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ABSTRACT

LLM solutions are increasingly replacing specialized machine learning models
across various industry domains. While offering simplicity and maintainability
advantages, optimizing these workflows remains heavily dependent on expert-
driven experimentation. In this paper we test off-the-shelf powerful LLMs for
the task of automatically building and iteratively improving LLM-based solutions.
We propose a configuration-driven framework which defines such workflows by
specifying model parameters, prompt templates, and data transformations. We
show that this standardized representation enables automatic iterative improve-
ment loops via optimization agents which are themselves defined within the same
framework. When evaluated on challenging datasets, it discovers improved so-
lutions while maintaining interpretability and human verifiability. The improve-
ment loop we instantiate is generic and minimal (using prompts that have not
been engineered) and self-referential (improved solutions are discovered with im-
proved documentation and examples). The proposal is a self-improving system
that bridges the gap between generic code-generating automatic optimization and
more narrowly-focused techniques such as prompt engineering.

1 INTRODUCTION

Applications across domains such as financial services, healthcare, customer support, content mod-
eration, and many others, increasingly rely on LLM solutions where the same inference pattern is
applied to thousands or millions of data points. Such unified LLM-based solutions are increasingly
preferred over specialized ML solutions, offering the appeal of a single, versatile approach that can
handle diverse tasks without requiring domain-specific model training and maintenance (Chkirbene
et al., 2024; |Raza et al., [2025} |Saleh et al.l |2025). While these LLM inference workflows may ini-
tially lack the efficiency of highly optimized, custom machine learning (ML) solutions developed
over years, maintainable systems often outweigh the performance gains of complex, specialized al-
ternatives. However, unlike conversational Al systems where each interaction is unique, these LLM
inference scenarios involve repeatedly executing identical prompt templates with only the input data
varying, creating additional opportunities for optimization, for both quality and other performance
goals. While it is becoming commonplace to utilize techniques such as prompt caching (Xiao et al.,
2023} Zhu et al., [2023), automatic prompt engineering ((Ramnath et al., 2025} |Zhou et al.| 2022} [Li
et al.,2025a; Debnath et al., 2025)) or model selection (Wang et al., 2023} [Tanaka et al.,|2023}; [Tang
et al.l 2024), optimizing repeated inference patterns holistically still heavily relies on expert-driven
experimentation (Li et al.| 2024).

On the other hand, generative models are also transforming ML research by acting as powerful as-
sistants that automate routine tasks, augment human creativity, and accelerate the pace of discovery.
While LLMs are not yet capable of fully replacing human ML scientists, they significantly enhance
efficiency by automating coding, data analysis, hypothesis generation, and manuscript writing (Tang
et al.||2025;Wang & et al.,|2025} | Yang et al.|2024b;|Schramowski et al.,[2025)). In this paper we take
a step further in the direction of using generative models to aid in the development of ML solutions
by showing that LLMs can successfully drive the optimization of LLM inference workflows and
help discover improved solutions. This proposal addresses the gap between generic code-generating
automatic optimization and more narrowly-focused techniques such as prompt engineering.

The paper makes the following contributions:



* We address a specific class of ML solutions based on LLM inference and propose a configuration-
driven framework that supports interpretability. We demonstrate that this constrained yet expres-
sive solution space enables powerful off-the-shelf LLMs to autonomously create and improve
workflows across various tasks with minimal task-specific guidance. The generated workflows
execute without errors over 95% of the time, achieve task performance that matches standardized
prompts on average, and consistently discover significantly better solutions.

* We further implement a simple automatic iterative improvement loop, where other LLMs improve
the solutions for custom goals such efficiency or quality. We propose a very simple linear iterative
improvement loop using an Analyzer and an Improver agent, and show it can find better solutions
to various challenging data sets. Since the Analyzer and Improver are in themselves LLM-based,
we define them within the same framework and can thus be the object of optimization as well.

* We prioritize documentation-driven optimization over prompt engineering, which requires exten-
sive manual tuning for each task and optimization objective. Instead of engineered meta-prompts,
our LLMs receive minimal generic prompts alongside rich contextual artifacts: framework doc-
umentation and workflow examples. This approach enables robust cross-task generalization and
sets the stage for a self-evolving system where accumulated knowledge artifacts improve perfor-
mance across diverse domains without task-specific prompt crafting.

2 CONFIGURATION-DRIVEN LLM AGENT DEFINITION

In this section we test whether off-the-shelf LLMs can generate high-performing agents for new
tasks given a well-defined agent specification framework and examples of agents implemented us-
ing it. To achieve this we propose a configuration-driven LLM agent framework which promotes
interpretability (a human user can easily understand and verify the generated agent) and enables
systematic optimization (another LLM can iteratively improve on these agents).

LLM Agent We define an LLM agent as a workflow that makes a single LLM inference call,
optionally preceded by input pre-processing and followed by output processing. [ﬂ More precisely,
let D = {(x1,¥1),--.,(Zn,yn)} denote a dataset where each data point consists of input z; and
optional ground truth y;. An LLM agent A is defined by:

* A prompt template 7" containing fixed text and placeholder variables
* A set of input functions { f1, fa, ..., fr} that transform input data x;
¢ An LLM model (0. y) alongside inference hyper-parameters p (temperature, max tokens, etc.)

For input x;, the agent generates a prompt p; and then output o; as :
pi = T(fi(zis0),. ., fi(wiyc),¢) and  o0; = A(z;) = bum(pi; p)

where c stands for additional context (examples, external data sources, etc.). Dataset-level perfor-
mance is computed as E = % S E(0;,x;,y;) where E is a task-appropriate evaluation function.

Agent Implementation At the level of implementation, we describe an LLM agent via three files:
Configuration (json), Agent Class Implementation (Python) and Input Schema File (json). See Ap-
pendix [B| for more details. The configuration file specifies the agent’s behavior: model settings,
prompt template, input processing functions, and output format. The agent class implements the
pre-processing functions referenced in the configuration. These functions handle data transforma-
tions, feature extraction, example retrieval, and other per-datapoint operations. The input schema
file defines the agent’s interface with other components, specifying what data the agent can access
and how it communicates with upstream and downstream tasks. This three-file structure enforces
clear separation between declarative configuration, implementation logic, and interface contracts,
enabling systematic optimization while maintaining interpretability.

At run-time, agents process data points sequentially through a standardized pipeline: load and val-
idate configuration files, apply input transformations, render the prompt template, call the LLM,

!"This definition differs from the broader usage of “agent” in the literature, which typically encompasses
multi-step reasoning, tool usage, memory systems, and iterative planning. Our constrained definition focuses
on the fundamental building block of LLM-based solutions.



and parse the response according to the specified output format. Each agent is constrained to ex-
actly one LLM inference call—multi-step reasoning requiring multiple LLM interactions must be
orchestrated at the workflow level using separate agents.

Modifiability Control To guide other LLMs in improving task agents, we introduce modifiability
control. Each configuration section includes a flag modi fiable € true, false that helps meta-agents
understand which sections can be modified. For example, model.modifiable = true allows modifi-
cation of model parameters, while output.modifiable = false preserves the response schema. This
enables systematic exploration while maintaining configurable constraints based on the specific im-
provement loop requirements—for example, preserving output schemas for downstream compati-
bility allowing flexible optimization across all components.

Appendix [C| shows a complete math problem solving agent example and Appendix [D] shows how
this design supports diverse implementations including ML integration, in-context learning, and
dynamic input transformation.

2.1 LLM-BASED AGENT GENERATION

To evaluate the configuration-driven framework, we first examine whether LLMs can generate valid
task agents A; given only framework documentation and minimal task context. This evaluation aims
to validate the framework’s clarity and usability, as successful agent generation from documentation
and minimal context indicates that the abstractions are sufficiently well-designed for automated
solution synthesis.

2.1.1 EXPERIMENTAL SETUP

We evaluate agent generation capabilities across the following problems:

AIME2024 and AIME 2025 contain 30 competition-level mathematics problems each, requiring
integer answers between 000-999 (MAA Committees). These challenging problems span algebra,
geometry, number theory, and combinatorics, requiring complex mathematical reasoning that re-
mains difficult for current (non-reasoning) models. We evaluate exact match accuracy and use
AIME2024 Part I for development, with remaining datasets for testing.

Math500: 500 competition mathematics problems with detailed solutions across 7 subjects (Alge-
bra, Counting & Probability, Geometry, Intermediate Algebra, Number Theory, Precalculus, Preal-
gebra) (Hendrycks et al.| 2021} [Lightman et al.||2024). For Math500, evaluation uses mathematical
expression normalization to account for equivalent mathematical representationsﬂ We sample 100
data points for development and leave the remaining 400 for test.

MMLU-Pro is a benchmark designed to challenge LLMs beyond the original MMLU (Wang et al.,
2024]). It features reasoning-focused multiple-choice questions across 14 domains with ten answer
options instead of four, creating a more demanding evaluation. We use validation data for develop-
ment and sample 200 test problems.

We test if LLMs can generate working agents for these tasks using agent framework documentation
and minimal task information. Specifically we implement the agent generation using a single meta-
agent defined in the same framework. Table 1 shows the prompt template used by this meta-agent,
where the placeholders stand for:

1. (Framework Documentation) and (Agent Example): The complete LLM Agent README (in
supplementary material, totaling 5k tokens) and a single complete agent example. For all tasks
we use the basic AIME2024 agent shown in Appendix[C| Note that this example is out-of-domain
for MMLU-Pro.

2. (Task Data Point) and (Task description): Task data points are randomly drawn from a different
data split, with the purpose of exemplifying the task to be solved and the input/output format.
Task descriptions are 1-2 sentences describing the task objective (see Table 1).

We use the grader at https://github.com/openai/prm800k/blob/main/prm800k/
grading/grader.py
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Table 1: Prompt template used by the agent generating (meta-)agent, which generates task agents
A, using the task information in this table, alongside the (Framework Documentation) and (Agent

Example) described above.

Dataset (Task Data Point) (Task Description) Generator Prompt Template
AIME2024 Every morning Aya goes for | AIME (American Invitational Instructions: You are an expert Al agent developer.
a 9-kilometer-long walk and | Mathematics Examination) Task: (Task Description)
stops at a coffee shop after- | problems require integer Requirements: Generate exactly 3 files: (1) Agent
wards. When [...] Find the answers between 000 and 999. configuration JSON, (2) Agent implementation
number of minutes the walk | The agent must show detailed Python, (3) Input schema JSON Schema. The
takes her, including the ¢ min- | reasoning and provide the agent must accept problem data as input, generate
utes spent in the coffee shop. final numerical answer. detailed reasoning, output correct format, handle
Answer: 204 parsing errors gracefully, and follow framework
Solution: detailed solution patterns.
AIME2025 Find the sum of all integer Framework Doc: (Framework Documentation)
bases b > 9 for which 17, Agent Example: (Agent Example)
is a divisor of 975. Sample Data: (Task Data Point)
Answer: 070 Output Format: JSON only with agent_config,
Math500 Simplify tan 100 + | MATH problems require an- | agent_code, input_schema fields.
48in 100°. swers in LaTeX format within | Generate the agent now:
Answer: —/3 \boxed tags. The agent must
Subject: Precalculus, Level: 2 show detailed reasoning and
provide the final answer in the
correct format.
MMLU-Pro | Which of the following rep- | MMLU-Pro problems are
resents an accurate statement | multiple-choice questions
concerning arthropods? across academic  subjects
A. They possess an exoskele- | (biology, math, physics, etc.)
ton composed primarily of | with 10 answer choices (A-J).
peptidoglycan. The agent must provide de-
B. They possess an open circu- | tailed step-by-step reasoning
latory [...] and select the correct answer
C.[..] choice.
Answer: B

The LLM must infer an appropriate agent structure, input processing logic, prompt design, and out-
put schema solely from the framework documentation, complete agent example and data sample; no
additional examples of agent configurations, code samples, or task-specific guidance are provided.
However in the future we see this as a self-evolving framework, where the amount of artifacts in-
creases with every problem solved, creating better and richer context for the LLM or code assistant.

Evaluation and baselines In order to facilitate comparisons, we standardize Claude 3.5 Sonnet
v2 for all task agents by removing other model references from the framework documentation. The
meta-agent uses the same model with temperature 0.7 for exploration.

We run the meta-agent 10 times per task and perform static validation on generated configurations
(structure, model names, required fields). Runtime issues include undefined placeholders (non-fatal)
and syntax/execution errors (fatal). Success rate measures the percentage of agents executing with-
out fatal errors on development data. For successful agents, we further evaluate task performance
using multiple runs due to output variability: 5 runs for AIME datasets and 2 runs for others. We
report accuracy averaged across all runs (Pass@1).

We compare against standard prompts for each task: basic CoT for AIME datasets, CoT with one
example for Math500, and 5-shot CoT for MMLU-Pro. Exact prompts and evaluation methodology
follow https://www.vals.ai/benchmarks/\

While the framework supports building sophisticated agents beyond prompt variations, we expect
limited use of its full expressive power in these experiments given the minimal framework docu-
mentation and single agent example provided.

2.1.2 RESULTS

Results are shown in Table[2l

The meta-agent successfully generated executable agents across all datasets with 100% success
rate, even for MMLU-Pro—a previously unseen task provided with only a single example and brief
description. The generated agents demonstrated strong performance with median performance ap-
proaching that of the standard prompts for the tasks. On all tasks, the best agents significantly out-
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Table 2: Performance when generating 10 agents for each task: Success rates (percentage of gener-
ated agents that execute without errors) and task performance metrics (median and max). Base ac-
curacy reports performance of standard prompts used for these tasks (see https://www.vals.
ail/)

Dataset \ Sllllcctess \ Base Acc. \ 1 Task data point 5 Task data points

\ ate \ | Median Acc. | Max Acc. | Median Ace. | Max Acc.
AIME24 1 100% 22.7 21.3 25.3 20.7 25.3
Math500 100% 70.0 66.0 74.0 69.0 73.0
MMLU-Pro 100% 82.0 82.1 87.1 82.9 90.0

performed the baselines, reaching maximum accuracies of 25% on AIME2024, 74% on Math500,
and 90% on MMLU-Pro (an 8% absolute improvement). The primary challenge for agent gener-
ation was ensuring consistency between the output format specification in the configuration, the
formatting instructions in the prompt template, and the evaluation requirements (which expect the
same output fields as shown in the task examples). Misalignment across these components resulted
in task agents that produced un-parseable outputs, leading to evaluation failures and zero accuracy
scores.

All agents implemented dataset-specific preprocessing and incorporated detailed chain-of-thought
reasoning through structured step-by-step problem breakdown. The AIME2024 best agent wrote a
6-step processes: “l. Read and understand the problem carefully, 2. Break down key information,
3. Plan your solution [...] 6. Verify answer is integer between 000-999” . In term of temperature.
80% of agents used temperature 0.7, while the rest used used 0.2 or 0.3. Input/output token patterns
shows MMLU-Pro’s best agent used more tokens than the average (+13% input, +17% output),
while the other tasks showed minimal token differences. No agent incorporated worked examples or
few-shot demonstrations. Finally, the agent generation performance remains similar across datasets
regardless of whether 1 or 5 task examples are provided, demonstrating that models can understand
new tasks from a single example.

3 DATA-DRIVEN AGENT IMPROVEMENT

‘We next explore whether LLMs can not only create agents but also improve them over time through
iterative optimization, using meta-agents to analyze performance and generate better configurations.

We implement a simple self-improvement orchestration pattern involving four agents: a main task
agent A that is the target of improvement, evaluator Aeyai, analyzer Aapalyze, and improver Ajmprove.
We employ simple scorers as Aey, rather than LLM-based ones to ensure reliable performance
measurements. Although these experiments focus on optimizing Ay, the analyzer and improver
agents themselves can serve as optimization targets in the same iterative process.

More precisely, given a development dataset D = {(x;,;)}}*, and performance metric p, we seek
to find agents A/ that improve X; p( A,y (i), ¥:)-

Improvement Loop: At iteration ¢, the system executes:

Out; = AL (D, Ctx) (1)
Eval; = Aeyu(Outy, D) @)
Ay = Agnayze (Evaly, Outy, D) 3)
Alae = Aimprove (Afyd s A’ Ap, Hi—1, Ctix) @)
H; = Hy—1; (Outy, Evaly, Ay) 3

where Out, are task outputs, Eval; contains evaluation metrics (aggregate and individual results), A,
provides analytical insights, and H; is the improvement history.

The analyzer’s role it to identify patterns in performance and provide qualitative insights; we define
an analyzer that uses aggregate results and randomly samples correct and incorrect examples from
the data. The improver uses current and best task agents, current performance analysis and historical
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data, and is instructed to write a new agent while respecting the modifiable flag. The process starts
with an initial agent A2, and terminates when a target performance is met or maximum number
of iterations is reached. With respect to the optimization objective, the loop implements metric-
agnostic improvement by embedding the target metric within the evaluator, allowing the meta-agents

to implicitly understand and optimize toward the desired goal.

The Analyzer and Improver agents are given in Appendix [E| and [F respectively, while their prompt
templates are summarized in Appendix [[} Importantly, as it can be observed, these agents have mini-
mal prompts and rely on the documentation artifacts that are provided to them (Ctx): the README
associated to the LLM framework (as in the previous section) and an additional README file de-
scribing the iterative improvement loop.

The Analyzer and Improver agents are detailed in Appendices [E| and [F| with prompt templates in
Appendix | These meta-agents use minimal prompts and instead rely on documentation (Ctx):
the LLM framework README and an additional README describing the iterative improvement
process. This is an artifact-driven approach where rich contextual information replaces engineered
prompts.

3.1 EXPERIMENTS

We included math tasks in our experiments because they remain challenging for pre-reasoning state-
of-the-art models and exhibit test-time scaling where longer outputs improve accuracy (Snell et al.,
2024} [Muennighoff et al.| 2025). This property creates a natural optimization space: agents can
achieve better quality through longer reasoning chains at higher computational cost, or maintain
quality while reducing token usage, making them ideal testbeds for iterative improvement loops.

This section introduces additional pseudo-random number generator (PRNG) datasets specifically
designed to test test-time scaling properties. Unlike other tasks where models perform pattern recog-
nition, PRNG sequence prediction offers no shortcuts and requires precise algorithmic execution.
We use three PRNG algorithms (BBS/LCG/MWC) with deliberately small constants to be more ap-
proachable for LLMs, which do not excel at large number arithmetic. We set the task of predicting
the k-th number in the sequence with k& = 2, based on the observation that even strong models per-
form poorly on this task. In contrast, reasoning models (GPT-OSS-120b) generate long reasoning
traces and achieve 100% accuracy even for larger k values. We implement an initial PRNG solver
agent as a generic CoT code execution agent. See Appendix |G| for details on data set creation and
PRNG agent.

3.1.1 ACCURACY OPTIMIZATION

We conduct 10-iteration improvement cycles using the same Analyzer/Improver across all tasks. We
test Sonnet 3.5 v2 and GPT-OSS-120b as meta-agent LLMs and restrict task models to Sonnet 3.5
v2. As in previous sections, we use an Evaluator that computes accuracy and provides aggregate
and per-problem scores.

Table[3]shows results on development and test splits. The “Original agent” uses the standard prompt
from the previous section and serves as the starting point for all improvement loops. The “Best
agent” column shows the highest-performing configuration from the previous section’s agent gener-
ation experiments (performed on the development set).

AIME and MMLU-Pro All agents achieve improved performance on development sets. The chal-
lenging AIME datasets show modest improvements (0.22 — 0.27 with Sonnet 3.5 v2). MMLU-
Pro demonstrates strong overall performance, with substantial development improvements (0.82 —
0.89/0.90) translating to more modest but consistent test gains. Overall, the results indicate that
only larger development improvements transfer to test gains, suggesting insufficient development
data or that baseline configurations had already undergone significant optimization in prior work. In
terms of solutions found, the best AIME agent identifies problem types using word matching and
provides targeted guidance such as “Count systematically by cases” for grid problems and “Factor
completely” for number theory problems.

Appendix [H] shows a typical analyzer output from Sonnet analyzers. On AIME for example, ana-
lyzers commonly: identify where agents make arithmetic errors or use incorrect formulas, observe
performance across problem types (e.g. low on geometry), highlight cases where multiple solu-



Table 3: Performance of initial configurations and after improvement loops. Original agent is the
standard task prompt and serves as the A . Best agent reports on the best configuration detected
in the previous section.

| Original Agent | Best Agent | Improvement Loop
Dataset | | | Sonnet 3.5 v2 | GPT-0SS-120b
AIME2024 1 (dev) 0.22 0.25 0.27 0.25
AIME2024 11 0.07 0.05 0.11 0.03
AIME2025 0.05 0.03 0.03 0.03
MMLU-Pro-dev 0.82 0.90 0.89 0.84
MMLU-Pro 0.79 0.83 0.80 0.77
PRNG-bbs 0.21 - 0.57 1.0
PRNG-Icg 0.0 - 0.02 1.0
PRNG-mwc 0.0 - 1.0 1.0

tions yield different answers (and recommend lower temperature), reason about the optimization
trajectory, or highlight the need for more exploration by increasing temperature. Improvement loops
(plotted in Appendix |K)) are not monotonic, reflecting that the optimization process is mostly ex-
ploratory, with agents often showing temporary performance degradation before discovering more
effective approaches.

PRNG tasks For PRNG tasks, the two meta-agents discovered very different solutions. By iter-
ations 3 or 4, GPT-OSS-120b invariantly discovered agents that pre-compute correct answers and
instruct the LLM to output them. Specifically, the Analyzer, which sees correct/incorrect exam-
ples, inferred that all inputs list the same algorithm and instructed the Improver to create agents that
execute this algorithm. The exact implementation varied: for example inserting a prompt section
“verification_note” which instructs the LLM to check the answer against the pre-computed answer
or a section “generate_example_trace” which despite the name contains the actual computed execu-
tion trace for that data point. While not technically cheating, these solution assume that the observed
examples are representative of the true data distribution. In contrast the Sonnet loops only discovered
this solution for the MWC algorithm and failed to find a working solution for the LCG algorithm.
For BBS, Sonnet 3.5 finds improved solutions which list explicit modulo arithmetic rules (which
the Analyzer identifies as difficult), add examples and clear validation guidance, but do not compute
the function deterministically (reaching 57% performance). Regarding test-time scaling, the system
did not identify it as a reliable performance improvement strategy. While one improvement loop
produced agents that generated 50% more output tokens (with 10% longer input), this increased
verbosity did not consistently translate to better performance. Appendix [J] shows an extreme case
where detailed reasoning instructions resulted in outputs twice the length of the starting agent.

Variation across loops We observe that results vary when running identical improvement loops
multiple times. To explore this, we run each Sonnet loop 4 additional times and observe max scores
in the range [0.84-0.89] for MMLU-Pro, [0.24-0.28] for AIME, and [0.57-0.93] for PRNG-bbs.
Combined with the observation that larger development improvements generalize better, this sug-
gests the improvement loop in its current form serves as a discovery tool rather than monotonic
optimization. Despite this variability, a single 10-iteration loop discovers superior solutions within
an effectively infinite search space of pre-processing functions, parameters, and prompt templates,
showing very good optimization efficiency.

3.1.2 ACCURACY+COST OPTIMIZATION

We next explore optimization under different objectives using more complex initial configurations.
To balance accuracy and efficiency, we introduce a cost-accuracy evaluator where cost equals in-
put_tokens + 3 x output_tokens (reflecting real-world pricing). The scoring function assigns O points
for incorrect answers and 1/cost for correct ones, prioritizing accuracy while minimizing cost as a
secondary objective. We modify optimization goals by changing the evaluator’s scoring computation
and description. Figure [1|shows fragments of an evaluator output.



AN B W N =

"overall_accuracy": 0.267,
"overall_ score": 2.1le-05,
"avg_input_tokens": 13006.1,

"optimization_goal": "Minimize cost while maintaining accuracy",
"scoring_explanation": "Score: 0 if wrong answer, 1/cost if [...]"

Figure 1: Example evaluator output for cost+accuracy optimization. The explanation fields are
intended to guide the optimization goals of the meta-agents

We experiment on AIME and MMLU-Pro datasets. MMLU-Pro uses the CoT+ICL agent from
the previous section as AJ . For AIME experiments, we start with an ICL agent that samples
2 examples per problem from the slk dataset (Muennighoff et al., [2025), which contains similar
problems with reasoning traces from powerful models. This dataset has been shown to improve
AIME performance when used to fine-tune models.

Table 4: Performance of initial configurations and after improvement loops for cost+accuracy opti-
mization: Accuracy and average input/output tokens.

Original Config Improvement Loop | Improvement Loop
Sonnet 3.5 v2 GPT-0OSS-120b

Dataset | Acc In  Out | Acc In Out | Acc In Out
AIME2024 1 (dev) | 0.24 12.8k 340 | 0.33 6.1k 347 0.29 478 197
AIME2024 11 0.09 139k 368 | 0.08 5.9k 350 0.07 483 209
AIME2025 0.05 142k 365 | 0.05 6.0k 334 | 0.03 488 216
MMLU-Pro (dev) | 0.82 760 190 | 0.84 301 176 0.84 230 196
MMLU-Pro 0.79 805 192 | 0.78 256 172 | 0.79 275 196

Results are shown in Table 4] Both Sonnet and GPT models explored much more diverse solu-
tions than in previous experiments, likely due to the more complex starting agent (for AIME) and
the ambiguous cost function allowing both accuracy and cost optimizations. For AIME, agents im-
plemented strategies including: 1) automatic problem categorization into geometric, algebraic, and
combinatorial types, 2) targeted prompts for each problem type (e.g., for geometry: “1. Draw and la-
bel key elements, 2. List given measurements and relationships...””), and 3) type-based ICL example
selection. This approach yielded the winning Sonnet solution. However, the winning GPT-OSS-
120b agent (Appendix [[)) used none of these techniques, instead replacing random ICL sampling
with a fixed geometry example. While cost-effective, this did not generalize to good test perfor-
mance. The variation in discovered solutions suggests the development set may be too small for
reliable AIME optimization. On MMLU-Pro, all agents were able to find much more efficient solu-
tions in terms of cost with roughly 70% reduction in input tokens and no impact on test performance.

Overall the cost+accuracy optimization showed the potential for creative solution discovery, with
agents autonomously developing problem classification systems, targeted prompting strategies, and
token compression techniques. More sophisticated improvement patterns could incorporate larger
development sets, extended exploration phases, or multi-objective optimization strategies in order
to further expand the range of discoverable solutions.

4 RELATED WORK

Large Language Models as Optimizers LLMs have emerged as powerful optimization tools
across diverse domains. Automatic prompt engineering (Ramnath et al., 2025} [Zhou et al., [2022; [Li
et al.,|2025a}; [Debnath et al., 2025) has demonstrated LLMs’ ability to generate and refine prompts,
with APE [Zhou et al.| (2022) introducing instructions as programs that can be systematically opti-
mized. Similar work addresses automatic model selection (Wang et al.l |2023}; Tanaka et al., 2023
Tang et al., 2024), ICL example selection (Liu et al.| [2022; [Zhang et al.l 2022; Do et al., [2024),



or prompt compression (Jiang et al., 2023} [Li et al.| 2025b) among many others. Recent advances
explore LLMs as general-purpose optimizers (Jiang et al.,[2025a;|Yang et al., | 2024a; Fernando et al.}
2023), leveraging natural language understanding to interpret problems, generate solutions, and an-
alyze feedback iteratively.

Building on these, our work introduces workflow optimization that extends beyond individual com-
ponents to optimize entire agent configurations simultaneously: the system shows solution discovery
capabilities that go beyond prompt variations. The approach enables metric-agnostic optimization
through modular evaluator components, supporting flexible natural language-expressed optimiza-
tion goals. Additionally, the self-referential optimization where meta-agents are defined within the
same configurable framework as the task agents they optimize, enables the improvement process to
enhance itself. Finally we designed this as an artifact-driven framework which leverages rich con-
textual documentation and examples to create a self-evolving system that accumulates knowledge
rather than requiring extensive meta-prompt engineering.

Autonomous Agents and LLM Workflow Optimization Frameworks Research in LLM-based
systems has advanced along two complementary but very related directions: autonomous agents for
dynamic problem-solving and optimization frameworks for systematic workflow improvement.

Autonomous Agent Systems have demonstrated remarkable capabilities in dynamic environ-
ments. ReAct|Yao et al| (2023)) integrates reasoning with external tools through “thought-action-
observation” loops, enabling LLMs to reason, perform actions, and learn from outcomes. PAL
Gao et al.|(2022) focuses on programmatic reasoning by generating executable code as intermediate
steps, e.g. offloading complex calculations to interpreters for improved accuracy on mathematical
tasks. AutoGPT and similar frameworks create agents that independently set goals, break down
tasks, and execute multi-step plans with minimal human intervention. AIDE Jiang et al.| (2025b))
introduces tree-search strategies for systematic code and ML pipeline optimization, structuring so-
lutions hierarchically for targeted improvements based on incremental changes.

Many optimization frameworks have emerged to systematically improve LLM workflows. Some
examples are DSPy (Khattab et al., 2023)), which enables “programming, not prompting” through
modular pipeline definition and automatic prompt optimization. TextGrad (Huang et al.,[2023)) intro-
duces “automatic differentiation via text,” using LLM-based feedback for iterative refinement within
computational graphs. GPTSwarm (Zhuge et al.l | 2024) represents agents as optimizable computa-
tional graphs, unifying prompt engineering techniques through node-level optimization and edge-
level orchestration. Teola Zheng et al.[ (2024) provides end-to-end optimization through dataflow
graph representations, enabling rule-based optimizations across workflow modules.

Our approach bridges these paradigms through simple primitives that enable structured, interpretable
optimization that combines the systematic exploration of optimization frameworks with the adap-
tive improvement mechanisms of autonomous agents. Unlike open-ended autonomous exploration
that can produce black-box improvements, the configuration-driven approach ensures all generated
solutions remain human-verifiable. Instead of replacing humans, the system can serve as a solu-
tion discovery tool that aids human decision-making through transparent improvement trajectories.
This is possible through the constrained but expressive solution space, resulting in a middle ground
between rigid optimization frameworks and unconstrained exploration systems.

5 FUTURE WORK

Current improvement cycles analyze development data point-by-point. While necessary for runtime
execution, development stages could benefit from global dataset processing to enable aggregate
analysis and dataset-wide optimization strategies not visible in individual examples. Additionally,
more sophisticated improvement patterns could incorporate multi-objective optimization or Monte
Carlo solution search, and beyond fixed meta-agents, the configuration-driven design provides a
foundation for joint optimization of both task and meta-agents.

Finally, the framework can be extended to support cross-domain knowledge transfer by accumulat-
ing improvement artifacts across domains. This would build a repository of successful patterns and
strategies, with accumulated knowledge informing improvements on new tasks and enabling transfer
learning at the agent architecture level.
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A GENERATIVE AI USE

Al tools were used throughout this research to enhance productivity and improve the quality of the
work.

Framework Development Process The framework and the framework documentation was de-
veloped iteratively with assistance from a code assistant powered by Sonnet 3.5 and Sonnet 4.0,
depending on availability. The assistant was given specific instructions to improve documentation
clarity and update the framework based on feedback. This iterative process was validated by testing
the framework on toy prediction tasks (separate from the experimental tasks) to ensure the generated
agents functioned correctly.
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Paper writing LLMs assisted in refining the clarity and coherence of the writing, suggesting more
concise phrasings and identifying areas where technical concepts could be explained more clearly
for broader accessibility. Additionally, Al tools facilitated data analysis and presentation by generat-
ing LaTeX tables and figures from raw experimental results. All Al-generated content was carefully
reviewed and validated by the authors to ensure accuracy and appropriateness for the scientific con-
text.
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B LLM AGENT IMPLEMENTATION

LLM Agent Implementation At the level of implementation, we describe an LLM agent via three
components: Configuration (json), Agent Class Implementation (Python) and Input Schema File.

The configuration file defines the agent’s behavior, model settings, input processing, prompt struc-
ture, and output format. A configuration tuple C' consists of:

C = (desc, schema, model, inputs, prompt, output, settings)

where:

* desc: Human-readable description of agent purpose

* input schema: JSON Schema path defining expected input data structure (including addi-
tional context data).

* model = (name, p): LLM specification (f 1y and inference parameters p)
e inputs = {f1,..., fr}: Data transformation functions operating on x; and context c
* prompt = (T, sections): Template T" with reusable sections and placeholders

* output = (format, schema, errors): Expected output format which drives the LLM response
parsing

* settings: Execution parameters such as timeouts

Notably, inputs can be of two types: “data” or “computed” (with function name and arguments),
in which case the function needs to be defined in the agent implementation class. For example the
following configuration fragment shows the input section and references raw_problem_data which
needs to exist in the input data processed, and problem_text which is computed via a function and
takes the raw data as input.

Listing 1: Configuration example showing computed inputs

"inputs": {
"raw_problem data": {
"source": "data"

}
"problem_text": {

"source": "computed",
"function": "extract_problem_ text",
"args": {"problem_data": "raw_problem_data"}

}

The role of the agent class is to implement the functions referenced in the configuration’s computed
inputs. These functions operate at data-point level and can apply custom pre-processing (such as
normalization, feature extraction, problem type classification, etc), retrieve examples from static re-
sources provided as context c, etc. In the example above, the python agent class needs to implement
the extract_problem_text function, for example as:

def extract_problem_text (self, problem_data):
"""Function referenced in config’s computed inputs"""
return problem_data.get ('problem’, ')

The input schema file and the output section of the configuration define the communication with
upstream and downstream tasks. The agent can chose to ignore parts of the input data but can’t
access any resources outside what is defined in the input schema file.

Modifiability Control In order to simplify the process of other LLMs improving task agents, we in-
troduce modifiability control. Each configuration section includes a flag modi fiable € {true, false}
that guides other agents wrt which sections can be modified. For example, model.modifiable = true
indicates that model name or model hyper-parameters can be modified, while output.modifiable =
false indicates that the response schema needs to be preserved. This enables systematic exploration
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of the configuration space while maintaining structural invariants essential for downstream process-
ing, as well as the option to configure preferences (for example to prevent changes in the underlying
LLM model if so desired).

Agent Execution The agents operate synchronously, processing one input data point at a time in
sequential order. The framework reads the agent definition from three files (JSON configuration,
Python implementation, and input schema), performs static validation of the configuration and dy-
namic validation of runtime input data. At runtime, the framework processes input data through
defined transformations, generates the final prompt by resolving placeholders, and calls the LLM
with the rendered prompt. The LLM response is then parsed by an output parser according to the
output format specified in the configuration.
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Listing 2: AIME 2024 Task Agent Configuration

"description": "AIME 2024 task agent - generates detailed reasoning followed by 3-digit
integer answer",
"input_schema": "agents/task/task_input_schema.json",
"model": {
" _modifiable": true,
"name": "anthropic.claude-3-5-sonnet-20241022-v2:0",
"parameters": {
"temperature": 0.7,

"max_tokens": 8192
}
by
"inputs": {
"_modifiable": true,
"problem_ text": {

"source": "computed",
"function": "extract_problem text",
"args": {"problem_data": "raw_problem_data"},
"description": "Extracted problem text from AIME2024 format"
by
"raw_problem_data": {
"source": "data",
"path": lls",
"required": true,
"description": "Complete problem data from AIME2024 dataset"
}
br
"prompt": {
"_modifiable": true,
"sections": {

"instructions": "You are a mathematical problem solver specializing in AIME problems.",
"task_description": "AIME problems require integer answers between 000 and 999. Show
detailed step-by-step reasoning, then provide the final numerical answer.",
"output_format": "You must respond with a JSON object containing exactly two fields:\n-

\"reasoning\": string containing your detailed step-by-step solution\n- \"answer\":

string containing your 3-digit answer (pad with leading zeros if needed)"
br
"template": "### Instructions:\n{prompt.sections.instructions}\n\n### Task:\n{prompt.
sections.task_description}\n\n### Problem:\n{inputs.problem_text}\n\n### Output
Format:\n{prompt.sections.output_format}\n\nNow solve the problem and respond with
the JSON object:"
be

"output": {
" _modifiable": false,
"format": "Jjson"
"schema": {
"type": "object",
"required": ["reasoning", "answer"]
"properties": {
"reasoning": {"type": "string", "description": "Detailed step-by-step solution"},
"answer": {"type": "string", "pattern": ""[0-9]{3}$", "description": "3-digit integer

answer (000-999)"}
}
by

"error_values": {
"reasoning": "Error occurred during reasoning.",
"answer": "PARSE_ERROR"
}
by
"settings": {
" _modifiable": false,
"class_name": "AIME2024TaskAgent",
"timeout_seconds": 300

Listing 3: AIME 2024 Task Agent Implementation

from llm_agent import LLMAgent
from typing import Dict, Any

class AIME2024TaskAgent (LLMAgent) :
wnn

AIME2024-specific reasoning + answer agent.
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Processes AIME mathematical competition problems and generates detailed step-by-step

reasoning followed by answers.
wnn

def _ init__ (self, name="AIME2024_Task", config_path=None, dry_run=False):
super () .__init__ (name, config_path, dry_run)

def extract_problem_text (self, problem_data: Dict[str, Any]) -> str:

Extract problem text from AIME2024 data format.

AIME2024 format:

{
"id": int,
"problem": str, # Main problem statement
"url": str

}

mon

return str(problem_data.get ('problem’, 7))

Listing 4: AIME 2024 Task Agent Input Schema

"type": "object",
"required": ["id", "problem"],
"properties": {
nigns
"type": "integer",
"description": "Problem identifier"

by
"problem": {

"type": "string",
"description": "The AIME problem statement"
by
"url": {
"type": "string",
"description": "URL to problem source (optional)"
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D FRAMEWORK CAPABILITIES

The LLM Framework provides extensive flexibility for implementing diverse agent architectures and
optimization strategies through its configuration-driven design. The framework’s expressive power
enables sophisticated agent implementations across multiple dimensions:

Feature Extraction and ML Integration: Agents can incorporate external machine learning mod-
els and feature extraction pipelines through initialization methods. Complex preprocessing can be
implemented in the agent’s __init__ method, loading pre-trained models, statistical analyzers, or
domain-specific feature extractors. External datasets for feature computation can be specified in the
configuration’s input section and loaded during agent initialization:

"inputs": {

"feature_dataset": {
"source": "data",
"path": "external_features.json",
"description": "External dataset for feature extraction"

b

"extracted_features": {
"source": "computed",
"function": "extract_ml_features",
"args": {"raw_data": "problem_ data", "feature_db": "feature_dataset"}

In-Context Learning Implementation: ICL can be most flexibly implemented as computed inputs
that dynamically generate examples using various example selection strategies, including similarity-
based retrieval, difficulty-matched sampling, or domain-specific filtering. ICL examples can be
sourced from multiple datasets with automatic data leakage prevention:

"icl_examples": {

"source": "computed",

"function": "generate_icl_examples",

"args": {
"icl_data_path": "data/training_examples.json",
"num_examples": 5,
"similarity_metric": "cosine",
"exclude_current": true

Dynamic Input Transformation: The computed input system enables arbitrary feature engineering
and input pre-processing. Agents can implement domain-specific transformations, adaptive input
formatting, etc. Each transformation function can access multiple input sources and apply complex
processing logic:

"processed_input": {

"source": "computed",

"function": "transform_input",

"args": {
"text_data": "raw_text",
"numerical_data": "raw_numbers",
"context_data": "external_context",
"transformation_type": "hierarchical_ fusion"

Model and Parameter Optimization: The framework supports dynamic model selection and pa-
rameter tuning through the modifiable model configuration. Agents can be optimized across dif-
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ferent LLM models with varying capabilities and costs. Model parameters including temperature,
max_tokens, and model-specific settings can be systematically explored:

"model": {
" modifiable": true,
"name": "anthropic.claude-3-5-sonnet-20241022-v2:0",
"parameters": {
"temperature": 0.7,
"max_tokens": 4096,

"top_p": 0.9

}

Prompt Engineering and Structure: The modular prompt system enables sophisticated prompt ar-
chitectures with independently optimizable sections. Agents can implement hierarchical prompting,
conditional prompt sections, dynamic example integration, and task-specific reasoning templates.
The template system supports complex placeholder substitution and structured prompt composition.

Orchestration Constraints: While the framework provides extensive flexibility, certain constraints
ensure orchestration compatibility. The output schema should remain fixed (_modifiable:
false) to maintain consistency across the evaluation-analysis-improvement loops. This constraint
ensures that orchestration agents can reliably process results while allowing freedom in input pro-
cessing, model selection, and reasoning strategies.
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Listing 5: Analyzer Agent Configuration

"description": "Generic analyzer agent - analyzes task performance and identifies
improvement opportunities",
"input_schema": "analyzer_ input_schema. json",
"model": {
" _modifiable": true,
"name": "anthropic.claude-3-5-sonnet-20241022-v2:0",
"parameters": {
"temperature": 0.3,

"max_tokens": 8192
}
br

"inputs": {
" _modifiable": true,
"current_task_config": {
"source": "data",
"path": "current_task_config",
"required": true,
"description": "Current task agent configuration as JSON string"
I
"evaluation_summary": {
"source": "data"
"path": "evaluation_summary",
"required": true,
"description": "Aggregated evaluation metrics from evaluator"
by
"individual_results": {
"source": "data",
"path": "individual_results",
"required": true,
"description": "Per-problem results with model outputs, ground truth, and scores"
b
"correct_examples": {
"source": "computed",
"function": "extract_correct_examples",
"args": {
"individual_results": "individual_results"
"num_examples": 3,
"score_field": "score_field",
"perfect_score": "perfect_score"
by
"description": "Examples where the task agent performed correctly"
br
"incorrect_examples": {
"source": "computed",
"function": "extract_incorrect_examples",
"args": {
"individual_results": "individual_results",
"num_examples": 5,
"score_field": "score_field",
"perfect_score": "perfect_score"
b
"description": "Examples where the task agent made errors"
}
by
"prompt": {
"template": "### Instructions:\n{prompt.sections.instructions}\n\n### Current Task Agent

Configuration:\n{inputs.current_task_config}\n\n### Evaluation Summary:\n{inputs.
evaluation_summary}\n\n### Examples Where Task Agent Was CORRECT:\n{inputs.
correct_examples}\n\n### Examples Where Task Agent Made ERRORS:\n{inputs.
incorrect_examples}\n\nAnalyze the task agent performance and identify improvement

opportunities:"
by
"output": {
" _modifiable": false,
"format": "json",
"schema": {
"type": "object",
"required": ["analysis"],
"properties": {
"analysis": {
"type": "string",
"description": "Complete analysis of task agent performance"
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b

"settings": {
"_modifiable": false,
"class_name": "AnalyzerAgent",
"timeout_seconds": 600

Listing 6: Analyzer Agent Implementation

from llm_agent import LLMAgent
from typing import Dict, List, Any
import json

import random

class AnalyzerAgent (LLMAgent) :

nmon

Generic analyzer agent for performance analysis.

Analyzes task agent performance and identifies improvement opportunities

for any domain that follows the standard evaluator contract.
wnn

def _ init__ (self, name="Analyzer", config path=None, dry_run=False):
super () .__init__ (name, config_path, dry_run)

def extract_correct_examples (self, individual_results: List[Dict[str, Any]],
num_examples: int,
score_field: str = "score",
perfect_score: float = 1.0) -> str:

nwon

Extract examples where the task agent performed correctly.
win
correct_examples = [result for result in individual_results
if result.get (score_field, 0) >= perfect_score]

selected = random.sample (correct_examples, min(num_examples, len (correct_examples)))

return json.dumps (selected, indent=2)

def extract_incorrect_examples(self, individual_results: List[Dict[str, Any]],
num_examples: int,
score_field: str = "score",
perfect_score: float = 1.0) -> str:

momw

Extract examples where the task agent made errors.
wnn
incorrect_examples = [result for result in individual_results
if result.get (score_field, 0) < perfect_score]

selected = random.sample (incorrect_examples, min (num_examples, len (incorrect_examples)

))

return json.dumps (selected, indent=2)
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F IMPROVER AGENT

Listing 7: Improver Agent Configuration

"description": "Generic improver agent - generates improved task agent based on analysis",
"input_schema": "improver_input_schema. json",
"model": {
"_modifiable": true,
"name": "anthropic.claude-3-5-sonnet-20241022-v2:0",
"parameters": {
"temperature": 0.3,

"max_tokens": 25000
}
by
"inputs": {
" _modifiable": true,
"analysis_results": {
"source": "data",
"path": "analysis_results",
"required": true,
"description": "Analysis results from the analyzer agent"
b
"current_task_agent": {
"source": "data",
"path": "current_task_agent",
"required": true,
"description": "Current task agent configuration"
by
"best_task_agent": {

"source": "data",
"path": "best_task_agent",
"required": false,
"description": "Best performing task agent configuration and implementation"
}
b
"prompt": {
"template": "### Instructions:\n{prompt.sections.instructions}\n\n### Current Task Agent:\

n{inputs.current_task_agent}\n\n### Best Performing Agent:\n{inputs.best_task_agent}\
n\n### Analysis Results:\n{inputs.analysis_results}\n\nGenerate improved task agent

configuration based on the analysis:"
by
"output": {
" _modifiable": false,
"format": "Jjson"
"schema": {
"type": "object",

"required": ["explanation", "new_task_implementation", "new_task_config"],

"properties": {
"explanation": {
"type": "string",
"description": "Detailed explanation of improvements"
by
"new_task_implementation": {
"type": "string",
"description": "Complete Python file content"
I
"new_task_config": {
"type": "string",
"description": "Complete JSON config content"

}

by

"settings": {
"_modifiable": false,
"class_name": "ImproverAgent",
"timeout_seconds": 1200

Listing 8: Improver Agent Implementation

from 1lm_agent import LLMAgent

class ImproverAgent (LLMAgent) :

mon

Generic improver agent - generates improved task agents based on analysis.

mon
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def _ _init__ (self, name="Improver", config_path=None,
.__init__ (name, config_path, dry_run)

super ()

dry_run=False) :
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G PRNG EXPERIMENTS

We use the three algorithms BBS/LCG/MWC, and deliberately set small constants to be more ap-
proachable for LLMs which do not excel at large number arithmetic:

* LCG: X, = (25173-X,,+13849) mod 65536 - smaller modulus than typical implementations
* MWC: X, 1 = (18782 - X,, + carry)&OxFFF - 12-bit output with carry propagation
* BBS: X,, .1 = X2 mod 209 where 209 = 11 x 19 - small primes

We create train and test data sets (each containing 70 sequences) where models must predict the k’th
number in the sequence given: (1) complete algorithm implementation in Python, (2) hyperparame-
ters (e.g. the prime numbers used) and (3) initial seed value (distinct in train/test splits). We set the
task as that of predicting the second number in the sequence (k = 2) based on the initial observation
that even state-of-the-art models perform poorly on the task. In contrast, we confirm that a reasoning
model (OpenAl 120b) generates long reasoning traces and achieves 100% accuracy.

Table 5: PRNG agents for BBS/LCG/MWC algorithms. The names of the algorithms are obfuscated
in case the LLMs are aware of these algorithms and have memorized sequences. (Function) is the
Python code, (N) is the number to be predicted (in this case at position 2), (Initial Value) the seed,
(Hyperparams) are constants used in the algorithms. Note that this is a generic code execution agent,
as all the placeholders are only resolved at run-time when individual data points are processed.
Instructions: You are a function evaluator. You will be given a function implementation, its hyperpa-
rameters, and an initial value. Your task is to predict what the function will return at a specific position.
Task: Given the function implementation and parameters, determine what value the function would
return at position (N) when called with the initial value. Note: The first number generated is at position
1, the first iteration is position 1. Show your detailed step-by-step reasoning, then provide the final
prediction.

Function Implementation: (Function)

Hyperparameters: (Hyperparams)

Initial Value: (Initial Value)

Approach: 1. Carefully analyze the function implementation 2. Understand what the hyperparameters
control 3. Trace through the function execution step by step 4. For modulo operations (%), decompose
them: compute the division first, then find the remainder - do NOT compute modulo in a single step 5.
For ANY arithmetic expression with more than 2 terms (e.g., a * b + ¢, X + y - z, etc.), break it down
step by step and compute intermediate results - do NOT evaluate complex expressions in one shot 6.
Calculate the value at position (N) 7. Present your reasoning followed by the final answer

Output Format: JSON object with “reasoning” (detailed step-by-step analysis) and “answer” (predicted
number as string) fields.
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H ANALYZER OUTPUT EXAMPLES

Analysis Output Example

1. Performance Overview:

* Current score: 0.18666 (28% improvement from initial 0.17333)

* Inconsistent performance across iterations (scores:
0.17—0.16—0.0—0.22—0.0—0.22)

* Best performance achieved in iterations 3 and 5 with score 0.22666
2. Key Error Patterns:
A. Mathematical Reasoning Failures:

¢ Complex geometric problem (#70) shows systematic failure to:
— Properly handle cyclic quadrilateral properties
— Apply collinearity constraints
— Use similar triangle relationships effectively
 Function intersection problem (#63) reveals:
— Inadequate periodic function analysis
— Poor handling of composite functions
— Failure to systematically count intersection points

B. Framework Implementation Issues:
* Overcomplicated input processing attempts (iterations 1-2)
¢ Inconsistent JSON output formatting
3. Successful Elements:
» Basic mathematical structure identification
* Geometric component recognition
* Clear prompt organization with validation steps
* Strong JSON output examples
4. Improvement Pattern Analysis:
Most Effective Changes (Iterations 3/5):
» Balanced mathematical structure detection
* Clear geometric reasoning guidance
» Simple but effective input processing
« Strong output format examples
Counterproductive Changes:
* Overly complex pattern analysis (iteration 1)
» Excessive preprocessing (iteration 2)
¢ Oversimplified approach (iteration 4)
5. Recommended Focus Areas:
A. Input Processing:
* Keep clean_problemand math_structure
* Focus geometric_analysis on fundamental properties
* Avoid complex pattern detection
B. Prompt Engineering:
¢ Strengthen systematic proof structure
* Enhance case analysis guidance
* Maintain clear validation steps
C. Mathematical Framework:
* Add explicit proof technique selection
* Improve periodic function analysis
* Strengthen geometric relationship handling
6. Framework-Compatible Implementation:

» Use computed inputs for basic math structure [...]
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I ANALYZER AND IMPROVER AGENTS: PROMPT TEMPLATES

Table 6: Analyzer and Improver agents. Temperature is set to 0.7 to encourage exploration.

Analyzer Agent

Instructions: You are the Analyzer agent in the Iterative Task Improvement Pattern that evaluates LLM agent
performance on tasks by examining inputs, outputs, and ground truth. Analyze error patterns and suggest
framework-compatible improvements.

LLM Agent Framework: (Framework Documentation)

You are an analyzer agent that works as part of this iterative improvement workflow: (Iterative Improvement
Documentation)

Current Task Agent Configuration: (Current Task Config)

Current Task Agent Implementation: (Current Task Implementation)

Evaluation Summary: (Evaluation Summary)

Examples Where Task Agent Was CORRECT: (Correct Examples)

Examples Where Task Agent Made ERRORS: (Incorrect Examples)

Iteration History: (Iteration History)

Analysis Focus: Error patterns across multiple runs, Framework constraints (single LLM call, config-driven),
General improvements (avoid overfitting to sample data), Past iteration results and performance trends, Which
changes had positive/negative effects on performance, Correlation between specific improvements and score
changes

Output Format: (Output Format Requirements)

Improver Agent

Instructions: You are the Improver agent in the Iterative Task Improvement Pattern. Generate improved task
agents that follow LLM Agent Framework constraints (single LLM call, config-driven architecture). IMPOR-
TANT: The goal is to create agents that generalize well to UNSEEN data from the same distribution. The
current development data is only for evaluation - focus on improvements that will work on new, unseen prob-
lems rather than overfitting to the specific development examples.

LLM Agent Framework: (Framework Documentation)

Iterative Improvement Pattern: (Iterative Improvement Documentation)

Iteration History: (Iteration History)

Current Task Agent: (Current Task Agent)

Best Performing Agent (Score: (Best Agent Score) from iteration (Best Agent Iteration)): (Best Task Agent)
Analysis Results: (Analysis Results)

Improvement Guidelines: Framework Implementation Rules: All improvements must work within single LLM
call architecture, Add computed inputs with processing functions for data transformation, Reference new inputs
in prompt templates using {inputs.input_name }, Only implement class methods referenced by computed inputs.
Explain changes like: *Added computed input X that processes Y using function Z, referenced in prompt tem-
plate as {inputs.X} to achieve improvement W’. IMPORTANT: Remember you can only modify config fields
with _modifiable set to True.

Format Requirements: (Output Format Requirements)
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J AGENT GENERATED BY SONNET IN A PRNG-BBS IMPROVEMENT LOOP

"description": "Enhanced Funcl solver with comprehensive arithmetic validation",
"input_schema": "funcl_solver_input_schema. json"
"model": {
"_modifiable": true,
"name": "anthropic.claude-3-5-sonnet-20241022-v2:0",
"parameters": {
"temperature": 0.0,

"max_tokens": 50000
}
b

"inputs": {
" _modifiable": true,
"function_implementation": {
"source": "computed",
"function": "extract_implementation",
"args": {
"problem _data": "raw_problem_data"

}
e

"max_value_validator": {

"source": "computed",
"function": "max_value_validator",
"args": {
"problem_data": "raw_problem_data"
}
I
"value_tracker": {
"source": "computed",
"function": "value_tracker",
"args": {
"problem data": "raw_problem_data"
}
b
"checksum_generator": {
"source": "computed",
"function": "checksum_generator",
"args": {
"problem_data": "raw_problem data"
}
I
"division_validator": {
"source": "computed",
"function": "division_validator",
"args": {
"problem data": "raw_problem data"

}
br
"quotient_checker": ({

"source": "computed",
"function": "quotient_checker"
"args": {
"problem_data": "raw_problem data"
}
Yy
"range_validator": {
"source": "computed",
"function": "range_validator",
"args": {
"problem data": "raw_problem_ data"

}
by
"function_steps": {

"source": "computed",
"function": "extract_function_steps",
"args": {

"problem data": "raw_problem_data"

}
I
"hyperparams": {

"source": "computed",
"function": "extract_hyperparams",
"args": {
"problem_data": "raw_problem_data"
}
br
"initial value": {
"source": "computed",
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I

"function": "extract_initial_value",
"args": {
"problem_data": "raw_problem_data"
}
I
e g
"source": "computed",
"function": "get_n_parameter",
"args": {
"n": 2
}
b
"raw_problem_data": {
"source": "data",
TpaiEh™y TEY,

"required": true

}

"prompt": {
" _modifiable": true,
"sections": {
"instructions": "You are a precise arithmetic calculator focused on careful validation

b

of each calculation step. Follow ALL validation requirements exactly and show every
intermediate value and check.",

"task_description": "Calculate the value at position {inputs.n} using rigorous
validation. Start with initial_value={inputs.initial_value}. Record and verify ALL
intermediate values.",

"validation_requirements": "Large Number Validation:\n{inputs.max_value_validator}\n\
nValue Chain Tracking:\n{inputs.value_tracker}\n\nChecksum Validation:\n{inputs.
checksum_generator}\n\nDivision Validation:\n{inputs.division_validator}\n\
nQuotient Checking:\n{inputs.quotient_checker}\n\nRange Validation:\n{inputs.
range_validator}",

"function_steps": "Calculation Steps:\n{inputs.function_steps}",

"output_format": "Respond with JSON:\n{\n \"reasoning\": \"Show each arithmetic step
with ALL intermediate values, validation checks, checksums, and cross-validations
\",\n \"answer\": \"final numeric result as string\"\n}"

by

"template": "### Instructions:\n{prompt.sections.instructions}\n\n### Task:\n{prompt.
sections.task_description}\n\n### Implementation:\n{inputs.function_implementation}\n
\n### Hyperparameters:\n{inputs.hyperparams}\n\n### Required Validation Steps:\n{
prompt.sections.validation_requirements}\n\n### Calculation Process:\n{prompt.
sections.function_steps}\n\n### Output Format:\n{prompt.sections.output_format}\n\
nCalculate step by step, showing all validation:"

"output": {

"_modifiable": false,

"format": "json",
"schema": {
"type": "object",
"required": [
"reasoning",
"answer"
1,
"properties": {
"reasoning": {
"type": "string"
by
"answer": {
"type": "string"
}
}
Yy
"error_values": {
"reasoning": "Error occurred during reasoning.",
"answer": "PARSE_ERROR"
}
by
"settings": {
" _modifiable": true,
"class_name": "FunclSolverAgent",
"timeout_seconds": 300

#!/usr/bin/env python3
"""Enhanced Funcl solver with comprehensive arithmetic validation"""

import sys
import os
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sys.path.append(os.path. join (os.path.dirname(__ file_ ), *..7, "..7, "..", '..", '"1lm_agent’))
from llm_agent import LLMAgent

class FunclSolverAgent (LLMAgent) :
"""Enhanced Funcl solver with arithmetic validation."""

def extract_implementation(self, problem_data):
"""Extract function implementation from problem data."""
return problem_data.get (' implementation’, ’'’)

def extract_hyperparams (self, problem data):
"""Extract and format hyperparameters."""
hyperparams = problem_data.get (' hyperparams’, {})
if isinstance (hyperparams, dict):
formatted = []
for key, value in hyperparams.items () :
formatted.append (f"{key}: {value}l")
return "\n".join (formatted)
return str (hyperparams)

def extract_initial_value(self, problem_data):
"""Extract initial value from problem data."""
return str(problem _data.get (’initial_value’, ’7))

def get_n_parameter (self, n):
"""Return the position parameter."""
return str(n)

def max_value_validator (self, problem data):
"""Generate validation steps for large number arithmetic."""

steps = [
"Large Number Validation:",
"l. For multiplication A B:",
" a. Split into single digits: A = a a ...a , B-= b b ... b ",
" b. Calculate partial products:",
" - For each digit pair (a , b ): P = a b ",

" — Track carries explicitly",
" c. Sum partial products with position tracking",
" d. Verify: result = sum of all partial products"
"2. Cross-validate using reverse calculation:",
" - Split result into chunks",
" — Verify chunks match partial products"

]

return "\n".join (steps)

def value_tracker (self, problem_data):
"""Generate value tracking steps for calculation chain integrity."""
steps = [
"Value Chain Tracking:",
"l. For each position i in calculation:",
" a. Record value[i] = current value",
" b. Record squared[i] = value[i] ",
" c. Record quotient[i] = squared[i] modulus"
" d. Record remainder[i] = valuel[i+1]",
"2. Verify chain integrity:",
" — remainder[i] = squared[i] - (quotient([i] modulus) ",
" -0 remainder[i] < modulus",
" — value[i+l] = remainder[i]"
]

return "\n".Jjoin (steps)

def checksum_generator (self, problem_data):

"""Generate checksum validation steps between calculations."""

steps = [
"Checksum Validation:",
"l. For each step i:",
" a. Calculate checksum[i] = (value[i] 31 + squared[i]) mod 997",
" b. Verify: checksum[i] matches independent calculation",
"2. Cross-step validation:",
" — Verify: checksum[i+1l] = (remainder([i] 31) mod 997",
" — Track checksum chain for each position"

]

return "\n".join (steps)

def division_validator (self, problem_data):
"""Generate enhanced division validation steps."""
modulus = problem_data.get (' hyperparams’, {}).get ('modulus’, 0)
steps = [
f"Division Validation Steps:",
f"l. For dividing number A by {modulus}:",
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88 " a. Calculate quotient Q = A {modulus}",
89 £ b. Verify: Q {modulus} A",

90 f" c. Verify: (Q + 1) {modulus} > A",

91 =" d. Record Q for remainder calculation",

92 £ e. Track sub-steps:",

93 £" - Record partial quotients",

94 f" - Verify digit-by-digit multiplication",
95 £" - Cross-validate remainder"

96 ]

97 return "\n".Jjoin (steps)

98

99 def quotient_checker (self, problem_data):

100 """Generate enhanced quotient checking steps."""

101 steps = [

102 "Quotient Verification:",

103 "1l. Record squared value (S)",

104 "2. Calculate and verify quotient (Q):",

105 " - Q=35 modulus (integer division)",

106 " - Verify: Q modulus s",

107 " - Verify: (Q + 1) modulus > S",

108 " — Perform digit-by-digit multiplication check",
109 "3. Calculate remainder:",

110 " R=S - (Q modulus) ",

111 "4, Verify remainder is correct:",

112 " -0 R < modulus",

113 " - Cross-validate with value chain"

114 ]

115 return "\n".Jjoin (steps)

116

117 def range_validator (self, problem data):

118 """Generate enhanced range validation steps."""

119 modulus = problem_data.get (' hyperparams’, {}).get ('modulus’, 0)
120 steps = [

121 f"Range Validation:",

122 f"1l. For each position i:",

123 £" - Verify value[i] o",

124 b - Verify value[i] < {modulus}",

125 f"2. For squared values at position i:",

126 " - Record exact value squared[i]",

127 £ — Verify squared[i] = value[i] valuel[i]",
128 f" - Verify using digit-by-digit multiplication",
129 f"3. Position-specific bounds:",

130 f" - Track maximum possible value at each position",
131 £" - Verify values stay within position bounds"
132 1

133 return "\n".Jjoin (steps)

134

135 def extract_function_steps(self, problem data):

136 """Extract and format key arithmetic operations."""
137 steps = [

138 "1l. Initialize calculation chain:",

139 " - Set value[0] = initial_value",

140 " - Calculate checksum[O]",

141 "2. For each position i:",

142 " a. Square Operation:",

143 " - Calculate value[i] using digit-by-digit multiplication",
144 " — Record squared[i] and partial products",
145 " - Verify checksum([i]",

146 " b. Division and Modulo:",

147 " — Calculate quotient[i] with validation",
148 " — Calculate remainder[i] = value[i+1]",
149 " - Verify chain integrity",

150 " c. Cross-validate:",

151 " — Verify all checksums match",

152 " — Confirm value chain consistency",

153 " - Validate position-specific bounds"

154 ]

155 return "\n".Jjoin (steps)
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Aime 2024 improvement loop using Sonnet 3.5 v2 as meta agents.

Figure 3: Aime 2024 improvement loop using OpenAl 120b reasoning model as meta agents.
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58

L AGENT GENERATED BY ACCURACY+COST OPTIMIZATION LOOP BY
GPT-OSS-120B

"description": "AIME 2024 ICL task agent \u2013 focused rhombus example, explicit bound,
streamlined prompt",
"input_schema": "aime2024_icl_solver_input_schema. json"
"model": {
"_modifiable": true,
"name": "anthropic.claude-3-5-sonnet-20241022-v2:0",
"parameters": {
"temperature": 0.2,
"max_tokens": 500
}
by
"inputs": {

"_modifiable": true,
"problem_ text": {

"source": "computed",
"function": "extract_problem text",
"args": {

"problem_data": "raw_problem data"

}
by
"rhombus_property": {

"source": "computed",
"function": "rhombus_property",
"args": {}
I
"solve_perpendicular_condition": {
"source": "computed",
"function": "solve_perpendicular_condition",
"args": {
"problem data": "raw_problem_data"

}
I
"bd2_bound": {

"source": "computed",
"function": "bd2_bound",
"args": {}

e

"rhombus_icl_example": {

"source": "computed",
"function": "rhombus_icl_example",
"args": {}

b

"guard_text": {
"source": "computed",
"function": "guard_text",
"args": {}

b

"raw_problem_data": {
"source": "data",
UpaiEhtg T,

"required": true
}
by

"prompt": {
"_modifiable": true,
"sections": {
"instructions": "You are a mathematical problem solver. Solve the given AIME problem and
output the answer as a three\u20lldigit integer.",
"output_format": "You must respond with a JSON object containing exactly two fields:\n-
\"reasoning\": string with your detailed solution\n- \"answer\": string with a

three\u2011ldigit answer (pad with leading zeros if needed) \n\nFormat: {\"reasoning
\": \"Your detailed solution here\", \"answer\": \"XXX\"}\n\nExample:\n{\"reasoning
\": \"To solve..., I ...\", \"answer\": \"042\"}"
by
"template": "### Instructions:\n{prompt.sections.instructions}\n\n### Geometry hint:\n{
inputs.rhombus_property}\n\n### Algebraic bound hint:\n{inputs.
solve_perpendicular_condition}\n\n### Known bound value:\nThe minimal possible BD\
u00b2 is {inputs.bd2_bound}.\n\n### Example to follow:\n{inputs.rhombus_icl_example}\
n\n### Problem:\n{inputs.problem_text}\n\n### Output format:\n{prompt.sections.
output_format}\n\n{inputs.guard_text}"
I

"output": {
" _modifiable": false,
"format": "Jjson",
"schema": {
"type": "object",
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"required": [
"reasoning",
"answer"
1,
"properties": {
"reasoning": {
"type": "string"
I
"answer": {
"type": "string",
"pattern": "“[0-9]{3}$"
}
}
Yy
"error_values": {
"reasoning": "Error occurred during reasoning.",
"answer": "PARSE_ERROR"
}
by
"settings": {
" _modifiable": false,
"class_name": "AIME2024ICLSolverAgent",
"timeout_seconds": 300,
"exit_on_parse_failure": false

from llm_agent import LLMAgent
from typing import Dict, Any

class AIME2024TaskAgent (LLMAgent) :

mon

AIME2024-specific reasoning + answer agent.

Processes AIME mathematical competition problems and generates detailed step-by-step

nmon

def

def

reasoning followed by answers.

__init__ (self, name="AIME2024_Task", config_path=None,

super () .__init__ (name, config_path, dry_run)
extract_problem_text (self, problem_data: Dict[str,

Extract problem text from AIME2024 data format.

AIME2024 format:

{
"id": int,
"problem": str, # Main problem statement
"url": str

}

mnn

return str(problem_data.get ('problem’, 7))

Any])

dry_run=False) :

-> str:
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