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Abstract

Safe navigation is essential for autonomous systems operating in hazardous en-
vironments. Traditional planning methods are effective for solving long-horizon
tasks but depend on the availability of a graph representation with predefined
distance metrics. In contrast, safe Reinforcement Learning (RL) is capable of
learning complex behaviors without relying on manual heuristics but fails to solve
long-horizon tasks, particularly in goal-conditioned and multi-agent scenarios.
In this paper, we introduce a novel method that integrates the strengths of both
planning and safe RL. Our method leverages goal-conditioned RL and safe RL
to learn a goal-conditioned policy for navigation while concurrently estimating
cumulative distance and safety levels using learned value functions via an auto-
mated self-training algorithm. By constructing a graph with states from the replay
buffer, our method prunes unsafe edges and generates a waypoint-based plan that
the agent then executes by following those waypoints sequentially until their goal
locations are reached. This graph pruning and planning approach via the learned
value functions allows our approach to flexibly balance the trade-off between faster
and safer routes especially over extended horizons.
Utilizing this unified high-level graph and a shared low-level goal-conditioned
safe RL policy, we extend this approach to address the multi-agent safe naviga-
tion problem. In particular, we leverage Conflict-Based Search (CBS) to create
waypoint-based plans for multiple agents allowing for their safe navigation over
extended horizons. This integration enhances the scalability of goal-conditioned
safe RL in multi-agent scenarios, enabling efficient coordination among agents.
Extensive benchmarking against state-of-the-art baselines demonstrates the effec-
tiveness of our method in achieving distance goals safely for multiple agents in
complex and hazardous environments.

1 Introduction

In many real-world scenarios like search-and-rescue or environmental monitoring, autonomous agents
must navigate to distant locations safely as repairs can be costly and time-consuming. This challenge
becomes even more critical in multi-agent settings, such as drone swarms or robotic teams, where
all agents must coordinate to reach their goals while managing risks throughout the entire mission.
Ensuring safety in such complex environments is paramount, as failure to do so could compromise the
entire operation. Recent advancements in Multi-Agent Path Finding (MAPF) Stern et al. [2019], Yu
and LaValle [2013] demonstrate the ability of planners to efficiently generate path plans for multiple
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Figure 1: Safe Navigation via Planning and Safe RL: (a) Unconstrained goal-conditioned RL does
not avoid unsafe regions in the environment. (b) We use observations in the reply buffer (green
circles) as potential sub-goals. (c) We construct a graph using states from replay buffer. The distance
and safety estimate of each edge is predicted by the agent’s value functions. We prune the edges that
are too risky, as illustrated by the crossed out edges (d) We run graph search to find the sequence of
sub-goals (green arrows). The goal-conditioned policy then follows the sub-goals to reach the goal.
Similar idea is extended to multi-agent setting.

agents by decomposing a multi-agent problem into a series of single-agent problems. However, these
approaches assume access to a structured graph representation of the environment, consisting of valid
nodes and edges, annotated with utility information like safety levels and estimated travel times,
limiting their applicability in scenarios where agents only have access to high-level observations,
such as images.

In contrast, learning-based approaches such as deep reinforcement learning (RL) excel at learning
state utilities from high-dimensional observations such as images. In particular, goal-conditioned RL
Mirowski et al. [2017], Schaul et al. [2015], Pong et al. [2020] has been effective in enabling agents
to achieve goals of interest in various domains, including navigation and manipulation. However,
learning policies for distant goals remains challenging, as performance often degrades as the task
horizon increases Levy et al. [2019], Nachum et al. [2018] and requires significant reward shaping
Chiang et al. [2019] or expert demonstrations Lynch et al. [2019], Nair et al. [2018], which can
limit the policy’s ability to discover novel solutions. The challenge is compounded when agents
must remain safe while navigating over long horizons. While constrained RL Altman [2021] has
demonstrated the potential to incorporate safety constraints into policy learning, reaching a diverse
set of distant goals under such constraints, particularly in multi-agent contexts, remains as an open
research problem.

Prior research has tackled long-horizon problems using goal-conditioned RL combined with graph
search techniques Eysenbach et al. [2019]. By constructing an intermediate graph representation of
the environment from the replay buffer and using search-based methods to generate a waypoint-based
plan, these methods decompose tasks into a series of shorter and easier goal-reaching tasks. However,
existing approaches are limited to single-agent scenarios without considering any safety aspects. This
paper extends these methods to address multi-agent, long-horizon, goal-conditioned tasks ensuring
that the agents reach their goals safely.

As shown in Figure 1, our approach leverages goal-conditioned RL and safe RL via a novel self-
training algorithm to learn distance and safety predictors which allows us to dynamically construct an
intermediate graph from the replay buffer. This enables greater planning flexibility that balances the
trade-off between faster and safer routes depending on user-preference. By utilizing this intermediate
graph representation, we extend the range of problems that MAPF approaches can solve, especially in
challenging, image-based environments, effectively bridging the gap between planning and learning
in multi-agent settings. Additionally, we empirically show that our approach can plan a series of
safer sub-goals for multiple agents without requiring new training for each additional agent, thereby
achieving scalability. In summary, we present a scalable and safe approach for navigating multiple
agents to their distance goals in sparse-reward environments, broadening the scope of MAPF through
the integration of goal-conditioned safe RL.
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Figure 2: Comparison of different approaches on the 2D navigation problem for a single agent (left)
and four agents (right). Baselines tend to traverse high-cost regions, leading to suboptimal paths.
In contrast, our approach finds a longer but lower-cost path by avoiding these regions. For both
unconstrained and constrained policies, collision avoidance in the multi-agent case is ensured by
having agents wait when another agent is nearby.

2 Approach

2.1 Goal-Conditioned Safe Reinforcement Learning

Inspired by SoRB Eysenbach et al. [2019] (see Appendix A.1.2), we would like to train an agent that
can predict both distance and cost among state pairs. Meanwhile, the agent should also be capable of
safely navigating amongst them. Since the value functions are conditioned on the associated policy, in
order to obtain the distance and cost predictions following the shortest path, it is critical to first train an
unconstrained agent that includes a goal-conditioned policy π(s, a, sg), a Q-function for cumulative
reward Q(s, a, sg), and another Q-function for cumulative cost QC(s, a, sg). For the agent to learn
safe navigation, we then fine-tune the unconstrained policy π by applying constrained RL methods
which outputs a goal-conditioned safe policy πc(s, a, sg) and its associated value functions. As
previously noted in Appendix A.1.3, the cost limit from constrained reinforcement learning (CRL)
is not directly applicable to the goal-conditioned setting. Therefore, we redefine the cost limit as a
hyper-parameter, a soft constraint that penalizes unsafe actions without requiring strict compliance.
However, we note that when the choice of cost limit is too low (penalty is too high), the resultant
policy would focus too much on reducing costs rather than reaching the goals. In this work, we use
the Lagrangian actor critic Ray et al. [2019] thanks to its simplicity.

2.2 Self-Sampling and Training

To train a goal-conditioned agent, a set of goal states need to be sampled for the agent to explore
and practice reaching them. The design of sampling strategy is crucial for the success of training
a goal-conditioned agent. SoRB Eysenbach et al. [2019] accomplishes this by prioritizing nearby
goal samples to improve the success rate of short-horizon navigation. However, it relies on an oracle
with access to the ground-truth positions rather than the raw observations (e.g., images) to sample
goals of desirable distances. This practice is unrealistic as such oracles often do not exist. Instead,
we propose Algorithm 1, a self-sampling and training algorithm which, in essence, uses the agent’s
Q-functions to evaluate and select training samples with a diverse set of distances and cost targets.
As the Q-functions become more accurate, the quality of the samples improve, which then generates
better training samples to improve the policy.

2.3 Categorical Cost Estimate

Training a robust goal-conditioned value function is challenging yet crucial for planning efficient
waypoints Eysenbach et al. [2019]. Incorporating distributional RL Bellemare et al. [2017] has
shown to be an effective strategy in improving the quality of goal-conditioned value functions thereby
enhancing the planning process. Therefore, we follow Bellemare et al. [2017] to model the goal-
conditioned value function for costs as a categorical distribution Zπ ∼ Cat(N, pπ(z | s, a, g)) within
a range of [V c

min, V
c
max], V

c
min, V

c
max ∈ R+, where N ∈ N is the number of evenly discrete classes,

pπ(z | s, a, g) is the probability predicted by the cost value function conditioned on the current policy
π. The class supports can be described by a set of atoms {zi = V c

min + i∆z : 0 ≤ i < N},∆z ≜
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(V c
max − V c

min)/(N − 1). Consequently, the expected value of the distribution is used estimate the
goal-conditioned cost:

cπ(s1, g) = E
p(z|s,a,g)

[z] (1)

Since Zπ is a categorical distribution, standard Bellman update is not applicable. Instead, we follow
the Categorical Algorithm Bellemare et al. [2017] to update QC(s, a, sg).

2.4 Graph Construction from Replay Buffer

With a trained agent, we use the observations (e.g., images) in the replay buffer B to construct a
weighted, directed graph G. Each edge has a predicted distance and cost for the state pair (si, sj):

dsp ≈ dπ ← Q(s, π(si, a, sg), sj) (2)
csp ≈ cπ ← Qc(s, π(si, a, sg), sj) (3)

G ≜ (V, E ,Wd,Wc)

where V = B
E = B × B =

{
esi→sj |si, sj ∈ B

}
Wd

(
esi→sj

)
=

{
dπ(si, sj) if dπ(si, sj) < dmax

∞ otherwise

Wc

(
esi→sj

)
=

{
cπ(si, sj) if cπ(si, sj) < cmax

∞ otherwise

We exclude edges whose distance exceeds a maximum cutoff, dmax, or whose cost surpasses a
maximum cutoff, cmax. Both dmax and cmax are treated as hyper-parameters.

2.5 Conflict-Based Search (CBS)

CBS Sharon et al. [2015] is a widely used MAPF A.1.4 algorithm that addresses the problem’s
exponential state space by decomposing it into a series of single-agent path planning problems which
are then combined using efficient conflict-resolution strategies. CBS operates on two levels: the
high-level search, which manages different constraints on agents’ path plans, and the low-level search,
where a space-time A* algorithm is used to find paths for each agent independently while satisfying
the constraints imposed by the high-level search tree.

In CBS, constraints are typically defined in the form ⟨ai, v, t⟩, indicating that agent ai is prohibited
from visiting vertex v ∈ V at time step t. The high level search constructs a constraint tree starting
from a root node with no constraints. The tree expands in a best-first manner where each successor
node inherits its parent’s constraints and adds a new constraint for a single agent. The goal of CBS is
to reach a node in the constraint tree where all paths of all agents are conflict-free. This two-level
structure of CBS effectively manages the complexity of MAPF problems by isolating single-agent
planning tasks and resolving conflicts incrementally.

2.6 High-Level Overview

In summary, as shown in Algorithm 2 our approach leverages goal-conditioned safe RL augmented
with self-sampling and training algorithm 1 to build a graph from the replay buffer annotated with
predicted distances and cost estimates using the Q-functions Qπ, Qπ

c of the unconstrained policy
π. CBS then utilizes this intermediate graph to generate effective and safe sequential waypoints for
the agents, which are followed using the trained low-level goal-conditioned safe RL policy πc for
enhanced bi-level safety.

3 Conclusions

In conclusion, this work introduces a novel hierarchical framework that combines high-level
multi-agent planning using MAPF approaches, such as CBS, with low-level control through goal-
conditioned safe RL policies. The framework leverages learned distance and cost critics to automati-
cally generate and annotate dense graph networks from the replay buffer using self-sampling and
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training. At the high level, our approach utilizes CBS to plan efficient and safe waypoints for multiple
agents, while at the low level, the RL policy guides the agents to follow these waypoints toward
distant goal-reaching tasks safely. This bi-level safety control ensures safe multi-agent behavior
throughout execution, effectively tackling scenarios ranging from simple 2D navigation to more
complex visual navigation challenges whose results can be found in the Appendix.
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A Appendix

Figure 3: Safe Visual Navigation: The top-down map illustrates the agent’s path and waypoints
according to our approach. The first row displays the forward-facing start, goal, and suggested
waypoint images. Bottom row shows the agent’s forward-facing observations during execution. The
waypoints help the agent avoid the couch and blue furniture. Note that the top-down view is not
available to the agent.

A.1 Preliminaries

A.1.1 Goal-Conditioned Reinforcement Learning

In goal-conditioned RL (GCRL), an agent interacts with an environment modeled as an augmented
Markov Decision Process (MDP) (S,A, P,R, γ), where S is the state space, A is the action space,
P (st+1|st, at, sg) is the transition probability, R(s, a, sg) is the reward function, and γ ∈ [0, 1) is
the discount factor. Unlike vanilla MDP, GCRL includes a goal sg ∈ S in the problem formulation.
The agent’s objective is to learn a policy π(a|s, sg) that maximizes the expected cumulative reward,
conditioned on both the current state s and the goal sg. The reward function R(s, a, sg) is goal-
dependent, reflecting how well the actions align with the desired goal. In practice, GCRL excels
at learning short-horizon skills often leveraging reward shaping Chiang et al. [2019] and human
demonstrations Lynch et al. [2019], Nair et al. [2018] to enhance performance.

A.1.2 Bridge Planning and RL

To address long-horizon problems, Eysenbach et al. [2019] proposed Search on Replay Buffer (SoRB)
that effectively integrates RL with single-agent planning. Specifically, SoRB defines R(s, a, sg) = −1
and γ = 1 for the target environment. It then trains a goal-conditioned policy π(a | s, sg) and the
corresponding value function V (s, sg) using standard off-policy RL algorithms Lillicrap et al. [2019].
Assuming that π(a | s, sg) is optimal, the value function V (s, sg) can be used to approximate the
distance between a state s and a goal state sg:

V (s, sg) = −dsp (s, sg) (4)

where dsp is the shortest path distance from s to sg , or equivalently, the expected number of steps to
reach sg from s under the optimal policy π.

SoRB then constructs a weighted, directed graph G from states that are either randomly sampled or
drawn from the replay buffer. Each node in the graph corresponds to an observation and edges are
added based on the predicted distance V (s1, s2) between the node pairs (s1, s2). Node pairs with
V (s1, s2) > dmax are excluded as they are considered potentially unreachable.

Finally, SoRB generates a waypoint-based plan by searching on this graph G. The agent sequentially
navigates to the individual waypoints before heading towards the final goal. This process is executed
in either an open-loop or closed-loop manner. Notably, SoRB employs a greedy strategy and does not
take the safety of the agent into account. However, when safety is factored in, longer and safer paths
may be preferred over shorter yet riskier paths.

A.1.3 Constrained Reinforcement Learning

To capture the concept of risk and safety, we build our learning algorithm within the framework
of Constrained RL (CRL). CRL solves a constrained Markov Decision Process (CMDP) Altman
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Figure 4: Comparison of different approaches on the SC3 Staging 11 map for single agent shows that
unconstrained baselines fail to avoid the furniture, whereas the constrained policy and our approach
successfully navigates around it. Our approach goes further by re-routing the agents away from the
furniture, ensuring the safest behavior. Note that for both unconstrained and constrained policies,
inter-agent collision avoidance is ensured by having agents wait when another agent is nearby.

Figure 5: Comparison of different approaches on the SC3 Staging 11 map for four agents shows that
unconstrained baselines fail to avoid the furniture, whereas the constrained policy and our approach
successfully navigates around it. Our approach goes further by re-routing the agents away from the
furniture, ensuring the safest behavior. Note that for both unconstrained and constrained policies,
inter-agent collision avoidance is ensured by having agents wait when another agent is nearby.

[2021] problem that augments MDP with extra constraints that restrict the set of allowable policies.
CMDP defines an auxiliary cost function C : S × A × S → R+ and a cost limit δ ∈ R+. For
conciseness, we will refer to auxiliary cost as cost. The cost function serves as a generic safety
measure. For example, regions of high environmental uncertainty may be deemed unsafe and induce
higher costs. In this work, we do not require the cost function to carry any physical interpretation.
Let JC (π) = E

τ∼π
[
∑∞

t=0 γ
tC (st, at, st+1)] denote the expected discounted cost return following

policy π. The set of feasible stationary policies for a CMDP is then

ΠC
.
= {π ∈ Π : JC (π) ≤ d} (5)

and the RL problem in a CMDP is to find a policy such that

π∗ = argmax
π∈ΠC

J(π) (6)

Standard off-policy methods can be adapted to solve CRL problems by including Lagrange multipliers
to penalize unsafe actions that lead to the violation of cost constraints Ray et al. [2019]. It is crucial
to note that, in CRL, the cost function and cost limit is task-dependent and is not applicable to the
goal-conditioned setting where each goal is akin to a distinct task. For a more detailed reference on
CRL, we refer our readers to Schulman et al. [2015, 2017], Sutton and Barto [2018].
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Algorithm 1 Self-Sampling and Training of Goal-Conditioned Actor Critic
Inputs: Environment E, Goal-Conditioned Policy π, Associated Q-functions for rewards

or auxiliary costs Q(s, a, sg), Desirable sample target for rewards or costs τ ,
Population size N , Number of training problems per batch K

Outputs: Updated π(s, a, sg), Q(s, a, sg)

1: P ← Initialize an empty training set
2: for each batch do
3: {(si, sj)}N ← Randomly sample state pairs from E
4: {vij}N ← Q(si, π(si, a, sj), sj)
5: {lij}N ← L2 distance to τ
6: Find {(si, sj)} corresponding to lowest K {lij}N
7: Add the selected {(si, sj)} to the training set
8: Train the agent with P until P is depleted

A.1.4 Multi-Agent Path Finding (MAPF)

A Multi-Agent Path Finding (MAPF) problem Stern et al. [2019], Yu and LaValle [2013] involves a
weighted graph G(V, E) and a set of agents A = a1, a2, . . . , ak, each with a unique start si ∈ V and
a goal gi ∈ V . Agents can either wait or move to adjacent vertices along edges in E , with each action
incurring a penalty defined by G. Once an agent reaches its goal, no further penalty is incurred.

The path length for each agent is the weighted sum of the edges it traverses. A valid MAPF solution
requires that all agents avoid vertex collision (two agents occupying the same vertex simultaneously)
and edge collisions (two agents traversing the same edge in opposite directions). The typical objective
in MAPF problems is to minimize the Sum of Costs (SoC), which is the total path length for all
agents.

Algorithm 2 Plan and Act
Inputs: Agents N , Current States s, Goal States sg, Buffer of observations B,

Learned constrained policy πc, Q-functions Qπ, Qπ
c of the unconstrained policy π

Output: Action a

1: if N > 1 then
2: sw1 , ...← CBS(s, sg,B, Qπ, Qπ

c )
3: else
4: sw1 , ...← SHORTEST_PATH(s, sg,B, Qπ, Qπ

c )
5: if dπ(s→ sw1

) < dπ(s→ sg) or dπ(s→ sg) > dmax then
6: a← πc(a | s, sw1

)
7: else
8: a← πc(a | s, sg)

A.2 Experiments

Our experiments address the following questions to evaluate the effectiveness of our approach:

Q1: Can our approach demonstrate safer agent behavior compared to other methods?
Q2: Does our approach sacrifice its ability to reach distant goals when balancing the accumulated

cost compared to other baselines?
Q3: Does the suggested approach effectively demonstrate superior performance when scaled to

larger number of agents compared to other methods?

For the single-agent experiments, we compare our approach against a goal-conditioned RL policy,
SoRB and a goal-conditioned safe RL policy. FFor the multi-agent experiments, we evaluated both
off-policy and on-policy Multi-Agent RL (MARL) approaches, including MADDPG Lowe et al.
[2020] and MAPPO Yu et al. [2022]. However, these methods exhibited the same limitations as
goal-conditioned RL approaches, ultimately failing to enable multiple agents to reach their goals.
Hence, we compare our approach with an extended version of SoRB that utilises CBS to generate
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intermediate waypoints for multiple agents. Finally, we compare our approach with these baselines
over two different tasks: a 2D navigation problem and a visual navigation problem that involves using
images as observations.

(a) SC2 Staging 08 (b) SC3 Staging 05 (c) SC3 Staging 11 (d) SC3 Staging 15

Figure 6: Different interactive digital-twins from the ReplicaCAD dataset we use to generate visual
navigation problems.

A.2.1 Environments

We use a 2D navigation environment with Central Obstacle map, where the agent observations are
their locations, represented as s = (x, y) ∈ R2. The agent’s actions, a = (dx, dy) ∈ [−1, 1]2, are
added to the current position at each time step to update their location. For the visual navigation
problems, we selected four distinct environments from the rich, interactive digital-twin ReplicaCAD
dataset Straub et al. [2019], integrated with Habitat-Sim Szot et al. [2021], Savva et al. [2019]. In
these scenarios, the agent’s observations consist of RGB panoramic images created by concatenating
32× 32 first-person views from each of the four cardinal directions. The action space for the agent in
the visual navigation problems is similar to that in the 2D navigation scenario. For all experiments,
we choose the cost limit δ = 10, and we use a cost function that linearly decreases from the obstacle
boundaries.

C(s, a) =

{
2− 2h/r 0 ≤ h ≤ r

0 otherwise
(7)

where h : S → R≥0 is the distance to the boundary of the nearest obstacle and r ∈ R+ is the radius
of influence of each obstacle. In our experiments, r is set to 10 for 2D navigation and 1 for visual
navigation tasks respectively.

Problem Configurations Methods
(Cumulative Cost (Success Rate))

Problem Type Agents Unconstrained Policy Unconstrained Search (SoRB) Constrained Policy Constrained Search (Ours)

Easy

1 0.46 ± 1.05 (100%) 1.38 ± 2.62 (100%) 0.47 ± 1.07 (100%) 0.49 ± 1.06 (100%)
5 N/A 6.39 ± 4.66 (100%) N/A 1.68 ± 1.21 (100%)

10 N/A 8.69 ± 4.05 (100%) N/A 2.24 ± 1.03 (100%)
20 N/A 10.51 ± 3.57 (100%) N/A 2.72 ± 0.80 (100%)

Medium

1 1.58 ± 2.03 (100%) 2.30 ± 3.02 (100%) 1.58 ± 2.01 (100%) 1.59 ± 1.99 (100%)
5 N/A 5.12 ± 3.65 (100%) N/A 3.09 ± 1.50 (100%)
10 N/A 7.27 ± 3.66 (98%) N/A 4.11 ± 1.48 (98%)
20 N/A 8.73 ± 3.73 (98%) N/A 4.78 ± 1.33 (98%)

Hard

1 3.98 ± 4.40 (100%) 4.05 ± 4.19 (100%) 4.19 ± 4.23 (100%) 3.09 ± 3.87 (100%)
5 N/A 8.58 ± 3.79 (100%) N/A 6.01 ± 1.96 (100%)

10 N/A 10.77 ± 3.51 (100%) N/A 7.24 ± 1.52 (100%)
20 N/A 11.96 ± 3.31 (100%) N/A 8.36 ± 1.58 (100%)

Table 1: 2D Navigation: Comparison of accumulated cost across different approaches with varying
problem difficulty and number of agents. Our approach is consistently able to plan successful and
safest paths for multiple agents. Note that we extended SoRB by integrating ith with CBS to plan
waypoints for multiple agents.

Figure 2 illustrates example trajectories generated by both the baselines and our approach in single-
agent and multi-agent settings in the 2D navigation task for a qualitative comparison. Figure 2
shows that, while the baseline methods often fail to generate safer paths when the sampled start and
goal locations fall within high-cost regions, our approach successfully identifies a path that, while
counter-intuitive from the perspective of the RL agent, aligns with human intuition. By navigating
around the high-cost regions, our approach effectively minimizes the accumulated cost.
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We now examine the effectiveness of our approach on the more challenging visual navigation problem
as shown in Figure 3. Figures 5 present qualitative comparison with example trajectories generated
by both the baselines and our approach. The results are consistent with those from the 2D navigation
problem, demonstrating that our approach enables agents to re-route their paths away from obstacles,
such as furniture in the room, leading to safer navigation behavior.

Our comprehensive quantitative experiments involved randomly generating problems with varying
difficulty levels, placing start and goal positions closer together for easier tasks and further apart for
harder ones to increase complexity. Each experiment consisted of 50 different problem instances for
each difficulty level. In our multi-agent experiments, we compared our approach with an extended
version of SoRB, varying the number of agents from 5 to 20 for the 2D navigation problem, and from
5 to 10 agents for the visual navigation problem.

On the simpler 2D navigation problem, Table 1 shows that our approach consistently generates
safer paths with the lowest accumulated cost compared to the other baselines, both in single-agent
and multi-agent settings. This safer behavior becomes more pronounced as the number of agents
increases, with no loss in success rate.

Problem Configurations Methods
(Cumulative Cost (Success Rate))

Map Problem
Type Agents Unconstrained Policy Unconstrained Search (SoRB) Constrained Policy Constrained Search (Ours)

SC2
Staging 08

Easy
1 3.16 ± 9.40 (100%) 2.14 ± 2.22 (98%) 1.85 ± 1.80 (100%) 1.28 ± 1.69 (100%)
5 N/A 4.32 ± 2.29 (98%) N/A 3.35 ± 1.48 (100%)

10 N/A 5.36 ± 2.60 (96%) N/A 4.02 ± 1.15 (100%)

Medium
1 4.98 ± 3.46 (98%) 5.15 ± 3.32 (98%) 4.77 ± 3.25 (100%) 3.35 ± 3.23 (100%)
5 N/A 9.74 ± 11.13 (90%) N/A 6.18 ± 1.64 (98%)

10 N/A 14.23 ± 23.53 (84%) N/A 7.30 ± 1.69 (98%)

Hard
1 13.41 ± 4.00 (96%) 12.35 ± 5.10 (90%) 10.43 ± 3.07 (100%) 9.62 ± 3.66 (100%)
5 N/A 21.23 ± 14.64 (84%) N/A 13.02 ± 2.38 (98%)

10 N/A 27.37 ± 19.05 (62%) N/A 13.87 ± 2.17 (92%)

SC3
Staging 05

Easy
1 1.87 ± 1.65 (98%) 2.23 ± 1.85 (98%) 1.80 ± 1.58 (100%) 1.25 ± 1.60 (100%)
5 N/A 3.71 ± 1.96 (98%) N/A 2.76 ± 1.36 (100%)

10 N/A 4.20 ± 1.73 (98%) N/A 3.32 ± 1.11 (100%)

Medium
1 5.06 ± 3.27 (100%) 4.87 ± 3.15 (100%) 4.38 ± 2.91 (100%) 2.66 ± 2.32 (100%)
5 N/A 7.58 ± 2.16 (98%) N/A 5.88 ± 1.38 (100%)

10 N/A 8.83 ± 1.75 (98%) N/A 7.28 ± 1.53 (96%)

Hard
1 14.86 ± 4.9 (98%) 13.16 ± 4.24 (100%) 8.59 ± 2.21 (98%) 6.47 ± 3.30 (98%)
5 N/A 17.79 ± 2.68 (96%) N/A 15.10 ± 2.19 (96%)

10 N/A 19.56 ± 2.66 (94%) N/A 16.71 ± 2.28 (94%)

SC3
Staging 11

Easy
1 1.20 ± 1.56 (100%) 1.27 ± 1.35 (100%) 1.20 ± 1.55 (100%) 0.78 ± 1.12 (100%)
5 N/A 2.32 ± 1.11 (100%) N/A 1.88 ± 0.90 (100%)
10 N/A 3.00 ± 1.07 (100%) N/A 2.54 ± 1.15 (100%)

Medium
1 3.66 ± 2.95 (98%) 4.19 ± 3.23 (98%) 3.40 ± 2.83 (98%) 1.95 ± 2.24 (100%)
5 N/A 8.33 ± 2.37 (98%) N/A 5.93 ± 2.40 (96%)

10 N/A 10.23 ± 2.27 (96%) N/A 8.13 ± 2.18 (94%)

Hard
1 16.41 ± 6.50 (100%) 14.75 ± 5.43 (100%) 11.59 ± 3.60 (100%) 10.93 ± 3.94 (100%)
5 N/A 18.67 ± 2.51 (96%) N/A 15.78 ± 2.16 (98%)

10 N/A 20.37 ± 2.41 (92%) N/A 16.94 ± 1.66 (92%)

SC3
Staging 15

Easy
1 1.90 ± 1.76 (100%) 2.08 ± 1.73 (100%) 1.87 ± 1.77 (100%) 1.47 ± 1.39 (100%)
5 N/A (100%) 3.82 ± 3.53 (100%) N/A 2.77 ± 1.32 (100%)
10 N/A 4.83 ± 3.68 (100%) N/A 3.63 ± 1.39 (100%)

Medium
1 3.76 ± 3.42 (100%) 4.16 ± 2.79 (100%) 3.23 ± 2.51 (100%) 2.01 ± 1.75 (100%)
5 N/A 6.70 ± 1.81 (100%) N/A 5.18 ± 2.32 (100%)

10 N/A 10.21 ± 14.89 (96%) N/A 6.66 ± 1.59 (100%)

Hard
1 13.83 ± 4.35 (100%) 14.37 ± 11.06 (98%) 9.75 ± 2.74 (100%) 7.61 ± 3.10 (100%)
5 N/A 19.23 ± 11.03 (88%) N/A 11.63 ± 2.70 (100%)

10 N/A 19.70 ± 3.73 (84%) N/A 12.85 ± 2.12 (98%)

Table 2: Safe Visual Navigation: Comparison of accumulated cost across different approaches with
varying problem difficulty and number of agents. Our approach is consistently able to plan successful
and safest paths for multiple agents. Note that we extended SoRB by integrating it with CBS to plan
waypoints for multiple agents.

For the challenging visual navigation problems, Table 2 demonstrates that our approach again
outperforms the baselines by generating safer paths for the agents in both single and multi-agent
settings. Notably, we observed a significant drop in success rate for SoRB with an increased number
of agents, particularly in the SC2 Staging 08 map. This is likely due to longer re-routing times as
agents avoid each other, leading to violation of the time limits. However, as shown in Table 2, our
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approach consistently maintains safer paths for the agents, with the safety margin improving as the
number of agents increases.

Regarding success rate, our approach manages to maintain near-perfect scores, though there is a
slight drop in performance when scaling to larger numbers of agents. This behavior is expected, as
with more agents, the traversable regions become narrower, making it more challenging for CBS to
find collision-free paths. Consequently, agents may need to wait longer at some assigned waypoints,
resulting in increased steps to reach their goals and a higher likelihood of exceeding time limits.

Based on these results, we conclude that our approach not only plans safer paths for agents but does
so with minimal loss in their ability to reach their goals. It also demonstrates consistent trends when
scaling to larger numbers of agents, effectively addressing Q1, Q2, and Q3.
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