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Abstract

Leaf-level phenotyping can reveal early signals of plant growth and stress, making
it a key step toward understanding crop development. However, tracking individual
leaves over time is still challenging, especially for structurally complex crops such
as canola. This difficulty stems both from the scarcity of realistic, publicly available
benchmark datasets and from the limitations of current methods: existing plant-
specific tracking methods often rely on Intersection-over-Union (IoU) thresholds to
associate leaves between frames, which can break down when leaves overlap, grow,
or change shape. Generic multi-object tracking (MOT) methods, on the other hand,
are designed for approximately rigid objects like cars or pedestrians and struggle
with the continuous deformation and complex motion patterns of leaves. Therefore,
the contribution of our work is two-folded - First, we introduce CanolaTrack, a
high-resolution dataset of 5,704 top-down RGB images with 31,840 annotated
leaf instances spanning the early growth stages of 184 canola plants. Second, we
propose LeafTrackNet, an efficient lightweight framework for long-term leaf track-
ing. It combines a YOLOv10 detector with a MobileNetV3 embedding head and
links identities via cosine similarity and Hungarian assignment, without geometric
motion priors. On CanolaTrack, LeafTrackNet outperforms both plant-specific
tracking methods and state-of-the-art MOT baselines, improving HOTA by 9.73%.
Our work provides a realistic benchmark dataset and a simple, effective framework
for long-term leaf tracking, contributing to Al-driven plant phenotyping. Code and
dataset are available athttps://github.com/shl-shawn/LeafTrackNet.
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1 Introduction

Automated plant phenotyping enables high-throughput measurements essential for data-driven preci-
sion agriculture. However, whole-plant phenotyping can obscure intra-plant dynamics that anticipate
physiological stress and genotype-specific traits [} 2, [3]]. Here, leaves are particularly informa-
tive: they drive photosynthesis, respond locally to biotic and abiotic stress, and exhibit measurable
traits such as emergence timing, growth rate, and morphological change [4, 5, 6]]. Leaf-level phe-
notypes thus provide temporally resolved, function-valued insights that aggregate metrics cannot
capture [[7,[8].

However, tracking individual leaves over weeks is a challenging, long-term, non-rigid multi-object
tracking (MOT) problem. Leaves emerge, occlude, senesce, or reappear; their appearance evolves with
growth and lighting; and pot rotation can induce large global shifts. These dynamics violate common
MOT assumptions—near-rigid motion, consistent appearance, and smooth trajectories [9, [10]].

In this work, we focus on Brassica napus (canola), an economically and ecologically important crop
whose vegetative growth stage introduces domain-specific challenges for identity preservation [[11}[12].
The rosette structure leads to low inter-leaf visual variance, as leaves often exhibit similar textures,
shapes, and reflectance. As the plant develops, leaves continuously emerge, expand, and deform,
producing dynamic occlusions and appearance drift across time. At the top of the plant, overlapping
leaves and stems frequently obscure one another, causing repeated occlusions hindering tracking of
individual leaves over time. Additionally, posture changes and experimental pot rotations disrupt
frame-to-frame spatial alignment, making motion-based heuristics unreliable.

Our contributions are as follows:

* CanolaTrack. A high-resolution, top-down benchmark dataset for long-term leaf track-
ing: 184 canola plants imaged daily for 31 days, totaling 5,704 RGB frames and 31,840
leaf instances. It captures realistic biological leaf events, such as birth, death, occlusion,
reoccurrence, non-uniform growth, as well as pot rotation.

* LeafTrackNet. An efficient tracking framework combining a fine-tuned YOLOvV10 detec-
tor [13] with a MobileNetV3 embedding head [[14]] with triplet margin loss. Leaf identities
are associated using cosine similarity and Hungarian assignment, without reliance on mo-
tion prediction. LeafTrackNet outperforms both plant-specific and general-purpose MOT
baselines on CanolaTrack.

2 Related Work

2.1 Leaf-level Tracking Datasets

Compared to leaf classification, segmentation, and counting [[15 [16} [17], the task of leaf-level
tracking is underexplored, and only a few leaf tracking datasets are available, which are summarized
in Table|l} LeTra [18]] provides 513 chlorophyll fluorescence images from nine Arabidopsis thaliana
plants across 57 time points with 204 annotated leaves. KOMATSUNA [19] contains ~300 RGB-D
images of five Komatsuna plants recorded every four hours over ten days. MSU-PID [20] includes
fluorescence, infrared, RGB, and depth for Arabidopsis and been plants, with subsets (576 and 172
images respectively) annotated for tracking. Beyond top-down view, PhenoTrack3D [21]] captures
side-view, multi-camera images of maize for 3D reconstruction, but requires complex calibration and
alignment, limiting scalability for long-term studies.

2.2 Plant-Specific Leaf Tracking Methods

In the following we provide an overview of the few methods explicitly designed for leaf-
level tracking. LeTra [18]] segments leaves region with Mask R-CNN and associates leaf in-
stances using IoU-based mask matching, which degrades under heavy overlap and frequent emer-
gence/disappearance/recurrence. PlantDoctor [22] pairs YOLOvS with DeepSORT to add Re-
Identification (RelD) features, but embeddings are not tailored to morphology and growth-stage
variation in dense rosettes. In practice, most plant-specific approaches combine generic detectors and
tracking heuristics, rather than addressing long-term identity maintenance in plant-specific scenes.
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Figure 1: Two-phase framework for leaf tracking. (a) Training Phase: Anchor—positive—negative leaf
crops are passed through LeafTrackNet and trained via triplet-margin loss to learn a discriminative,
temporally consistent embedding space. (b) Inference & Tracking Phase: An input RGB image is
fed into a fine-tuned YOLOV1O0 to detect leaves. Detected regions are embedded and compared to
stored embeddings in the memory bank using cosine similarity (x) to compute a similarity matrix.
Hungarian matching then updates matched tracks’ embedding, initializes new tracks and prunes
inactive tracks.

2.3 General Multi-Object Tracking Methods

Recent MOT methods have achieved rapid progress in pedestrian and vehicle domains [9} [0} 23], 24]).
ByteTrack [10] improves IoU-based association by incorporating low-confidence detections but still
relies on box geometry. BoT-SORT [9] adds appearance cues and Kalman filtering, yet assumes
smooth, near-rigid motion. End-to-end approaches like MOTRv2 use transformer-based query
propagation to jointly detect and track objects and achieves state-of-the-art results on DanceTrack [24]]
and BDD100K [25]]. However, these methods are developed for high-frame-rate videos with strong
frame-to-frame continuity. Leaf tracking, by contrast, requires identity persistence across large
temporal gaps (e.g., daily frames), with substantial appearance shifts.

3 Method

3.1 Motivation

The design of LeafTrackNet is guided by failure cases observed when applying MOT trackers to
biologically complex plant growth sequences. First, geometric association methods, such as IoU or
Kalman-based tracking, fail under occlusions and pose changes, which are frequent due to overlapping
leaves and rotational artifacts. Second, generic embedding extractors often lack the discriminative
capacity to distinguish visually similar leaf instances within a single plant. Finally, end-to-end
transformers designed for high-frame-rate pedestrian tracking fail to generalize in temporally sparse,
biologically dynamic sequences. These observations motivate a framework that decouples spatial
localization from identity matching (Figure[I). A leaf embedding network is trained with triplet
margin loss to enforce temporal consistency and intra-plant discriminability. During inference, cosine
similarity and memory-based matching support identity propagation without relying on geometric
continuity.

3.2 Training Phase

Triplet Sampling. Let I denote the RGB image of plant k at time ¢. The annotated leaves
are G = {b}, ;}, where b}, ; = (u,v,w, h) is the i*" leaf bounding box with top-left coordinates
(u,v), width w, and height h. Leaf crops are extracted via a crop-and-resize operator 1), yielding
Tp = V(If, bf“) The triplets (4, xp, x,) are formed as follows: for an anchor z, = ;v’,i“l, the
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Figure 2: Example images of the plant sample Plant-003 from days 1, 11, 21, and 31 with color-coded
bounding boxes indicating individual leaves over time.

positive sample is the same leaf at a different time, x, = ;z:ff ;»tp 7 tq; the negative is a different leaf

. ¢
from the same plant, &, = ", j # i. Thus (24, &p, 20) = (23, 2,75, 27;)-

Model Architecture. The embedding network & = F,, (Np(z)) : R¥>*A*W — RP maps each
cropped leaf region z to a fixed-dimensional descriptor. It consists of a MobileNetV3 backbone
Ny: R3*HXW s RF where F denotes the dimension of the intermediate feature vector, followed
by a linear projection head F,: R — RP that produces the final embedding. The parameters ¢ and
¢ are jointly optimized during training.

Loss Function. Given a triplet (2, ©,, Z,,), the corresponding embeddings are: e, = £(z,), e, =
E(zp), e = E(z,,). We use the triplet margin loss [26] to enforce that the anchor—positive distance
is smaller than the anchor—negative distance by a margin m:

L(Tq,Tp, n) = max{0, |eq — epll3 — [lea — €nl3 + m}. 6]

3.3 Inference and Tracking Phase

In contrast to the training phase, where triplets are sampled randomly, the inference phase proceeds
images sequentially. Inspired by MOTRv2 [23]], we use YOLOV10 as our leaf detector, fined-
tuned on the CanolaTrack training set. We filter out leaf detections with confidence score below
0.5. For plant k at time ¢, let D! = {bf} be the detected leaf boxes and define their embeddings as

{ei} ={€ (@ 1)}

Tracking Memory Bank. We maintain a tracking memory bank 7* = {(p}, a}) }, where ¢ indexes

each active tracks at time ¢, p, € R” is the prototype embedding for that track, and a, € N is the
number of consecutive images in which the corresponding identity has not been observed.

Initialization at t = 1. Since no tracks exist initially, all detections within the first image are treated
as new tracks. Let {ejl };V:ll denote the embeddings extracted from the detections at time ¢ = 1. The

memory bank is initialized as: 7' = {(p} = €], a} = 0)}§V=11, where NN, is the number of detected
leaf in the first image.

Sequential update for ¢ > 1. At each subsequent time ¢, given the active tracks from the memory

bank {p; " évztfl and the current detection embeddings {e] };V:tl, we compute a similarity matrix
T . . . . .
Sej = (pzt 1) e Jt A one-to-one assignment A is obtained by solving a Hungarian match on the

cost matrix C' = 1 — S € RNt-1*Nt  After matching, we apply the similarity threshold 7,: any pair
(¢,7) € Awith Sy; < 7 is rejected and treated as unmatched. The resulting sets of matched pairs,
unmatched detections, and unmatched tracks are then used to update the memory bank.



Table 1: Comparison of publicly available top-down view leaf tracking datasets.

Dataset Species #A.Images Resolution #Plants #Leaves At Modality Rot.
LeTra Arabidopsis 513 266 x 266 9 204 8 F X
KOMATSUNA Komatsuna 300 ~ 480 x 480 5 - 4 R,D X
MSU-PID Arabidopsis 576 ~ 120 x 120 16 - 1.6 ELR,D X
MSU-PID Bean 172 380 x 720 5 - 1.8 FELR,D X
CanolaTrack(Ours) Canola 5,704 1200 x 1200 184 31,840 24 R v
“#A. Images” = number of annotated images; At = hours between successive images per plant; “Rot.” = pot
rotation included; “F”, “I”, “R”, “D” = Fluorescence, Infrared, RGB, Depth; “—” = not reported in original
publication.

(i) Matched Detections (Persistent or Reappearing Leaves): For each matched pair (¢, ), the
track’s prototype is updated by an exponential moving average (EMA):

pe=a-eg+(l—a) -y, ap=0,

where « € [0, 1] control temporal smoothing.

(i1) Unmatched Detections (New Leaves): Each unmatched detection j is initialized as a new
track in the memory bank:

where ¢/ = Ny_1+1, Nyoq +2, -+

(iii)) Unmatched Tracks (Disappearing Leaves): Any existing tracked leaves in the memory
bank that are not matched to the current set of leafs are considered disappeared temporally
or forever. For any unmatched leaf ¢, we keep the embedding prototype unchanged and
increment its age:

t t—1 t t—1
Pe=p, » ap=a, +1

Any tracked leaf older than age threshold (a}, > 7,) is removed from the memory bank.

4 Experiments

4.1 Dataset

CanolaTrac compromises daily top-down RGB images of 184 Brassica napus (canola) plants
over 31 days, including multiple genotypes (distinct genetic lines) and nutrient regimes (different
fertilization levels) to elicit diverse growth patterns. Image acquisition begins at first leaf emergence
and continues until floral buds formation, capturing the full vegetative growth phrase with rapid,
non-uniform leaf expansion (Figure[2)). In total, the dataset contains 5,704 high-resolution images
and 31,840 leaf instances annotated with tight bounding boxes. A comparison to existing top-down
tracking datasets is provided in Table[T]

We randomly split the data 80/20 by plant: the training set has 147 plants (4,557 images, 25,485
leaves), and test set has 37 unseen plants (1,147 images, 6,355 leaves). All models are trained on the
training set and are evaluated on the test set.

4.2 Results

We evaluate LeafTrackNet on CanolaTrack using TrackEva benchmarking against general MOT
methods (BoT-SORT, ByteTrack, MOTRv2) and plant-specific trackers (LeTra, Plant-Doctor). All
models use the same fine-tuned YOLOV10 detector for per-frame proposals, replacing original
detectors (e.g., YOLOX in MOTRvV2). Unless stated otherwise, we use official implementations with
default hyperparameters and train on the CanolaTrack training split. Implementation details are in

Appendix

'© BASF SE
https://github.com/JonathonLuiten/TrackEval
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BoT-SORT ByteTrack MOTRv2 LeTra PlantDoc LeafTrackNet  GroundTruth

(b) Pot Rotation Scenario

Figure 3: Qualitative tracking results on the plant sample Plant-158 from the CanolaTrack dataset. (a)
High-overlap scenario between Day 11 and Day 12. (b) Pot rotation scenario between Day 27 and
Day 28. Best shown in the GroundTruth column.

Quantitative Benchmarking. Table[2]reports performance on standard MOT metrics (see Appendix
[B). Among general trackers, MOTRV2 achieves the best association (e.g., AssA and IDF1), benefiting
from transformer query propagation. BoT-SORT and ByteTrack show strong detection performance
(DetA: 91.30/91.94) but weak association (AssA: 12.18/12.29). Plant-specific baselines, LeTra
and Plant-Doctor, better align with leaf-level structure and achieve improved overall performance
(e.g., LeTra HOTA: 67.02, MOTA: 83.09), yet still struggle to maintain identities through occlusion
and emergence. LeafTrackNet achieves state-of-the-art performance across all five MOT metrics,
outperforming the best competing method by a 9.73 HOTA margin.

Table 2: Tracking performance on the CanolaTrack dataset. Best results are in bold; second best are
underlined. Results are reported as mean + standard deviation across three runs. "Improvement"
denotes the margin of LeafTrackNet over the strongest competing method for each metric.

Domain Method HOTAT DetA1 AssAT MOTAT IDF17
BoT-SORT 33324091 91.30£0.21 12.18+£0.65 40.35+1.91 26.13+0.85

General  ByteTrack 33584090 91.94+0.15 12.29+0.69 41.88+1.79 26.20+0.83
MOTRv2 78.30+1.85 77.33+2.72 79.36+1.07 79.68+£3.05 83.78+1.94
LeTra* 67.02+0.04 82.03+0.14 54.984+0.16 82.09+0.19 69.06+0.10

Plant Plant-Doctor 59.74+0.04 74.424+0.03 48.20+0.09 79.71+£0.06 69.56+0.03
LeafTrackNet 88.03+0.24 92.254+0.03 84.07+0.49 93.64+0.18 92.90+0.35
Improvement +9.73 +0.31 +4.71 +11.55 +9.12

*LeTra originally matches leaves using segmentation masks; here we adapt it to bounding boxes due to the
annotation format in CanolaTrack.

Qualitative Analysis. Early growth (Figure[3(a), Day 11 to 12) exhibits frequent occlusions among
small, low-contrast leaves. Generic MOT methods and plant-specific baselines tend to misassociate
or lose identities, whereas LeafTrackNet maintains identities (e.g., Leaves 1, 2, 4) by combining
occlusion/scale-tolerant embeddings with a prototype memory that smooths associations across
frames. A ~90° clockwise pot rotation (Figure [3(b), Day 27 to 28) breaks spatial continuity and
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Figure 4: Analysis for the plant sample Plant-158 over 31 days. (a) Per-leaf area trajectories
illustrating emergence, disappearance and growth dynamics. (b) t-SNE projection of learned leaf
embeddings with day indices. Same-leaf instances cluster tightly despite appearance changes (e.g.,
Leaf 3 on Days 13 and 16), while different leaves remain well separated (e.g., Leaf 6 on Day 24 vs.
Leaf 3).

violates smooth-motion priors. Geometry—Kalman trackers (BoT-SORT, ByteTrack) and mask—IoU
association (LeTra) fail under the induced rearrangement. Plant-Doctor’s RelD features are sensitive
to orientation changes, and MOTRvV2’s position-encoded query propagation inherits misaligned
anchors after rotation. By performing association in feature space with cosine—Hungarian matching
over a compact per-leaf memory, LeafTrackNet remains stable under both occlusion and global
reorientation.

Temporal Consistency of the Learned Embedding. We analyze Plant-158, a challenging plant
sequence with overlap, emergence, deformation, and rotation. Here, overlap means occlusion
between leaves, emergence is the first appearance of new leaves in the frame, deformation refers to
growth-induced changes in in blade shape, size, and pose, and rotation denotes tray or pot movement
independent of leaf motion. These plant-specific events induce sparse, non-rigid temporal dynamics
that differ from common pedestrian/vehicle MOT. Figure[d{a) shows leaf area trajectories of 13 leaves
across 31 days, revealing diverse growth dynamics. In Figure ff[b), a t-SNE [27] visualization of all
detected leaves over times shows clusters that are compact and well-separated by identity despite
morphological, scale, and orientation changes, indicating a temporally stable and discriminative
feature space. Additional comparisons across methods appear in Appendix Figure|[6]

4.3 Ablation Study

Backbone. We used the MobileNetV3 as our backbone and compare it against other backbone
models, i.e., ResNet variants (18/34/50/101) and ViT-B/16 in Table E[ Under identical training
settings and detectors, MobileNetV3 achieves the strongest identify metrics (HOTA/AssA/IDF1)
while using only ~3M parameters. DetA is effectively flat across backbones, as expected with a
shared detector. Higher model capacity does not directly translate to better identity maintenance for
structured, non-rigid motion leaf trackers. Deeper ResNets and ViT-B/16 increase computation by
4-30x without improving tracking. This suggests that, at our data scale and with a triplet objective in
biological sceen, a compact CNN is sufficient to learn discriminative, temporally stable embeddings.
We therefore adopt MobileNetV3 for the main results.

Triplet sampling. We study how negatives are chosen while anchors and positives are the same leaf
on different days. We compare three strategies: (i) cross-plant negatives, sampled from any plant; (ii)
intra-plant full-cycle negatives, a different leaf from the same plant without temporal constraints; (iii)
intra-plant windowed negatives, restricted to a AT-day neighborhood around the anchor. As shown
in Table 4] unconstrained negatives—cross-plant or full-cycle—deliver the strongest and statistically
similar performance, whereas windowed sampling underperforms, with the largest drop at small AT
and again at large AT'. Small windows yield easy negatives that provide little discriminative pressure



Table 3: Backbone ablation. Metrics are reported as mean =+ standard deviation over three runs. Best
values are bold; second best are underlined.

Parms(M) MACs(G) HOTAT?T DetA?T AssAT MOTA?T IDF171
MobileNetV3 2.97 0.23 88.03+£0.24 92.254+0.03 84.07+0.49 93.64+0.18 92.90+0.35
ResNet18 11.18 1.82 87.67+£0.62 92.22+0.01 83.41+1.18 93.65+0.13 92.55+0.72
ResNet34 21.28 3.68 87.31£1.29 92.28+0.06 82.69+£2.40 93.53+0.80 91.98+1.21
ResNet50 23.51 4.13 87.70£0.04 92.27+0.03 83.44+0.10 93.60+0.16 92.45+0.13
ResNet101 42.50 7.86 87.10£0.47 92.29+0.07 82.28+0.82 93.49+0.43 91.79+0.55
ViT_B16 86.57 17.61 86.79+0.75 92.24+0.03 81.75+1.43 92.97+0.42 91.61+0.88
HEl mean
B a=0.25
88 1 I a=0.5
1 a=0.75
1 a=1.0
< a
€ 86 -
4 m
Ts=0.2 7s=0.4 Ts=0.6 Ts=0.8

Figure 5: Inference ablation of the similarity threshold 7, and temporal smoothing coefficient c.
Error bars indicate £ one standard deviation over three trainings.

within a rosette, while very large windows bias training toward trivially separable pairs. We adopt
intra-plant full-cycle sampling as the default.

Table 4: Ablation on triplet sampling strategies and temporal window size (AT).
Strategy AT  HOTA? DetA1 AssA? MOTA? IDF11
(i) cross-plant flexible -  88.30+0.24 92.25+0.02 84.59+0.46 94.13+0.23 93.15+0.14
88.03+0.24 92.25+0.03 84.07+0.49  93.64+£0.18 92.90+0.35

(ii) intra-plant full-cycle

1 59.29+0.67 92234006 38.1840.88 83.59+0.56 59.7941.00
o 2 64.83+0.58 92.14+£0.05 45.69+0.79 86.2940.12  65.09+0.37
Eﬁf)‘;?ﬁgsm tempo- 5 72914825 92.2240.03 58.19+13.42 88.09+2.86 74.76+9.92
10 64.96+1.48 92.16+0.08 45.8442.09 84.02+0.80 65.43+2.13

20 59.10+4.13 92.144+0.07 38.07£5.22  80.17£2.91 58.02+5.75

Inference hyperparameters. We ablate the similarity threshold 7, and the EMA coefficient « in
Figure HOTA forms a plateau at 75 € [0.4, 0.6] and drops at 7, = 0.8 (over-pruning) and 75 = 0.2
(noisy associations). Within each 75, performance improves with moderate smoothing and declines
for o = 0.25 (history-dominated, slow to adapt) and oo = 1.0 (one-frame memory that overwrites
history). The history mean baseline (uniform average of past embeddings) is consistently below EMA
with a = 0.5 for all 75, indicating that equal weighting underemphasizes recent morphology. Error
bars are small (std < 1 HOTA) across seeds.

5 Conclusion and Discussion

We propose LeafTrackNet, an effective framework for long-term leaf tracking from top-down
RGB sequences of canola. By combining a high-accuracy leaf detector with an embedding-based
association strategy, LeafTrackNet handles key biological and environmental-induced challenges
such as leaf emergence, occlusion, deformation, and rotation. We also released CanolaTrack, a



high-resolution dataset comprising 184 plants tracked over 31 days. LeafTrackNet achieves state-of-
the-art performance on this benchmark, outperforming both general MOT methods and plant-specific
baselines across standard metrics, and enabling accurate, scalable, temporally consistent leaf identity
tracking. While this study focuses on a single crop species (canola) in a controlled environment
with bounding-box annotations, future work will extend toward cross-species generalization, field
environments with greater variability (e.g., wind, clutter, and changing light), and richer annotation
schemes such as instance masks.
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A Implementation Details

Training Details. The embedding network parameters (6, ¢) are optimized using the Adam opti-
mizer with an initial learning rate of 1 x 10~* and a weight decay of 1 x 10~5. Following the setup
in [28]), the triplet loss margin m is set to 0.3. All leaf crops are resized to W = H = 224, as adopted
in [[14]. Training is conducted for up to 80 epochs with a batch size of 48 on four NVIDIA Tesla
V100S GPUs, using an early stopping training strategy.

Inference Details. We use a similarity threshold 74 = 0.4, age threshold 7, = 5, and smoothing
coefficient o = 0.5 during inference.

B Evaluation Metrics

Following the common practice in multi-object tracking evaluation [29], we report the standard
MOT metrics, including Higher Order Tracking Accuracy (HOTA), Detection Accuracy (DetA),
Association Accuracy (AssA), Multi-Object Tracking Accuracy (MOTA), and Identification F1 Score
(IDF1).

HOTA measures the joint performance of detection Det A and association AssA, providing a balanced

evaluation of tracking quality:
HOTA = v/DetA x AssA

DetA quantifies how well the tracker detects objects across images. Let TP, FP, and FN represent
true positives, false positives, and false negatives respectively, DetA is computed as:

TP

DetA=— —
¢ TP + FP + FN

AssA measures the correctness of identity preservation over time. Set T is the set of time steps, and
TP! is the number of correctly associated detections at time ¢. AssA is defined as the average

assoc
fraction of correctly associated objects given that a detection is matched:

1 TP!
AssA = — assoc )
|T| Z TPt + FP;SSOC + FN;SSOC

teT assoc

MOTA considers missed detections, false positives, and identity switches. Let GT} is the number of
ground-truth objects at time ¢, and IDSW is the number of identity switches. MOTA is defined as:

S, (FN,; + FP, + IDSW,)
> GT,

IDF1 computes the F1 score of correctly identified detections, where IDTP, IDFP, and IDFN
denote identity-level true positives, false positives, and false negatives:
2-1IDTP
2. IDTP + IDFP + IDFN'

MOTA =1-

IDF1 =

C Accuracy Comparison

To enable a direct visual comparison of the long-term tracking performance across methods, we
computed binary accuracy heatmaps that highlight the tacking performance for a single plant (Figure
[]a) and for each individual leaf of the same plant (Figure [6b).

Figure [6[(a) demonstrates the impact of the embedding stability of our method on long-term tracking
performance, showing the high average accuracy across 31 days. The accuracy is defined as the
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proportion of leaves correctly detected and consistently tracked on a given day. While state-of-the-art
methods exhibit significant performance degradation—especially after Day 9—our method maintains
consistently high and stable accuracies throughout the plant’s growth cycle. Figure[f[b) provides
a fine-grained view by visualizing the tracking accuracy of the individual leaves, where each cell
reflects the success of identifying a specific leaf on a specific day. Yellow indicates a correct leaf
association (IoU > 0.75 and correct ID), purple denotes failure, and blank cells indicate the absence
of leaves due to complete occlusion, senescence, or not yet sprouted leaves. These visualizations
clearly demonstrate that LeafTrackNet preserves long-term tracking more reliably, both in terms of
average daily accuracy and individual leaf trajectories.
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Figure 6: Tracking accuracy visualization for Plant-158. (a) Average frame-level accuracy per method
per day. (b) Per-leaf binary tracking matrix: yellow = correct, purple = failure, blank = leaf absent.
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