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Abstract

Image retrieval is a fundamental task in computer vision. Despite recent advances
in this field, many techniques have been evaluated on a limited number of domains,
with a small number of instance categories. Notably, most existing works only con-
sider domains like 3D landmarks, making it difficult to generalize the conclusions
made by these works to other domains, e.g., logo and other 2D flat objects. To
bridge this gap, we introduce a new dataset for benchmarking visual search methods
on flat images with diverse patterns. Our flat object retrieval benchmark (FORB)
supplements the commonly adopted 3D object domain, and more importantly, it
serves as a testbed for assessing the image embedding quality on out-of-distribution
domains. In this benchmark we investigate the retrieval accuracy of representative
methods in terms of candidate ranks, as well as matching score margin, a viewpoint
which is largely ignored by many works. Our experiments not only highlight the
challenges and rich heterogeneity of FORB, but also reveal the hidden properties of
different retrieval strategies. The proposed benchmark is a growing project and we
expect to expand in both quantity and variety of objects. The dataset and supporting
codes are available at https://github.com/pxiangwu/FORB/.

1 Introduction

Image retrieval is a fundamental and long-standing task in computer vision. Given a query image,
this task aims to search for the most similar images from a large database. Recent methods have
achieved remarkable performance on certain domains, such as 3D landmark [37, 49] and clothes
[25]. To perform image retrieval, the prevailing practice is to map the query image into a compact
embedding space, where similar images are close to each other while dissimilar ones are separated
away. This embedding space can be handcrafted and one classic design is the Bag of Words (BoW)
[2, 8]. A more effective idea is to learn the embedding automatically, based on deep neural netowrks
[11, 3, 29, 38]. However, all these methods have only been evaluated on a limited number of domains
(e.g., 3D landmarks), and as a result, it remains unclear if the embedding of one method is more
general than the others. In particular, for learning-based methods, since they are usually trained
on a specific restricted dataset with limited object classes (e.g., ImageNet [9] and Open Images
[21]), their feature embeddings could be not universal enough to generalize to various open-world
objects. Therefore, it is necessary to have benchmarks supplementary to the existing ones for a more
comprehensive evaluation of the embeddings, especially in terms of their out-of-distribution (OOD)
generalization ability.

In particular, existing image retrieval benchmarks mainly involve domains of 3D objects. Examples
of the commonly considered objects include 3D landmarks, clothes, natural living things and online
products. While many recent benchmarks that curate the images of these objects have sufficiently
large query image sets, they are typically limited to a small number of object categories or instances.
Moving beyond 3D objects, there are several datasets focusing on 2D flat objects. However, these
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(m) Database (n) Query (hard) (o) Database (p) Query (medium)

Figure 1: Example database and query images from our FORB benchmark. For each query image,
we show its corresponding index image and the retrieval difficulty. The images are from different
content domains: (a)(b) photorealistic trading card; (c)(d) book cover; (e)(f) painting; (g)(h) logo;
(i)(j) packaged goods; (k)(l) movie poster; (m)(n) animated trading card; (o)(p) currency.

datasets are mostly small in size and related to one particular type of object, i.e., logo [41, 45]. Besides,
their query images tend to be in canonical pose without much distraction from the background, making
the retrieval less challenging.

In order to fill the domain gap of existing benchmarks and to encourage future research in this area,
we present a Flat Object Retrieval Benchmark (FORB) which contains diverse flat objects with
different query difficulties. The flat objects are those with 2D surface only, which bears the textures
and patterns of the object (e.g., painting and logo; see Figure 1). Despite being one dimension less
than 3D objects, such flat surfaces still pose many challenges for image retrieval. In particular, there
can be large variations between the query and database images, due to surface and color distortions,
perspective transformation, view occlusion, and illumination change. Our benchmark takes into
account all these challenges and covers objects with a variety of textures (see Section 3). Notably,
these objects are common in daily life and our benchmark could benefit diverse real-world visual
search applications, such as recognizing logos for brand promotion, augmenting artwork exhibits in a
museum, online shopping and more.

To understand how different image embeddings perform on our benchmark, we evaluate the retrieval
accuracy from two perspectives: (1) Candidate rank, which corresponds to the sorted order of
database images based on their similarities to the query image. The correctness of ranks reflects
the discriminative ability of image embedding and can be measured with mean Average Precision
(mAP). (2) Matching score margin. For a query image, ideally its matching scores against ground-
truth database images should be high (e.g., assuming cosine similarity), while the scores against
non-relevant images should be low. Therefore, the degree of compliance with this ideal margin
also delineates the quality of image embedding, a viewpoint which is largely ignored by previous
works. To measure this margin, we propose to query the given image against distractor images, giving
false positive candidates. By thresholding the matching scores, we can compute a specific false
positive rate (FPR) and an updated mAP, which together quantify the margin of image embeddings.
In particular, an ideal embedding should have a low FPR while keeping a high mAP.

To establish baselines on our benchmark, we evaluate a series of representative methods, including
both learning-based models and handcrafted designs. Our results reveal intriguing properties of
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Table 1: Comparison of our benchmark against existing image retrieval datasets.

Dataset Domain # Query # Database Has distractor Has difficulty label
Oxford [33] 3D landmark 55 5K ✗ ✗
Paris [35] 3D landmark 55 6K ✗ ✗
R-Oxford [37] 3D landmark 70 5K + 1M ✓ ✓
R-Paris [37] 3D landmark 70 5K + 1M ✓ ✓
GLD [30] 3D landmark 118K 1.1M ✓ ✗
GLDv2 [49] 3D landmark 118K 762K ✓ ✗
CUB [48] Bird 6K 6K ✗ ✗
Cars196 [20] Car 8K 8K ✗ ✗
SOP [31] 3D product 60K 60K ✗ ✗
DeepFashion [25] Clothes 14K 13K ✗ ✗
VehicleID [24] Vehicle 35.6K 4.8K ✗ ✗
iNaturalist [46] Plant & Animal 136K 136K ✗ ✗
FlickrLogos [41] Flat object (logo) 4K 320 ✓ ✗
FORB Flat object 14K 54K ✓ ✓

embeddings built from different feature levels. Specifically, we show that even a model is trained
on 3D objects, its embedding induced from low- or mid-level image features can still be universal
enough to distinguish diverse flat objects. Moreover, for feature-scarce images, embeddings based on
high-level features tend to achieve better accuracy.

Our contributions include: (1) We introduce FORB, a new visual search benchmark for evaluating
image embeddings on flat objects. FORB supplements the commonly used 3D object benchmarks
and essentially provides a platform for assessing the OOD generalization ability of an embedding
method. (2) We propose a new evaluation metric motivated by matching score margin. This metric is
complementary to mAP and offers a new perspective on image embedding quality. (3) We conduct
comprehensive comparisons for different representative methods, providing solid baselines for future
method developments. (4) Our evaluation results reveal the hidden properties of different retrieval
strategies as well as their limitations, providing insights into the development of new techniques.

2 Related Work

2.1 Existing Datasets and Benchmarks for Image Retrieval

There has been a long history of developing benchmarks for image retrieval. For example, to promote
research in instance-level recognition and search, Oxford [33] and Paris [35] datasets were introduced
and have motivated a wealth of innovations in this field. With a similar motivation, researchers curated
CUB [48] and Cars196 [20] to facilitate fine-grained object matching. Despite the popularity of these
datasets, they are small in size and only involve a limited number of instances and categories. To
further enrich the object domains for image retrieval and increase the size and complexity of the task,
several more challenging datasets were constructed, such as SOP [31], DeepFashion [25], VehicleID
[24], iNaturalist [46], and Google Landmarks dataset v2 (GLDv2) [49]. In particular, GLDv2 has
gained widespread attention since being introduced due to its significant scale and variability, and
serves as a solid benchmark for testing emerging retrieval techniques.

One limitation of these datasets is that they only focus on the task of 3D object retrieval, involving a
restricted number of object domains (e.g., 3D landmarks). In fact, compared to 3D objects, there exist
few benchmarks on other domains, especially 2D flat objects. In real-world visual search applications,
flat objects also make up a large fraction of queries. However, there are only few benchmarks on
such objects and most of them are for logo [41, 45]. To fill this domain gap, our FORB benchmark
includes a variety of flat objects and supplements existing 3D object benchmarks. In particular, FORB
effectively serves as an OOD query set for evaluating the embeddings trained on 3D objects. In
Table 1 we compare FORB against existing image retrieval datasets in detail.

It is worth mentioning that there exists another similar benchmark for assessing the generalization
abilities of image embeddings, i.e., Google Universal Image Embedding Challenge1. However, this
benchmark mainly involves 3D objects and its evaluation data is kept private. We believe our FORB

1https://www.kaggle.com/competitions/google-universal-image-embedding
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supplements this benchmark and will facilitate the development of visual search applications, such as
organizing photo collections, visual commerce and more.

2.2 Out-of-Distribution Query

Most existing benchmarks only have “on-topic” queries without considering the out-of-distribution
ones. As a result, they fail to present real-world challenges and are not enough to fully evaluate
the quality of an image embedding. Notably, in a generic visual search app, the system tends to
be queried with a large number of irrelevant queries, i.e., OOD queries, for which it is expected
to not yield any results. Therefore, OOD queries provide an additional important view into the
robustness of image embeddings. This issue of lacking OOD queries in existing benchmarks was
recognized in GLDv2 [49] and addressed with plenty of non-landmark queries. In practice, to assess
the discriminative ability of image embeddings between true positive and false positive candidates,
GLDv2 employs micro Average Precision (µAP), which both measures ranking performance and
penalizes false positive predictions. Our FORB benchmark shares a similar motivation to GLDv2, but
with a few key differences: (1) We do not provide additional OOD queries with respect to the database
images. Instead, we split database into index images and distractors, and query the images against
distractors. In this way we effectively turn all the query images into OOD queries. (2) Instead of using
µAP, we propose a new metric, t-mAP, which computes an averaged mAP over different confidence
thresholds. The thresholds are determined through quantiles of false positive rates. Compared to
µAP and mAP, our t-mAP takes into account the matching score margin, which directly reflects the
discriminability of image embeddings.

2.3 Universal Image Embedding

The quality of image embeddings determines the performance of modern image retrieval methods.
Based on the design of image features, existing embeddings can be divided into two categories:
handcrafted and learning-based. The former one builds image embeddings based on handcrafted low-
level features (e.g., SIFT [26]), using a bag of words (BoW). This design paradigm dominates many
classic methods, such as [34, 27, 2, 18, 44], and usually leads to embeddings that generalize well over
various domains. With the rapid advancement of deep learning, such handcrafted embeddings have
been replaced with the learning-based ones in the community. The learning of image embeddings is
commonly conducted in a supervised manner, on crowd-labeled datasets [15, 17, 16, 10]. However,
supervised learning is not scalable since manual annotation of large-scale training data is time-
consuming and costly. As a result, the training data usually contains limited pre-defined object classes
(e.g., ImageNet [9] and Open Images [21]), and embeddings learned from these data are not universal
enough to generalize to various open-world objects [1]. In recent years, self- and weakly-supervised
learning have gained extensive attention due to their less reliance on labeled data. By designing
appropriate pre-text tasks and training strategies (e.g., image-text matching), these learning paradigms
can easily leverage a large number of unlabeled or noisy data, producing image embeddings of greater
generality than supervised learning [14, 13, 7, 6, 12, 40, 19].

3 The FORB Benchmark

Our FORB benchmark only provides testing query images without training data. It serves as a testbed
supplementary to existing benchmarks, with the following goals.

Goals Our proposed benchmark aims to enrich the object domains considered in image retrieval
tasks and measure the generalization ability of embedding models with respect to out-of-distribution
queries. Besides, we also seek to understand the effects of image features from different levels on the
embedding quality, thereby shedding light on future development of embedding models.

3.1 Data Collection

There are 8 different types of flat objects involved in our benchmark: (1) Animated trading card. We
consider one particular type of card, i.e., Pokemon trading card. (2) Photorealistic trading card. We
consider cards for different sports, such as baseball, basketball, and football. (3) Book cover, which
comes from books in different languages, such as English and Chinese. (4) Painting, which involves
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Table 2: Overview of the proposed FORB benchmark.

Object Type # Query # Index # Distractor # Easy # Medium # Hard
Animated trading card 6,025 1,392 11,137 714 4,868 443
Photorealistic trading card 2,187 484 521 67 2,039 81
Book cover 1,461 470 10,739 66 1,277 118
Painting 988 430 615 119 710 159
Currency 758 395 1,188 112 576 70
Logo 1170 535 174 24 957 189
Packaged goods 800 476 2,382 24 727 49
Movie poster 512 403 23,094 49 426 37
Total 13,901 4,585 49,850 1,175 11,580 1,146

various styles, such as impressionism and baroque, etc. (5) Currency, which involves banknotes
of modern and antique designs from different countries. We consider both the front and back of
a banknote. (6) Logo. We consider common logos (e.g., Nike) as well as long-tailed logos (e.g.,
brands of local small businesses). (7) Packaged goods. We only consider products for which the
corresponding index images are displayed on flat surface. (8) Movie poster. We consider posters
from different countries, such as America and Japan. In Figure 1 we show examples for each object.
As can be seen, these objects have diverse textures, involving animation and artificial patterns, etc,
and thus offer various retrieval challenges. Also, they are common in daily life and retrieving such
objects serves as a practical use case in real applications. For example, eBay builds an image retrieval
system2 for trading cards to facilitate the sales of cards.

To build our benchmark, we collected the query and index images mainly via Google Images.
Specifically, before collecting images, for each type of objects we firstly curated a list of object names.
Their names can be obtained from dedicated websites, such as TCGplayer3 for animated trading card
and Wikimedia Commons4 for painting. Next, we queried Google Images with each of the names
and retrieved the corresponding query and index images. The returned results were typically noisy
and we manually filtered out the irrelevant images as well as those that could be copyright protected.
In this way, we effectively matched each index image with diverse query images, giving image-level
ground truths. Note that our collected query images are in the wild whereas the database images are
in canonical pose (see Figure 1). Besides Google Images, we also leveraged some other sources to
further augment the benchmark, such as Google Lens API, eBay, and Amazon.

To increase retrieval difficulty and challenge, similar to previous works [37, 49] we also introduced
distractors to the benchmark. The distractors are images that share similar semantics, contents, or
textures with the index images. They can be from the same domains as the index images, or from
other domains. Distractors are primarily introduced to increase the retrieval difficulty, as they would
bring perplexing features that deceive retrieval algorithms and reduce the accuracy of retrieval results.
Ideally, a strong retrieval algorithm should be robust against distractors. In our benchmark, the
distractor images were all from the 8 object domains and crawled from different specific websites,
such as TCGplayer and Wikimedia Commons. See supplementary material for some examples. The
details of our benchmark can be found in Table 2.

3.2 Data Annotation and Metadata

As mentioned above, we provide image-level retrieval ground truths for each query image. To enable
a more detailed evaluation on the quality of image embeddings, we also offer annotations on the
retrieval difficulties for each query image. Specifically, we break down difficulty into three levels:
easy, medium, and hard. The specific difficulty level for a query image is subject to the following
factors: (1) occlusion; (2) blur; (3) truncation; (4) color distortion; (5) perspective distortion; (6)
texture complexity; (7) area of the object in the query image. For example, if the target object only
occupies a small area in the image, we tag “hard” for the given query image due to the distraction of
background; see Figure 1(h)(n). Similarly, if the object does not bear severe perspective distortion or
truncation, we tag “easy”; see Figure 1(b). In practice, assigning difficulty levels to query images can

2https://pages.ebay.com/scantolist/
3https://www.tcgplayer.com/
4https://commons.wikimedia.org/
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be a subjective process. To reduce bias and ensure precise difficulty assessment, we involve different
annotators in manually labeling the difficulty of each image and then use majority voting to determine
the final difficulty level. As shown in Table 4, the annotated difficulty levels are quite consistent with
retrieval accuracies for all methods, i.e., the accuracies are high on easy queries, whereas they are
low on hard queries.

We store the annotations with a newline delimited JSON file, where each line contains the metadata
corresponding to a query image. Specifically, each line is comprised of the following information:
(1) query image ID; (2) the file name of query image; (3) the source URL of query image; (4) the
file names of ground-truth index images; (5) the source URLs of ground-truth index images; (6)
difficulty level. Here the source URL corresponds to where we downloaded the image. Apart from
this annotation information, we also provide newline delimited JSON files for tracking the set of
query and database images, respectively, where each line contains information regarding the image
file name and source URL.

We host the metadata files at https://github.com/pxiangwu/FORB/, which is publicly accessible. As
for the query and database images, they can be downloaded via the provided source image URLs.
Alternatively, these images are also accessible from a Google drive, where we snapshot all the images
from source URLs. Both the metadata and image files are licensed under CC BY-NC-SA.

3.3 Metrics

Our FORB benchmark uses the commonly adopted mAP metric, as well as a new one that takes into
account the matching score margin.

mAP The mean Average Precision metric considers both the true positives and false positives in
the ranked retrieval results. The metric is defined as follows:

mAP@k =
1

Q

Q∑
q=1

AP@k(q), AP@k(q) =
1

min(mq, k)

min(nq,k)∑
k=1

Pq(k)relq(k), (1)

where Q is the total number of query images; mq is the number of ground-truth index images matched
with query image q; nq is the number of predictions made by the retrieval method; Pq(k) is the
precision at rank k for query image q; and relq(k) is a relevance indicator function which equals 1 if
the result at rank k is relevant and equals to 0 otherwise. Note that for some query images (e.g., OOD
images) they do not have associated index images to retrieve, and mAP does not penalize the method
even if it retrieves some results for the query images.

t-mAP To take into account OOD queries and false positive results, we introduce thresholded mAP,
i.e., t-mAP. This metric measures the matching score margin with the aid of OOD queries, and is
computed as below:

t-mAP =
1

τ(1)

∫ τ(1)

0

mAP(t)dt, (2)

where τ(x) is the threshold that leads to a false positive rate of 1−x on OOD queries after thresholding
the retrieved candidates with respect to their matching scores; formally, τ(x) = min{x̃ | FPR(x̃) =
1− x}, where FPR(x̃) is the false positive rate at threshold x̃. mAP(t) is the mAP computed after
the retrieval results are suppressed at threshold t. Note that mAP(t) tends to decrease with increasing
threshold t. However, for an ideal universal image embedding, it is expected to still have a high mAP
even at threshold τ(1), due to its strong discriminability between true positives and false positives.

In practice, to numerically compute Equation (2), we uniformly sample 11 thresholds and average
mAP(t) over them:

t-mAP =
1

11

∑
t∈{0,τ(0.1),...,τ(1.0)}

mAP(t). (3)

As can be seen, t-mAP takes value from [0, 1], with higher value indicating better performance.
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Table 3: The training data used by different image retrieval methods. “Web images” means the
training data are sourced from the Internet and typically comprise various 3D objects along with
some flat objects. We use the generic term “3D objects” to indicate the training data involve diverse
3D objects, such as 3D landmarks, plants, and animals, etc.

Method Training data Domain # images Method Training data Domain # images
BoW [8] - - - BLIP [23] 129M [23] 3D objects + web images 129M
FIRe [47] SfM-120k [39] 3D landmark 120K BLIP2 [22] 129M [23] 3D objects + web images 129M
DELG [4] GLD [30] 3D landmark 960K DINO [5] ImageNet [9] 3D objects 1M
CLIP [40] Proprietary 400M Web images 400M DINOv2 [32] LVD-142M [32] 3D objects 142M
SLIP [28] YFCC15M [43] Web images 15M DiHT [36] LAION-438M [42] Web images 438M

4 Experiments

In this section, we evaluate several representative image retrieval methods on our FORB benchmark.
Based on the evaluation results, we also provide a detailed analysis on the behavior of different image
embeddings and their intriguing properties.

4.1 Baseline Methods

We consider 10 existing image retrieval methods as baselines and investigate their image embedding
qualities. According to how the embedding is built, these methods can be categorized into 3 groups.

Bottom-up This strategy builds a global image embedding based on local image features. The
related methods include: (1) BoW [2]. This method extracts RootSIFT [2] local features from the
given image, which are then quantized using a codebook and finally assembled into a sparse feature
vector, i.e., image embedding. Since BoW only relies on handcrafted low-level image features, the
produced embedding tends to have better generalization ability than learning-based ones that fit to
certain domains. (2) FIRe [47], which extracts mid-level image features and then aggregates them in
a manner similar to BoW. However, different from BoW, FIRe is deep learning-based and the feature
extraction needs to be learned with certain training data, e.g., SfM-120k [39].

Top-down Contrary to the bottom-up approach, this strategy learns to extract local image features
through image-level supervision on global image embeddings. The local features typically correspond
to the convolutional feature maps and are used for feature matching or reranking. In contrast, the
global image embeddings are used in the first stage of a retrieval system to efficiently select the most
similar images. In our experiment, we consider one representative approach, DELG [4], which jointly
extracts deep local features and global image embeddings.

Top-only This strategy performs image retrieval with learned global image embeddings directly,
without the need of extracting and using local image features. The global image embeddings are
typically produced from a deep model that is trained on a large dataset, in a supervised or self- /
weakly-supervised manner. In the experiment, we consider the following state-of-the-art methods: (1)
CLIP [40]; (2) SLIP [28]; (3) BLIP [23]; (4) BLIP2 [22]; (5) DINO [5]; (6) DINOv2 [32]; (7) DiHT
[36]. Note that apart from the design differences, another major distinction among these methods
lies in their training data; see Table 3 for more details. In Table 6 we also show the specific neural
network model used in each method.

It is worth mentioning that for some top-only methods, their training data may overlap with our FORB
benchmark. In particular, we find a few images from FORB are also included in LAION-5B [42],
and therefore training data based on the subset of LAION-5B (e.g., LAION-438M [42] and 129M
[23]) may also share duplicate images with FORB. In addition, since the training set of CLIP are
collected from web, it may overlap with FORB as well. This test set overlap issue has been discussed
in previous works [40, 42] and is considered to have little impact on the validity of performance
evaluations. In the supplementary material we perform extra experiments on a deduplicated version
of FORB and observe the evaluation results closely resemble those from the original FORB (see
Section A.4)
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Table 4: Comparison of different image retrieval methods on our FORB benchmark. Bolded numbers
indicate the best results. † means the model training data may overlap with FORB and the retrieval
accuracy can be interpreted as an “upper bound” performance.

mAP@5 (%) t-mAP@5 (%)
Method Overall Easy Medium Hard Overall Easy Medium Hard
BoW [2] 78.44 90.38 79.78 52.65 62.49 78.29 63.61 35.00
BoW (+ rerank) [2] 80.38 92.69 81.77 53.70 67.83 81.95 69.04 41.03
FIRe [47] 88.08 98.48 90.14 56.58 77.50 90.38 79.41 44.97
DELG [4] 48.81 79.45 48.11 24.48 34.92 65.44 33.79 15.04
DELG (+ rerank) [4] 58.74 87.96 58.43 31.91 39.47 70.64 38.45 17.74
CLIP† [40] 89.36 98.23 90.00 73.84 67.23 87.10 67.48 44.27
SLIP [28] 39.01 64.45 38.58 17.22 24.43 50.27 23.42 8.07
BLIP† [23] 74.11 94.67 74.65 47.53 49.98 81.31 49.58 21.89
BLIP2† [22] 81.73 94.28 82.72 58.85 57.11 81.59 57.43 28.77
DINO [5] 55.20 85.08 55.28 23.79 42.28 74.51 41.75 14.56
DINOv2 [32] 68.86 92.85 69.53 37.51 48.21 72.04 48.44 21.39
DiHT† [36] 84.77 96.56 85.47 65.55 60.54 83.79 61.06 31.43

4.2 Implementation

In the experiment, we resize the query and database images to standardize the inputs, ensuring that
the longest side is no more than 480 while maintaining the original aspect ratio. For the baseline
methods, we implement BoW in Python according to [2], while for the others we adapt their open
source implementations to image retrieval task. Specifically, for both BoW and FIRe, we build the
codebook using 10k images randomly sampled from the database images. For DELG, we follow
its default protocols and extract multi-scale local and global features for both query and database
images. For all top-only methods, we produce multi-scale feature representations as well. To be
specific, we firstly build an image pyramid by resizing the input image and then center cropping.
In our implementation, to strike a balance between accuracy and inference speed, we use 3 scales,
{ 1√

2
, 1,

√
2}, for query images, and 7 scales [30] for database images. Next, we compute the global

image features at each scale and apply L2 normalization to them. Finally, we aggregate all the
features by average-pooling, followed by another L2 normalization step. Such multi-scale features
mitigate the issue of lacking scale invariance for top-only methods. In practice, we observe much
improved accuracy of multi-scale features compared to the single-scale ones.

The source code for all the implementations is available at https://github.com/pxiangwu/FORB/, and
licensed under the MIT license.

4.3 Evaluation

In Table 4 we report image retrieval accuracy for different methods in terms of mAP@5 and t-mAP@5
(see supplementary material for more results). It can be observed that:

(1) Image embeddings built from handcrafted low-level features can be more universal than many
learning-based global image descriptors. In particular, while BoW was introduced decades ago and
manually designed, it still outperforms DELG and many top-only methods on our FORB benchmark,
demonstrating its strong generalization ability. Moreover, from t-mAP it can be observed that BoW is
better at separating true positives from irrelevant candidates, giving a larger matching score margin.

(2) Mid-level image features are more discriminative than low-level descriptors, and their induced
global image embeddings exhibit a superior generalization ability over OOD domains. In Table 4 we
investigate one baseline method, i.e., FIRe, which builds embeddings from mid-level features. It can
be observed that FIRe overall achieves the best performance among all baselines, with the highest
t-mAP while giving an mAP on par with CLIP. To extract mid-level features, FIRe needs a model
training procedure. Surprisingly, although FIRe was trained on 3D landmark images, it can still work
well on 2D flat object domains. This could be because in principle the mid-level features of FIRe
are similar to the low-level ones, but they typically cover a larger image region and thus incorporate
more semantic information, leading to much improved discriminative ability.
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Table 5: Retrieval accuracies on diverse objects. We report overall mAP and t-mAP. Bolded numbers
indicate the best results. † means the model training data may overlap with FORB and the retrieval
accuracy can be interpreted as an “upper bound” performance.

mAP@5 (%) / t-mAP@5 (%)

Method Animated
Card

Photorealistic
Card

Book
Cover Painting Currency Logo Packaged

Goods
Movie
Poster

BoW [2] 85.93 / 70.42 79.82 / 62.98 87.92 / 72.68 73.33 / 53.64 70.79 / 52.64 29.98 / 20.20 88.57 / 70.93 73.40 / 53.19
BoW (+ rerank) [2] 89.68 / 76.65 84.58 / 70.55 89.57 / 77.25 77.94 / 62.31 73.46 / 59.81 20.06 / 16.26 82.10 / 70.68 76.90 / 61.31
FIRe [47] 93.92 / 83.50 95.69 / 85.17 90.55 / 80.40 88.61 / 78.24 81.57 / 69.72 42.50 / 33.32 92.69 / 81.21 85.35 / 71.03
DELG [4] 53.86 / 43.42 43.78 / 24.95 58.83 / 39.66 29.75 / 16.08 65.64 / 47.77 13.45 / 7.92 69.88 / 46.37 42.09 / 25.10
DELG (+ rerank) [4] 64.95 / 50.42 55.63 / 28.38 67.91 / 42.50 39.83 / 18.24 73.94 / 50.93 19.17 / 9.91 76.23 / 48.32 49.80 / 27.01
CLIP† [40] 91.93 / 72.91 74.26 / 54.00 99.17 / 71.48 93.12 / 63.43 87.30 / 73.95 85.29 / 53.90 98.14 / 79.10 86.99 / 53.92
SLIP [28] 34.15 / 24.84 47.51 / 34.30 45.50 / 22.34 55.93 / 26.71 29.74 / 24.20 14.92 / 3.25 64.12 / 29.64 38.28 / 19.52
BLIP† [23] 64.87 / 51.64 74.22 / 58.61 93.43 / 55.50 79.60 / 45.10 68.93 / 50.17 82.86 / 29.25 96.37 / 51.04 69.51 / 32.64
BLIP2† [22] 78.21 / 64.47 78.23 / 57.77 96.44 / 61.86 84.43 / 42.36 78.32 / 55.11 80.59 / 31.74 97.70 / 63.32 73.53 / 33.82
DINO [5] 52.75 / 41.27 80.16 / 63.26 48.78 / 33.20 65.90 / 51.90 53.49 / 41.27 6.15 / 3.14 77.15 / 56.19 55.47 / 41.11
DINOv2 [32] 70.00 / 45.29 87.76 / 76.93 68.56 / 37.68 79.92 / 57.40 65.30 / 55.83 6.62 / 1.44 92.26 / 68.55 65.04 / 35.88
DiHT† [36] 83.02 / 67.74 78.22 / 62.49 95.66 / 65.24 93.25 / 47.97 84.41 / 59.14 78.09 / 26.77 98.38 / 73.18 80.33 / 37.85

Table 6: Architectures and inference speeds (seconds / query) of different methods.

Method Architecture Speed Method Architecture Speed
BoW [2] - 0.410 SLIP [28] ViT-L/16 0.209
BoW (+ rerank) [2] - 0.418 BLIP [23] ViT-L/16 0.211
FIRe [47] ResNet-50 0.124 BLIP2 [22] ViT-g/14 + QFormer 0.341
DELG [4] ResNet-50 0.376 DINO [5] ViT-S/8 0.177
DELG (+ rerank) [4] ResNet-50 6.015 DINOv2 [32] ViT-L/14 0.222
CLIP [40] ViT-L/14@336px 0.513 DiHT [36] ViT-L/14@336px 0.357

(3) For top-only methods, their retrieval accuracies on OOD domains improve with increasing size
of model and training data. For example, since the training data of DINO and SLIP are relatively
smaller than others, the generalization ability of their image embeddings is inferior to that of CLIP
and DiHT, which employ larger model and training set.

(4) Image embeddings based on low- and mid-level features cannot adequately distinguish feature-
scarce images. As shown in Table 5, both BoW and FIRe fail to accurately recognize logos, which
typically consist of simple patterns and contain sparse features. In contrast, the top-only methods are
better at handling logos, probably because they describe images based on their high-level semantics
and thus suffer less from the lack of lower level features.

In addition to the retrieval accuracies, we also show the inference speeds of different methods in
Table 6. We measure the speed on a machine with 120 GB RAM, an NVIDIA T4 GPU and 32 Intel
Xeon CPUs (@2.30GHz). Notably, although CLIP achieves the highest mAP among all the methods,
it is not efficient since the feature extraction is computationally expensive. In contrast, FIRe runs
at a much faster speed, with a similar mAP and even better t-mAP. This further demonstrates the
advantages of bottom-up strategy and mid-level features.

4.4 Discussion

As shown in Table 4, while being effective on certain object domains, the embeddings from most of the
baseline methods are not universal enough to generalize to diverse open-world objects. This affirms
the need for the proposed FORB benchmark to further strengthen the research in the generalization
ability of image embeddings. In addition, our benchmark results show that even trained with 3D
landmark images, embeddings produced by FIRe can still well distinguish images from OOD domains,
indicating the great potential of mid-level features in retrieval tasks. In particular, given the advantages
and weaknesses of mid-level features, one future direction would be to develop a retrieval method
that jointly leverages the mid- and high-level image features, giving image embeddings that share the
benefits of both sides.

5 Conclusion

We present FORB, a benchmark for flat object retrieval and matching. Essentially FORB supplements
existing image retrieval benchmarks, and more importantly, it serves as a test bed for evaluating the
generalization abilities of image embeddings on OOD domains. Our experiments on FORB shows
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that embeddings based on low- and mid-level image features overall are more universal than those
constructed from high-level semantics. Notably, we observe that the mid-level features introduced
by FIRe are surprisingly general and give the best overall retrieval performance, even if the model
is trained on 3D landmarks. However, despite the overall inferiority, embeddings of high-level
semantics are usually more effective for images that contain sparse features. These findings suggest
that one potential future direction would be to develop methods that jointly leverage the mid- and
high-level image features and combine the strengths of both.

Limitations and future work. In our experiment, we compare baselines which have different model
sizes and are trained on various datasets. As a result, the comparisons among these methods and
their corresponding embeddings could be unfair to some extent. In addition, our FORB benchmark
currently only considers distractors from the same domain as the index images. To improve the
diversity and challenges of our benchmark, in the future we plan to collect more distractors from
other domains. In addition, to further enrich the OOD queries, we also plan to curate queries beyond
the domains of index images, a practice which is similar to GLDv2 [49]. In this way we can better
measure the matching score margins of different methods with t-mAP. Despite these limitations, our
benchmark still serves as a supportive dataset for further research in the task of image retrieval. We
hope our work would facilitate the understanding of different image embeddings and promote the
design of new methods.
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