Understanding the Robustness of Distributed Self-Supervised Learning Frameworks Against Non-IID Data

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011

013

014

015

016

017

018

019

021

023

025

026

027 028 029

031

032

033

034

037

040

041

042

043

044

046 047

048

051

052

ABSTRACT

Recent research has introduced distributed self-supervised learning (D-SSL) approaches to leverage vast amounts of unlabeled decentralized data. However, D-SSL faces the critical challenge of data heterogeneity, and there is limited theoretical understanding of how different D-SSL frameworks respond to this challenge. To fill this gap, we present a rigorous theoretical analysis of the robustness of D-SSL frameworks under non-IID (non-independent and identically distributed) settings. Our results show that pre-training with Masked Image Modeling (MIM) is inherently more robust to heterogeneous data than Contrastive Learning (CL), and that the robustness of decentralized SSL increases with average network connectivity, implying that federated learning (FL) is no less robust than decentralized learning (DecL). These findings provide a solid theoretical foundation for guiding the design of future D-SSL algorithms. To further illustrate the practical implications of our theory, we introduce MAR loss, a refinement of the MIM objective with local-toglobal alignment regularization. Extensive experiments across model architectures and distributed settings validate our theoretical insights, and additionally confirm the effectiveness of MAR loss as an application of our analysis.

1 Introduction

Deep learning advancements have been driven by large-scale datasets, as seen in the training of LLMs, which require billions of data points (Hoffmann et al., 2022; Rae et al., 2021). However, real-world data is often decentralized, such as surveillance footage from distributed security cameras. This abundance of unlabeled distributed data has spurred interest in distributed self-supervised learning (D-SSL) (Zhuang et al., 2021a; Wang et al., 2022), which extends self-supervised learning (SSL) to decentralized settings. Existing D-SSL frameworks can generally be distinguished in two aspects: differing by the adopted self-supervised learning (SSL) method or by the applied distributed framework. Self-supervised learning (SSL) is a widely used technique to learn representations without human-labeled annotations by solving pretext tasks that generate supervisory signals from raw data (Gui et al., 2024). Depending on the approach used to generate supervisory signals, SSL methods are broadly categorized into Contrastive Learning (CL) and Masked Image Modeling (MIM) (Liu et al., 2021; Zhang et al., 2022), with representative methods like SimSiam (Chen & He, 2021) and MAE (He et al., 2022). On the other hand, federated learning (FL) and decentralized learning (DecL) are two main frameworks in training models with distributed data (Verbraeken et al., 2020; Sun et al., 2024). FL aggregates local models via a central server (McMahan et al., 2017a; Zhuang et al., 2021a), while DecL enables direct inter-client communications for aggregating models, enhancing privacy and avoiding the dependence on the central server (Tang et al., 2022; Ayache & El Rouayheb, 2019).

One unique challenge of D-SSL research is handling highly heterogeneous data on clients. Distributed data among multiple clients are normally non-independent and identically distributed (non-IID), leading to performance degradation (Zhu et al., 2021). To tackle this challenge, previous works proposed advanced D-SSL algorithms with robustness to heterogeneous data. Notable examples include FedU (Zhuang et al., 2021a), Orchestra (Lubana et al., 2022), and L-DAWA (Rehman et al., 2023). However, despite continuous algorithmic innovation, there is still a lack of theoretical understanding of this heterogeneity problem. For example, FedU was designed within the FL framework, but how would its robustness to non-IID data change if deployed in a DecL framework

without coordination from the server? Similarly, state-of-the-art D-SSL algorithms are primarily based on CL, while the adaptation of MIM methods to distributed settings remains under-explored. Could D-SSL based on MIM offer greater robustness to non-IID data than CL-based methods? These confusions converge into a fundamental research question affecting the advancement of D-SSL:

How robust are different D-SSL frameworks against data heterogeneity?

To address this question, this paper aims to provide a theoretical understanding of how different D-SSL frameworks behave under heterogeneous data. We construct mathematical models in a simplified non-IID setting and rigorously analyze the representability of local and global representations learned by these algorithms. Our analysis reveals two key insights: (i) D-SSL algorithms based on Masked Image Modeling (MIM) are inherently more robust than those based on Contrastive Learning (CL), although their robustness still degrades under severe divergence between local and global distributions; and (ii) the robustness of decentralized SSL improves with the average connectivity of the network, which suggests that decentralized SSL is only as robust as federated D-SSL in the limited case of full connectivity (i.e., a fully connected network). Building on these insights, we also explore how theoretical results can inform algorithmic design. As an illustration, we refine the MIM objective with the additional alignment regularization, which we call MAR loss, to encourage local-to-global representation consistency. Finally, we conduct extensive experiments on ResNet (He et al., 2016) and Vision Transformer (ViT) (Dosovitskiy et al., 2020) across a variety of distributed settings and benchmark datasets to validate our theoretical findings and to demonstrate the usefulness of MAR loss as a practical example.

In summary, our main contributions are listed below:

- We develop a rigorous theoretical analysis of distributed self-supervised learning (D-SSL) under non-IID data, showing that MIM-based D-SSL is inherently more robust than CL-based D-SSL.
- We establish the relationship between network connectivity and robustness, proving that decentralized SSL benefits from higher connectivity and that federated SSL is no less robust than decentralized SSL.
- 3. We introduce MAR loss as an illustrative case study demonstrating how our theoretical results can guide algorithmic design, by refining the MIM objective with alignment regularization.
- 4. We conduct extensive experiments across model architectures and distributed settings, which validate our theoretical insights and further confirm the effectiveness of MAR loss.

2 Related Work

Self-supervised Learning. Self-supervised learning (SSL) leverages unlabeled data by generating pseudo labels from raw inputs to learn meaningful representations (Gui et al., 2024). Vision-based SSL methods are typically categorized into contrastive learning (CL) and masked image modeling (MIM) (Zhang et al., 2022; Liu et al., 2021). CL learns representations by maximizing the similarity between positive pairs (i.e., similar data points created by data augmentation) and minimizing it between negative pairs (i.e., data pairs created by other data points) (Chen et al., 2020; He et al., 2020). Recent methods like SimSiam (Chen & He, 2021) and BYOL (Grill et al., 2020) advance the original contrastive loss by removing terms related to negative pairs, which improves stability and reduces batch size dependence. MIM, in contrast, randomly masks out patches of input images and predicts the missing parts, learning representations through a reconstruction loss (Bao et al., 2021; Zhou et al., 2021; Xie et al., 2022; He et al., 2022). Although different in formulation, recent studies have shown that many MIM methods have close connections to CL (i.e., their objectives can be directly re-formulated as contrastive loss (Zhang et al., 2022; Kong et al., 2019)). In this work, we aim to figure out which SSL paradigm is inherently more robust against data heterogeneity.

Distributed Learning. Distributed learning enables collaborative model training across multiple clients without sharing data. Two dominant frameworks in this area are: federated learning (FL), which uses a central server to coordinate and aggregate models (McMahan et al., 2017a), and decentralized learning (DecL), where clients exchange models locally with neighbors (Tang et al., 2022; Ayache & El Rouayheb, 2019). While FL is more widely adopted (Zhang et al., 2021)

for better convergence and training effectiveness, DecL offers benefits in scalability and privacy. Recent studies have started comparing these two frameworks (Beltrán et al., 2023; Hegedűs et al., 2021). For example, Sun et al. explored which leads to better generalization and the impact of network architecture on generalization (Sun et al., 2024). However, the relationship between network architecture and the non-IID robustness in distributed settings is still unclear. Our work addresses this gap by providing both theoretical analysis and empirical findings to clarify this relationship.

Distributed SSL. Distributed SSL (D-SSL) integrates SSL with distributed frameworks to leverage unlabeled, decentralized data while preserving privacy (Zhuang et al., 2021a; Yang et al., 2023). A core challenge is learning robust representations under data heterogeneity (Zhu et al., 2021). Prior work has primarily focused on algorithmic solutions such as FedU (Zhuang et al., 2021a) and L-DAWA (Rehman et al., 2023). Although some studies also provide theoretical analyses, their purpose is to demonstrate the validity of the proposed algorithms rather than to advance the understanding of the robustness variance between different D-SSL frameworks (Lubana et al., 2022; Jing et al., 2024). The most relevant theoretical work is by Wang et al., who showed that SSL is more robust than supervised learning in distributed settings (Wang et al., 2022). Unfortunately, their study only analyzed a specific case of D-SSL where CL is combined with FL and did not extend it to other types of D-SSL frameworks. In contrast, our work delves deeper into these differences, shedding light on understanding the insensitivity of various D-SSL approaches under heterogeneous conditions.

3 PROBLEM SETUP

To provide theoretical insights on understanding this central question, we first introduce our problem setup about distributed training and D-SSL with heterogeneous data.

3.1 DISTRIBUTED TRAINING

Distributed Setting. Consider a distributed scenario consisting of a connected network of N clients, represented as a graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$, where \mathcal{V} is the set of clients and \mathcal{E} is the set of edges denoting direct communication links between clients. The connectivity of the graph is captured by a matrix $A \in \mathbb{R}^{N \times N}$, referred to as the adjacency matrix, where A_i denotes the set including client $i \in [N]$ itself and its neighbors shown by \mathcal{E} , $|A_i|$ represents the size of this neighborhood set or the connectivity of client i, and $|\bar{A}| = \frac{1}{n} \sum_{i=1}^{n} (|A_i|)$ is the average connectivity between clients. Hence, distributed training conducted through the decentralized framework satisfies $\forall i \in [N], 2 \leq |A_i| \leq N$. In contrast, the federated learning framework relies on a central server that aggregates local models from all clients and broadcasts the global model back to them in each round, as in FedAvg (McMahan et al., 2017a). This architecture effectively enables every client to communicate with all others through the server, which corresponds to a fully connected decentralized topology where $\forall i \in [N], |A_i| = N$.

Objective of Distributed Optimization. To utilize different clients to learn useful representations, distributed training generally optimizes the below global objectives:

$$W_{Dec}^* = \min_{W} \frac{1}{N} \sum_{i=1}^{N} \frac{1}{|A_i|} \sum_{j \in A_i} \mathcal{L}_j(W_j); \quad W_{Fed}^* = \min_{W} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_i(W_i)$$
 (1)

where \mathcal{L}_j is the objective of local SSL on client j, W^*_{Dec} and W^*_{Fed} denotes the global objective of DecL and FL, respectively. In particular, at each iteration of DecL, each client conducts local updates using the local dataset and aggregates the updated local model with those from neighbors (Tang et al., 2022). For generating the global model for downstream tasks, there will be an additional aggregation on all local models after all iterations. Differently, the optimization of FL involves each round of model aggregation only on the central server (McMahan et al., 2017a). Then, the server broadcasts the global model to all clients for the next round of training. Note that the FL framework does not need another aggregation between all local models since the updated global model on the server can be used directly for fine-tuning.

3.2 RIGOROUS ANALYSIS OF D-SSL ON A SIMPLIFIED NON-IID SETTING

Non-IID Client Data. D-SSL involves all clients collaboratively training a global model by leveraging their local unlabeled datasets $\{D_i\}_{i=1}^N$ and communicating over the graph \mathcal{G} . Since sharing data

is prohibited to protect privacy, the heterogeneity across these distributed data sources generally leads to a performance drop in many distributed applications (Zhuang et al., 2021a; McMahan et al., 2017a). Two common types of data heterogeneity are: feature heterogeneity and label heterogeneity (Zhu et al., 2021). In this paper, we follow previous works (Wang et al., 2022; Liu et al., 2021) to model a simplified but formal label non-IIDness between local datasets as follows.

The global data distribution $D = \bigcup_{i=1}^{N} D_i$ across clients is assumed to contain unlabeled data from 2N classes. For the dataset on client i, the local data distribution D_i is constrained and imbalanced on three classes, with most samples belonging to classes 2i-1 and 2i, while the remaining very few samples come from the class $h_i \in [2N] \setminus \{2i-1,2i\}$. Specifically, for a sufficiently large positive integer d > 0, let $x \in \mathbb{R}^d \sim D_i$ be the data points in the local



Figure 1: Illustration of the constructed heterogeneous distribution for local data on clients. Each client holds two unique data classes.

dataset and e_1,\ldots,e_d be the standard unit-norm vectors of the d-dimensional Euclidean space. For class 2i-1, we set $x^{(2i-1)}=e_i-\sum_{k\neq i,k=1}^Nq\tau e_k+\mu\xi$, where τ and μ are two positive hyperparameters, q is sampled uniformly from $\{0,1\}$ and $\xi\sim\mathcal{N}(0,I)$ from Gaussian distribution. Likewise, for class 2i, we define $x^{(2i)}=-e_i-\sum_{k\neq i,k=1}^Nq\tau e_k+\mu\xi$. The size of the data from classes 2i-1 and 2i are equal and both grow in polynomials of d. For infrequent class h_i , the samples are generated as: $x^{(h_i)}=e_i+\mu\xi$ and the amount of data is sublinear in d, denoted as $O(d^\alpha)$ with $\alpha\in(0,1)$). Furthermore, we assume all N local datasets to have an equal total number of samples, i.e., $|D_1|=|D_2|=\ldots=|D_N|$. To facilitate understanding, we provide an overview of this non-IID data distribution in Figure 1. Next, we consider CL and MIM as two main paradigms of SSL and formulate CL and MIM, respectively.

CL Formulation. For CL, we adopt the more advanced Simsiam (Chen & He, 2021) which trains with only the positive pairs $(g_a(x), g_b(x))$, where $g_a(\cdot)$ and $g_b(\cdot)$ are random augmentations drawn from SimSiam's augmentation policy (e.g., Gaussian noise, flipping). Consider a linear embedding function $f_W(x) = Wx$, where the weight matrix W satisfies $W \in \mathbb{R}^{c \times d}$ and $c \geq 2N$ according to the distributed settings, the local objective on client i is defined as:

$$\mathcal{L}_{CL} = -\mathbb{E}_{x \sim D_i} ||(W(g_a(x)))^{\mathsf{T}} (W(g_b(x)))||^2 + \frac{1}{2} ||W^{\mathsf{T}} W||_F^2.$$
 (2)

Eq.(2) captures the SimSiam loss by utilizing the negative inner product $\langle a,b \rangle$ to measure the distance between the positive pairs. This objective also excludes a feature predictor for simplicity and includes a regularization term $||W^\intercal W||_F^2$ for more mathematically tractable, similar to previous works (Wang et al., 2022; Liu et al., 2021). Note that Eq.(2) stands for a general form of Simsiam loss due to the wide class of augmentation functions (Gui et al., 2024). For a detailed and tractable theoretical exploration, we consider the linear formulation of data augmentation and further differ CL by the similarity between $g_a(\cdot)$ and $g_b(\cdot)$. In particular, for the case where the positive pairs are generated by similar augmentations, the objective becomes $\mathcal{L}_{CL} = -\mathbb{E}_{x \sim D_i} ||(W(x+\xi))^\intercal (W(x+\xi'))||^2 + \frac{1}{2} ||W^\intercal W||_F^2$, where $\xi, \xi' \sim \mathcal{N}(0, I)$ are random noise sampled IID from the Gaussian distribution. On the other hand, when $g_a(\cdot)$ and $g_b(\cdot)$ are different, we define the loss as $\mathcal{L}'_{CL} = -\mathbb{E}_{x \sim D_i} ||(W(x+\xi))^\intercal (W(x+\xi))^\intercal (W(x+\xi))$

MIM Formulation. For MIM, a random binary mask $m \in \{0,1\}^d$ (created by uniformly sampling 0 with probability p, i.e., mask ratio) is applied to transfer the input x into two complementary views: the unmasked part $x_1 = x \odot m$ and the masked part $x_2 = x \odot (1-m)$ satisfying $x_1 + x_2 = x$. Then, we train an encoder-decoder model $f = f_d \circ f_e$, where the encoder f_e encodes the input x_1 to a latent representation $z = f_e(x_1)$, and the decoder f_d decodes z back to pixel space to reconstruct the masked part x_2 . Hence, considering the same linear embedding function $f_W(x)$, the local objective of MIM is given by

$$\mathcal{L}_{MIM} = \mathbb{E}_{x \sim D_i} \mathbb{E}_{x_1, x_2 | x} ||f_d(f_e(x_1)) - x_2||^2 = \mathbb{E}_{x \sim D_i} ||W(x \odot m) - (x \odot (1 - m))||^2,$$
(3)

where a mean square error loss (MSE) is utilized to enforce the reconstructed image similar to the original image and \odot denotes the Hadamard product. Recent studies have focused on the connection between MIM and contrastive losses and found that MIM loss implies an alignment loss (Zhang et al., 2022; Kong et al., 2019). Eq.(3) can thus be equivalently reformulated as

$$\mathcal{L}_{MIM} = -\mathbb{E}_{x \sim D_i} ||(W(x \odot m))^{\mathsf{T}} (x \odot (1 - m))||^2 + \frac{1}{2} ||W^{\mathsf{T}} W||_F^2, \tag{4}$$

which implicitly aligns the masked and unmasked views to make them close. The regularization term $||W^{\mathsf{T}}W||_F^2$ is also introduced to improve the mathematical traceability.

4 THEORETICAL INSIGHTS

In this section, we use the above problem setup to model different D-SSL frameworks and compare their robustness to heterogeneous data. Differences in applied SSL and network architecture lead to distinctions in learned representations, which can be further explored to determine variance in robustness. Due to page limitations, the complete proof for our analysis is provided in Appendix A.7.

4.1 Analysis of Representations Learned by D-SSL

We begin our analysis with the definition of the representability of the learned representation.

Definition 4.1. (Representability Vector (RV)). Let $\{e_1,\ldots,e_d\}$ be the standard unit vectors of a d-dimensional Euclidean space. Let $W=[w_1,w_2,\ldots,w_c]^\intercal\in\mathbb{R}^{c\times d}$ be the features learned by the linear embedding function $f_W(x)=Wx$, where $c\leq d$. For any row span $\mathcal{R}\in\mathbb{R}^d$ of W, we denote the representability of \mathcal{R} as a vector $r=[||\Pi_{\mathcal{R}}(e_1)||_2^2,\ldots,||\Pi_{\mathcal{R}}(e_c)||_2^2]^\intercal$, where $\Pi_{\mathcal{R}}(e_k)$ is the projection of e_k for $k\in[c]$. Hence, we have $||\Pi_{\mathcal{R}}(e_k)||_2^2=\sum_{j=1}^d(e_k^\intercal v_j)^2$, where $\{v_1,\ldots,v_d\}$ is a set of orthonormal bases for \mathcal{R} .

The intuition behind this definition is that for any input vectors $x \in \mathbb{R}^d$, the learned feature space should have a good representation of the standard basis vectors, e_1, \ldots, e_d , to perform well. In particular, these basis vectors should have large projections onto the feature space. The introduction of the representability vector allows us to quantitatively assess the feature space learned by different D-SSL frameworks. Similar definitions and notations have also been used in previous works studying the feature space of SSL (Wang et al., 2022; Liu et al., 2021). Based on this definition and the above problem setup, we establish the following theorem for D-SSL based on MIM pre-training.

Theorem 4.2. (Representability of Distributed MIM). Consider a distributed scenario consisting of $N = \Theta(d^{\frac{1}{20}})$ clients and following the above non-iid setup with $\tau = d^{\frac{1}{5}}$ and $\mu = d^{-\frac{1}{5}}$. For distributed SSL that utilizes Masked Image Modeling (MIM) as the pre-training approach, with a high probability, the following statements hold:

- 1. Let $r_i^M = [r_{i,1}^M, \dots, r_{i,c}^M]^\intercal$ be the local RV learned on client i, then we have $1 \frac{O(d^{-\frac{2}{5}})}{2p(1-p)d^{\frac{2}{5}} + O(d^{-\frac{2}{5}})} \le r_{i,k}^M \le 1$, where $i \in [N] \backslash k$.
- 2. Let $\bar{r}_{Dec}^{M} = [\bar{r}_{1}^{M}, \dots, \bar{r}_{c}^{M}]^{\mathsf{T}}$ be the global RV learned through DecL, then we have $1 \frac{O(d^{-\frac{2}{5}})}{2p(1-p)(1-1/|\bar{A}|)d^{\frac{2}{5}} + O(d^{-\frac{2}{5}})} \leq \bar{r}_{Dec}^{M} \leq 1$; while for the global RV $\bar{r}_{Fed}^{M} = [\bar{r}_{1}^{M}, \dots, \bar{r}_{c}^{M}]^{\mathsf{T}}$ learned through FL, we have $1 \frac{O(d^{-\frac{2}{5}})}{2p(1-p)d^{\frac{2}{5}} \Theta(d^{\frac{2}{5}}) + O(d^{-\frac{2}{5}})} \leq \bar{r}_{Fed}^{M} \leq 1$.

Theorem 4.2 shows the status of the feature space learned by distributed MIM with different objectives (i.e., local vs decentralized global vs federated global). Note that for each provided representability vector, we find a unique lower bound and a shared upper bound (considering $\sum_{j=1}^d (e_k^\mathsf{T} e_j)^2 = 1$). The distance between the lower and upper bound states how much the learned representation fluctuates in the c unit directions, e_1,\ldots,e_c , associated with data generation. Therefore, the smaller the distance, the less sensitive the representation space is to the non-IID distribution of local datasets on clients. In other words, the corresponding D-SSL is more robust to heterogeneity.

By a similar proof, we derive the representability vectors for D-SSL with CL pre-training as follows.

Theorem 4.3. (Representability of Distributed CL). Consider the same distributed scenario in Theorem 4.2. For distributed SSL that utilizes Contrastive Learning (CL) as the pre-training approach, with a high probability, the following statements hold:

- 1. Let $r_i^C = [r_{i,1}^C, \dots, r_{i,c}^C]^\mathsf{T}$ be the local RV, then we have $1 \frac{O(d^{-\frac{1}{5}})}{d^{\frac{2}{5}} + O(d^{-\frac{1}{5}})} \le r_{i,k}^C \le 1$ and $1 \frac{O(d^{-\frac{1}{5}})}{tr(H)d^{\frac{2}{5}} + O(d^{-\frac{1}{5}})} \le r_{i,k}^C \le 1$ for similar and dissimilar augmentations, respectively.
- $\begin{array}{lll} \text{2. For the global RV \bar{r}^{C}_{Dec}} &=& [\bar{r}^{C}_{1},\ldots,\bar{r}^{C}_{c}]^{\mathsf{T}}$ learned through DecL, we have $1-\frac{O(d^{-\frac{1}{5}})}{(1-1/|\bar{A}|)d^{\frac{2}{5}}+O(d^{-\frac{1}{5}})} \leq \bar{r}^{C}_{Dec} \leq 1$ and $1-\frac{O(d^{-\frac{1}{5}})}{tr(H)(1-1/|\bar{A}|)d^{\frac{2}{5}}+O(d^{-\frac{1}{5}})} \leq \bar{r}^{C}_{Dec} \leq 1$ for similar and dissimilar augmentations, respectively; while for \bar{r}^{C}_{Fed} = $[\bar{\textbf{r}}^{C}_{1},\ldots,\bar{\textbf{r}}^{C}_{c}]^{\mathsf{T}}$ learned through FL, we have $1-\frac{O(d^{-\frac{1}{5}})}{d^{\frac{2}{5}}-\Theta(d^{\frac{1}{5}})+O(d^{-\frac{1}{5}})} \leq \bar{r}^{C}_{Fed} \leq 1$ and $1-\frac{O(d^{-\frac{1}{5}})}{tr(H)d^{\frac{2}{5}}-d^{\frac{2}{5}}+O(d^{-\frac{1}{5}})} \leq \bar{r}^{C}_{Fed} \leq 1$. } \end{array}$

Theorem 4.3 demonstrates that the local and global feature spaces learned by distributed CL are distinct from those learned by distributed MIM. However, it is not obvious which feature spaces hold a smaller gap between the lower and upper bounds. To determine which type of pre-training is less sensitive to data heterogeneity, we further compare their global feature spaces learned in DecL and FL framework, respectively, and summarize the results in the following theorem.

4.2 MIM IS INHERENTLY MORE ROBUST THAN CL WITH HETEROGENEOUS DATA

Theorem 4.4. Let $s = \lceil \bar{r} \rceil - \lfloor \bar{r} \rfloor$ be the sensitivity of distributed SSL to heterogeneous data $x \in \mathbb{R}^d$, with $\lfloor \bar{r} \rfloor$ and $\lceil \bar{r} \rceil$ to denote the lower and upper bound of the learned global representability vector \bar{r} . For any network architecture, distributed SSL satisfies the following property: $\lim_{d \to \infty} [s^C > s^M]$, where s^C and s^M represent the sensitivities of distributed SSL adopting contrastive learning and masked image modeling as the pre-training approach, respectively.

The main intuition for the greater robustness (or smaller sensitivity) of distributed MIM is that CL learns representations from aligning features of the positive pair generated from the original data through data augmentation, whereas MIM aligns features of the reconstructed and the raw data to learn representations. Although the applied augmentation generally does not lead to a change in data labels (Chen et al., 2020; Chen & He, 2021), the output is still a different image. In contrast, the masking operation splits the original image into the masked and unmasked parts, but a portion of the original data is retained in both parts. As a result, CL learns a local representation with greater randomness, and that additional randomness is also biased by local labels. Considering that data heterogeneity already exists among clients, the global representation learned by distributed CL is less uniform than that learned by distributed MIM.

4.3 IMPACT OF THE AVERAGE CLIENT CONNECTIVITY ON NON-IID ROBUSTNESS

Next, we shift our focus to another dimension that distinguishes D-SSL algorithms and address the question: how does the network architecture affect the robustness of the feature space learned by D-SSL? The tool for solving this question is again the bounds of the representability vector. For the DecL setup where clients directly communicate with their direct neighbors, Theorem 4.2 and 4.3 have implicitly shown the answer.

Corollary 4.5. For any SSL pre-training approaches, if the distributed scenario is fully decentralized (i.e., without a central server), the robustness of distributed SSL against heterogeneous local data improves with the average connectivity $|\bar{A}|$ between clients in the network.

Corollary 4.5 also implies that the robustness of D-SSL conducted in a federated setup should be no worse than in a fully decentralized network. Consider the best case of the network topology, where each client can communicate with all other clients in the network. In this case, each client receives a model aggregated by the local models from all clients, which is exactly the global model distributed by the server in the federated setup. We can continue exploring to verify that this intuition is correct. Theoretically, combining Theorem 4.2, Theorem 4.3, and Corollary 4.5, we arrive at another main theorem addressing the question introduced at the beginning of this section.

Theorem 4.6. For any SSL pre-training paradigms, distributed SSL satisfies the following property: $\lim_{d\to\infty} [s_{Dec} \geq s_{Fed}]$, where $s_{Dec} = \lceil \bar{r}_{Dec} \rceil - \lfloor \bar{r}_{Dec} \rfloor$ denotes the sensitivity of distributed SSL performed in the decentralized learning setup (i.e., clients directly communicate with neighbors), and $s_{Fed} = \lceil \bar{r}_{Fed} \rceil - \lfloor \bar{r}_{Fed} \rfloor$ represents the sensitivity of distributed SSL performed in the federated learning setup (i.e., all clients are indirectly connected through the central server).

This theorem further demonstrates the robustness trade-off between applying SSL in federated and decentralized frameworks. For less concern about the impact of data heterogeneity, we should conduct distributed SSL in a federated setup (often also referred to as federated self-supervised learning (Zhuang et al., 2021b;a; Lubana et al., 2022; Rehman et al., 2023)). However, the decentralized case is more common in reality, as it is challenging to provide a central server that can be trusted by all clients and has stable communication with them. Then, we can consider increasing the average connectivity between clients to minimize the negative impact of heterogeneous data on training (e.g., identifying under-connected clients and creating additional direct communication links).

5 MAR Loss: An Illustrative Case Study on Robustness Enhancement

The preceding analysis has addressed the main focus of this paper by establishing theoretical insights into the robustness of different D-SSL frameworks under heterogeneous data. As a further step, we illustrate how these insights can guide a more robust algorithmic design. In particular, our results show that distributed MIM is generally more robust than CL-based ones, but it still suffers degradation when heterogeneity induces fluctuations between local and global representations. This observation motivates us to refine the MIM objective with an additional term that explicitly promotes consistency between the two, which we term MAR loss. The integration of MAR into both federated and decentralized frameworks is summarized in Algorithm 1 and Algorithm 2.

Formally, MAR loss augments the MIM reconstruction objective with an alignment regularization term:

$$\mathcal{L}_{MAR} = \mathbb{E}_{x \sim D_i} \, \mathbb{E}_{x_1, x_2 \mid x} \Big[\| f_d(f_e(x_1)) - x_2 \|^2 + \gamma_t^{(i)} \cdot \text{A-MMD}(z_i, \bar{z}) \Big], \tag{5}$$

where $z_i = f_e(x_1)$ and \bar{z} denote the local masked and global representations, and $\gamma_t^{(i)} > 0$ is a dynamic weight for alignment. The alignment regularizer is based on *Maximum Mean Discrepancy (MMD)*, a widely used measure of distributional discrepancy in machine learning (Gretton et al., 2012; Li et al., 2017; Gong et al., 2016). MMD compares whether two distributions P and Q differ by mapping samples into a reproducing kernel Hilbert space (RKHS) and evaluating differences in their feature means. Typically, MMD adopts a Gaussian kernel $k(x, x') = \exp(-\|x - x'\|^2/2\sigma^2)$.

In MAR, we employ an adaptive version (A-MMD) to compare the feature spaces of local and global representations more robustly. Unlike prior FL works that use vanilla MMD (Ma et al., 2024; Hu et al., 2024; Liao et al., 2024b), A-MMD selects the kernel bandwidth automatically rather than fixing it. Given batches of local and global embeddings of equal size B, A-MMD is computed as:

$$A-MMD(z_i, \bar{z}) = \frac{1}{B(B-1)} \left(\sum_{a \neq b} k(z_{i,a}, z_{i,b}) + \sum_{a \neq b} k(\bar{z}_a, \bar{z}_b) \right) - \frac{2}{B^2} \sum_{a=1}^{B} \sum_{b=1}^{B} k(z_{i,a}, \bar{z}_b), \quad (6)$$

with the adaptive kernel defined as $k(z,z')=exp(-\frac{||z-z'||}{2(\text{mean}_{a\neq b}||z_a-z_b||)^2})$. This data-driven choice ensures stability across non-IID clients by scaling the kernel to the observed embedding distribution.

Finally, to balance early-stage consensus and late-stage efficiency, we design the regularization weight $\gamma_t^{(i)}$ to decay smoothly from γ_{\max} to γ_{\min} . We adopt a cosine schedule based on client participation:

$$\gamma_t^{(i)} = \gamma_{\min} + (\gamma_{\max} - \gamma_{\min}) \cdot \frac{1}{2} \left(1 + \cos \frac{\pi \cdot \omega_t^{(i)}}{\Omega} \right), \tag{7}$$

where $\omega_t^{(i)}$ counts the number of times client i has been selected up to round t, and Ω controls the decay horizon. In decentralized learning, where all clients participate every round, one can simply set $\Omega=T$. In federated learning with partial participation, a practical choice is the expected number of selections per client, or T as a default. This schedule applies stronger alignment when client divergence is most pronounced, and gradually relaxes toward γ_{\min} as training progresses, ensuring robustness gains without excessive overhead.

6 EXPERIMENTS

In this section, we conduct extensive experiments to validate the correctness of our derived theoretical insights and evaluate the effectiveness of the MAR loss in improving the robustness of distributed MIM against data heterogeneity. We first introduce the experimental setup. Then we assess our results in different datasets, model backbones, and distributed settings.

6.1 EXPERIMENTAL SETUP

Datasets and Distributed Simulation. We pre-train our models on the Mini-ImageNet dataset (Vinyals et al., 2016), which contains 60,000 images extracted from the ImageNet dataset (Deng et al., 2009). To simulate a distributed scenario with label non-IIDness, the dataset is partitioned by sampling the class priors of the Dirichlet distribution (Hsu et al., 2019). More heterogeneous division can be made with a smaller Dirichlet parameter α during sampling, while the IID case is simulated by setting a very large α . Besides, we follow prior works to simulate feature heterogeneity by uniformly dividing datasets and applying unique data augmentation for each client (Wang et al., 2022; Zhu et al., 2021). Hence, the labels of local data are kept the same but features are skewed into different domains before training. Furthermore, to simulate the DecL setup, we use the Erdős-Rényi model (ERDdS & R&wi, 1959) to initialize a connected network with the number of clients and the average connectivity as inputs and return the adjacency matrix A. For FL, we additionally assume a central server that can communicate with all the clients in this network. After pre-training, the models' backbones will be fine-tuned on benchmark datasets, including CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and ImageNet dataset. We collect their fine-tuning accuracies for our analysis.

Implementation Details. For our experiments, we use ResNet (He et al., 2016) and Vision Transformer (ViT) (Dosovitskiy et al., 2020) as the model architecture. Following the problem setup in theoretical analysis, we select Simsiam (Chen & He, 2021) and MAE (He et al., 2022) as the representatives of CL and MIM pre-training, respectively. In original works, Simsiam is used to pre-train ResNet models, while MAE is used to pre-train ViTs. We implement two new SSL baselines to show that our theoretical insights apply to any model architecture. One uses Simsiam to pre-train ViTs, and the other one pre-trains ResNet through MAE. Furthermore, we follow the classical distributed algorithms, D-PSGD (Lian et al., 2017) and FedAvg (McMahan et al., 2017a), to implement the DecL and FL frameworks, and then implement our FedMAR and DecMAR algorithms based on these frameworks. All our codes are implemented in Python using the Pytorch framework and executed on a server with 4 NVIDIA® RTX 3090 GPUs. The detailed training setup and server configuration can be found in Appendix A.2 because of page limitations.

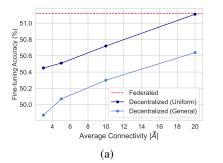
6.2 Empirical Study

Insensitivity Superiority of Distributed MIM. Table 1 compares the impact of data heterogeneity on the pre-training effectiveness between distributed MIM and CL. With highly heterogeneous data, the learned local feature space will be significantly different across clients, resulting in a greater divergence between local and global feature space and a larger drop in the performance compared to the IID setup (Zhuang et al., 2021a;b; Lubana et al., 2022). Across various datasets and backbone architectures, we observe that distributed MIM consistently exhibits a smaller gap between IID and non-IID settings compared to distributed CL. The experimental results align with Theorem 4.4, verifying that MIM is less sensitive than CL when handling heterogeneous data in distributed scenarios. To further substantiate this theoretical insight, we also visualize the local and global feature spaces learned by distributed MIM and CL and compute the l_2 -norm weight distance between their local and global models. Please see Appendix A.3.1 for these external experimental results.

Impact of Average Connectivity on Non-IID Robustness. We verify our second insight by setting up decentralized networks with different average connectivity $|\bar{A}|$. For the same $|\bar{A}|$, we consider two cases: (1) a general case where the number of neighbors $|A_i|$ varies across clients, and (2) a uniform case where all clients have the same connectivity, i.e., $\forall i \in [N], |A_i| = |\bar{A}|$. Additionally, we set up a FL scenario with 20 clients training in parallel per round. Figure 2a shows that Corollary 4.5 is correct. We can observe that the fine-tuning accuracy of decentralized SSL increases with $|\bar{A}|$. Moreover, Figure 2a provides empirical evidence for Theorem 4.6. We find that pre-training in the federated framework is no less robust than in decentralized frameworks against heterogeneous data.

Table 1: **Fine-tuning accuracy** (%) **of backbones pre-trained by different D-SSL algorithms.** All results provided in this table are the mean of three trials (L/non-IID = Label Non-IID; F/non-IID = Feature Non-IID). The values in brackets denote the gap between IID and non-IID performance.

		CIFAR-10		CIFAR-100		ImageNet			
	IID	L/non-IID	F/non-IID	IID	L/non-IID	F/non-IID	IID	L/non-IID	F/non-IID
Simsiam + CNN MAE + CNN						57.81 (\(\psi\)1.10) 57.20 (\(\psi\) 0.66)			
Simsiam + ViT MAE + ViT						43.07 (\$\sqrt{5.53}\$) 49.60 (\$\sqrt{0.44}\$)			



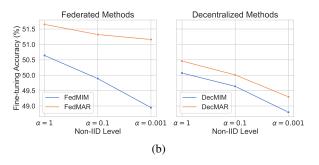


Figure 2: (a) Impact of the average connectivity between clients on the non-IID robustness. Models are pre-trained in a network with 20 clients and then fine-tuned on CIFAR-100. The blue line shows the results of DecL, and the orange line shows FL results. (b) Comparison of MAR and MIM loss on robustness to data heterogeneity in federated and decentralized settings.

Effectiveness of MAR loss. To further illustrate the practical relevance of our analysis, we evaluate MAR loss against the standard MIM objective in both FL and DecL frameworks under varying degrees of data heterogeneity. Figure 2b shows that, as the level of non-IIDness increases (i.e., the Dirichlet parameter α decreases from 1 to 0.001), the fine-tuning accuracy of all methods declines. Nevertheless, models pre-trained with MAR loss consistently outperform those trained with the vanilla MIM loss across all non-IID levels. This trend holds in both FL and DecL settings, suggesting that MAR loss can effectively reduce the sensitivity of distributed MIM to data heterogeneity. Besides, to provide a more comprehensive evaluation, we extend the comparison to recent federated SSL baselines and also conduct ablation studies on the components of MAR loss, including the alignment term and its dynamic weighting. The detailed results of these analyses are provided in Appendix A.4, Appendix A.5.1, and Appendix A.5.2, respectively. Finally, we assess the practical feasibility of MAR by analyzing its privacy and communication overhead. Since MAR communicates only masked embeddings, the additional overhead is modest, while privacy is also preserved through masking and can be further strengthened with differential privacy. A detailed discussion is reported in Appendix A.6.

7 CONCLUSION

In this paper, we investigated the robustness of distributed self-supervised learning (D-SSL) under heterogeneous data. Our theoretical analysis shows that MIM-based frameworks achieve greater robustness than CL-based ones, and that the degree of robustness in decentralized learning is closely tied to the average network connectivity, with federated learning being no less robust than decentralized learning. These findings provide a principled foundation for understanding how algorithmic choices and network structures affect distributed learning with unlabeled and heterogeneous data. Beyond the theory, we also illustrated how such insights can inform practical design. As a case study, we introduced MAR loss, a refinement of the MIM objective with alignment regularization, which serves to demonstrate the applicability of our analysis. Extensive experiments across model architectures and distributed settings validate our theoretical predictions, and further confirm the utility of MAR loss in practice. We hope that our results can serve as a theoretical grounding and guiding framework for future developments in distributed self-supervised learning.

REFERENCES

- Ghadir Ayache and Salim El Rouayheb. Random walk gradient descent for decentralized learning on graphs. In 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 926–931. IEEE, 2019.
- Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers. *arXiv preprint arXiv:2106.08254*, 2021.
- Enrique Tomás Martínez Beltrán, Mario Quiles Pérez, Pedro Miguel Sánchez Sánchez, Sergio López Bernal, Gérôme Bovet, Manuel Gil Pérez, Gregorio Martínez Pérez, and Alberto Huertas Celdrán. Decentralized federated learning: Fundamentals, state of the art, frameworks, trends, and challenges. *IEEE Communications Surveys & Tutorials*, 2023.
- Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In *International Conference on Machine Learning*, pp. 1597–1607. PMLR, 2020.
- Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15750–15758, 2021.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee, 2009.
- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on Learning Representations*, 2020.
- Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. *Psychometrika*, 1(3):211–218, 1936.
- P ERDdS and A R&wi. On random graphs i. Publ. math. debrecen, 6(290-297):18, 1959.
- Mingming Gong, Kun Zhang, Tongliang Liu, Dacheng Tao, Clark Glymour, and Bernhard Schölkopf. Domain adaptation with conditional transferable components. In *International conference on machine learning*, pp. 2839–2848. PMLR, 2016.
- Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel two-sample test. *The Journal of Machine Learning Research*, 13(1):723–773, 2012.
- Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent-a new approach to self-supervised learning. *Advances in Neural Information Processing Systems*, 33:21271–21284, 2020.
- Jie Gui, Tuo Chen, Jing Zhang, Qiong Cao, Zhenan Sun, Hao Luo, and Dacheng Tao. A survey on self-supervised learning: Algorithms, applications, and future trends. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 770–778, 2016.
- Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 9729–9738, 2020.
- Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 16000–16009, 2022.

- István Hegedűs, Gábor Danner, and Márk Jelasity. Decentralized learning works: An empirical comparison of gossip learning and federated learning. *Journal of Parallel and Distributed Computing*, 148:109–124, 2021.
- Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal large language models. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, pp. 30016–30030, 2022.
- Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data distribution for federated visual classification. *arXiv preprint arXiv:1909.06335*, 2019.
- Kai Hu, Yaogen Li, Shuai Zhang, Jiasheng Wu, Sheng Gong, Shanshan Jiang, and Liguo Weng. Fedmmd: a federated weighting algorithm considering non-iid and local model deviation. *Expert Systems with Applications*, 237:121463, 2024.
- Shusen Jing, Anlan Yu, Shuai Zhang, and Songyang Zhang. Fedsc: Provable federated self-supervised learning with spectral contrastive objective over non-iid data. *arXiv preprint arXiv:2405.03949*, 2024.
- Lingpeng Kong, Cyprien de Masson d'Autume, Wang Ling, Lei Yu, Zihang Dai, and Dani Yogatama. A mutual information maximization perspective of language representation learning. *arXiv* preprint arXiv:1910.08350, 2019.
- Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
- Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos. Mmd gan: Towards deeper understanding of moment matching network. *Advances in neural information processing systems*, 30, 2017.
- Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent. *Advances in neural information processing systems*, 30, 2017.
- Xinting Liao, Weiming Liu, Chaochao Chen, Pengyang Zhou, Fengyuan Yu, Huabin Zhu, Binhui Yao, Tao Wang, Xiaolin Zheng, and Yanchao Tan. Rethinking the representation in federated unsupervised learning with non-iid data. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22841–22850, 2024a.
- Xinting Liao, Weiming Liu, Pengyang Zhou, Fengyuan Yu, Jiahe Xu, Jun Wang, Wenjie Wang, Chaochao Chen, and Xiaolin Zheng. Foogd: Federated collaboration for both out-of-distribution generalization and detection. *Advances in Neural Information Processing Systems*, 37:132908–132945, 2024b.
- Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang. Self-supervised learning: Generative or contrastive. *IEEE transactions on knowledge and data engineering*, 35(1):857–876, 2021.
- Ekdeep Lubana, Chi Ian Tang, Fahim Kawsar, Robert Dick, and Akhil Mathur. Orchestra: Unsupervised federated learning via globally consistent clustering. In *International Conference on Machine Learning*, pp. 14461–14484. PMLR, 2022.
- Xiao Ma, Hong Shen, Wenqi Lyu, and Wei Ke. Enhancing federated learning robustness in non-iid data environments via mmd-based distribution alignment. In *International Conference on Parallel and Distributed Computing: Applications and Technologies*, pp. 280–291. Springer, 2024.
- Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection for dimension reduction. *arXiv preprint arXiv:1802.03426*, 2018.
- Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence and statistics*, pp. 1273–1282. PMLR, 2017a.

- H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private recurrent language models. *arXiv preprint arXiv:1710.06963*, 2017b.
- Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models: Methods, analysis & insights from training gopher. *arXiv preprint arXiv:2112.11446*, 2021.
- Yasar Abbas Ur Rehman, Yan Gao, Pedro Porto Buarque De Gusmão, Mina Alibeigi, Jiajun Shen, and Nicholas D Lane. L-dawa: Layer-wise divergence aware weight aggregation in federated self-supervised visual representation learning. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 16464–16473, 2023.
- Yan Sun, Li Shen, and Dacheng Tao. Towards understanding generalization and stability gaps between centralized and decentralized federated learning, 2024. URL https://arxiv.org/abs/2310.03461.
- Zhenheng Tang, Shaohuai Shi, Bo Li, and Xiaowen Chu. Gossipfl: A decentralized federated learning framework with sparsified and adaptive communication. *IEEE Transactions on Parallel and Distributed Systems*, 34(3):909–922, 2022.
- Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S Rellermeyer. A survey on distributed machine learning. *Acm computing surveys (csur)*, 53(2): 1–33, 2020.
- Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*, volume 47. Cambridge university press, 2018.
- Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one shot learning. *Advances in neural information processing systems*, 29, 2016.
- Lirui Wang, Kaiqing Zhang, Yunzhu Li, Yonglong Tian, and Russ Tedrake. Does learning from decentralized non-iid unlabeled data benefit from self supervision? *arXiv preprint arXiv:2210.10947*, 2022.
- Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin, Tony QS Quek, and H Vincent Poor. Federated learning with differential privacy: Algorithms and performance analysis. *IEEE transactions on information forensics and security*, 15:3454–3469, 2020.
- Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu. Simmim: A simple framework for masked image modeling. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 9653–9663, 2022.
- Nan Yang, Xuanyu Chen, Charles Z Liu, Dong Yuan, Wei Bao, and Lizhen Cui. Fedmae: Federated self-supervised learning with one-block masked auto-encoder. *arXiv preprint arXiv:2303.11339*, 2023.
- Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. A survey on federated learning. *Knowledge-Based Systems*, 216:106775, 2021.
- Qi Zhang, Yifei Wang, and Yisen Wang. How mask matters: Towards theoretical understandings of masked autoencoders. *Advances in Neural Information Processing Systems*, 35:27127–27139, 2022.
- Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot: Image bert pre-training with online tokenizer. *arXiv preprint arXiv:2111.07832*, 2021.
- Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin. Federated learning on non-iid data: A survey. *Neurocomputing*, 465:371–390, 2021.
- Weiming Zhuang, Xin Gan, Yonggang Wen, Shuai Zhang, and Shuai Yi. Collaborative unsupervised visual representation learning from decentralized data. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 4912–4921, 2021a.
- Weiming Zhuang, Yonggang Wen, and Shuai Zhang. Divergence-aware federated self-supervised learning. In *International Conference on Learning Representations*, 2021b.

A APPENDIX

648

649 650

651 652

675 676

677 678

679

680

681

682

683

684

685

686

687

688

689

690 691

692

693

694

695

696

697

A.1 FULL PSEUDOCODE OF D-SSL WITH MAR LOSS

${\bf Algorithm} \ {\bf 1} \ {\bf FedMAR} \ {\bf Algorithm}$

```
653
             Input: initial model W^0, number of local updates E, number of training rounds T, learning rate \eta,
654
                   the upper bound of regularization weight \gamma_{\rm max}, the lower bound \gamma_{\rm min}
655
             Output: optimized global model W^T
656
              1: for t = 0, ..., T - 1 do
657
                       if t = 0 then
658
                           server broadcasts W^t to \mathcal{C} \sim [N]
              3:
659
              4:
660
                           computes \gamma_t^{(i)} by \gamma_{\max} and \gamma_{\min} on server (shown in Eq.(7))
              5:
                           server broadcasts W^t, \bar{z}, \gamma_t^{(i)} to \mathcal{C} \sim [N]
662
              7:
663
                       for client i \in \mathcal{C} in parallel do
              8:
                          \begin{aligned} W_{i,0}^t &\leftarrow W^t \\ \text{if } t &= 0 \text{ then} \end{aligned}
664
              9:
             10:
                               W_{iE}^t, z_i \leftarrow SGD(W_{i0}^t, \eta, E, \mathcal{L}_{MIM})
666
             11:
667
             12:
                               W_{i,E}^t, z_i \leftarrow SGD(W_{i,0}^t, \eta, E, \mathcal{L}_{MAR}(\bar{z}, \gamma_t^{(i)})) (shown in Eq.(5))
             13:
668
             14:
669
             15:
                           sends W_{i,E}^t, z_i to server
670
             16:
                       end for
671
             17:
                       \bar{z} = \frac{1}{|\mathcal{C}|} \sum_{i \in \mathcal{C}} z_i
672
                       W^{t+1} \leftarrow \frac{1}{|\mathcal{C}|} \sum_{i \in \mathcal{C}} W_{i,E}^t
673
             19: end for
674
```

Algorithm 2 DecMAR Algorithm

Input: initial models $W_{i,E}^{-1}$, number of local updates E, number of training rounds T, learning rate η , the upper bound of regularization weight γ_{\max} , the lower bound γ_{\min}

```
Output: optimized global model W^T
 1: for t = 0, ..., T - 1 do
          for client i \in [N] in parallel do
 2:
             if t = 0 then
 3:
                 send W_{i,E}^{t-1} to its neighbors
 4:
 5:
                  computes \gamma_t^{(i)} by \gamma_{\max} and \gamma_{\min} for each neighbor (shown in Eq.(7))
 6:
                 send W_{i,E}^{t-1}, z_i, \gamma_t^{(i)} to its neighbors
 7:
                 \bar{z} = \frac{1}{|A_i|} \sum_{j \in A_i} z_j
 8:
 9:
             W_{i,0}^t \leftarrow \frac{1}{|A_i|} \sum_{j \in A_i} W_{j,0}^{t-1} if t=0 then
10:
                 W_{i,E}^t, z_i \leftarrow SGD(W_{i,0}^t, \eta, E, \mathcal{L}_{MIM})
12:
13:
                 W_{i,E}^t, z_i \leftarrow SGD(W_{i,0}^t, \eta, E, \mathcal{L}_{MAR}(\bar{z}, \gamma_t^{(i)})) (shown in Eq.(5))
14:
15:
          end for
16:
17: end for
18: W^T \leftarrow \frac{1}{N} \sum_{i \in [N]} W_{i,E}^{T-1}
```

A.2 DETAILS ABOUT EXPERIMENT SETUP

In this section, we have provided two tables to present our experiment setup. Table 2 shows the experiment details, which include the specific settings for the model architecture, dataset, scenario, and training. Table 3 demonstrates the setup of the running environment, including the configuration of our test server.

Table 2: Settings of Experiments.

	Details
Model Architecture	ResNet, Vision Transformer (ViT)
Number of layers in ResNet	18
Number of blocks in ViT	5
Pre-train Method	MAE, Simsiam
Pre-train Dataset	Mini-ImageNet
Fine-tune Dataset	CIFAR-10/100, ImageNet
Non-IID Options (i.e. the value of α)	$\{1e5 \text{ (IID)}, 1, 0.1, 0.01, 0.001\}$
Options for the γ used in MAR loss	$\{1, 0.1, 0.01, 0.001\}$
For Federated Learning (FL):	
Number of clients	100
Number of sampled clients per round	5
Number of local training epochs	2
Number of total training rounds	100
For Decentralized Learning (DecL):	
Number of clients	20
Options for average connectivity	3, 5, 10, 20 (equals to FL)
Number of local training epochs	1
Number of total training rounds	25
Fine-tuning Epochs	50/100 (CIFAR-10/100), 20/100 (ImageNet)
Pre-train Batch Size	128
Fine-tune Batch Size	256 (CIFAR-10/100), 1024 (ImageNet)
Base Learning Rate	1.5e-4

Table 3: Settings of Running Environment.

Config	Details
Server GPU Count	4
Server GPU Type	RTX 3090 (24GB)
Server CPU Type	AMD EPYC 7282 16-Core
CUDA	12.4
Framework	PyTorch

A.3 EXTERNAL EXPERIMENTS

A.3.1 FEATURE SPACE VISUALIZATION AND MODEL DIFFERENCE

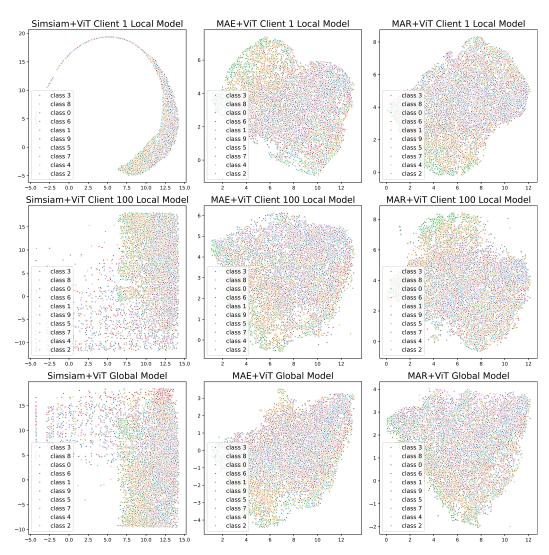


Figure 3: **Visualization of the feature space of local and global model in Non-IID setting.** Each column stands for a D-SSL framework (i.e., pre-training ViT by Simsiam, pre-training ViT by MAE, and pre-training ViT by MAR). The first row shows the local feature space from client 1, the second row shows the local feature space from client 100, and the last row shows the global feature space.

Besides Table 1 demonstrating the non-IID robustness of distributed CL and MIM by the gap in fine-tuning accuracy, we further explore the differences in their learned features empirically. Specifically, we simulate a heterogeneous setting with 100 clients using a Dirichlet sampling with $\alpha=0.1$. For each D-SSL framework, we obtain three pre-trained ViT backbones: (1) a global model trained using FL across all clients; and (2) two local models trained solely on data from client 1 and client 100, respectively. To compare their learned feature spaces, we extract the encoder features of each model. These high-dimensional features are first projected to 20 dimensions using principal component analysis (PCA) and then embedded into 2D space using Umap (McInnes et al., 2018) for visualization.

Figure 3 presents the feature of local and global models learned by each D-SSL method. Each column corresponds to one method, while each row shows features from a specific model (client 1, client 100, and the global model). We observe that for distributed MIM methods, the local features are more aligned with each other and also closer to the global features, suggesting more consistent

representations across heterogeneous clients. In contrast, distributed CL exhibits greater divergence between local and global features, indicating that it is inherently more sensitive to data heterogeneity.

To provide a more quantitative comparison, we also show the weight differences between local and global models in Table 4. In particular, we compute the layer-wise ℓ_2 -norm difference between local and global model weights and report the sum across all layers. The results show that distributed MIM methods (MAE and MAR) yield significantly lower weight distances compared to distributed CL, reinforcing the observation that MIM leads to more stable and consistent model updates in the presence of non-IID data.

Table 4: Weight distance between local and global models learned from different D-SSL methods.

l_2 -Norm Difference	SimSiam + ViT	MAE + ViT	MAR + ViT
local 1 vs local 100	45.37	36.10	35.75
local 1 vs global	40.34	31.57	31.38
local 100 vs global	38.39	31.77	31.25

A.4 COMPARE MAR TO STATE-OF-THE-ART BASELINES

Table 5: Comparison of FedMAR with SOTA F-SSL methods on the Non-iid version ($\alpha = 0.1$) under cross-device (n = 100) settings. Each method was pre-trained with Mini-ImageNet Dataset. The table shows the mean fine-tuning accuracy (%) of three trials.

Method	Architecture	Params	GFLOPS	CIFAR-10	CIFAR-100	ImageNet
FedU	ResNet-18	38.47M	7.40	72.02	38.44	65.10
FedEMA	ResNet-18	38.47M	7.40	70.73	40.78	65.24
Orchestra	ResNet-18	11.84M	7.31	88.87	70.11	65.02
FeatARC	ResNet-18	11.70M	1.83	89.60	64.11	68.17
LDAWA	ResNet-18	15.39M	1.83	89.95	68.96	51.43
${ m Fed} U^2$	ResNet-18	15.39M	1.83	82.39	55.49	45.27
FedMAR(Ours)	ResNet-18	22.50M	3.64	92.70	70.82	65.36
FedMAR(Ours)	Tiny-ViT	11.60M	0.88	90.03	71.28	75.99

We evaluate the effectiveness of our proposed method, FedMAR, by comparing it against several state-of-the-art (SOTA) federated self-supervised learning (F-SSL) baselines in a non-IID distributed setting. The SOTA baselines involve: 1) FedU (Zhuang et al., 2021a): Using the divergence-aware predictor module for dynamic updates within the self-supervised BYOL network (Grill et al., 2020); 4) FedEMA (Zhuang et al., 2021b): Employing EMA of the global model to adaptively update online networks; 5) Orchestra (Lubana et al., 2022): Combining clustering algorithms with Federated Learning for better model aggregation. 6) FeatARC (Wang et al., 2022): Combing clustering techniques with feature alignment; 7) LDAWA (Rehman et al., 2023): Smartly aggregating models according to the angular divergence between local models; and 8) Fed U^2 (Liao et al., 2024a): Optimizing training with the flexible uniform regularizer and efficient unified aggregator. Following prior works (Zhuang et al., 2021a; Rehman et al., 2023), we simulate a highly heterogeneous scenario with 100 clients sampled from a Dirichlet distribution with $\alpha = 0.1$. In each round, 5 clients are randomly selected and each conducts 10 epochs of local training for 200 rounds in total.

Since most baselines employ ResNet-18 (He et al., 2016) as the backbone, we first implement FedMAR with ResNet-18 for a direct comparison. As shown in Table 5, FedMAR employed on ResNet-18 achieves higher accuracy on CIFAR-10 and CIFAR-100 while obtaining comparable results on ImageNet. This indicates that MAR loss can provide tangible improvements even when using the same CNN backbone as prior methods.

To further examine the generality of MAR, we also evaluate FedMAR with a lightweight Vision Transformer backbone (Tiny-ViT). Importantly, this model has a comparable number of parameters and GFLOPs to ResNet-18, ensuring fairness in comparison. In this setting, FedMAR employed on Tiny-ViT achieves superior performance on all three benchmarks, surpassing CNN-based baselines while maintaining lower computational cost. These results suggest that MAR loss is not limited

to convolutional architectures and can be particularly effective when applied to transformer-based models in federated self-supervised learning.

A.5 ABLATION STUDIES ON MAR

A.5.1 ABLATION ON ALIGNMENT METRIC

Table 6: Evaluation of different alignment metrics for MAR loss on CIFAR-100. We report accuracy (%) under three settings of fixed γ : 1e-1, 1e-2, and 0 (degenerate to vanilla MIM).

Metric	$\gamma = 1e-1$	$\gamma = 1e-2$	$\gamma = 0$
Cosine Similarity	51.71	52.47	51.45
Vanilla MMD ($\sigma = 1$)	51.79	52.12	51.45
A-MMD (median σ)	52.42	54.13	51.45
A-MMD (mean σ) [Ours]	54.09	54.39	51.45

Our MAR loss (Eq. 5) involves two key components: the dynamic regularization weight γ_t and the A-MMD distributional penalty used to align local and global representations. To understand their impact, we perform ablation studies on each component. We first evaluate the contribution of the alignment metric.

For baselines, we consider two commonly used choices in prior work: cosine similarity, which has been widely adopted in federated SSL studies for enforcing alignment between local and global feature spaces (Wang et al., 2022), and vanilla MMD with a fixed kernel bandwidth, which has also been explored in recent federated learning works (Ma et al., 2024; Hu et al., 2024; Liao et al., 2024b). On top of these, we evaluate our adaptive variant A-MMD, where the kernel bandwidth is chosen automatically based on either the median or mean of pairwise distances. As shown in Table 6, A-MMD consistently outperforms cosine similarity and vanilla MMD across different γ values. Between the two adaptive variants, using the mean of pairwise distances provides slightly better performance, and we adopt this as our default design.

A.5.2 ABLATION ON REGULARIZATION WEIGHT

Table 7: Evaluation of regularization weight γ for MAR loss on CIFAR-100.

Weight Schedule	Acc(%)
$\gamma = 1$	51.50
$\gamma = 1e-1$	54.09
$\gamma = 1e-2$	54.39
$\gamma = 1e-3$	53.55
$\gamma: 1\mathrm{e}{-1} \to 1\mathrm{e}{-3}$ (cosine decay)	54.91

Next, we analyze the impact of the regularization weight γ by fixing the alignment metric to A-MMD. Results in Table 7 show that using a large weight ($\gamma=1$) degrades performance, as the alignment term overwhelms the reconstruction objective. Conversely, very small weights such as $\gamma=1\mathrm{e}{-3}$ reduce MAR to a near-vanilla MIM objective and fail to deliver sufficient robustness gains. Moderate fixed values such as $\gamma=1\mathrm{e}{-2}$ and $\gamma=1\mathrm{e}{-1}$ yield stronger results, but still remain below our proposed dynamic schedule.

Notably, the cosine decay schedule that smoothly decreases γ from $1\mathrm{e}{-1}$ to $1\mathrm{e}{-3}$ achieves the best performance (54.91%). This validates our intuition behind dynamic weighting: stronger alignment is most beneficial in the early stage when client divergence is high, while gradually relaxing the weight avoids excessive penalty in later stages. These findings highlight the importance of the dynamic design in MAR loss, which not only achieves higher accuracy but also improves training stability.

A.6 DISCUSSION ON PRIVACY AND COMMUNICATION OVERHEAD OF MAR

When deploying MAR loss in practice, natural concerns arise regarding the potential privacy risks and the additional communication associated with sharing local representations. We provide both quantitative and qualitative analyses below to show that these costs remain modest and manageable.

Privacy considerations. The information communicated by MAR is limited to local representations $z_i = f_e(x_1)$ derived from the unmasked portion of the input. Because MIM typically adopts a high masking ratio (e.g., 75% in MAE (He et al., 2022)), most raw content remains hidden and the embedding dimensionality is substantially reduced, which mitigates potential leakage. For stronger guarantees, MAR can be further combined with standard Differential Privacy (DP) mechanisms (McMahan et al., 2017b; Wei et al., 2020) by perturbing embeddings before transmission, e.g., $z_i \leftarrow f_e(x_1) + \mathcal{N}(0, \sigma^2 I)$ with σ calibrated to satisfy (ϵ, δ) -DP.

Communication overhead. In addition to the standard model updates (e.g., gradients or weights), MAR transmits compact masked embeddings computed from the unmasked portion of each input. This is the sole extra payload introduced by MAR. For instance, in the MAE (ViT-B/16) setting on ImageNet with a 75% masking ratio, each image has 196 patches, of which 49 remain visible. With hidden size 768 and batch size 256, this yields about $49 \times 768 \times 256$ float values ($\approx 36.8\,\mathrm{MB}$ in float32). By contrast, a full model with 86M parameters is $\approx 328\,\mathrm{MB}$, so the additional cost from MAR is only $\sim 11\%$ under this configuration. Crucially, in cross-device settings where small batches are common, this extra cost decreases proportionally with the batch size: at B=128 it is $\approx 18\,\mathrm{MB}$ ($\sim 5\%$), at B=64 it is $\approx 9\,\mathrm{MB}$ ($\sim 3\%$), and at B=32 it drops to around $\sim 1\%$. These calculations indicate that the MAR-induced overhead remains acceptable in realistic deployments. Moreover, MAR is optional: when minimal communication is the overriding priority, one can simply use the standard MIM objective, whose effectiveness is explained by our theory, at zero additional cost. When a small extra cost is acceptable, MAR offers corresponding robustness gains while keeping the overhead low.

A.7 FULL PROOF FOR THEORETICAL ANALYSIS

A.7.1 LEARNED REPRESENTABILITY FOR DECENTRALIZED MIM

This section provides the full proof of Theorem 4.2.

Proof. We begin by formulating the representability of local representation. Then, we derive the global representation based on the local feature. Since federated learning is different from decentralized learning in the updates, we establish global representation for each distributed framework, respectively.

For local feature space. According to the loss function of MIM shown in Eq.(4) and by the definition of Kronecker product, we have

$$\mathcal{L}_{MIM} = -\mathbb{E}||(W(x \odot m))^{\mathsf{T}}(x \odot (1-m))||^{2} + \frac{1}{2}||W^{\mathsf{T}}W||_{F}^{2}$$

$$= -\mathbb{E}||(W(\operatorname{diag}(\operatorname{vec}(x)) \cdot \operatorname{vec}(m)))^{\mathsf{T}}(\operatorname{diag}(\operatorname{vec}(x)) \cdot \operatorname{vec}(1-m))||^{2} + \frac{1}{2}||W^{\mathsf{T}}W||_{F}^{2}.$$
(8)

To find the minimizer of this function, we solve

$$\frac{\partial \mathcal{L}_{MIM}}{\partial W} = -2W \cdot \mathbb{E}[|\text{vec}(m)^{\intercal} \text{vec}(1-m) \text{diag}(\text{vec}(x))^{\intercal} \text{diag}(\text{vec}(x))] + 2WW^{\intercal}W = 0, \quad (9)$$

which returns

$$\mathbb{E}\left[\operatorname{vec}\left(m\right)^{\mathsf{T}}\operatorname{vec}\left(1-m\right)\operatorname{diag}\left(\operatorname{vec}\left(x\right)\right)^{\mathsf{T}}\operatorname{diag}\left(\operatorname{vec}\left(x\right)\right)\right]=W^{\mathsf{T}}W.\tag{10}$$

Let X_i^M represent the left-hand side of this equation. Consider the binary matrix m used for masking is sampled uniformly from the binomial distribution with a probability p, we establish

$$X_i^M = \mathbb{E}\left[\operatorname{vec}(m)^{\mathsf{T}}\operatorname{vec}(1-m)\operatorname{diag}(\operatorname{vec}(x))^{\mathsf{T}}\operatorname{diag}(\operatorname{vec}(x))\right]$$

$$= \frac{2p(1-p)}{|D_i|} \sum_{j=1}^{|D_i|} (\operatorname{diag}(\operatorname{vec}(x_{i,j}))^{\mathsf{T}}\operatorname{diag}(\operatorname{vec}(x_{i,j}))),$$
(11)

where $\mathbb{E}_{x \sim D_i}[x^\intercal x] = \frac{1}{|D_i|} \sum_{j=1}^{|D_i|} (\mathrm{diag}\,(\mathrm{vec}\,(x_{i,j}))^\intercal \,\mathrm{diag}\,(\mathrm{vec}\,(x_{i,j})))$ denotes the empirical covariance matrix for the learning with local dataset on client i. Based on the setup of data generation in Section 3, we also derive the following expectation of X_i^M with $\tau = d^{\frac{1}{5}}$ and $\mu = d^{-\frac{1}{5}}$:

$$\mathbb{E}\left[X_{i}^{M}\right] = 2p\left(1-p\right)\operatorname{diag}\left(2p\left(1-p\right)\tau^{2} + O\left(d^{-\frac{2}{5}}\right),...,2p\left(1-p\right) + O\left(d^{-\frac{2}{5}}\right),...,2p\left(1-p\right)\tau^{2} + O\left(d^{-\frac{2}{5}}\right),\\ \underbrace{O\left(d^{-\frac{2}{5}}\right),...,O\left(d^{-\frac{2}{5}}\right)}_{l + N \text{ terms}}\right)$$

$$= \operatorname{diag}\left(2p\left(1-p\right)d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right),...,2p\left(1-p\right) + O\left(d^{-\frac{2}{5}}\right),\\ ...,2p\left(1-p\right)d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right),...,O\left(d^{-\frac{2}{5}}\right)\right)$$

$$(12)$$

Next, consider the fact that $\|X_i^M - W^\intercal W\|_F^2$ shares the same minimizer as \mathcal{L}_{MIM} . According to the Eckart-Young-Mirsky theorem (Eckart & Young, 1936), we notice that the row span of the optimal $W \in \mathbb{R}^{c \times d}$ is the span of the eigenvectors corresponding to the first c eigenvalues of X_i^M . Denoting the set of orthonormal eigenvectors of X_i^M as $\left\{v_{i,1}^M,...,v_{i,d}^M\right\}$, we have $X_i^M = \sum_{j=1}^d \lambda_{i,j} v_{i,j}^M (v_{i,j}^M)^\intercal$, where $\lambda_{i,j} := \lambda_j(X_i^M)$ is the j-th largest eigenvalue of X_i^M . Therefore, the below inequality is satisfied:

$$e_{k}^{\mathsf{T}} X_{i}^{M} e_{k} = e_{k}^{\mathsf{T}} \left(\sum_{j=1}^{d} \lambda_{i,j} v_{i,j}^{M} (v_{i,j}^{M})^{\mathsf{T}} \right) e_{k}$$

$$= \sum_{j=1}^{d} \lambda_{i,j} (e_{k}^{\mathsf{T}} v_{i,j}^{M})^{2}$$

$$\leq \lambda_{i,1}^{M} \sum_{j=1}^{d} (e_{k}^{\mathsf{T}} v_{i,j}^{M})^{2},$$
(13)

for any e_k with $k \in [N] \setminus \{i\}$. On the other hand, the matrix concentration bounds (Vershynin, 2018) implies that the spectral norm satisfies $\|X_i^M - \mathbb{E}\left[X_i^M\right]\|_2 \leq O\left(d^{-\frac{2}{5}}\right)$ with probability at least $1 - \frac{1}{2}e^{-d^{\frac{1}{10}}}$. Building on Weyl's inequality, we obtain that with high probability,

$$\left|\lambda_{i,k}^{M} - \lambda_{k} \mathbb{E}\left[X_{i}^{M}\right]\right| \leq \|X_{i}^{M} - \mathbb{E}\left[X_{i}^{M}\right]\|_{2} \leq O\left(d^{-\frac{2}{5}}\right). \tag{14}$$

By combining Eqs.(12), (13) and (14), we can derive the below lower bound for $e_k^{\mathsf{T}} X_i^M e_k$:

$$e_{k}^{\mathsf{T}}X_{i}^{M}e_{k} = e_{k}^{\mathsf{T}}\mathbb{E}\left[X_{i}^{M}\right]e_{k} + e_{k}^{\mathsf{T}}\left[X_{i}^{M} - \mathbb{E}\left[X_{i}^{M}\right]\right]e_{k}$$

$$\geq 2p\left(1-p\right)d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right) - \|X_{i}^{M} - \mathbb{E}\left[X_{i}^{M}\right]\|$$

$$\geq 2p\left(1-p\right)d^{\frac{2}{5}} - O\left(d^{-\frac{2}{5}}\right),$$
(15)

which is led by the fact that $||X||_{\max} \le ||X||$ for symmetric X. Likewise, we prove the upper bound as follows:

$$e_{k}^{\mathsf{T}}X_{i}^{M}e_{k} = e_{k}^{\mathsf{T}}\mathbb{E}\left[X_{i}^{M}\right]e_{k} + e_{k}^{\mathsf{T}}\left[X_{i}^{M} - \mathbb{E}\left[X_{i}^{M}\right]\right]e_{k}$$

$$\leq 2p\left(1-p\right)d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right) + \|X_{i}^{M} - \mathbb{E}\left[X_{i}^{M}\right]\|$$

$$\leq 2p\left(1-p\right)d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right).$$
(16)

Moreover, we notice from Eqs.(12) and (13) that the below statements hold for $\lambda_{i,1}^M$:

$$\lambda_{i,1}^{M} \ge \lambda_{1} \left(\mathbb{E} \left[X_{i}^{M} \right] \right) - O\left(d^{-\frac{2}{5}} \right) \ge 2p \left(1 - p \right) d^{\frac{2}{5}} - O\left(d^{-\frac{2}{5}} \right)$$

$$\lambda_{i,1}^{M} \le \lambda_{1} \left(\mathbb{E} \left[X_{i}^{M} \right] \right) + O\left(d^{-\frac{2}{5}} \right) = 2p \left(1 - p \right) d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}} \right).$$

$$(17)$$

With Eqs.(15) - (17), we further establish

$$\sum_{j=1}^{d} (e_k^{\mathsf{T}} v_j^M)^2 \ge \frac{2p (1-p) d^{\frac{2}{5}} - O\left(d^{-\frac{2}{5}}\right)}{2p (1-p) d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right)} \\
= \frac{2p (1-p) d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right)}{2p (1-p) d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right)} - \frac{2O\left(d^{-\frac{2}{5}}\right)}{2p (1-p) d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right)} \\
= 1 - \frac{O\left(d^{-\frac{2}{5}}\right)}{2p (1-p) d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right)}.$$
(18)

This completes the proof for local representation.

For global feature space. Since the local goal can be equivalently re-formulated as $\|X_i^M - W^\intercal W\|_F^2$, we re-write the global goal of D-SSL for DecL framework (shown in Eq.(1)) as

$$\min_{W} \frac{1}{N} \sum_{i \in [N]} \frac{1}{|A_i|} \sum_{j \in A_i} \|X_j^M - W^{\mathsf{T}} W\|_F^2.$$
 (19)

Note that the following function holds the same minimizer as Eq.(19):

$$\min_{W} \left\| \frac{1}{N} \sum_{i \in [N]} \frac{1}{|A_{i}|} \sum_{j \in A_{i}} X_{j}^{M} - W^{\mathsf{T}} W \right\|_{F}^{2}
= \min_{W} \left\| \frac{1}{N} \sum_{i \in [N]} \overline{X_{i}^{M}} - W^{\mathsf{T}} W \right\|_{F}^{2}
= \min_{W} \left\| \overline{X^{M}} - W^{\mathsf{T}} W \right\|_{F}^{2},$$
(20)

where $\overline{X_i^M} = \sum_{j \in A_i} \frac{1}{|A_i|} X_j^M$ denotes the empirical covariance matrix for training with the local datasets across the local datasets on client i and its neighbors. So, finding the optimal W for DecL is equivalent to solving Eq.(20). Following the derivation of Eq.(12) and linearity of expectation, we establish

$$\mathbb{E}\left(\overline{X_{i}^{M}}\right) = \operatorname{diag}\left(\dots, 2p\left(1-p\right)\left(\left(1-\frac{1}{|A_{i}|}\right)d^{\frac{2}{5}} + \frac{1}{|A_{i}|}\right) + O\left(d^{-\frac{2}{5}}\right), \dots, 2p\left(1-p\right)d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right), \dots, \underbrace{j \in A_{i} \setminus i}_{N \text{ terms}}\right)$$
(21)
$$\underbrace{O\left(d^{-\frac{2}{5}}\right), \dots, O\left(d^{-\frac{2}{5}}\right)}_{d-N \text{ terms}}, \dots, O\left(d^{-\frac{2}{5}}\right), \dots, O\left(d^{-\frac{2}{5}}\right)$$

where we prove with the fact that

$$\frac{(|A_{i}|-1) 2p (1-p) d^{\frac{2}{5}} + 2p (1-p) + |A_{i}| O\left(d^{-\frac{2}{5}}\right)}{|A_{i}|} = \frac{(|A_{i}|-1) 2p (1-p) d^{\frac{2}{5}} + 2p (1-p)}{|A_{i}|} + O\left(d^{-\frac{2}{5}}\right) = 2p (1-p) \left(1 - \frac{1}{|A_{i}|}\right) d^{\frac{2}{5}} + 2p (1-p) \frac{1}{|A_{i}|} + O\left(d^{-\frac{2}{5}}\right) = 2p (1-p) \left(\left(1 - \frac{1}{|A_{i}|}\right) d^{\frac{2}{5}} + \frac{1}{|A_{i}|}\right) + O\left(d^{-\frac{2}{5}}\right).$$
(22)

With Eq.(21), we can also have

$$\mathbb{E}\left(\overline{X^M}\right) = \operatorname{diag}$$

$$\left(2p\left(1-p\right)\left(1-\frac{1}{|\bar{A}|}\right)d^{\frac{2}{5}} + O\left(d^{-\frac{9}{20}}\right), ..., 2p\left(1-p\right)\left(1-\frac{1}{|\bar{A}|}\right)d^{\frac{2}{5}} + O\left(d^{-\frac{9}{20}}\right), ..., 2p\left(1-\frac{9}{20}\right)d^{\frac{2}{5}} + O\left(d^{-\frac{9}{20}}\right)d^{\frac{2}{5}} + O\left(d$$

 $..., O\left(d^{-\frac{2}{5}}\right)$

where we consider $\frac{1}{N} \sum_{i=1}^{N} \frac{1}{|A_i|} = |\bar{A}|$ and the fact that

$$\frac{\sum_{i=1}^{N} \left(2p\left(1-p\right)\left(\left(1-\frac{1}{|A_{i}|}\right)d^{\frac{2}{5}}+\frac{1}{|A_{i}|}\right)+O\left(d^{-\frac{2}{5}}\right)\right)}{N} \\
=2p\left(1-p\right)\left(\left(1-\frac{1}{N}\sum_{i=1}^{N}\frac{1}{|A_{i}|}\right)d^{\frac{2}{5}}+\frac{1}{N}\sum_{i=1}^{N}\frac{1}{|A_{i}|}\right)+O\left(d^{-\frac{2}{5}}\right) \\
=2p\left(1-p\right)\left(\left(1-\frac{1}{|\bar{A}|}\right)d^{\frac{2}{5}}+\frac{1}{|\bar{A}|}\right)+O\left(d^{-\frac{2}{6}}\right) \\
=2p\left(1-p\right)\left(1-\frac{1}{|\bar{A}|}\right)d^{\frac{2}{5}}+O\left(d^{-\frac{2}{5}}\right).$$
(24)

Through similar proof from Eq.(15) to Eq.(17), we prove that the following statements hold for all $i \in [N]$:

$$e_{k}^{\mathsf{T}} \overline{X^{M}} e_{k} \geq 2p \left(1 - p\right) \left(1 - \frac{1}{|\bar{A}|}\right) d^{\frac{2}{5}} - O\left(d^{-\frac{2}{5}}\right)$$

$$e_{k}^{\mathsf{T}} \overline{X^{M}} e_{k} \leq 2p \left(1 - p\right) \left(1 - \frac{1}{|\bar{A}|}\right) d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right)$$
(25)

$$\lambda_{i,1}^{M} \ge \lambda_{1} \left(\mathbb{E}\left[\overline{X^{M}}\right] \right) + O\left(d^{-\frac{2}{5}}\right) = 2p\left(1 - p\right) \left(1 - \frac{1}{|\overline{A}|}\right) d^{\frac{2}{5}} - O\left(d^{-\frac{2}{5}}\right)$$

$$\lambda_{i,1}^{M} \le \lambda_{1} \left(\mathbb{E}\left[\overline{X^{M}}\right] \right) + O\left(d^{-\frac{2}{5}}\right) = 2p\left(1 - p\right) \left(1 - \frac{1}{|\overline{A}|}\right) d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right), \tag{26}$$

which then implies:

 $\frac{1176}{1177}$ $\sum_{j=1}^{d} (e_k^{\mathsf{T}} \bar{v}_j^M)^2 \ge \frac{2p (1-p) \left(1 - \frac{1}{|\bar{A}|}\right) d^{\frac{2}{5}} - O\left(d^{-\frac{2}{5}}\right)}{2p (1-p) \left(1 - \frac{1}{|\bar{A}|}\right) d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right)}$ $= \frac{2p (1-p) \left(1 - \frac{1}{|\bar{A}|}\right) d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right)}{2p (1-p) \left(1 - \frac{1}{|\bar{A}|}\right) d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right)} - \frac{2O\left(d^{-\frac{2}{5}}\right)}{2p (1-p) \left(1 - \frac{1}{|\bar{A}|}\right) d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right)}$ $= 1 - \frac{O\left(d^{-\frac{2}{5}}\right)}{2p (1-p) \left(1 - \frac{1}{|\bar{A}|}\right) d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right)}.$ $= 1 - \frac{O\left(d^{-\frac{2}{5}}\right)}{2p (1-p) \left(1 - \frac{1}{|\bar{A}|}\right) d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right)}.$

The proof for the global featured space learned in the decentralized learning framework has been completed. Next, consider federated learning (FL) as a special case of decentralized learning with $\forall i \in [N], |A_i| = N$. The global of FL is thus:

$$\min_{W} \frac{1}{N} \sum_{i \in [N]} \|X_i^M - W^{\mathsf{T}} W\|_F^2. \tag{28}$$

This is similar to solving

$$\min_{W} \|\overline{X^M} - W^{\intercal}W\|_F^2, \tag{29}$$

where $\overline{X^M} := \frac{1}{N} \sum_{i \in [N]} X_i^M$ denotes the empirical covariance matrix for learning with the global dataset. Then, we derive

$$\mathbb{E}\left(\overline{X^{M}}\right) = \operatorname{diag}\left(2p\left(1-p\right)d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) + O\left(d^{-\frac{2}{5}}\right), ..., 2p\left(1-p\right)d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) + O\left(d^{-\frac{2}{5}}\right), ...O\left(d^{-\frac{2}{5}}\right)\right)$$
(30)

where we adopt $N = \Theta(d^{\frac{1}{20}})$ have used the fact that

$$\frac{(N-1) 2p (1-p) d^{\frac{2}{5}} + 2p (1-p) + NO\left(d^{-\frac{2}{5}}\right)}{N} \\
= \frac{\left(\Theta\left(d^{\frac{1}{20}}\right) - 1\right) 2p (1-p) d^{\frac{2}{5}} + 2p (1-p)}{\Theta\left(d^{\frac{1}{20}}\right)} + O\left(d^{-\frac{2}{5}}\right) \\
= 2p (1-p) \left(1 - \Theta\left(d^{-\frac{1}{20}}\right)\right) d^{\frac{2}{5}} + \Theta\left(d^{-\frac{1}{20}}\right) + O\left(d^{-\frac{2}{5}}\right) \\
= 2p (1-p) d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) + O\left(d^{-\frac{2}{5}}\right).$$
(31)

Again, by similar arguments from Eq.(15) to Eq.(17), we further prove

$$\sum_{j=1}^{d} (e_{k}^{\mathsf{T}} \bar{v}_{j}^{M})^{2} \ge \frac{2p (1-p) d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) - O\left(d^{-\frac{2}{5}}\right)}{2p (1-p) d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) + O\left(d^{-\frac{2}{5}}\right)} \\
= \frac{2p (1-p) d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) + O\left(d^{-\frac{2}{5}}\right)}{2p (1-p) d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) + O\left(d^{-\frac{2}{5}}\right)} - \frac{2O\left(d^{-\frac{2}{5}}\right)}{p (1-p) d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) + O\left(d^{-\frac{2}{5}}\right)} \\
= 1 - \frac{O\left(d^{-\frac{2}{5}}\right)}{2p (1-p) d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) + O\left(d^{-\frac{2}{5}}\right)}, \tag{32}$$

which completes the proof of this theorem.

A.7.2 LEARNED REPRESENTABILITY FOR DECENTRALIZED CONTRASTIVE LEARNING

This section provides the full proof of Theorem 4.3.

Lemma A.1. (Representability of Distributed CL under Similar Augmentations). Consider the same distributed scenario in Theorem 4.2. For distributed SSL that utilizes Contrastive Learning (CL) in pre-training and generate positive pairs through similar augmentations, with a high probability, the following statements hold:

- 1. Let $r_i^C = [r_{i,1}^C, \dots, r_{i,c}^C]^\intercal$ be the local RV learned on client i. If positive pairs are generated by similar augmentations, we have $1 \frac{O(d^{-\frac{1}{5}})}{d^{\frac{2}{5}} + O(d^{-\frac{1}{5}})} \le r_{i,k}^C \le 1$, where $i \in [N] \setminus k$.
- 2. Let $\bar{r}^C_{Dec} = [\bar{r}^C_1, \dots, \bar{r}^C_c]^\intercal$ be the RV learned through the global objective of DecL framework, then we have $1 \frac{O(d^{-\frac{1}{5}})}{(1 \frac{1}{|A|})d^{\frac{2}{5}} + O(d^{-\frac{1}{5}})} \leq \bar{r}^C \leq 1$.
- 3. Let $\bar{r}^M_{Fed} = [\bar{\mathbf{r}}^M_1, \dots, \bar{\mathbf{r}}^M_c]^{\mathsf{T}}$ be the RV learned through the global objective of FL framework, we have $1 \frac{O(d^{-\frac{1}{5}})}{d^{\frac{2}{5}} \Theta(d^{\frac{1}{20}}) + O(d^{-\frac{1}{5}})} \leq \bar{r}^C_{Fed} \leq 1$.

Proof. Following the proof in A.7.1, we first discuss local representability learned by distributed contrastive learning and then derive the global representation based on these local features. Since federated learning differs from decentralized learning in terms of updates, we construct separate global representations for each distributed framework.

For local feature space. Based on the loss function of contrastive learning (CL) as shown in Eq.(??), we obtain

$$\mathcal{L}_{CL} = -\mathbb{E}_{x \sim D_i} ||(W(x+\xi))^{\mathsf{T}} (W(x+\xi'))||^2 + \frac{1}{2} ||W^{\mathsf{T}} W||_F^2$$

$$= -\mathbb{E} ||(x^{\mathsf{T}} W^{\mathsf{T}} + \xi^{\mathsf{T}} W^{\mathsf{T}}) (W(x+\xi'))||^2 + \frac{1}{2} ||W^{\mathsf{T}} W||_F^2$$

$$= -\mathbb{E} ||(x^{\mathsf{T}} W^{\mathsf{T}} W x + x^{\mathsf{T}} W^{\mathsf{T}} W \xi' + \xi^{\mathsf{T}} W^{\mathsf{T}} W x + \xi^{\mathsf{T}} W^{\mathsf{T}} W \xi')||^2 + \frac{1}{2} ||W^{\mathsf{T}} W||_F^2.$$
(33)

To find the minimizer of this function, we solve for

$$\frac{\partial \mathcal{L}_{CL}}{\partial W} = -2W\mathbb{E}\left[\left(x^{\mathsf{T}}x + x^{\mathsf{T}}\xi' + \xi^{\mathsf{T}}x + \xi^{\mathsf{T}}\xi'\right)\right] + 2WW^{\mathsf{T}}W = 0,\tag{34}$$

leading to

$$\mathbb{E}\left[\left(x^{\mathsf{T}}x + x^{\mathsf{T}}\xi' + \xi^{\mathsf{T}}x + \xi^{\mathsf{T}}\xi'\right)\right] = W^{\mathsf{T}}W. \tag{35}$$

Similarly, let X_i^C represent the left-hand side of this equation. We can then establish

$$X_i^C = \frac{1}{|D_i|} \sum_{j=1}^{|D_i|} (x^{\mathsf{T}} x + x^{\mathsf{T}} \xi' + \xi^{\mathsf{T}} x + \xi^{\mathsf{T}} \xi'), \tag{36}$$

 where X_i^C represents the empirical covariance matrix for the local feature learned by CL on client i. Considering that $\xi, \xi' \sim \mathcal{N}(0, I)$, we also derive the following expectation of X_i^C :

$$\mathbb{E}\left[X_{i}^{C}\right] = \\ \operatorname{diag}\left(\underbrace{\tau^{2} + O\left(d^{-\frac{2}{5}}\right) + 2O\left(d^{-\frac{1}{5}}\right), ..., \underbrace{1 + O\left(d^{-\frac{2}{5}}\right) + 2O\left(d^{-\frac{1}{5}}\right)}_{i^{\text{th}} \text{ term}}, ..., \tau^{2} + O\left(d^{-\frac{2}{5}}\right) + 2O\left(d^{-\frac{1}{5}}\right), ..., \underbrace{1 + O\left(d^{-\frac{2}{5}}\right) + 2O\left(d^{-\frac{1}{5}}\right)}_{N \text{ terms}}, ..., \tau^{2} + O\left(d^{-\frac{2}{5}}\right) + 2O\left(d^{-\frac{1}{5}}\right), ..., \underbrace{1 + O\left(d^{-\frac{2}{5}}\right) + 2O\left(d^{-\frac{1}{5}}\right)}_{N \text{ terms}}, ..., \tau^{2} + O\left(d^{-\frac{2}{5}}\right) + 2O\left(d^{-\frac{1}{5}}\right), ..., \underbrace{1 + O\left(d^{-\frac{2}{5}}\right) + 2O\left(d^{-\frac{1}{5}}\right)}_{N \text{ terms}}, ..., \underbrace{1 + O\left(d^{-\frac{2}{5}}\right) + 2O\left(d^{-\frac{2}{5}}\right)}_{N \text{ terms}}, \underbrace{1 + O\left(d^{-\frac{2}{5}}\right)}_{N \text{ term$$

$$\dots \underbrace{2O\left(d^{-\frac{1}{5}}\right) + O\left(d^{-\frac{2}{5}}\right), \dots, 2O\left(d^{-\frac{1}{5}}\right) + O\left(d^{-\frac{2}{5}}\right)}_{d-N \text{ terms}} \right) \\
= \operatorname{diag}\left(d^{\frac{2}{5}} + O\left(d^{-\frac{1}{5}}\right), \dots, 1 + O\left(d^{-\frac{1}{5}}\right), \dots, d^{\frac{2}{5}} + O\left(d^{-\frac{1}{5}}\right), \dots, O\left(d^{-\frac{1}{5}}\right)\right) \tag{37}$$

Next, using similar arguments from Eqs. (13) to (17), we arrive at the below results:

$$d^{\frac{2}{5}} - O\left(d^{-\frac{1}{5}}\right) \le e_k^{\mathsf{T}} X_i^C e_k \le d^{\frac{2}{5}} + O\left(d^{-\frac{1}{5}}\right)$$

$$d^{\frac{2}{5}} - O\left(d^{-\frac{1}{5}}\right) \le \lambda_{i,1}^C \le d^{\frac{2}{5}} + O\left(d^{-\frac{1}{5}}\right).$$
(38)

With these inequalities, we derive

$$\sum_{j=1}^{d} (e_k^{\mathsf{T}} v_j^C)^2 \ge \frac{d^{\frac{2}{5}} - O\left(d^{-\frac{1}{5}}\right)}{d^{\frac{2}{5}} + O\left(d^{-\frac{1}{5}}\right)}
= 1 - \frac{O\left(d^{-\frac{1}{5}}\right)}{d^{\frac{2}{5}} + O\left(d^{-\frac{1}{5}}\right)},$$
(39)

which completes the proof of the local part.

For global feature space. Since the local goal can be equivalently reformulated as $||X_i^C - W^{\intercal}W||_F^2$, the global goal of distributed contrastive learning in the decentralized learning (DecL) framework is given by

$$\min_{W} \sum_{i \in [N]} \frac{1}{N} \sum_{j \in A_i} \frac{1}{|A_i|} \|X_j^C - W^{\mathsf{T}} W\|_F^2. \tag{40}$$

Furthermore, we find this is equivalent to solving

$$\min_{W} \left\| \frac{1}{N} \sum_{i \in [N]} \frac{1}{|A_{i}|} \sum_{j \in A_{i}} X_{j}^{C} - W^{\mathsf{T}} W \right\|_{F}^{2}
= \min_{W} \left\| \frac{1}{N} \sum_{i \in [N]} \overline{X_{i}^{C}} - W^{\mathsf{T}} W \right\|_{F}^{2}
= \min_{W} \left\| \overline{X^{C}} - W^{\mathsf{T}} W \right\|_{F}^{2}.$$
(41)

Again, using similar arguments from Eq. (21) to Eq. (27), we further establish

$$\sum_{k=1}^{d} \left(e_{k}^{\mathsf{T}} \bar{v}_{j}^{C} \right)^{2} \ge \frac{\left(1 - \frac{1}{|\bar{A}|} \right) d^{\frac{2}{5}} - O\left(d^{-\frac{1}{5}} \right)}{\left(1 - \frac{1}{|\bar{A}|} \right) d^{\frac{2}{5}} + O\left(d^{-\frac{1}{5}} \right)} \\
= 1 - \frac{O\left(d^{-\frac{1}{5}} \right)}{\left(1 - \frac{1}{|\bar{A}|} \right) d^{\frac{2}{5}} + O\left(d^{-\frac{1}{5}} \right)}.$$
(42)

The proof for the global feature space learned in the DecL framework has been completed. Next, denote federated learning (FL) as a special case of decentralized learning with $\forall i, |A_i| = N$. The global objective of FL is expressed as

$$\min_{W} \|\overline{X^C} - W^{\mathsf{T}}W\|_F^2. \tag{43}$$

where we denote $\overline{X^C} := \frac{1}{N} \sum_{i \in [N]} X_i^C$. By similar arguments from Eq. (30) to Eq. (32), we have

$$\sum_{j=1}^{d} (e_{k}^{\mathsf{T}} \bar{v}_{j}^{C})^{2} \ge \frac{d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) - O\left(d^{-\frac{1}{5}}\right)}{d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) + O\left(d^{-\frac{1}{5}}\right)} \\
= \frac{d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) + O\left(d^{-\frac{1}{5}}\right)}{d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) + O\left(d^{-\frac{1}{5}}\right)} - \frac{2O\left(d^{-\frac{1}{5}}\right)}{d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) + O\left(d^{-\frac{1}{5}}\right)} \\
= 1 - \frac{O\left(d^{-\frac{1}{5}}\right)}{d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) + O\left(d^{-\frac{1}{5}}\right)}, \tag{44}$$

which completes the proof of this lemma.

Then, we start to prove Theorem 4.3 as follows.

Proof. Lemma A.1 demonstrates the learned local and global representations of distributed CL when positive pairs are generated by similar augmentations. For the other case using dissimilar augmentations, we adopt a similar process to derive the local and global representations.

For local feature space. According to the loss function of contrastive learning (CL) with dissimilar augmentations in Eq.(??), we have

$$\mathcal{L}'_{CL} = -\mathbb{E}_{x \sim D} \left\| (W(x+\xi))^{\top} W H x \right\|^{2} + \frac{1}{2} \left\| W^{\top} W \right\|_{F}^{2}$$

$$= -\mathbb{E} \left[\left(x^{\top} W^{\top} W H x + \xi^{\top} W^{\top} W H x \right) \right] + \frac{1}{2} \left\| W^{\top} W \right\|_{F}^{2}.$$
(45)

The minimizer of this loss function is

$$\frac{\partial \mathcal{L}'_{CL}}{\partial W} = -2W\mathbb{E}\left[x^{\mathsf{T}}Hx + \xi^{\mathsf{T}}Hx\right] + 2WW^{\mathsf{T}}W = 0. \tag{46}$$

Rearranging it derives

$$\mathbb{E}\left[(x+\xi)^{\mathsf{T}}Hx\right] = W^{\mathsf{T}}W. \tag{47}$$

Let $X_i^{C'}$ denote the left-hand side of the above equation. Hence,

$$X_{i}^{C'} = \mathbb{E}\left[(x+\xi)^{\mathsf{T}} H x\right] = \frac{1}{|D_{i}|} \left(\sum_{j=1}^{|D_{i}|} x_{i,j}^{\mathsf{T}} H x_{i,j} + \sum_{j=1}^{|D_{i}|} \xi^{\mathsf{T}} H x_{i,j} \right). \tag{48}$$

 Similarly, based on the formulation that $\xi \sim \mathcal{N}(0, I)$, $\tau = d^{\frac{1}{5}}$ and $\mu = d^{-\frac{1}{5}}$, the expectation of $X_i^{C'}$ can be written as

$$\begin{split} &\mathbb{E}(X_i^{C'}) = \\ &\text{1408} & \operatorname{diag}\left(\operatorname{tr}(H)\tau^2 + O\left(d^{-\frac{2}{5}}\right), \ldots, \operatorname{tr}(H) + O\left(d^{-\frac{2}{5}}\right), \ldots, \operatorname{tr}(H)\tau^2 + O\left(d^{-\frac{2}{5}}\right), \ldots, O\left(d^{-\frac{2}{5}}\right) \right) \\ &\text{1410} & \\ &\text{1411} & \\ &\text{1412} & \\ &\text{1413} & \\ &\text{1414} & \\ &\text{1415} & \\ &\text{1415} & \\ &\text{1416} & \\ &\text{1417} & = \operatorname{diag}\left(\operatorname{tr}(H)d^{\frac{2}{5}} + O\left(d^{-\frac{1}{5}}\right), \ldots, \operatorname{tr}(H) + O\left(d^{-\frac{1}{5}}\right), \ldots, \operatorname{tr}(H)d^{\frac{2}{5}} + O\left(d^{-\frac{1}{5}}\right), \ldots, O\left(d^{-\frac{1}{5}}\right) \right). \end{split}$$

Following the proof process from Eqs. (14) to (17), the following inequalities can be found

$$\left| \lambda_{i,k}^{C'} - \lambda_k \mathbb{E} \left[X_i^{C'} \right] \right| \le \| X_i^{C'} - \mathbb{E} \left[X_i^{C'} \right] \|_2 \le O \left(d^{-\frac{1}{5}} \right)$$

$$\operatorname{tr}(H) d^{\frac{2}{5}} - O \left(d^{-\frac{1}{5}} \right) \le e_k^{\mathsf{T}} X_i^{C'} e_k \le \operatorname{tr}(H) d^{\frac{2}{5}} + O \left(d^{-\frac{1}{5}} \right)$$

$$\operatorname{tr}(H) d^{\frac{2}{5}} - O \left(d^{-\frac{1}{5}} \right) \le \lambda_{i,1}^{C'} \le \operatorname{tr}(H) d^{\frac{2}{5}} + O \left(d^{-\frac{1}{5}} \right) .$$

$$(50)$$

However, unlike the previous proof, there exists a potential issue that the image transformation matrix H may lead to the case that $X_i^{C'}$ is not a square matrix. Then we denote $X_i^{C'} = \sum_{j=1}^d \lambda_{i,j} u_{i,j}^{C'} v_{i,j}^{C'}$, where $u_{i,j}^{C'}$ and $v_{i,j}^{C'}$ are left and right singular vectors produced by SVD decomposition. So, we have

$$e_{k}^{\mathsf{T}} X_{i}^{C'} e_{k} = \sum_{j=1}^{d} \lambda_{i,j} (e_{k}^{\mathsf{T}} u_{i,j}^{C'} v_{i,j}^{C'} e_{k})$$

$$\leq \lambda_{i,1}^{C'} \sum_{j=1}^{d} |e_{k}^{\mathsf{T}} u_{i,j}^{C'} v_{i,j}^{C'} e_{k}|,$$
(51)

which further leads to

$$\sum_{j=1}^{d} |e_{k}^{\mathsf{T}} u_{i,j}^{C'} v_{i,j}^{C'} e_{k}| \ge \frac{\operatorname{tr}(H) d^{\frac{2}{5}} - O\left(d^{-\frac{1}{5}}\right)}{\operatorname{tr}(H) d^{\frac{2}{5}} + O\left(d^{-\frac{1}{5}}\right)}$$

$$= 1 - \frac{O\left(d^{-\frac{1}{5}}\right)}{\operatorname{tr}(H) d^{\frac{2}{5}} + O\left(d^{-\frac{1}{5}}\right)}.$$
(52)

For global feature space. By similar augments from Eq. (21) to Eq. (27) and base on Eq.(52), for the global representation learned through the decentralized learning framework, we establish

$$\sum_{k=1}^{d} |e_{k}^{\mathsf{T}} \bar{u}_{j}^{C'} \bar{v}_{j}^{C'} e_{k}| \ge \frac{\operatorname{tr}(H) \left(1 - \frac{1}{|\bar{A}|}\right) d^{\frac{2}{5}} - O\left(d^{-\frac{1}{5}}\right)}{\operatorname{tr}(H) \left(1 - \frac{1}{|\bar{A}|}\right) d^{\frac{2}{5}} + O\left(d^{-\frac{1}{5}}\right)}$$

$$= 1 - \frac{O\left(d^{-\frac{1}{5}}\right)}{\operatorname{tr}(H) \left(1 - \frac{1}{|\bar{A}|}\right) d^{\frac{2}{5}} + O\left(d^{-\frac{1}{5}}\right)}.$$
(53)

On the other hand, for the global objective of the federated learning framework, we follow the arguments from Eq. (30) to Eq. (32) to derive

$$\sum_{j=1}^{d} |e_{k}^{\mathsf{T}} \bar{u}_{j}^{C'} \bar{v}_{j}^{C'} e_{k}| \ge \frac{\operatorname{tr}(H) d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) - O\left(d^{-\frac{1}{5}}\right)}{\operatorname{tr}(H) d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) + O\left(d^{-\frac{1}{5}}\right)}$$

$$= 1 - \frac{O\left(d^{-\frac{1}{5}}\right)}{\operatorname{tr}(H) d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) + O\left(d^{-\frac{1}{5}}\right)}.$$
(54)

Combining Lemma A.1, Eq.(52), Eq.(53) and Eq.(54) completes the proof.

A.7.3 Proof of First Theoretical Insight

This section provides the full proof of Theorem 4.4.

Proof. According to Theorem 4.2 and Theorem 4.3, we can find the main difference between the global representations lies in the lower bound. For the global feature learned in the decentralized learning (DecL) framework, we denote the sensitivity of D-SSL as below:

$$s_{Dec}^{M} = \frac{O\left(d^{-\frac{2}{5}}\right)}{2p\left(1-p\right)\left(1-\frac{1}{|A|}\right)d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right)},\tag{55}$$

$$s_{Dec}^{C_1} = \frac{O\left(d^{-\frac{1}{5}}\right)}{\left(1 - \frac{1}{|\bar{A}|}\right)d^{\frac{2}{5}} - O\left(d^{-\frac{1}{5}}\right)},\tag{56}$$

$$s_{Dec}^{C_2} = \frac{O\left(d^{-\frac{1}{5}}\right)}{\operatorname{tr}(H)\left(1 - \frac{1}{|\bar{A}|}\right)d^{\frac{2}{5}} - O\left(d^{-\frac{1}{5}}\right)},\tag{57}$$

where s_{Dec}^M represents the sensitivity of MIM-based D-SSL to heterogeneous data, $s_{Dec}^{C_1}$ represents the sensitivity of CL-based SSL with similar augmentations, and $s_{Dec}^{C_2}$ represents the sensitivity of CL-based SSL with dissimilar augmentations. Then, we compare the magnitude of s_{Dec}^M and $s_{Dec}^{C_1}$ by solving the following equation:

$$s_{Dec}^{M} - s_{Dec}^{C_{1}} = \frac{O\left(d^{-\frac{2}{5}}\right)}{\left(1 - \frac{1}{|\bar{A}|}\right)d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right)} - \frac{O\left(d^{-\frac{1}{5}}\right)}{\left(1 - \frac{1}{|\bar{A}|}\right)d^{\frac{2}{5}} - O\left(d^{-\frac{1}{5}}\right)}$$

$$= \frac{O\left(d^{-\frac{2}{5}}\right)\left(\left(1 - \frac{1}{|\bar{A}|}\right)d^{\frac{2}{5}} - O\left(d^{-\frac{1}{5}}\right)\right) - O\left(d^{-\frac{1}{5}}\right)\left(\left(1 - \frac{1}{|\bar{A}|}\right)d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right)\right)}{\left(\left(1 - \frac{1}{|\bar{A}|}\right)d^{\frac{2}{5}} - O\left(d^{-\frac{1}{5}}\right)\right)\left(\left(1 - \frac{1}{|\bar{A}|}\right)d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right)\right)}.$$
(58)

Consider the dimension d of the Euclidean space is very large so that $d \to \infty$. Then, we have

$$\lim_{d \to \infty} [s_{Dec}^{M} - s_{Dec}^{C_{1}}] = \\
\lim_{1515} O\left(d^{-\frac{2}{5}}\right) \left(\left(1 - \frac{1}{|\overline{A}|}\right) d^{\frac{2}{5}} - O\left(d^{-\frac{1}{5}}\right)\right) - O\left(d^{-\frac{1}{5}}\right) \left(\left(1 - \frac{1}{|\overline{A}|}\right) d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right)\right) \\
\lim_{d \to \infty} O\left(d^{-\frac{2}{5}}\right) \left(\left(1 - \frac{1}{|\overline{A}|}\right) d^{\frac{2}{5}} - O\left(d^{-\frac{1}{5}}\right)\right) - O\left(d^{-\frac{1}{5}}\right) \left(\left(1 - \frac{1}{|\overline{A}|}\right) d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right)\right) \\
\left(\left(1 - \frac{1}{|\overline{A}|}\right) d^{\frac{2}{5}} - O\left(d^{-\frac{1}{5}}\right)\right) \left(\left(1 - \frac{1}{|\overline{A}|}\right) d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right)\right) \\
\lim_{d \to \infty} O\left(d^{-\frac{1}{5}}\right) = \lim_{d \to \infty} \frac{-\left(1 - \frac{1}{|\overline{A}|}\right) O\left(d^{\frac{1}{5}}\right)}{\left(1 - \frac{1}{|\overline{A}|}\right)^{2} \Theta\left(d^{\frac{4}{5}}\right)}.$$
(59)

Due to the fact that $2 \leq |\bar{A}| \leq N$, we prove

$$\lim_{d \to \infty} \left[s_{Dec}^M - s_{Dec}^{C_1} \right] < 0. \tag{60}$$

Similarly, we determine if s_{Dec}^{M} is less than $s_{Dec}^{C_1}$ as follows

$$\lim_{d \to \infty} \left[\frac{s_{Dec}^{C_2}}{s_{Dec}^{M}} \right] = \lim_{d \to \infty} \frac{\frac{O\left(d^{-\frac{1}{5}}\right)}{\operatorname{tr}(H)\left(1 - \frac{1}{|A|}\right)d^{\frac{2}{5}} + O\left(d^{-\frac{1}{5}}\right)}}{O\left(d^{-\frac{2}{5}}\right)} = \frac{d^{-\frac{3}{5}}}{d^{-\frac{4}{5}}} = \infty, \tag{61}$$

which implies

$$\lim_{d \to \infty} \left[s_{Dec}^M - s_{Dec}^{C_2} \right] < 0. \tag{62}$$

Combining Eqs.(60) and (62) arrives

$$\lim_{d \to \infty} \left[s_{Dec}^M - s_{Dec}^C \right] < 0, \tag{63}$$

where s_{Dec}^{C} denotes the sensitivity of CL-based SSL to heterogeneous data. On the other hand, for the federated learning (FL) framework, we denote the following sensitivity of D-SSL:

$$s_{Fed}^{M} = \frac{O\left(d^{-\frac{2}{5}}\right)}{2p\left(1-p\right)d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) + O\left(d^{-\frac{2}{5}}\right)},\tag{64}$$

$$s_{Fed}^{C_1} = \frac{O\left(d^{-\frac{1}{5}}\right)}{d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) + O\left(d^{-\frac{1}{5}}\right)},\tag{65}$$

$$s_{Fed}^{C_2} = \frac{O\left(d^{-\frac{1}{5}}\right)}{\operatorname{tr}(H)d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) + O\left(d^{-\frac{1}{5}}\right)}.$$
 (66)

The difference between $s^{\cal M}_{Fed}$ and $s^{\cal C}_{Fed}$ is given by

$$\begin{split} s_{Fed}^{M} - s_{Fed}^{C_{1}} &= \frac{O\left(d^{-\frac{4}{5}}\right)}{2p\left(1 - p\right) - \Theta\left(d^{-\frac{1}{20}}\right) + O\left(d^{-\frac{4}{5}}\right)} - \frac{O\left(d^{-\frac{3}{5}}\right)}{1 - \Theta\left(d^{-\frac{1}{20}}\right) + O\left(d^{-\frac{3}{5}}\right)} \\ &= \frac{O\left(d^{-\frac{4}{5}}\right)\left(1 - \Theta\left(d^{-\frac{1}{20}}\right) + O\left(d^{-\frac{3}{5}}\right)\right) - O\left(d^{-\frac{3}{5}}\right)\left(1 - \Theta\left(d^{-\frac{1}{20}}\right) + O\left(d^{-\frac{4}{5}}\right)\right)}{\left(1 - \Theta\left(d^{-\frac{1}{20}}\right) + O\left(d^{-\frac{4}{5}}\right)\right)\left(1 - \Theta\left(d^{-\frac{1}{20}}\right) + O\left(d^{-\frac{3}{5}}\right)\right)} \\ &= \frac{-O\left(d^{-\frac{3}{5}}\right) + \Theta\left(d^{-\frac{13}{20}}\right)}{d^{\frac{1}{5}} - \Theta\left(d^{\frac{3}{20}}\right) + O\left(d^{-\frac{3}{5}}\right)}. \end{split} \tag{67}$$

For the above result, let $d \to \infty$, we can establish

$$\lim_{d \to \infty} \left[s_{Fed}^{M} - s_{Fed}^{C_1} \right] = \lim_{d \to \infty} \frac{-O\left(d^{-\frac{3}{5}}\right) + \Theta\left(d^{-\frac{13}{20}}\right)}{d^{\frac{1}{5}} - \Theta\left(d^{\frac{3}{20}}\right) + O\left(d^{-\frac{3}{5}}\right)} = \lim_{d \to \infty} \frac{-O\left(d^{-\frac{3}{5}}\right)}{d^{\frac{1}{5}}} < 0 \tag{68}$$

Then, for the comparison between s_{Fed}^{M} and $s_{Fed}^{C_2}$, we have

$$\lim_{d \to \infty} \left[\frac{s_{Fed}^{C_2}}{s_{Fed}^M} \right] = \lim_{d \to \infty} \frac{\frac{O\left(d^{-\frac{1}{5}}\right)}{\operatorname{tr}(H) d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) + O\left(d^{-\frac{1}{5}}\right)}}{O\left(d^{-\frac{1}{5}}\right)} = \frac{d^{-\frac{3}{5}}}{d^{-\frac{4}{5}}} = \infty.$$
 (69)

With Eqs.(68) and (69), we find

$$\lim_{d \to \infty} \left[s_{Fed}^M - s_{Fed}^C \right] < 0. \tag{70}$$

Combining Eq.(63) and Eq.(70) completes the proof.

A.7.4 PROOF OF SECOND THEORETICAL INSIGHT

This section provides the full proof of Corollary 4.5 and Theorem 4.6.

Proof. For the decentralized learning (DecL) framework, we notice from Eqs.(55), (56) and (57) that their denominators both include the term $1 - \frac{1}{|\bar{A}|}$. Since $|\bar{A}|$ is proportional to $1 - \frac{1}{|\bar{A}|}$, we derive

that $|\bar{A}|$ is inversely proportional to s_{Dec}^M , $s_{Dec}^{C_1}$ and $s_{Dec}^{C_2}$, which completes the proof of Corollary 4.5. Next, by a similar proof from Eq.(55) to Eq.(70), we compare the robustness of distributed MIM between DecL and FL framework by solving

$$s_{Dec}^{M} - s_{Fed}^{M} = \frac{O\left(d^{-\frac{2}{5}}\right)}{2p\left(1 - p\right)\left(1 - \frac{1}{|\bar{A}|}\right)d^{\frac{2}{5}} + O\left(d^{-\frac{2}{5}}\right)} - \frac{O\left(d^{-\frac{2}{5}}\right)}{2p\left(1 - p\right)d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) + O\left(d^{-\frac{2}{5}}\right)}.$$

$$(71)$$

This is equivalent to solving

$$2p(1-p)\left(1-\frac{1}{|\bar{A}|}\right)d^{\frac{2}{5}} - \left(2p(1-p)d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right)\right)$$

$$= 2p(1-p)d^{\frac{2}{5}} - \frac{2p(1-p)}{|\bar{A}|}d^{\frac{2}{5}} - 2p(1-p)d^{\frac{2}{5}} + \Theta\left(d^{\frac{7}{20}}\right).$$
(72)

Due to the fact that

$$\lim_{d \to \infty} \left[2p \left(1 - p \right) d^{\frac{2}{5}} - \frac{2p \left(1 - p \right)}{|\bar{A}|} d^{\frac{2}{5}} - 2p \left(1 - p \right) d^{\frac{2}{5}} + \Theta \left(d^{\frac{7}{20}} \right) \right] < 0, \tag{73}$$

we have

$$\lim_{d \to \infty} \left[s_{Dec}^M - s_{Fed}^M \right] > 0. \tag{74}$$

Similarly, for CL-based SSL, we have

$$s_{Dec}^{C_{1}} - s_{Fed}^{C_{1}} = \frac{O\left(d^{-\frac{1}{5}}\right)}{\left(1 - \frac{1}{|\bar{A}|}\right)d^{\frac{2}{5}} - O\left(d^{-\frac{1}{5}}\right)} - \frac{O\left(d^{-\frac{1}{5}}\right)}{d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) + O\left(d^{-\frac{1}{5}}\right)},\tag{75}$$

$$s_{Dec}^{C_2} - s_{Fed}^{C_2} = \frac{O\left(d^{-\frac{1}{5}}\right)}{\operatorname{tr}(H)\left(1 - \frac{1}{|A|}\right)d^{\frac{2}{5}} - O\left(d^{-\frac{1}{5}}\right)} - \frac{O\left(d^{-\frac{1}{5}}\right)}{\operatorname{tr}(H)d^{\frac{2}{5}} - \Theta\left(d^{\frac{7}{20}}\right) + O\left(d^{-\frac{1}{5}}\right)}, \quad (76)$$

implying that

$$\lim_{d \to \infty} \left[s_{Dec}^{C_1} - s_{Fed}^{C_1} \right] > 0, \tag{77}$$

$$\lim_{l \to \infty} \left[s_{Dec}^{C_2} - s_{Fed}^{C_2} \right] > 0. \tag{78}$$

With Eqs. (77) and (78), we find

$$\lim_{d \to \infty} [s_{Dec}^C - s_{Fed}^C] > 0.$$
 (79)

Combining Eq.(74) with Eq.(79) derives

$$\lim_{d \to \infty} [s_{Dec} > s_{Fed}]. \tag{80}$$

Note that Eq.(80) holds for decentralized learning setups in which each client has an inconsistent number of neighbors. However, there exists an optimal case for decentralized learning, denoted by $\forall i, |A_i| = N$. In this case, the global objective of decentralized learning can be re-formulated as follows:

$$\sum_{i \in [N]} \frac{1}{N} \sum_{j \in [N]} \frac{1}{N} \mathcal{L} = \sum_{i \in [N]} \frac{1}{N} \mathcal{L}.$$
 (81)

This equation is exactly the same as the global objective of federated learning shown in Eq.(1). Therefore, we know the below statement holds:

$$\lim_{d \to \infty} [s_{Dec} = s_{Fed}],\tag{82}$$

when $\forall i \in [N], |A_i| = N$. Combining Eq.(80) and Eq.(82) completes the proof.