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Abstract

Word alignment has been dominated until re-001
cently by GIZA++, a statistical method based002
on the 30-year-old IBM models. New meth-003
ods primarily rely on large machine translation004
models, massively multilingual language mod-005
els, or supervision. We introduce Embedding-006
Enhanced GIZA++, and outperform GIZA++007
without any of the aforementioned factors.008
Taking advantage of monolingual embedding009
spaces of source and target language only,010
we exceed GIZA++’s performance in every011
tested scenario for three languages pairs. In012
the lowest-resource setting, we outperform013
GIZA++ by 8.5, 10.9, and 12 AER for Ro-En,014
De-En, and En-Fr, respectively. We release our015
code at www.blind-review.code.016

1 Introduction017

Once ubiquitous, word alignment is no longer a018

step in typical machine translation (MT) using neu-019

ral models, but is still important for low-resource020

and unsupervised MT methods (e.g. Lample et al.,021

2018; Artetxe et al., 2019) that use statistical MT022

because it can be trained using less data (Koehn023

et al., 2003; Koehn and Knowles, 2017; Sennrich024

and Zhang, 2019). Alignments are also useful for025

annotation transfer (e.g. Yarowsky and Ngai, 2001;026

Rasooli et al., 2018) and as a post-processing step027

to reinsert markup (e.g. Müller, 2017).028

GIZA++ (Och, 2003), a statistical alignment029

model, has been the most commonly used tool for030

word alignment quality for 20 years and is based031

the IBM translation models that are yet a decade032

older (Brown et al., 1993). Though a handful of033

neural systems have outperformed GIZA++, these034

rely on large MT models (e.g. Chen et al., 2020;035

Zenkel et al., 2020; Stengel-Eskin et al., 2019),036

massively multilingual language models (e.g. Sa-037

bet et al., 2020; Dou and Neubig, 2021; Garg038

et al., 2019b), supervision from human-annotated039

alignments (Nagata et al., 2020), or combinations040

of the above. Though successful on the large 041

high-resource data sets on which they are trained 042

and tested, NMT models notoriously require large 043

amounts of bitext for adequate performance. 044

We introduce Embedding-Enhanced GIZA++ 045

(EE-GIZA++), an improvement to GIZA++ with- 046

out any of the aforementioned factors. EE-GIZA++ 047

biases GIZA++ to align semantically similar words 048

from a shared embedding space. We outperform 049

GIZA++ in all tested settings on three languages 050

pairs. EE-GIZA++ is particularly well-suited for 051

very low-resource scenarios; using only ∼500 lines 052

of bitext, it outperforms GIZA++ by 10.9 AER and 053

12.0 AER for De-En and Fr-En, respectively. 054

2 Related Work 055

Recent work involves using neural translation mod- 056

els to guide or extract alignments, viewing attention 057

as a proxy for alignment (e.g. Peter et al., 2017; Li 058

et al., 2018; Garg et al., 2019b; Zenkel et al., 2019, 059

2020; Chen et al., 2020). Because neural models 060

are notoriously data-hungry, they often fail in low- 061

resource settings (our focus). 062

Other aligners use massive multilingual lan- 063

guage models with contextualized embeddings 064

such as mBERT (Devlin et al., 2019). Reminiscent 065

of our approach, Dou and Neubig (2021) calculate 066

a probability distribution over possible alignments 067

from a finetuned mBERT embedding space and ex- 068

tract alignments using optimal transport. Like us, 069

Sabet et al. (2020) experiment with mapped mono- 070

lingual embedding spaces, but exceed the GIZA++ 071

baseline only when using spaces such as mBERT 072

and XLM-R (Conneau et al., 2020). Nagata et al. 073

(2020) use mBERT and require supervision with 074

human-annotated alignments. 075

Like us, Pourdamghani et al. (2018) im- 076

prove low-resource alignment with word vectors. 077

Jalili Sabet et al. (2016) also use nearest-neighbors 078

in a word embedding space to alter IBM Model 1, 079

but their performance does not match ours. 080
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Figure 1: Proposed Method: Embedding-Enhanced GIZA++. 1) Map monolingual embeddings to crosslingual
space. Calculate CSLS for cooccurring words and take softmax to calculate a probability distribution (p_map). 2)
Use statistical aligner to calculate separate probability distribution over cooccuring words (p_align). 3) Interpolate
the distributions with weight proportional to source word’s frequency. Normalize. 4) Replace the statistical model’s
translation probability table with updated probability distribution. 5) Repeat Steps 2-4 for each iteration of EM.

3 Background081

Let S be a source-language sentence of tokens082

(s1, s2, ..., sm) and T be a target-language sentence083

(t1, t2, ..., tl). Alignments are defined as A ⊆084

{(s, t) ∈ S × T} where each s, t are meaningfully085

related—usually, translations of one another. Per-086

formance is typically measured with Alignment Er-087

ror Rate (AER) (Och and Ney, 2000a).088

3.1 GIZA++089

GIZA++ is a popular statistical alignment and MT090

toolkit (Och and Ney, 2000b, 2003) which imple-091

ments IBM Models 1-5 (Brown et al., 1993) and092

the HMM Model (Vogel et al., 1996), trained us-093

ing expectation-maximization (EM). The default094

training setup is to run five iterations each of IBM095

Model 1, HMM, Model 3, and Model 4. GIZA++096

is highly effective at aligning frequent words in a097

corpus, but error-prone for infrequent words.098

IBM Models The IBM models developed more099

than 30 years ago for MT are useful for alignment.100

IBM Model 1 relies on lexical translation proba-101

bilities p(f |e) for source word e and target word102

f . Model 2 adds an alignment model p(j | i, l,m),103

predicting source position j from target position104

i of sentences with lengths m and l, respectively.105

Model 3 adds a fertility model. Model 4 and the106

HMM Model replace the alignment with a relative107

reordering model. After training, the most likely 108

alignment can be computed for a sentence pair. 109

3.2 Monolingual Embedding Space Mapping 110

Non-contextual vector representations of words 111

(“word embeddings", “word vectors") are ubiqui- 112

tous in modern NLP (e.g. Mikolov et al., 2013; Bo- 113

janowski et al., 2017). Word vectors trained on 114

monolingual data alone embed the word into an N- 115

dimensional monolingual embedding space, where 116

distance and angle have meaning. Mapping mono- 117

lingual embedding spaces to a shared crosslingual 118

space is common, particularly for bilingual lexicon 119

induction and cross-lingual information retrieval. 120

Procrustes Problem Techniques that map mono- 121

lingual embedding spaces to a crosslingual space 122

typically solve a variation of the generalized Pro- 123

crustes problem (e.g., Artetxe et al., 2018b; Con- 124

neau et al., 2018; Patra et al., 2019; Ramírez et al., 125

2020). Given word embedding matrices X,Y ∈ 126

Rn×d where x ∈ X , y ∈ Y are word vectors in 127

source and target languages, the goal is to find the 128

map W ∈ Rd×d that minimizes distances for each 129

pair (x, y) known to be translations: 130

argmin
W

∥XW − Y ∥F 131

When restricting W to be orthogonal (WW T = I), 132

Schönemann (1966) showed that the closed-form 133
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solution is W = V UT , where UΣV is the singular134

value decomposition of Y TX .135

After mapping X and Y to a shared space with136

W , translations are extracted via nearest-neighbor137

search. A popular distance metric is cross-domain138

similarity local scaling (CSLS) to mitigate the “hub-139

ness problem" (Conneau et al., 2018).140

4 Method141

GIZA++ is highly effective at inducing the cor-142

rect alignment for frequent words when parallel143

resources are abundant, but is error-prone for rare144

words. Because word embeddings can be trained145

on large amounts of monolingual data, rare words146

from a parallel corpus may be well-enough repre-147

sented in a large monolingual corpus that reason-148

able word embeddings can be trained. Our key in-149

sight is that for infrequent words, finding a transla-150

tion via nearest-neighbors in a shared embedding151

space may be more reliable than using a statistical152

aligner. We thus incorporate embedding space map-153

ping into GIZA++ training, giving more or less in-154

fluence to the statistical aligner depending on word155

frequency. Figure 1 shows the method.156

1. Map embedding spaces. Word embedding157

spaces X and Y for source and target language,158

respectively, are mapped to a crosslingual space159

using VecMap.160

2. Calculate translation probability distribu-161

tion from mapped spaces. Let CoY (x) be the162

words from the target language that cooccur with163

source word x in the corpus. For each x, we calcu-164

late a probability distribution over possible align-165

ments from CoY (x) with a softmax over the CSLS166

scores.1 We use the mapped embedding spaces for167

source and target languages for CSLS.168

pmap(y|x) =
exp (CSLS(x, y)/τ)∑

y′∈CoY (x)

exp (CSLS(x, y′))/τ)
169

3. Integrate with GIZA++. Recall that IBM170

Models 1, 3, 4, and HMM maintain a lexical trans-171

lation table of palign(y|x) for every cooccurring172

source-target word pair.173

During training of IBM Model 1 and the HMM174

Model, we interpolate the lexical translation table175

with embedding-based translation probabilities af-176

ter each iteration of EM. For each cooccurring pair177

1We use τ = 0.1.

(x, y), calculate: 178

score(x, y) = λ
pmap(y|x)

freq(x)
+ palign(y|x) 179

where freq(x) is the raw frequency of x in the 180

source-side of the corpus and λ is a hyperparameter. 181

The effect of this is that pmap is given more weight 182

for infrequent words, in accordance with our goal 183

to trust the embedding space mapper for infrequent 184

words and the statistical aligner for frequent words. 185

We then normalize over cooccuring words: 186

p(y|x) = score(x, y)∑
yi∈CoY (x)

score(x, yi)
(1) 187

We update GIZA++’s lexical translation table with 188

the new value from Equation 1 for all cooccurring 189

pairs, then begin the next iteration of EM.2 This 190

process is repeated for all iterations of IBM Model 191

1 and HMM model training. IBM Model 3 and 4 192

are trained as usual. Integrating probabilites from 193

pmap into IBM Models 3 and 4 is for future work. 194

Steps 1-3 are done in source→target and 195

target→source directions. Alignments are sym- 196

metrized with grow-diag-final (Koehn et al., 2003). 197

5 Experimental Setup 198

We use the same training setup as previous work3 199

(Garg et al., 2019b; Zenkel et al., 2019, 2020; Chen 200

et al., 2020; Dou and Neubig, 2021). Training cor- 201

pora for German-English (De-En), English-French 202

(En-Fr), and Romanian-English (Ro-En) are 1.9M, 203

1.1M, and 448K lines, respectively. Test sets are 204

508, 447, and 248 lines, respectively. Validation 205

sets do not exist, so we tune λ on a 1M-line sub- 206

set of De-En.4 λ is set to 10,000. We use the 207

VecMap5 (Artetxe et al., 2018a) implementation 208

of CSLS and SciPy for some utility functions and 209

softmax calculation (Virtanen et al., 2020; Harris 210

et al., 2020). For pretrained monolingual word 211

embedding spaces, we use the publicly-available 212

Wikipedia word vectors trained using fastText from 213

(Bojanowski et al., 2017)6. We limit vocabulary 214

to 200,000. Embedding mapping is done with 215

VecMap (unsupervised). 216

2If a word from the bitext is not present in the word em-
bedding space, its translation probability is not updated.

3github.com/lilt/alignment-scripts Data:
(Mihalcea and Pedersen, 2003; Koehn, 2005; Vilar et al., 2006)

4Approx. average size of training data for all languages.
5github.com/artetxem/vecmap
6https://fasttext.cc/docs/en/

pretrained-vectors.html
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De-En Ro-En En-Fr
Corpus Size GIZA++ Ours GIZA++ Ours GIZA++ Ours

Test Set 44.2 33.3 (-10.9) 42.8 34.3 (-8.5) 26.9 14.9 (-12.0)
1000 41.0 31.1 (-9.9) 41.5 33.6 (-7.9) 20.0 11.4 (-8.6)
2000 37.7 29.1 (-8.6) 39.6 32.9 (-6.7) 17.2 10.1 (-7.1)
5000 34.5 26.9 (-7.6) 38.2 32.0 (-6.2) 14.0 8.5 (-5.5)

10,000 31.9 25.5 (-6.4) 36.1 30.4 (-5.7) 11.7 7.5 (-4.2)
20,000 29.3 24.2 (-5.1) 35.2 30.3 (-4.9) 10.0 7.1 (-2.9)
50,000 26.6 22.6 (-4.0) 34.2 29.7 (-4.5) 8.6 6.3 (-2.3)

100,000 25.4 21.9 (-3.5) 33.4 29.3 (-4.1) 7.8 6.1 (-1.7)
200,000 24.0 21.2 (-2.8) 32.7 29.4 (-3.3) 7.0 5.8 (-1.2)
500,000 21.6 20.3 (-1.3) 26.5 25.5 (-1.0) 6.1 5.7 (-0.4)

1,000,000 20.7 20.1 (-0.6) n/a n/a 6.1 5.5 (-0.6)
1,900,000 20.6 19.9 (-0.7) n/a n/a n/a n/a

Table 1: Main Results. Alignment Error Rate (AER) of EE-GIZA++ vs. GIZA++ baseline (lower is better). Test set
is included in corpus size. Ro-En 500K is full 448K training set. Bidirectional, symmetrized (grow-diag-final).

6 Results217

Main results are in Table 1. EE-GIZA++ consis-218

tently outperforms GIZA++ by a large margin in219

every tested scenario. When aligning the test set220

alone with no additional bitext, our method outper-221

forms GIZA++ by 8.5 AER for Ro-En, 10.9 AER222

for De-En, and 12 AER for En-Fr.

Figure 2: Visualization of Main Results. Alignment
Error Rate (AER) of EE-GIZA++ vs. GIZA++ baseline
for increasing amounts of training data. Lower is better.

223

Supplemental Results: High-Resource We224

compare EE-GIZA++ with existing models in high-225

resource settings (full training set). These use addi-226

tional resources like mBERT or data-hungry NMT227

models that likely fail in low-resource settings (our228

focus). We perform on-par. Notably, Garg et al.229

(2019a) use GIZA++ output as supervision. EE-230

GIZA++ performs better than GIZA++, so AER231

might improve if supervised with our alignments.232

Statistical Baselines De-En Ro-En En-Fr
GIZA++ 20.6 26.5 6.2
eflomal* 22.6 25.1 8.2
fast-align* 27.0 32.1 10.5

Massively-Multilingual
Sabet et al. (2020)* 18.8 27.2 7.6
Dou and Neubig (2021) 15.6 23.0 4.4

no fine-tuning 17.4 27.9 5.6

Bilingual NMT-Based
Zenkel et al. (2019) 21.2 27.6 10.0
Garg et al. (2019b) 20.2 26.0 7.7

using GIZA++ output 16.0 23.1 4.6
Zenkel et al. (2020) 16.3 23.4 5.0
Chen et al. (2020) 15.4 21.2 4.7

Ours 19.9 25.5 5.3

Table 2: Supplemental results in high-resource settings
compared to models that use additional resources. “Mas-
sively multilingual" models use mBERT. NMT models
likely fail in low-resource (our focus). Bidirectional.
*reported in Dou and Neubig (2021).

7 Conclusion and Future Work 233

We introduce EE-GIZA++, an unsupervised en- 234

hancement to GIZA++ that uses word embed- 235

dings for improved word alignment in low-resource 236

settings, without the use of NMT or massively- 237

multilingual language models that to-date have 238

been the strongest competitors to GIZA++. EE- 239

GIZA++ outperforms GIZA++ by 8.5, 10.9, and 240

12 AER in lowest-resource settings for Ro-En, De- 241

En, and En-Fr, respectively. Future work should 242

examine performance of EE-GIZA++ on a diverse 243

set of languages with varying scripts and amounts 244

of data available. 245
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David Vilar, Maja Popović, and Hermann Ney. 2006. 457
Aer: Do we need to “improve” our alignments? In 458
International Workshop on Spoken Language Trans- 459
lation (IWSLT) 2006. 460

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt 461
Haberland, Tyler Reddy, David Cournapeau, Ev- 462
geni Burovski, Pearu Peterson, Warren Weckesser, 463
Jonathan Bright, Stéfan J. van der Walt, Matthew 464
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay 465
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert 466
Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, 467
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