.2
eflomal* 226 251 82
fast-align* 27.0 321 105
Massively-Multilingual
Sabet et al. (2020)* 188 272 7.6
Dou and Neubig (2021) 156 23.0 44
no fine-tuning 174 279 5.6
Bilingual NMT-Based
Zenkel et al. (2019) 212 27.6 100
Garg et al. (2019b) 202 260 7.7
using GIZA++ output 16.0 23.1 4.6
Zenkel et al. (2020) 163 234 50
Chen et al. (2020) 154 212 47
Ours 199 255 53

Table 2: Supplemental results in high-resource settings
compared to models that use additional resources. “Mas-
sively multilingual" models use mBERT. NMT models
likely fail in low-resource (our focus). Bidirectional.
*reported in Dou and Neubig (2021).

7 Conclusion and Future Work

We introduce EE-GIZA++, an unsupervised en-
hancement to GIZA++ that uses word embed-
dings for improved word alignment in low-resource
settings, without the use of NMT or massively-
multilingual language models that to-date have
been the strongest competitors to GIZA++. EE-
GIZA++ outperforms GIZA++ by 8.5, 10.9, and
12 AER in lowest-resource settings for Ro-En, De-
En, and En-Fr, respectively. Future work should
examine performance of EE-GIZA++ on a diverse
set of languages with varying scripts and amounts
of data available.
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