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ABSTRACT

Topic modeling is a fundamental task in natural language processing, allowing
the discovery of latent thematic structures in text corpora. While Large Language
Models (LLMs) have demonstrated promising capabilities in topic discovery, their
direct application to topic modeling suffers from issues such as incomplete topic
coverage, misalignment of topics, and inefficiency. To address these limitations,
we propose LLM-ITL, a novel LLM-in-the-loop framework that integrates LLMs
with many existing Neural Topic Models (NTMs). In LLM-ITL, global topics
and document representations are learned through the NTM, while an LLM re-
fines the topics via a confidence-weighted Optimal Transport (OT)-based align-
ment objective. This process enhances the interpretability and coherence of the
learned topics, while maintaining the efficiency of NTMs. Extensive experiments
demonstrate that LLM-ITL can help NTMs significantly improve their topic inter-
pretability while maintaining the quality of document representation.

1 INTRODUCTION

Topic modeling is an essential task in natural language processing that uncovers hidden thematic
structures within large text collections in an unsupervised way. The ability to automatically ex-
tract topics has proven to be invaluable across a range of disciplines, such as bioinformatics (Liu
et al., 2016), marketing research (Reisenbichler & Reutterer, 2019), and information retrieval (Yi
& Allan, 2009). Topic models are usually based on probabilistic frameworks that generate a set of
interpretable global topics, each represented as a distribution over vocabulary terms. These topics
are then used to represent individual documents as mixtures of topics, providing a structured and
interpretable view of the corpus. Recently, research on topic modeling has shifted from classical
Bayesian methods such as Latent Dirichlet Allocation (LDA) (Blei et al., 2003) to Neural Topic
Models (NTMs) (Zhao et al., 2021; Churchill & Singh, 2022; Wu et al., 2024) that use deep neural
networks to model document-topic distributions, enabling more expressive and flexible representa-
tions compared to their probabilistic counterparts.

While Large Language Models (LLMs) (OpenAI, 2022; Touvron et al., 2023a;b) have redefined
the landscape of natural language processing, topic models continue to hold their place as valuable
tools for text analysis. Specifically, LLMs can provide a fine-grained understanding of a document;
however, given a large collection of domain-specific documents, topic models are more suitable to
obtain a clear global view of the topics in a more interpretable way with much less computational
cost. Unsurprisingly, it has been a trending research direction to use LLMs to improve topic mod-
eling (Rijcken et al., 2023; Wang et al., 2023; Pham et al., 2023; Mu et al., 2024; Doi et al., 2024;
Chang et al., 2024). Despite the promising performance of these initial studies, most existing meth-
ods involve prompting LLMs to generate topics for each document in the corpus, which may lead to
several limitations. As LLMs are asked to focus on a document individually, they may be unable to
cover all the topics across all the documents in the corpus (Doi et al., 2024), which is critical in topic
modeling. Moreover, although LLMs excel at capturing local context, they usually struggle with
long documents with multiple interrelated topics, which may evolve or shift throughout the text.
With their limited window of focus, LLMs may miss key topics of a document that are necessary to
fully understand its content. Finally, it is computationally expensive as LLMs have to do inference
for documents in the corpus; thus, existing methods usually scale poorly with large datasets.
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To overcome the aforementioned limitations, we propose LLM-ITL, a framework that integrates
LLMs into NTMs and enhances the overall quality and interpretability of the learned topics, while
maintaining computational efficiency. Specifically, to enhance the interpretability of the topics
learned by an NTM, we introduce an LLM-based refinement step. The representative words for
each topic, as generated by the NTM, are provided to the LLM, which suggests improved words that
better capture the semantic meaning of the topic. The refinement process is guided by a novel plug-
in objective based on Optimal Transport (OT), which ensures that the topics learned by the NTM
align closely with the LLM’s refinements. Additionally, to mitigate potential hallucinations from
the LLM (i.e., the generation of inaccurate or irrelevant suggestions), we introduce a confidence-
weighted mechanism that adjusts the influence of the LLM’s suggestions based on their confidence
scores. Our proposed LLM-ITL framework offers the following key contributions:

• Improved balance between topic coherence and document representation quality:
With the LLM’s refined topics and OT-based alignment, the topics generated are more
interpretable and semantically coherent. At the same time, LLM-ITL ensures that the
document-topic distributions, as learned by the NTM, remain high-quality and reflective
of the document’s content.

• Efficiency and scalability: Unlike most existing LLM-based approaches that rely on
document-level LLM analysis, LLM-ITL uses LLMs at the word level, significantly re-
ducing computational overhead for large datasets.

• Flexibility: LLM-ITL is a modular framework that can integrate with a variety of NTMs
and LLMs, offering flexibility in model selection depending on the application and compu-
tational constraints.

• State-of-the-art performance: Extensive experimental results on multiple benchmark
datasets show that LLM-ITL achieves state-of-the-art performance in both topic coherence
and document representation quality.

2 BACKGROUND

2.1 PROBLEM SETUP FOR TOPIC MODELING

Topic models have been popular across various fields for their ability to interpret text corpora in
an unsupervised manner. Given a document collection D := {d1, . . . ,dN}, a topic model learns
to discover a set of global topics T := {t1, . . . , tK}, each of which is a distribution over the V
vocabulary words t ∈ ∆V (∆ denotes the probability simplex). Ideally, each topic represents a
semantic concept that can be interpreted with its top-weighted words. At the document level, the
topic model represents each document as a distribution over the K topics, i.e., z ∈ ∆K , which
indicates the topic proportion of each topic within the document. The interpretability of topic models
derives from both the corpus-level topics T , and the document-level topical representation z for each
document.

2.2 NEURAL TOPIC MODELS

A Neural Topic Model (NTM) (Miao et al., 2017; Srivastava & Sutton, 2017; Card et al., 2017;
Dieng et al., 2020; Zhao et al., 2020; Xu et al., 2023a;b) is typically trained by modeling p(z|x) and
p(x|z), where x ∈ NV represents the Bag-of-Words (BOWs) of a document. NTMs, which employ
deep neural networks for topic modeling, are commonly based on Variational Auto-Encoders (VAEs)
(Kingma & Welling, 2013) and Amortized Variational Inference (AVI) (Rezende et al., 2014). For
VAE-NTMs, p(x|z) is modeled by a decoder network ϕ, i.e., x := ϕ(z). The posterior p(z|x) is
approximated by q(z|x), which is modeled by an encoder network θ, i.e., z := θ(x). The training
objective of VAE-NTMs is to maximize the Evidence Lower Bound (ELBO):

max
θ,ϕ

(Eqθ(z|x)[log pϕ(x|z)]−KL[qθ(z|x) ∥ p(z)]), (1)

where the first term encourages the reconstruction of the document, and the second is the Kull-
back–Leibler divergence between the approximate posterior and the prior distribution. By imple-
menting a single linear layer for the decoder ϕ ∈ RV×K , the k-th topic distribution tk can be
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Figure 1: Overview of LLM-ITL. The topics and document representations are learned by the Neural
Topic Model (NTM) component. Concurrently, a Large Language Model (LLM) suggests better
topic words for the learned topics (e.g., decoder) from the NTM. An Optimal Transport (OT)-based
topic alignment objective is proposed to align the word distribution between the topics from the
NTM and those suggested by the LLM. The alignment is further weighted by the confidence of the
LLM in providing the suggestions. This confidence-weighted topic refinement objective is plugged
into the standard training of an NTM as the overall objective of LLM-ITL.

obtained by normalizing the k-th column of the decoder’s weight matrix:

tk := softmax(ϕ:,k)
T. (2)

Its topic words wk are obtained by taking the top-weight words of tk, written as:

wk := V[ftopn(tk, N)], (3)

where ftopn(a, N) defines a function that returns the indices of the top-N values of vector a; V
denotes the vocabulary set of the corpus.

2.3 OPTIMAL TRANSPORT

Optimal Transport (OT) has been widely used for comparing probability distributions (Cuturi,
2013; Frogner et al., 2015; Seguy et al., 2017; Peyré et al., 2019). Let µ(x,a) :=

∑N
i=1 aiδxi

and µ(y, b) :=
∑M

j=1 bjδyj
be two discrete distributions, where a := [a1, . . . , aN ] and b :=

[b1, . . . , bM ] are the probability vectors; x := {x1, . . . , xN} and y := {y1, . . . , yM} are the sup-
ports of these two distributions. The OT distance between µ(x,a) and µ(y, b) is obtained by finding
the optimal transport plan P ∗ that transports the probability mass from a ∈ ∆N to b ∈ ∆M , written
as following:

dOT(µ(x,a), µ(y, b)) := min
P

N∑
i=1

M∑
j=1

Ci,jPi,j , (4)

subject to
∑M

j=1 Pi,j = ai, ∀i = 1, . . . , N and
∑N

i=1 Pi,j = bj , ∀j = 1, . . . ,M . Here, P ∈
RN×M

≥0 is the transport plan, with entry Pi,j indicating the amount of probability mass moving from
ai to bj ; C ∈ RN×M

≥0 denotes the cost matrix, with entry Ci,j specifying the distance between
supports xi and yj . Various OT solvers (Flamary et al., 2021) have been proposed to compute the
OT distance.

3 METHOD

In this work, we propose LLM-ITL, an LLM-in-the-loop framework that efficiently integrates the
LLM with the training of NTMs, offering a more interpretable and comprehensive topic modeling
pipeline. An overview of LLM-ITL is illustrated in Figure 1. LLM-ITL involves the following
key components: LLM-based topic suggestion, OT distance for topic alignment, and confidence-
weighted topic refinement.
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3.1 LLM-BASED TOPIC SUGGESTION

During the training of an NTM, it typically generates a set of topics, where each topic is represented
by a distribution over words, with the highest-probability words forming the core “meaning” of
the topic. While these words offer a rough semantic grouping, they often lack clarity or precision,
leading to difficulties in interpretation. For instance, topics may contain words that are too general,
too specific, or semantically ambiguous, making it hard for users to derive clear labels or understand
the thematic focus of the topic.

To address this, LLM-ITL proposes to use LLMs to suggest better words or labels that more clearly
express the same underlying concept. The LLM is prompted with the top words from each topic,
and it generates two outputs: a topic label, which is a concise and interpretable summary of the
topic; and a set of refined topic words, which better represent the underlying semantic concept of
the topic. This process capitalizes on the LLM’s ability to grasp language nuances and provide
more semantically rich suggestions for the topic. The LLM’s extensive pre-training on diverse and
large datasets allows it to capture subtle relationships between words that may not be apparent in the
purely statistical or neural-based methods employed by NTMs.

To obtain the topic label and refined words in a structured manner, chain-of-thought (CoT) prompt-
ing (Wei et al., 2022) is employed. CoT prompting encourages the LLM to reason step-by-step
through the task, ensuring that it carefully considers the topic words before generating a label and
refinement. The LLM’s output sequence s includes both the topic label and refined words, extracted
as follows for each set of topic words:

s := θllm(Prompt(w)),

Topic label wl : (sstart of label, . . . , send of label),

Refined words w′ : (sstart of words, . . . , send of words), (5)

where w represents the original topic words; θllm denotes the LLM model; the topic label wl and
the refined words w′ are extracted as subsequences from the LLM’s output s. The used prompt is
illustrated in Appendix A.1. A study of prompt variants is provided in Appendix H.

3.2 OT-BASED TOPIC ALIGNMENT

A key innovation in LLM-ITL is the use of Optimal Transport (OT) distance to align the topic
word distributions generated by the NTM with the refined topic word distributions provided by the
LLM. OT is a mathematical framework that computes the “cost” of transforming one probability
distribution into another, making it an ideal tool for measuring the alignment between two sets of
words (Kusner et al., 2015; Yang et al., 2024).

Formally, given a set of original topic words w := {w1, w2, . . . , wN} with probability vector t :=
[t1, t2, . . . , tN ] as obtained by Eq. 3 and Eq. 2, respectively; as well as refined topic words w′ :=
{w′

1, w
′
2, . . . , w

′
M} with probability vector u := [u1, u2, . . . , uM ]1 from the LLM, the OT distance

between these two word distributions can be formulated as:

dOT(µ(w, t), µ(w′,u)) = min
P

N∑
i=1

M∑
j=1

Ci,jPi,j , (6)

where P ∈ RN×M
≥0 is the transport plan, with entry Pi,j denoting the amount of probability mass

transported from ti to uj ; C ∈ RN×M
≥0 is the cost matrix, where Ci,j represents the cost of trans-

porting mass between word wi and w′
j .

The cost matrix C is constructed using the cosine distance between pre-trained word embeddings
Ew := {ew1 , ew2 , . . . , ewN } (for the original topic words) and Ew′

:= {ew′
1 , ew

′
2 , . . . , ew

′
M } (for

the refined topic words). The cosine distance for each entry Ci,j is computed as:

Ci,j := dcos(e
wi , ew

′
j ), (7)

1We assume each of the refined topic words from the LLM is equally important, thus u is a uniform proba-
bility vector.
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where dcos(a, b) denotes the cosine distance between the embedding vectors a and b.

By minimizing this OT distance, the learned topic words from the NTM become aligned with the
refined words suggested by the LLM, leading to more semantically coherent topics. This OT-based
refinement loss is incorporated into the overall training objective, guiding the NTM to adjust its
learned topics to match the LLM’s refined representations.

3.3 CONFIDENCE-WEIGHTED TOPIC REFINEMENT

LLMs, despite their powerful language capabilities, can sometimes produce hallucinated out-
puts—irrelevant or incorrect suggestions that do not align with the input data (Ji et al., 2023). To
mitigate the impact of such hallucinations, LLM-ITL introduces a confidence-weighted refinement
mechanism. The confidence mechanism assesses the reliability of the LLM’s refinements and adjusts
their influence on the NTM’s training accordingly. This ensures that high-confidence refinements
have a greater impact on the final topic representation, and vice versa.

We propose two methods for calculating topic labeling confidence, considering whether the LLM is
open-source or not: (1) Label token probability, applicable for open-source LLMs where the token
probability of their generation is accessible; (2) Word intrusion confidence, available for both open
and closed-source LLMs.

Label Token Probability This method computes the product of the token probabilities for the
topic label generated by the LLM. It reflects the LLM’s certainty in generating the specific topic
label:

Conf(wl)prob :=

eol∏
i=sol

p(si|s<i, c), (8)

where “sol” and “eol” denote the indices of “start of label” and “end of label” token, respectively;
p(si|s<i, c) denotes the token probability of the i-th token; c denotes the input context to the LLM.

Word Intrusion Confidence This method evaluates the proportion of irrelevant or “intruder”
words removed by the LLM during suggestion. A topic label generated based on a higher rate
of intruder removal indicates that it is harder for the LLM to identify the topic from the original
topic words, leading to lower confidence:

Conf(wl)intrusion := 1− N intruder

Nw
, (9)

where Nw denotes the number of words in the given topic; N intruder denotes the number of intruders
identified by the LLM.

By incorporating the topic labeling confidence as a weight for the topic alignment loss, we adaptively
adjust the impact of the LLM’s suggestion based on the confidence score. We write our confidence-
weighted topic refinement objective as follows:

min
ϕ

K∑
k=1

Conf(wl
k) dOT(µ(wk, tk), µ(w

′
k,uk)). (10)

3.4 INTEGRATION WITH NTMS

One of the core strengths of LLM-ITL lies in its flexibility to integrate with various NTMs while
leveraging the semantic capabilities of LLMs for topic refinement. The framework is designed to
complement and enhance NTMs, providing an efficient and interpretable topic modeling pipeline.
The LLM-ITL framework is highly modular and can be seamlessly integrated with a wide range
of NTMs. Here, we focus on the VAE-NTM framework that accommodate many NTMs (Miao
et al., 2017; Srivastava & Sutton, 2017; Card et al., 2017; Dieng et al., 2020; Zhao et al., 2020;
Nguyen & Luu, 2021; Xu et al., 2023a;b), while our framework is not limited to VAE-NTMs only.
By integrating the topic refinement objective with the training of an NTM, we obtain the overall
objective of LLM-ITL:

min
Θ

(Lntm + γ · I(t > T refine) · Lrefine), (11)
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where Θ := {θ,ϕ} denotes model parameters; Lntm and Lrefine denote the NTM loss and refinement
loss in Eq. 1 and Eq. 10, respectively; γ controls the strength of focusing on the LLM’s refinements;
t and T refine denote the current training step and the start of topic refinement, respectively; I(·)
denotes the indicator function, which ensures that the refinement process only starts after the NTM
has learned a stable topic representation, allowing the model to capture the core structure of the
corpus before fine-tuning the topics with LLM guidance. The algorithm of LLM-ITL is provided in
Appendix B.

4 RELATED WORK

Topic Models Classical topic models, such as Latent Dirichlet Allocation (LDA) (Blei et al., 2003)
and its variants (Blei & Lafferty, 2006; Rosen-Zvi et al., 2012; Yan et al., 2013), are Bayesian prob-
abilistic models with various generative assumptions about the documents. Neural Topic Models
(NTMs) (Miao et al., 2017; Srivastava & Sutton, 2017; Card et al., 2017; Dieng et al., 2020; Zhao
et al., 2020; Nguyen & Luu, 2021; Xu et al., 2023a;b) use deep neural networks to learn topics and
document representations, and are commonly based on Variational Autoencoders (VAE) (Kingma &
Welling, 2013) and Amortized Variational Inference (AVI) (Rezende et al., 2014). Clustering-based
topic models (Sia et al., 2020; Grootendorst, 2022) discover topics using clustering algorithms based
on embeddings from pre-trained language models. Ultimately, the capability of these models to in-
terpret a corpus is limited by the top words representation of each topic.

LLMs in Topic Modeling LLMs have been involved in topic modeling in various ways. Rijcken
et al. (2023) investigate the use of ChatGPT (OpenAI, 2022) to generate descriptions for topic words
and found the effectiveness of these topic descriptions. Recent works leverage LLMs for topic model
evaluation in different ways, such as applying LLMs for word intrusion or topic rating for topics
(Rahimi et al., 2023; Stammbach et al., 2023), or keyword generation for documents (Yang et al.,
2024). LLM-based topic models have emerged (Wang et al., 2023; Pham et al., 2023; Mu et al.,
2024; Doi et al., 2024), which prompt LLMs to generate topics and assign topics to documents.
Different from these methods that focus on the document-level, ours prompts LLMs to suggest better
topic words which are used to refine the training of NTMs. More recently, Chang et al. (2024) show
that LLMs are effective at refining topic words, leading to improved topic coherence. However,
their method refines the topic words of trained topic models in a post-hoc manner, while ours is a
regularization term for training NTMs. Our method is also loosely related to uncertainty estimation
of LLMs and we omit the discussion on this in Appendix C.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets We conduct experiments on four widely used datasets in topic modeling, including
20Newsgroup (Lang, 1995) (20News), Reuters-21578 (Aletras & Stevenson, 2013) (R8), DBpe-
dia (Auer et al., 2007) and AGNews (Zhang et al., 2015). Further details of these datasets are
described in the Appendix D.1. The number of mined topics (i.e., K) is commonly regarded as a
hyper-parameter for the dataset (Zhao et al., 2020; Wu et al., 2024). For datasets containing long
documents, such as 20News and R8, we set the number of topics to 50. For datasets with short
documents, such as DBpedia and AGNews, we set the number to 25. We also run experiments at
different K values, which are reported in Appendix E.

Baselines We compare LLM-ITL with topic models of different types, including Latent Dirich-
let Allocation (LDA) (Blei et al., 2003); Neural Variational Document Model (NVDM) (Miao
et al., 2017); LDA with Products of Experts (PLDA) (Srivastava & Sutton, 2017); Embedded Topic
Model (ETM) (Dieng et al., 2020); Neural Topic Model with Covariates, Supervision, and Sparsity
(SCHOLAR) (Card et al., 2017); Contrastive Learning Neural Topic Model (CLNTM) (Nguyen &
Luu, 2021); BERTopic (Grootendorst, 2022) and TopicGPT (Pham et al., 2023). Further details
about these baselines and their settings are provided in Appendix D.2.
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Table 1: Topic coherence (NPMI) and topic alignment (PN). The best and second-best performance
of each column are highlighted in boldface and underlined, respectively. “NA” indicates the evalua-
tion is not applicable. The performance improvement of LLM-ITL over its base model is computed.

Model 20News R8 DBpedia AGNews
NPMI PN NPMI PN NPMI PN NPMI PN

LDA (Blei et al., 2003) 3.95 ± 0.27 0.489 ± 0.009 -3.43 ± 0.49 0.700 ± 0.005 6.42 ± 0.22 0.762 ± 0.013 7.74 ± 0.44 0.596 ± 0.008
NVDM (Miao et al., 2017) -16.89 ± 0.71 0.145 ± 0.006 -8.12 ± 0.62 0.360 ± 0.012 -7.82 ± 0.49 0.185 ± 0.004 -7.39 ± 0.85 0.248 ± 0.013
PLDA (Srivastava & Sutton, 2017) -13.70 ± 0.76 0.101 ± 0.005 -6.26 ± 0.45 0.524 ± 0.009 5.60 ± 0.58 0.653 ± 0.008 7.03 ± 0.77 0.487 ± 0.011
BERTopic (Grootendorst, 2022) 2.18 ± 0.73 0.342 ± 0.008 -0.65 ± 0.14 0.697 ± 0.001 7.68 ± 0.84 0.720 ± 0.009 5.00 ± 0.92 0.450 ± 0.010
TopicGPT (Pham et al., 2023) NA 0.363 ± 0.000 NA 0.410 ± 0.000 NA 0.706 ± 0.000 NA 0.634 ± 0.000

ETM (Dieng et al., 2020) 2.96 ± 0.42 0.404 ± 0.010 -1.71 ± 0.72 0.669 ± 0.009 4.49 ± 0.45 0.762 ± 0.011 6.15 ± 0.59 0.568 ± 0.008
LLM-ITL (ETM) 8.92 ± 0.74 0.398 ± 0.010 7.13 ± 0.57 0.686 ± 0.012 14.83 ± 0.79 0.742 ± 0.016 12.04 ± 0.95 0.569 ± 0.005

↑ 5.96 ↓ 0.006 ↑ 8.84 ↑ 0.017 ↑ 10.34 ↓ 0.020 ↑ 5.89 ↑ 0.001

SCHOLAR (Card et al., 2017) -2.12 ± 0.77 0.582 ± 0.010 -4.06 ± 0.15 0.680 ± 0.013 12.32 ± 1.54 0.825 ± 0.015 6.41 ± 0.70 0.638 ± 0.003
LLM-ITL (SCHOLAR) 7.58 ± 0.45 0.568 ± 0.010 -0.78 ± 0.60 0.680 ± 0.012 15.13 ± 1.61 0.828 ± 0.013 11.07 ± 0.78 0.639 ± 0.002

↑ 9.70 ↓ 0.014 ↑ 3.28 ↑ 0.000 ↑ 2.81 ↑ 0.003 ↑ 4.66 ↑ 0.001

CLNTM (Nguyen & Luu, 2021) -2.21 ± 1.07 0.575 ± 0.011 -4.99 ± 0.36 0.691 ± 0.005 3.75 ± 1.35 0.683 ± 0.040 5.20 ± 1.38 0.607 ± 0.014
LLM-ITL (CLNTM) 8.12 ± 0.49 0.576 ± 0.005 -1.25 ± 0.57 0.691 ± 0.005 10.03 ± 1.11 0.684 ± 0.039 11.13 ± 0.96 0.594 ± 0.011

↑ 10.33 ↑ 0.001 ↑ 3.74 ↑ 0.000 ↑ 6.28 ↑ 0.001 ↑ 5.93 ↓ 0.013

Settings of LLM-ITL LLM-ITL is a framework compatible with most NTMs and LLMs. We use
ETM, SCHOLAR, and CLNTM as the base models for our experiments. We use LLAMA3-8B-
Instruct2 in LLM-ITL for main experiments. For OT computation, we use GloVe (Pennington et al.,
2014) word embeddings pre-trained on Wikipedia to construct the OT cost matrix, and compute the
OT distance using the POT3 package. For the topic labeling confidence, we use label token proba-
bility in Eq. 8 for our main experiments. As for the hyper-parameters of LLM-ITL, we set the topic
refinement strength γ to 200; and the refinement step T refine to 150 for ETM and 450 for SCHOLAR
and CLNTM. We set the number of words for the topic label to 2 when prompting the LLM. All
hyper-parameters of LLM-ITL are studied in the following sections. As for the LLM generation, we
use greedy decoding to enable deterministic output and set the maximum new generation tokens to
300. Each trial4 of LLM-ITL in our experiment takes a few hours on a single 80GB A100 GPU.

Evaluation Metrics We evaluate both the topic quality and the document representation quality
for topic models. For topic quality, we apply the widely used topic coherence metric, Normalized
Pointwise Mutual Information (NPMI) (Lau et al., 2014). We report the average NPMI values (in
percentage) of all topics. Moreover, topic diversity (Dieng et al., 2020) is also evaluated, which is
reported in Appendix E.3. For document representation quality, we evaluate the alignment between
a document’s true label and the top-weighted topic of its topical representation using external clus-
tering metrics, known as topic alignment (Chuang et al., 2013; Pham et al., 2023). We compute
the commonly used Purity and Normalized Mutual Information (NMI) to evaluate clustering perfor-
mance. Since Purity and NMI are considered equally important, fall within the same range (from 0
to 1), and are often reported together, we report their average as PN, serving as an overall indica-
tor of topic alignment performance. Detailed results for Purity and NMI are provided in Appendix
E.4. Intuitively, topic coherence (e.g., NPMI) reflects how coherent the learned topic words are,
while topic alignment (e.g., PN) indicates how well the model represents the documents through the
learned topics. Further details on the calculation of these metrics are provided in Appendix D.3.

5.2 RESULTS

Topic Coherence and Alignment We show the performance of topic coherence and topic align-
ment for different models in Table 1. We summarize the following remarks based on the results:
(1) As for topic coherence, LLM-ITL significantly improves the performance of the base model and
achieves state-of-the-art (SOTA) performance. (2) In terms of topic alignment, LLM-ITL inherits
the document representation capability of its base model and shows SOTA performance in most
cases. (3) Moreover, for long-document corpora such as 20News and R8, LLM-ITL outperforms
existing LLM-based topic models like TopicGPT in terms of topic alignment, where the LLM alone

2https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
3https://pythonot.github.io/
4All experiments are conducted five times with different model random seeds throughout this work. The

mean and standard deviation values of performance are reported.
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Figure 2: Learning curves of LLM-ITL with different base models in terms of topic coherence
(NPMI) and topic alignment (PN) on 20News (Top) and DBpedia (Bottom). The gray and brown
curves indicate the status of the base model and LLM-ITL, respectively. The base models are (a)
ETM, (b) SCHOLAR and (c) CLNTM, respectively.

Figure 3: Learning curves of LLM-ITL (ETM) with different T refine in terms of topic coherence
(NPMI) and topic alignment (PN) on 20News ((a) and (b)) and DBpedia ((c) and (d)).

may fail to fully capture the topics for long documents. Additional results about topic coherence
(Appendix E.1) and alignment (Appendix E.2) at different settings of K, as well as topic diversity
(Appendix E.3) performance, are illustrated in the appendix.

Learning Status of LLM-ITL To clearly demonstrate how LLM-ITL improves its base model,
we illustrate the learning curves for topic coherence and alignment on both a long document dataset
(e.g., 20News) and a short document dataset (e.g., DBpedia) in Figure 2. We have the following
observations based on the results: (1) When topic refinement is applied, LLM-ITL significantly
improves the topic coherence 5 of the base model. (2) LLM-ITL has little overall influence on topic
alignment in most cases.

Balancing Topic Coherence and Alignment As indicated by previous works (Bhatia et al., 2017;
Yang et al., 2024), a topic model with better topic coherence may not perform well in document
representations (i.e., topic alignment) at the same time, and vice versa. To provide further insights
into how LLM-ITL balances between topic coherence and alignment, we illustrate the learning
curves of LLM-ITL (ETM) with different T refine in terms of both metrics. As illustrated in Figure 3,
we have the following observations: (1) While starting topic refinement earlier (e.g., T refine = 5) can
lead to greater improvements in topic coherence, it may also introduce more irrelevant information
about the corpus that is from the LLM’s knowledge, thereby harming topic alignment performance.
(2) For larger values of T refine, the performance in terms of both topic coherence and alignment is
comparable, indicating little sensitivity to the settings of T refine in a certain range. These observations

5Topic coherence is not correlated with the training of topic models (Chang et al., 2009), which can result
in a drop in coherence in the learning curve.
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Table 2: Examples of different topic models’ output for a given document from 20News. Only the
document’s top assigned/weighted (>= 0.1) topics of its topical proportion/representation are listed
in LDA and LLM-ITL.

Document Model Topic Proportion

Here’s a listing that I came accross
a while ago. This question seems
to come up often enough that I fig-
ured this would be of interest. Note
that the server “X Appeal” for DOS
is available in demo form on the in-
ternet via anonymous ftp. This is
one way of quickly checking out the
feasability of using your system as
an X server. Enjoy! - Pete
*** Many words omitted here ***
1280x960x1 (TT, SM194) color
320x200x4 color 640x200x2 color
640x480x4 color 320x480x8 Eth-
ernet Card: Atari Card (Mega or
VME bus) Riebl/Wacker (Mega or
VME bus) —– End Enclosure —–

LDA

[1] window file program problem run work running machine time version 0.23
[2] card driver monitor color video mode vga window screen problem 0.19
[3] image data graphic package software program format tool file processing 0.16
[4] mb mac mhz bit chip card scsi ram cpu memory 0.10
... ...

TopicGPT

[1] Software Development – The document provides a list of X servers that
can be used on non-UNIX networked machines. NA

[2] Internet Culture – The document mentions the availability of X servers for
various operating systems and provides information on how to access the file
via anonymous ftp.

NA

LLM-ITL

[1] Software Development – application model version program software de-
signed tool development implementation window 0.23

[2] Computer Hardware – computer bios disk pc chip controller ram memory
card apple 0.13

[3] Service Support – support provide offer access available providing in-
cludes provides use feature 0.11

... ...

Figure 4: Learning curves of LLM-ITL (ETM) with different LLMs in terms of topic coherence
(NPMI) and topic alignment (PN) on 20News ((a) and (b)) and DBpedia ((c) and (d)).

suggest the effectiveness of T refine in balancing topic coherence and alignment in LLM-ITL. For
more hyper-parameter studies of LLM-ITL, see Appendix G.

Qualitative Analysis During the inference phase, LLM-ITL infers the topic proportion (i.e., top-
ical representation) for a given document from the NTM component, and obtains the topic label
from the LLM component, as shown in Table 2 (where ETM is used as the base model). We can
observe that (1) Compared to topic models with top-words topics such as LDA, LLM-ITL pro-
vides more coherent topic words and offers topic labels, making the semantic meaning of the topics
easier to identify. (2) Compared to the LLM-based topic model TopicGPT, LLM-ITL can obtain
topic proportions as an indicator of the importance or relevance of topics to the document, offering
more practical usage. For example, for TopicGPT, “Internet Culture” should be less relevant for the
example document than “Software Development” if a good topic proportion is available.

Flexibility with different LLMs LLM-ITL is a framework compatible with most LLMs. Here,
we examine the flexibility of LLM-ITL by integrating it with various LLMs. Apart from LLAMA3-
8B-Instruct6 (Dubey et al., 2024), we implement LLM-ITL with the latest open-sourced LLMs,
including Mistral-7B-Instruct-v0.37 (Jiang et al., 2023), Phi-3-Mini-128K-Instruct8 (Abdin et al.,
2024), Yi-1.5-9B-Chat9 (Young et al., 2024), Qwen1.5-32B-Chat10 (Bai et al., 2023) and LLAMA3-
70B-Instruct11 (Dubey et al., 2024). As shown in Figure 4, LLM-ITL consistently improves topic

6https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
7https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
8https://huggingface.co/microsoft/Phi-3-mini-128k-instruct
9https://huggingface.co/01-ai/Yi-1.5-9B-Chat

10https://huggingface.co/Qwen/Qwen1.5-32B-Chat
11https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
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Figure 5: Ablation studies. First row: Ablation for confidence on 20News ((a) and (b)) and DBpe-
dia ((c) and (d)); Second row: Ablation for OT on 20News ((e) and (f)) and DBpedia ((g) and (h)).
Error bars are omitted for clarity in the figure.

coherence of its base model across different LLMs, and the improvement can be further enhanced
when using larger LLMs such as LLAMA3-70B-Instruct, demonstrating the flexibility of LLM-ITL.

Ablation Study for Confidence Here, we investigate the effectiveness of including the confidence
scores during topic refinement. We apply No Conf. (i.e., Conf(wl) = 1 in Eq. 10 for all refinement),
Label Token Prob. (i.e., Eq. 8) and Word Intrusion Conf. (i.e., Eq. 9) to LLM-ITL (ETM). We
plot the learning curves for both metrics on 20News and DBpedia. From the results in Figure 5 (first
row), we can observe that label token probability and word intrusion confidence consistently yield
better performance in terms of PN. This suggests that by including proposed confidence during
topic refinement, we reduce potential noisy suggestions from the LLM and achieve better topical
representation for documents. For further studies on alternative LLM confidence measures, see
Appendix F.

Ablation Study for OT Here, we study the effectiveness of our OT-based topic refinement. We
apply different metrics to measure the difference between the topic word distributions from the
NTM and those from the LLM, including Kullback–Leibler (KL) divergence, Jensen–Shannon Di-
vergence (JSD), Hellinger Distance (HD), and Total Variation Distance (TVD). As illustrated in
Figure 5 (second row), our OT-based approach significantly benefits topic coherence compared to
other distribution measurements.

6 CONCLUSION

In this paper, we introduced LLM-ITL, a novel framework that integrates Large Language Models
(LLMs) with Neural Topic Models (NTMs) to address the limitations of both traditional topic mod-
els and the direct use of LLMs for topic discovery. By incorporating a confidence-weighted Optimal
Transport (OT)-based topic alignment, LLM-ITL improves the interpretability and coherence of top-
ics while maintaining the quality of document representations. Our framework effectively leverages
the strengths of both LLMs and NTMs, offering a flexible, scalable, and efficient solution for topic
modeling. Extensive experiments on benchmark datasets demonstrate that the LLM-ITL variants of
NTMs achieve state-of-the-art performance in terms of topic coherence and document representa-
tion. In terms of limitations, the framework’s reliance on LLM-generated refinements introduces a
dependency on the quality of the LLM’s outputs, which may vary based on the model used. More-
over, the method has been primarily evaluated on benchmark datasets, and its performance in more
domain-specific corpora may require further investigation.
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Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Chau Minh Pham, Alexander Hoyle, Simeng Sun, and Mohit Iyyer. Topicgpt: A prompt-based topic
modeling framework. arXiv preprint arXiv:2311.01449, 2023.

Hamed Rahimi, Jacob Louis Hoover, David Mimno, Hubert Naacke, Camelia Constantin, and Bernd
Amann. Contextualized topic coherence metrics. arXiv preprint arXiv:2305.14587, 2023.

Martin Reisenbichler and Thomas Reutterer. Topic modeling in marketing: recent advances and
research opportunities. Journal of Business Economics, 89(3):327–356, 2019.

Jie Ren, Jiaming Luo, Yao Zhao, Kundan Krishna, Mohammad Saleh, Balaji Lakshminarayanan,
and Peter J Liu. Out-of-distribution detection and selective generation for conditional language
models. In The Eleventh International Conference on Learning Representations, 2022.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and ap-
proximate inference in deep generative models. In International conference on machine learning,
pp. 1278–1286. PMLR, 2014.

Emil Rijcken, Floortje Scheepers, Kalliopi Zervanou, Marco Spruit, Pablo Mosteiro, and Uzay Kay-
mak. Towards interpreting topic models with chatgpt. In The 20th World Congress of the Inter-
national Fuzzy Systems Association, 2023.
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A PROMPTS

A.1 TOPIC SUGGESTION

Figure A1: Prompt and output of topic suggestion with CoT. We take the product of token probabil-
ities of topic label (e.g., words in red color) as the label token probability. We take the proportion
of intruders (e.g., words in green color) as the word intrusion confidence.

A.2 TOPIC SUGGESTION WITH VERBALIZED CONFIDENCE

Figure A2: Prompt and output of topic suggestion with CoT and verbalized confidence. The number
in red color in the LLM’s output represents the verbalized confidence.
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A.3 SELF-REFLECT CONFIDENCE

Figure A3: Prompt and output of self-reflective confidence and p(True). Left: self-reflective confi-
dence where the number in red color represents the confidence. Right: p(True) confidence where
the token probability of “YES” (p) in green color or “NO” (1-p) is used as confidence.

B ALGORITHM

Algorithm 1: Algorithm for LLM-ITL
Input: Train documents; An LLM; Pre-trained word embeddings; Hyper-parameters T refine, γ;

Training iteration I; Number of topics K.
Initialize: Initialize the parameters θ,ϕ of the NTM.
/*Warm-up*/
for i = 1 : T refine do

Compute NTM loss by Eq. 1;
Compute gradients w.r.t θ and ϕ;
Update θ and ϕ based on the gradients;

end
/*Topic Refinement*/
for i = T refine : I do

for k = 1 : K do
Obtain topic distribution tk by Eq. 2;
Obtain topic words wk by Eq. 3;
Obtain refined words w

′

k from the LLM by Eq. 5;
Construct OT cost matrix by Eq. 7;
Compute OT distance by Eq. 6;
if Open-Source LLM then

Compute topic labeling confidence by Eq. 8
end
else

Compute topic labeling confidence by Eq. 9
end

end
Compute Lrefine by Eq. 10;
Compute Lntm by Eq. 1;
Compute overall loss by Lntm + γ · Lrefine ;
Compute gradients w.r.t θ and ϕ;
Update θ and ϕ based on the gradients;

end
Output: Trained NTM with θ,ϕ.
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C RELATED WORK: LLM UNCERTAINTY ESTIMATION

Uncertainty estimation for LLMs (Geng et al., 2024) is emerging with the rapid usage of LLMs and
their risk of hallucination (Ji et al., 2023). Sequence probability (Ren et al., 2022) leverages token
probabilities to measure answer confidence. Verbalized confidence (Tian et al., 2023; Xiong et al.,
2023) utilizes the LLM’s own capability to evaluate its answer uncertainty. Consistency-based (Lin
et al., 2023; Manakul et al., 2023) approaches sample multiple outputs from the LLM and measure
answer consistency as uncertainty. Entropy-based (Kuhn et al., 2023; Hou et al., 2023) approaches
use multiple LLM outputs to estimate the output space and compute entropy as uncertainty for the
answer. Hybrid frameworks (Chen & Mueller, 2023; Gao et al., 2024) combine different approaches
for a comprehensive estimation. Internal states (Chen et al., 2024) are another useful source for LLM
uncertainty quantification. Unlike those works that estimate uncertainty for LLMs in general natural
language generation tasks, ours focuses on task-specific uncertainty of the LLM in suggesting topic
words.

D DETAILED EXPERIMENTAL SETTINGS

D.1 DETAILS OF DATASET

Table D1: Statistics of the Datasets

Dataset # Docs Train # Docs Test Voc Size Avg. Doc Length # Labels

20News 11778 2944 13925 150 20
R8 5485 2189 5338 102 8

DBpedia 15598 3899 8550 51 14
AGNews 16000 4000 8389 38 4

We conduct experiments on 20News 12, R8 13, DBpedia 14, and AGNews 15. For DBpedia and AG-
News, we randomly sample a subset of 20,000 documents. We retain the original text documents for
models that accept text as input, and preprocess the documents into Bag-of-Words (BOW) format for
models that are trained on BOWs. We convert the documents into BOW vectors through the follow-
ing steps: First, we clean the documents by removing special characters and stop words, followed by
tokenization. Next, we build the vocabulary by including words with a document frequency greater
than five and less than 80% of the total documents. Since we use the pre-trained word embeddings
of GloVe (Pennington et al., 2014), we further filter the vocabulary by retaining only the words that
are in the GloVe vocabulary. Finally, we transform the documents into BOWs based on the filtered
vocabulary set. The statistics of the preprocessed datasets are summarized in Table D1.

D.2 DETAILS OF BASELINES

We run the following topic models as our baselines, including Latent Dirichlet Allocation (LDA)
(Blei et al., 2003), the most popular probabilistic topic model that generates documents by mixtures
of topics; Neural Variational Document Model (NVDM) (Miao et al., 2017), a pioneering NTM
based on the VAE framework; LDA with Products of Experts (PLDA) (Srivastava & Sutton, 2017),
an NTM that uses a product of experts instead of the mixture model in LDA; Embedded Topic Model
(ETM) (Dieng et al., 2020), which involves word and topic embeddings in the generative process
of documents; Neural Topic Model with Covariates, Supervision, and Sparsity (SCHOLAR) (Card
et al., 2017), an NTM that leverages extra information from metadata; Contrastive Learning Neural
Topic Model (CLNTM) (Nguyen & Luu, 2021), an NTM that is based on the contrastive learning
framework; BERTopic (Grootendorst, 2022), a recent clustering-based topic model that utilizes

12https://huggingface.co/datasets/SetFit/20 newsgroups
13https://huggingface.co/datasets/yangwang825/reuters-21578
14https://huggingface.co/datasets/fancyzhx/dbpedia 14
15https://huggingface.co/datasets/fancyzhx/ag news
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embeddings from pre-trained language models; TopicGPT (Pham et al., 2023), a latest LLM-based
topic model that leverages an LLM for topic generation and assignment.

As for the implementations of baseline models, we use Mallet 16 for LDA with Gibbs sampling,
and the original implementations for the other models. For NTMs including NVDM, PLDA, ETM,
SCHOLAR and CLNTM, we tune their hyper-parameters for our datasets; For BERTopic, we fine-
tune the topic representations after the topics are learned, as suggested by their implementation17.
For TopicGPT, we use GPT-4 for topic generation and GPT-3.5 for topic assignment, randomly sam-
pling 600 documents from the training set for each dataset, as suggested by their paper. We run all
models except TopicGPT five times in each experiment and report the mean and standard deviation
of their performance. For TopicGPT, we run it once for each experiment using a temperature value
of zero to enable deterministic output, following the setting of their paper.

D.3 DETAILS OF EVALUATION METRICS

For topic evaluation, we apply the commonly-used topic coherence metric, Normalized Pointwise
Mutual Information (NPMI) (Lau et al., 2014), which evaluates topic coherence based on the co-
occurrence of the topic’s top words in a reference corpus. We use Wikipedia as the reference corpus
for NPMI and consider the top 10 words of each topic, with implementation done using the Palmetto
package18 (Röder et al., 2015). We report the average NPMI score (in percentage) of all learned top-
ics. For documents’ topical representation (i.e., topic proportion) evaluation, a common practice is
to compare the document clusters formed by topic proportions with those formed by the documents’
true labels, known as topic alignment. Following previous works (Chuang et al., 2013; Pham et al.,
2023), we assign each test document to a cluster based on the top-weighted topic of its topical repre-
sentation, and compute Purity and Normalized Mutual Information (NMI) based on the documents’
cluster assignments and their true labels. As Purity and NMI are often reported together and within
the same range, we report the average score of both metrics as PN. For all evaluations, we use the
model state at the end of the training iteration to compute all evaluation metrics.

16https://radimrehurek.com/gensim 3.8.3/models/wrappers/ldamallet.html
17https://maartengr.github.io/BERTopic/index.html
18https://github.com/dice-group/Palmetto
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E MORE RESULTS

E.1 TOPIC COHERENCE AT DIFFERENT K

Figure E1: Topic coherence (NPMI) at different settings of the number of topics (i.e., K) on (a)
20News, (b) R8, (c) DBpedia and (d) AGNews.

Here, we illustrate the topic coherence performance of topic models across different numbers of top-
ics (i.e., K). The results are shown in Figure E1. We observe that LLM-ITL consistently enhances
topic coherence in its base models, and achieves state-of-the-art performance across various settings
of K in most cases.

E.2 TOPIC ALIGNMENT AT DIFFERENT K

Figure E2: Topic alignment (PN) at different settings of the number of topics (i.e., K) on (a)
20News, (b) R8, (c) DBpedia and (d) AGNews.

Here, we illustrate the topic alignment performance of topic models across different numbers of
topics (i.e., K). The results are shown in Figure E2. We observe that LLM-ITL consistently inherits
the topic alignment performance of its base model across different settings of K. The performance
drop with an increase in K for SCHOLAR and CLNTM in short document datasets (e.g., DBpedia
and AGNews) is due to their sensitivity to K in short documents.
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E.3 TOPIC DIVERSITY AT DIFFERENT K

Figure E3: Topic diversity (TD) at different settings of the number of topics (i.e., K) on (a) 20News,
(b) R8, (c) DBpedia and (d) AGNews.

Here, we illustrate the topic diversity (TD) performance of topic models across different numbers
of topics (i.e., K). The results are presented in Figure E3. We observe that LLM-ITL demonstrates
comparable performance in terms of topic diversity compared to its base models in most cases.

E.4 PURITY & NMI

As we report PN (the mean of Purity and NMI) as an overall topic alignment metric in previous
sections, we illustrate detailed Purity and NMI performance in this section. As shown in Table E1
and E2, Figure E4 and E5, LLM-ITL consistently inherits topic alignment performance from its base
models in terms of both Purity and NMI, which is consistent with our previous observations based
on PN.

Table E1: Purity performance. The best and second-best scores are highlighted in boldface and un-
derlined, respectively. The performance improvement of LLM-ITL over its base model is computed.

Model 20News R8 DBpedia AGNews
LDA 0.521 ± 0.012 0.920 ± 0.004 0.813 ± 0.018 0.818 ± 0.010
NVDM 0.169 ± 0.007 0.603 ± 0.013 0.220 ± 0.004 0.724 ± 0.013
PLDA 0.130 ± 0.004 0.771 ± 0.011 0.730 ± 0.007 0.724 ± 0.013
BERTopic 0.371 ± 0.010 0.875 ± 0.002 0.748 ± 0.009 0.648 ± 0.014
TopicGPT 0.336 ± 0.000 0.577 ± 0.000 0.718 ± 0.000 0.819 ± 0.000

ETM 0.410 ± 0.011 0.875 ± 0.005 0.794 ± 0.016 0.784 ± 0.008
LLM-ITL (ETM) 0.403 ± 0.015 0.875 ± 0.012 0.761 ± 0.019 0.784 ± 0.006

↓ 0.007 ↑ 0.000 ↓ 0.033 ↑ 0.000

SCHOLAR 0.627 ± 0.014 0.911 ± 0.015 0.872 ± 0.018 0.855 ± 0.004
LLM-ITL (SCHOLAR) 0.607 ± 0.014 0.911 ± 0.015 0.875 ± 0.015 0.855 ± 0.004

↓ 0.020 ↑ 0.000 ↑ 0.003 ↑ 0.000

CLNTM 0.623 ± 0.015 0.923 ± 0.009 0.725 ± 0.047 0.821 ± 0.013
LLM-ITL (CLNTM) 0.623 ± 0.006 0.923 ± 0.008 0.727 ± 0.045 0.806 ± 0.014

↑ 0.000 ↑ 0.000 ↑ 0.002 ↓ 0.015
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Table E2: NMI performance. The best and second-best scores are highlighted in boldface and un-
derlined, respectively. The performance improvement of LLM-ITL over its base model is computed.

Model 20News R8 DBpedia AGNews
LDA 0.456 ± 0.006 0.481 ± 0.009 0.712 ± 0.008 0.373 ± 0.007
NVDM 0.120 ± 0.005 0.118 ± 0.011 0.151 ± 0.004 0.068 ± 0.007
PLDA 0.072 ± 0.005 0.277 ± 0.007 0.576 ± 0.009 0.250 ± 0.008
BERTopic 0.312 ± 0.007 0.519 ± 0.002 0.691 ± 0.008 0.252 ± 0.007
TopicGPT 0.390 ± 0.000 0.244 ± 0.000 0.694 ± 0.000 0.449 ± 0.000

ETM 0.405 ± 0.008 0.463 ± 0.014 0.728 ± 0.012 0.352 ± 0.007
LLM-ITL (ETM) 0.394 ± 0.005 0.498 ± 0.013 0.723 ± 0.014 0.354 ± 0.005

↓ 0.011 ↑ 0.035 ↓ 0.005 ↑ 0.002

SCHOLAR 0.538 ± 0.006 0.449 ± 0.012 0.778 ± 0.012 0.420 ± 0.006
LLM-ITL (SCHOLAR) 0.529 ± 0.006 0.449 ± 0.010 0.781 ± 0.012 0.423 ± 0.004

↓ 0.009 ↑ 0.000 ↑ 0.003 ↑ 0.003

CLNTM 0.526 ± 0.008 0.459 ± 0.004 0.641 ± 0.035 0.392 ± 0.016
LLM-ITL (CLNTM) 0.529 ± 0.005 0.459 ± 0.003 0.640 ± 0.034 0.382 ± 0.008

↑ 0.003 ↑ 0.000 ↓ 0.001 ↓ 0.010

Figure E4: Purity performance at different settings of the number of topics (i.e., K) on (a) 20News,
(b) R8, (c) DBpedia and (d) AGNews.

Figure E5: NMI performance at different settings of the number of topics (i.e., K) on (a) 20News,
(b) R8, (c) DBpedia and (d) AGNews.
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F CONFIDENCE ALTERNATIVES

Figure F1: Study of confidence alternatives. Learning curves of LLM-ITL (ETM) with different
confidence in terms of topic coherence (NPMI) and topic alignment (PN) on 20News ((a) and (b))
and DBpedia ((c) and (d)). Error bars are omitted for clarity in the figure.

Considering the efficiency of including confidence scores during the training of LLM-ITL, we focus
solely on single-sample approaches for LLM uncertainty estimation in our study, where we run a
single round of LLM inference for a given topic. We consider the following confidence alternatives
to our topic labeling confidence for our study: (1) No Conf: No LLM confidence estimation is in-
cluded, and Conf(wl

k) = 1 in Eq. 10 during the training. (2) Verbalized confidence (Xiong et al.,
2023), which directly asks the LLM for its confidence in solving a problem. The prompt we used
for eliciting verbalized confidence is shown in Figure A2. (3) Self-Reflective confidence (Chen &
Mueller, 2023), which prompts the LLM to evaluate its own answer in a two-stage manner. The
topic label is obtained in the first stage, and the LLM evaluates this answer in a follow-up ques-
tion (Figure A3). (4) p(True) (Kadavath et al., 2022), which is similar to self-reflective confidence,
but asks a true/false question instead. It takes the token probability of the response as the confi-
dence measure (Figure A3). (5) SeqLike (Ren et al., 2022), which computes the length-normalized
sequence likelihood of the output from the LLM.

From the results in Figure F1, we can observe that while verbalized confidence improves topic
coherence better, it biases the topics towards the LLM’s knowledge rather than the topics within the
corpus, leading to reduced topic alignment. On the other hand, label token probability and word
intrusion confidence consistently yield the best topic alignment performance, suggesting greater
relevance of the topics to the corpus.

G HYPER-PARAMETER STUDIES

Figure G1: Learning curves of LLM-ITL (ETM) with different γ in terms of NPMI and PN on
20News ((a) and (b)) and DBpedia ((c) and (d)).

Here, we study the hyper-parameter of LLM-ITL, focusing on topic refinement strength γ. We vary
its value from 1 to 400 and plot the learning curves in terms of NPMI and PN, as shown in Figure G1.
We can observe that: (1) In terms of topic coherence, γ values between 100 and 300 yield similar
performance, suggesting low sensitivity to γ within this range. (2) In terms of topic alignment, a
higher γ leads to slightly reduced performance in the initial phase. This occurs because relying
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heavily on topic refinement from the LLM causes the topics to bias towards the LLM’s knowledge
rather than the information from the input corpus. However, as training progresses, the performance
converges to similar values. These observations suggest low sensitivity to γ and its flexibility in
controlling the balance between the information from the corpus and the knowledge from the LLM.

Figure G2: Learning curves of LLM-ITL (ETM) with different settings for the number of words (i.e.,
N ) in the topic label, evaluated in terms of NPMI and PN on 20News ((a) and (b)) and DBpedia ((c)
and (d)).

Here, we examine the hyper-parameter within the prompt, i.e., the number of words N used for the
topic label. We vary the number of words for the topic label from 1 to 5 and plot the learning curves
in terms of NPMI and PN. As illustrated in Figure G2, we can observe that: (1) Using more words,
such as a 5-word topic label (e.g., N = 5), results in the least improvement in topic coherence, while
using a 2-word topic label (e.g., N = 2) achieves the best performance. (2) As for topic alignment
performance, the number of words in the topic label shows comparable performance.

H STUDY OF PROMPTS

Table H1: Prompt variants performance. The best and second-best performance of each column are
highlighted in boldface and underlined, respectively.

Prompt Success Rate (↑) N Input (↓) N Output (↓) Refined TC (↑)
Origin 0.978 224.48 197.86 7.165
Variant 1 0.967 228.48 80.81 4.520
Variant 2 0.935 269.48 167.05 3.720
Variant 3 0.980 223.48 172.51 6.146
Variant 4 0.972 189.48 191.04 7.490
Variant 5 0.956 208.48 159.66 6.215
Iterative Refinement (Chang et al., 2024) 0.993 1872.13 936.70 2.845

Figure H1: Learning curves of LLM-ITL (ETM) with different prompts in terms of NPMI and PN
on 20News (figure (a) and (b)) and DBpedia (figure (c) and (d)).
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Prompt Variants Here, we study the effectiveness of different prompts for topic suggestion. We
obtain variants of topic suggestion prompts in Figure A1 through modifying the technique used
in PromptBreeder (Fernando et al., 2023). To be specific, we first create a set of 100 ‘mutation-
prompts’ (e.g., “Make a variant of the prompt”) and 100 ‘thinking-styles’ (e.g., “Let’s think step by
step”). We generate a set of 50 task prompts by concatenating a randomly drawn ‘mutation-prompt’
and a randomly drawn ‘thinking-style’ to the original prompt, and provide that to the Claude 3.519 to
produce a continuation, resulting in a different task prompt. Secondly, we randomly select 50 topics
over 4 experiment datasets. We run those topics through 50 generated task prompts and filter out the
generated prompts that cannot give JSON format in the selected topics or generate above 300 tokens.
We are left with 14 topics. We then leverage Claude 3.5 to judge the quality of generated topics and
refined topic words. We rank 14 methods by overall topics and refined topic words to get 5 variants
of prompts. In addition to the prompt variants generated by those steps, we also investigate the topic
refinement prompt used in Chang et al. (2024) (see Figure 2 of their paper). All the prompt variants
for topic refinement in this study are illustrated in Table H2.

Setup We randomly sample 1000 topics learned by topic models, then use different prompts to
refine the topics with LLAMA3-8B-Instruct20. We analyze the effectiveness of prompts in different
aspects, including Success Rate (Ulmer et al., 2024): the proportion of cases where the target answer
can be successfully extracted from the LLM’s output; N Input and N Output (Chang et al., 2024):
the average number of tokens of input and output of the LLM; and Refined TC: the average NPMI
scores of the refined topics.

Results From the results in Table H1, we observe the following: (1) Through prompt optimization,
the effectiveness of the prompt can be further enhanced (e.g., Variant 4), where the number of tokens
(i.e., the cost) is reduced and the refine topics are more coherent. (2) The iterative refinement (Chang
et al., 2024) shows less effectiveness in terms of both cost and refined topic coherence compared with
our prompt variants when applied to LLAMA3-8B-Instruct.

Based on the above observations, we further investigate the effectiveness of the improved prompt
within the LLM-ITL framework. We plot the learning curves of LLM-ITL using the original prompt
and its variant (Variant 4, which shows better performance from Table H1). We observe that the
overall performance in terms of both metrics is comparable.

19https://www.anthropic.com/news/claude-3-family
20https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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Table H2: Prompt variants for topic refinement

Prompt
Origin Analyze step-by-step and provide the final answer.

Step 1. Given a set of words, summarize a topic (avoid using proper nouns as topics) by 2 words that covers
most of those words. Note, only the topic, no other explanations.
Step 2. Remove irrelevant words about the topic from the given word list. Note, only the removed words,
no other explanations.
Step 3. Add new relevant words (maximum 10 words) about the topic to the word list up to 10 words. Note,
only the added words, no other explanations.
Step 4. Provide your answer in json format as {‘Topic’: ‘<2 Word Topic>’, ‘Words’: ‘<Refined 10 Word
List>’}. Note, only 10 refined words allowed for the topic, and no follow up explanations.

Variant 1 Perform the following actions sequentially and provide the final result:
Step 1. After examining a set of words, condense a subject (avoid proper nouns) into 2 words that encompass
most of those words. (Note: Only the subject, no further elaboration.)
Step 2. Eliminate irrelevant words from the given word list based on the subject. (Note: Only the removed
words, no further elaboration.)
Step 3. Add new pertinent words (maximum 10 words) related to the subject to the word list until it reaches
10 words. (Note: Only the added words, no further elaboration.)
Step 4. Present your response in JSON format as {‘Topic’: ‘<2 Word Subject>’, ‘Words’: ‘<Refined 10
Word List>’}. Note: Only 10 refined words are permitted for the subject, and no follow-up explanations.

Variant 2 Perform a meticulous examination and furnish the conclusive resolution.
Stride 1. Bestowed a catalogue of vocabularies, condense a subject matter (circumvent the employment of
proper appellations as subjects) by dual words that envelop the preponderance of those vocabularies. (Heed,
solely the subject, devoid of supplemental explication.)
Stride 2. Dislodge irrelevant vocabularies concerning the subject from the granted vocabulary catalogue.
(Heed, solely the dislodged vocabularies, devoid of supplemental explication.)
Stride 3. Amalgamate novel applicable vocabularies (maximal 10 vocabularies) concerning the subject to
the vocabulary catalogue up to 10 vocabularies. (Heed, solely the amalgamated vocabularies, devoid of
supplemental explication.)
Stride 4. Tender your resolution in json format as {‘Topic’: ‘<2 Word Subject>’, ‘Words’: ‘<Refined
10 Word Catalogue>’}. Heed, solely 10 refined vocabularies permitted for the subject, and devoid of
successive explication.

Variant 3 Step-by-step analysis and final answer:
Step 1. Given a set of words, summarize a topic (avoid using proper nouns as topics) by 2 words that covers
most of those words. (Note, only the topic, no other explanations.)
Step 2. Remove irrelevant words about the topic from the given word list. (Note, only the removed words,
no other explanations.)
Step 3. Add new relevant words (maximum 10 words) about the topic to the word list, keeping the total
word count at 10 words. (Note, only the added words, no other explanations.)
Step 4. Provide your answer in JSON format as {‘Topic’: ‘<2 Word Topic>’, ‘Words’: ‘<Refined 10 Word
List>’}. Note, only 10 refined words allowed for the topic, and no follow-up explanations.

Variant 4 Break down the analysis into steps and give the final response.
1. Look at a set of words and identify a 2-word topic that sums up most of those words (don’t use proper
nouns as topics, just state the topic).
2. Remove words from the list that don’t relate to the topic (just list the removed words).
3. Add new relevant words about the topic to the list, up to 10 words total (just list the new added words).
4. Provide your response in JSON format: {‘Topic’: ‘<2 Word Topic>’, ‘Words’: ‘<Refined 10 Word
List>’}. Only include 10 words for the refined list, no explanations.

Variant 5 Step-by-step analysis and provide the final answer in JSON format:
Step 1: Based on the given set of words, summarize a topic using 2 words that encompass most of those
words (avoid proper nouns).
Step 2: Remove any irrelevant words from the given word list that do not relate to the summarized topic.
Step 3: Add new relevant words (up to 10 words) that are related to the summarized topic.
Step 4: Present your answer in the following JSON format: {‘Topic’: ‘<2 Word Topic>’, ‘Words’: ‘<Re-
fined 10 Word List>’}, where ‘Topic’ contains the 2-word summarized topic, and ‘Words’ contains the
refined list of 10 words related to that topic. Do not provide any additional explanations.

Iterative
Refine-
ment
(Chang
et al.,
2024)

Please analyze the following tasks and provide your answer in the specified format.
1. Determine the common topic shared by these words: [<TOPIC WORDS >].
2. Assess whether the word “<WORD>” aligns with the same common topic as the words listed above.
Respond with:
- “Yes”, if the given word shares the common topic.
- If “No”, suggest 10 single-word alternatives that are commonly used and closely related to this topic.
These words should be easily recognizable and distinct from the ones in the provided list.
Format your response in JSON, including the fields “Topic”, “Answer”, and “Alternative words” (only if
the answer is “No”).
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