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ABSTRACT

Recent research has introduced distributed self-supervised learning (D-SSL) ap-
proaches to leverage vast amounts of unlabeled decentralized data. However,
D-SSL faces the critical challenge of data heterogeneity, and there is limited theo-
retical understanding of how different D-SSL frameworks respond to this challenge.
To fill this gap, we present a rigorous theoretical analysis of the robustness of D-SSL
frameworks under non-IID (non-independent and identically distributed) settings.
Our results show that pre-training with Masked Image Modeling (MIM) is inher-
ently more robust to heterogeneous data than Contrastive Learning (CL), and that
the robustness of decentralized SSL increases with average network connectivity,
implying that federated learning (FL) is no less robust than decentralized learning
(DecL). These findings provide a solid theoretical foundation for guiding the design
of future D-SSL algorithms. To further illustrate the practical implications of our
theory, we introduce MAR loss, a refinement of the MIM objective with local-to-
global alignment regularization. Extensive experiments across model architectures
and distributed settings validate our theoretical insights, and additionally confirm
the effectiveness of MAR loss as an application of our analysis.

1 INTRODUCTION

Deep learning advancements have been driven by large-scale datasets, as seen in the training of
LLMs, which require billions of data points (Hoffmann et al., 2022; Rae et al., 2021). However,
real-world data is often decentralized, such as surveillance footage from distributed security cameras.
This abundance of unlabeled distributed data has spurred interest in distributed self-supervised
learning (D-SSL) (Zhuang et al., 2021a; Wang et al., 2022), which extends self-supervised learning
(SSL) to decentralized settings. Existing D-SSL frameworks can generally be distinguished in two
aspects: differing by the adopted self-supervised learning (SSL) method or by the applied distributed
framework. Self-supervised learning (SSL) is a widely used technique to learn representations without
human-labeled annotations by solving pretext tasks that generate supervisory signals from raw data
(Gui et al., 2024). Depending on the approach used to generate supervisory signals, SSL methods are
broadly categorized into Contrastive Learning (CL) and Masked Image Modeling (MIM) (Liu et al.,
2021; Zhang et al., 2022), with representative methods like SimSiam (Chen & He, 2021) and MAE
(He et al., 2022). On the other hand, federated learning (FL) and decentralized learning (DecL) are
two main frameworks in training models with distributed data (Verbraeken et al., 2020; Sun et al.,
2024). FL aggregates local models via a central server (McMahan et al., 2017a; Zhuang et al., 2021a),
while DecL enables direct inter-client communications for aggregating models, enhancing privacy
and avoiding the dependence on the central server (Tang et al., 2022; Ayache & El Rouayheb, 2019).

One unique challenge of D-SSL research is handling highly heterogeneous data on clients. Distributed
data among multiple clients are normally non-independent and identically distributed (non-IID),
leading to performance degradation (Zhu et al., 2021). To tackle this challenge, previous works
proposed advanced D-SSL algorithms with robustness to heterogeneous data. Notable examples
include FedU (Zhuang et al., 2021a), Orchestra (Lubana et al., 2022), and L-DAWA (Rehman
et al., 2023). However, despite continuous algorithmic innovation, there is still a lack of theoretical
understanding of this heterogeneity problem. For example, FedU was designed within the FL
framework, but how would its robustness to non-IID data change if deployed in a DecL framework
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without coordination from the server? Similarly, state-of-the-art D-SSL algorithms are primarily
based on CL, while the adaptation of MIM methods to distributed settings remains under-explored.
Could D-SSL based on MIM offer greater robustness to non-IID data than CL-based methods? These
confusions converge into a fundamental research question affecting the advancement of D-SSL:

How robust are different D-SSL frameworks against data heterogeneity?

To address this question, this paper aims to provide a theoretical understanding of how different D-
SSL frameworks behave under heterogeneous data. We construct mathematical models in a simplified
non-IID setting and rigorously analyze the representability of local and global representations learned
by these algorithms. Our analysis reveals two key insights: (i) D-SSL algorithms based on Masked
Image Modeling (MIM) are inherently more robust than those based on Contrastive Learning (CL),
although their robustness still degrades under severe divergence between local and global distributions;
and (ii) the robustness of decentralized SSL improves with the average connectivity of the network,
which suggests that decentralized SSL is only as robust as federated D-SSL in the limited case of
full connectivity (i.e., a fully connected network). Building on these insights, we also explore how
theoretical results can inform algorithmic design. As an illustration, we refine the MIM objective
with the additional alignment regularization, which we call MAR loss, to encourage local-to-global
representation consistency. Finally, we conduct extensive experiments on ResNet (He et al., 2016)
and Vision Transformer (ViT) (Dosovitskiy et al., 2020) across a variety of distributed settings and
benchmark datasets to validate our theoretical findings and to demonstrate the usefulness of MAR
loss as a practical example.

In summary, our main contributions are listed below:

1. We develop a rigorous theoretical analysis of distributed self-supervised learning (D-SSL)
under non-IID data, showing that MIM-based D-SSL is inherently more robust than CL-
based D-SSL.

2. We establish the relationship between network connectivity and robustness, proving that
decentralized SSL benefits from higher connectivity and that federated SSL is no less robust
than decentralized SSL.

3. We introduce MAR loss as an illustrative case study demonstrating how our theoretical results
can guide algorithmic design, by refining the MIM objective with alignment regularization.

4. We conduct extensive experiments across model architectures and distributed settings, which
validate our theoretical insights and further confirm the effectiveness of MAR loss.

2 RELATED WORK

Self-Supervised Learning. Self-supervised learning (SSL) leverages unlabeled data by generating
pseudo labels from raw inputs to learn meaningful representations (Gui et al., 2024). Vision-based
SSL methods are typically categorized into contrastive learning (CL) and masked image modeling
(MIM) (Zhang et al., 2022; Liu et al., 2021). CL learns representations by maximizing the similarity
between positive pairs (i.e., similar data points created by data augmentation) and minimizing it
between negative pairs (i.e., data pairs created by other data points) (Chen et al., 2020; He et al.,
2020). Recent methods like SimSiam (Chen & He, 2021) and BYOL (Grill et al., 2020) advance
the original contrastive loss by removing terms related to negative pairs, which improves stability
and reduces batch size dependence. MIM, in contrast, randomly masks out patches of input images
and predicts the missing parts, learning representations through a reconstruction loss (Bao et al.,
2021; Zhou et al., 2021; Xie et al., 2022; He et al., 2022). Although different in formulation, recent
studies have shown that many MIM methods have close connections to CL (i.e., their objectives can
be directly re-formulated as contrastive loss (Zhang et al., 2022; Kong et al., 2019)). In this work, we
aim to figure out which SSL paradigm is inherently more robust against data heterogeneity.

Distributed Learning. Distributed learning enables collaborative model training across multiple
clients without sharing data. Two dominant frameworks in this area are: federated learning (FL),
which uses a central server to coordinate and aggregate models (McMahan et al., 2017a), and
decentralized learning (DecL), where clients exchange models locally with neighbors (Tang et al.,
2022; Ayache & El Rouayheb, 2019). While FL is more widely adopted (Zhang et al., 2021)
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for better convergence and training effectiveness, DecL offers benefits in scalability and privacy.
Recent studies have started comparing these two frameworks (Beltrán et al., 2023; Hegedűs et al.,
2021). For example, Sun et al. explored which leads to better generalization and the impact of
network architecture on generalization (Sun et al., 2024). However, the relationship between network
architecture and the non-IID robustness in distributed settings is still unclear. Our work addresses
this gap by providing both theoretical analysis and empirical findings to clarify this relationship.

Distributed SSL. Distributed SSL (D-SSL) integrates SSL with distributed frameworks to leverage
unlabeled, decentralized data while preserving privacy (Zhuang et al., 2021a; Yang et al., 2023). A
core challenge is learning robust representations under data heterogeneity (Zhu et al., 2021). Prior
work has primarily focused on algorithmic solutions such as FedU (Zhuang et al., 2021a) and L-
DAWA (Rehman et al., 2023). Although some studies also provide theoretical analyses, their purpose
is to demonstrate the validity of the proposed algorithms rather than to advance the understanding
of the robustness variance between different D-SSL frameworks (Lubana et al., 2022; Jing et al.,
2024). The most relevant theoretical work is by Wang et al., who showed that SSL is more robust
than supervised learning in distributed settings (Wang et al., 2022). Unfortunately, their study only
analyzed a specific case of D-SSL where CL is combined with FL and did not extend it to other types
of D-SSL frameworks. In contrast, our work delves deeper into these differences, shedding light on
understanding the insensitivity of various D-SSL approaches under heterogeneous conditions.

3 PROBLEM SETUP

To provide theoretical insights on understanding this central question, we first introduce our problem
setup about distributed training and D-SSL with heterogeneous data.

3.1 DISTRIBUTED TRAINING

Distributed Setting. Consider a distributed scenario consisting of a connected network of N
clients, represented as a graph G = (V, E), where V is the set of clients and E is the set of edges
denoting direct communication links between clients. The connectivity of the graph is captured by a
matrix A ∈ RN×N , referred to as the adjacency matrix, where Ai denotes the set including client
i ∈ [N ] itself and its neighbors shown by E , |Ai| represents the size of this neighborhood set or the
connectivity of client i, and |Ā| = 1

n

∑n
i=1(|Ai|) is the average connectivity. Hence, distributed

training conducted through DecL satisfies ∀i ∈ [N ], 2 ≤ |Ai| ≤ N . In contrast, FL relies on a central
server that aggregates local models from all clients and broadcasts the global model back to them
in each round, as in FedAvg (McMahan et al., 2017a). This architecture effectively enables every
client to communicate with all others through the server, which corresponds to a fully connected
decentralized topology where ∀i ∈ [N ], |Ai| = N . A more formal specification of the graph structure
and the mixing-weight conditions for this distributed setting is provided in Appendix A.7.1.

Objective of Distributed Optimization. To utilize different clients to learn useful representations,
distributed training generally optimizes the below global objectives:

W ∗
Dec = min

W

1

N

N∑
i=1

1

|Ai|
∑
j∈Ai

Lj(Wj); W ∗
Fed = min

W

1

N

N∑
i=1

Li(Wi) (1)

where Lj is the objective of local SSL on client j, W ∗
Dec and W ∗

Fed denote the global objective of
DecL and FL, respectively. In particular, at each iteration of DecL, each client conducts local updates
using the local dataset and aggregates the updated local model with those from neighbors (Tang et al.,
2022). For generating the global model for downstream tasks, there will be an additional aggregation
on all local models after all iterations. Differently, the optimization of FL involves each round of
model aggregation only on the central server (McMahan et al., 2017a). Then, the server broadcasts
the global model to all clients for the next round of training. Note that the FL framework does not
need another aggregation between all local models since the updated global model on the server can
be used directly for fine-tuning.

3.2 RIGOROUS ANALYSIS OF D-SSL ON A SIMPLIFIED NON-IID SETTING

Non-IID Client Data. D-SSL involves all clients collaboratively training a global model by leveraging
their local unlabeled datasets {Di}Ni=1 and communicating over the graph G. Since sharing data
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is prohibited to protect privacy, the heterogeneity across these distributed data sources generally
leads to a performance drop in many distributed applications (Zhuang et al., 2021a; McMahan
et al., 2017a). Two common types of data heterogeneity are: feature heterogeneity and label
heterogeneity (Zhu et al., 2021). In this paper, we follow previous works (Wang et al., 2022; Liu
et al., 2022) to model a simplified but formal label non-IIDness between local datasets as follows.

Figure 1: Illustration of the constructed heterogeneous distri-
bution for local data on clients. Each client holds two unique
data classes.

The global data distribution D =⋃N
i=1 Di across clients is assumed

to contain unlabeled data from 2N
classes. For the dataset on client
i, the local data distribution Di is
constrained and imbalanced on three
classes, with most samples belonging
to classes 2i− 1 and 2i, while the re-
maining very few samples come from
the class hi ∈ [2N ] \ {2i − 1, 2i}.
Specifically, for a sufficiently large
positive integer d > 0, let x ∈ Rd ∼
Di be the data points in the local
dataset and e1, . . . , ed be the standard unit-norm vectors of the d-dimensional Euclidean space.
For class 2i − 1, we set x(2i−1) = ei − ΣN

k ̸=i,k=1q
(2i−1,k)τek + µξ(2i−1), where τ and µ are two

positive hyperparameters, q is sampled uniformly from {0, 1} and ξ ∼ N (0, I) from Gaussian
distribution. Likewise, for class 2i, we define x(2i) = −ei − ΣN

k ̸=i,k=1q
(2i,k)τek + µξ(2i). The size

of the data from classes 2i− 1 and 2i are equal and both grow in polynomials of d. For infrequent
class hi, the samples are generated as: x(hi) = ehi + µξ(hi) and the amount of data is sublinear in d,
denoted as O(dα) with α ∈ (0, 1)). Furthermore, we assume all N local datasets to have an equal
total number of samples, i.e., |D1| = |D2| = . . . = |DN |. To facilitate understanding, we provide an
overview of this non-IID data distribution in Figure 1. Next, we consider CL and MIM as two main
paradigms of SSL and formulate CL and MIM, respectively.

CL Formulation. For CL, we adopt the more advanced Simsiam (Chen & He, 2021) which trains
with only the positive pairs (ga(x), gb(x)), where ga(·) and gb(·) are random augmentations drawn
from SimSiam’s augmentation policy (e.g., Gaussian noise, flipping). Consider a linear embedding
function fW (x) = Wx, where the weight matrix W satisfies W ∈ Rc×d and c ≥ 2N according to
the distributed settings, the local objective on client i is defined as:

LCL = −Ex∼Di
[|(W (ga(x)))

⊺(W (gb(x)))] +
1

2
||W ⊺W ||2F . (2)

Eq.(2) captures the SimSiam loss by utilizing the negative inner product ⟨a, b⟩ to measure the distance
between the positive pairs. This objective also excludes a feature predictor for simplicity and includes
a regularization term ||W ⊺W ||2F for more mathematically tractable, similar to previous works (Wang
et al., 2022; Liu et al., 2022). Note that Eq.(2) stands for a general form of Simsiam loss due to the wide
class of augmentation functions (Gui et al., 2024). For a detailed and tractable theoretical exploration,
we consider the linear formulation of data augmentation and further differ CL by the similarity
between ga(·) and gb(·). In particular, for the case where the positive pairs are generated by similar
augmentations, the objective becomes LCL = −Ex∼Di

[(W (x+ ξ))⊺(W (x+ ξ′))] + 1
2 ||W

⊺W ||2F ,
where ξ, ξ′ ∼ N (0, I) are random noise sampled IID from the Gaussian distribution. On the
other hand, when ga(·) and gb(·) are different, we define the loss as L′

CL = −Ex∼Di
[(W (x +

ξ))⊺(W (Hx))] + 1
2 ||W

⊺W ||2F , where H ∈ Rd×d denotes a linear image transformation (e.g.,
rotation, translation, etc.). The formal conditions on H are given in Appendix A.7.1.

MIM Formulation. For MIM, a random binary mask m ∈ {0, 1}d (created by uniformly sampling 0
with probability p, i.e., mask ratio) is applied to partition the input x into two complementary views:
the unmasked part x1 = x⊙m and the masked part x2 = x⊙ (1−m) satisfying x1+x2 = x. Then,
we train an encoder-decoder model f = fd ◦ fe, where the encoder fe encodes the input x1 to a
latent representation z = fe(x1), and the decoder fd decodes z back to pixel space to reconstruct the
masked part x2. Hence, considering a linear encoder and decoder with embedding matrix We ∈ Rc×d

and Wd ∈ Rd×c, the local objective of MIM is given by

LMIM = Ex∼Di
Ex1,x2|x||fd(fe(x1))− x2||2 = Ex∼Di

||WdWe(x⊙m)− (x⊙ (1−m))||2,
(3)
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where the mean square error (MSE) loss is utilized to enforce the reconstructed image to be similar
to the original image, and ⊙ denotes the Hadamard product. Recent studies have focused on the
connection between MIM and contrastive losses and found that the MIM reconstruction objective
admits an alignment between the masked and unmasked parts (Zhang et al., 2022; Kong et al., 2019).
Based on these results, we adopt an alignment-style formulation of Eq.(3) with W := We ∈ Rc×d:

LMIM = −Ex∼Di [(W (x⊙m))⊺(W (x⊙ (1−m)))] +
1

2
||W ⊺W ||2F , (4)

which implicitly aligns the masked and unmasked views in the embedding space. The regularization
term ||W ⊺W ||2F is also introduced to ensure a well-posed quadratic form and improve the traceability.

4 THEORETICAL INSIGHTS

In this section, we use the above problem setup to model different D-SSL frameworks and compare
their robustness to heterogeneous data. Differences in applied SSL and network architecture lead
to distinctions in learned representations, which can be further explored to determine variance in
robustness. Due to page limitations, the complete proof for our analysis is provided in Appendix A.7.

4.1 ANALYSIS OF REPRESENTATIONS LEARNED BY D-SSL

We begin our analysis with the definition of the representability of the learned representation.
Definition 4.1. (Representability Vector (RV)). Let {e1, . . . , ed} be the standard basis of Rd. Let
W = [w1, . . . , wc]

⊺ ∈ Rc×d be the feature matrix learned by the linear embedding function fW (x) =
Wx, where c ≤ d. For row space R = row(W ) ⊆ Rd, we denote the representability of R as a
vector r = [||ΠR(e1)||22, . . . , ||ΠR(ed)||22]⊺, where ΠR(ek) is the projection of ek ontoR for k ∈ [d].
Hence, we have ||ΠR(ek)||22 =

∑c
j=1(e

⊺
kvj)

2, where {v1, . . . , vc} is any orthonormal basis ofR.

The intuition behind this definition is that for any input vectors x ∈ Rd, the learned feature space
should have a good representation of the standard basis vectors, e1, . . . , ed, to perform well. In
particular, these basis vectors should have large projections onto the feature space. The introduction
of the representability vector allows us to quantitatively assess the feature space learned by different
D-SSL frameworks. Similar definitions and notations have also been used in previous works studying
the feature space of SSL (Wang et al., 2022; Liu et al., 2022). Based on this definition and the above
problem setup, we establish the following theorem for D-SSL based on MIM pre-training.
Theorem 4.2. (Representability of Distributed MIM). Consider a distributed scenario consisting
of N = Θ(d

1
20 ) clients and following the above non-iid setup with τ = d

1
5 and µ = d−

1
5 . For

distributed SSL that utilizes Masked Image Modeling (MIM) as the pre-training approach, with a
high probability, the following statements hold:

1. Let rMi = [rMi,1, . . . , r
M
i,c]

⊺ be the local RV learned on client i, then we have 1 −
O(d− 2

5 )

2p(1−p)d
2
5 +O(d− 2

5 )
≤ rMi,k ≤ 1, where i ∈ [N ]\k.

2. Let r̄MDec = [r̄M1 , . . . , r̄Mc ]⊺ be the global RV learned through DecL, then we have 1 −
O(d− 2

5 )

2p(1−p)(1−1/|Ā|)d
2
5 +O(d− 2

5 )
≤ r̄MDec ≤ 1; while for the global RV r̄MFed = [̄rM1 , . . . , r̄Mc ]⊺

learned through FL, we have 1− O(d− 2
5 )

2p(1−p)d
2
5 −Θ(d

7
20 )+O(d− 2

5 )
≤ r̄MFed ≤ 1.

Theorem 4.2 shows the status of the feature space learned by distributed MIM with different objectives
(i.e., local vs decentralized global vs federated global). Note that for each provided representability
vector, we find a unique lower bound and a shared upper bound (considering

∑d
j=1(e

⊺
kej)

2 = 1). The
distance between the lower and upper bound states how much the learned representation fluctuates in
the c unit directions, e1, . . . , ec, associated with data generation. Therefore, the smaller the distance,
the less sensitive the representation space is to the non-IID distribution of local datasets on clients. In
other words, the corresponding D-SSL is more robust to heterogeneity.

By a similar proof, we derive the representability vectors for D-SSL with CL pre-training as follows.
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Theorem 4.3. (Representability of Distributed CL). Consider the same distributed scenario in
Theorem 4.2. For distributed SSL that utilizes Contrastive Learning (CL) as the pre-training approach,
with a high probability, the following statements hold:

1. Let rCi = [rCi,1, . . . , r
C
i,c]

⊺ be the local RV, then we have 1 − O(d− 1
5 )

d
2
5 +O(d− 1

5 )
≤ rCi,k ≤ 1 and

1− O(d− 1
5 )

tr(H)d
2
5 +O(d− 1

5 )
≤ rCi,k ≤ 1 for similar and dissimilar augmentations, respectively.

2. For the global RV r̄CDec = [r̄C1 , . . . , r̄
C
c ]

⊺ learned through DecL, we have 1 −
O(d− 1

5 )

(1−1/|Ā|)d
2
5 +O(d− 1

5 )
≤ r̄CDec ≤ 1 and 1 − O(d− 1

5 )

tr(H)(1−1/|Ā|)d
2
5 +O(d− 1

5 )
≤ r̄CDec ≤ 1 for

similar and dissimilar augmentations; while for r̄CFed = [̄rC1 , . . . , r̄Cc ]⊺ learned through FL,

we have 1− O(d− 1
5 )

d
2
5 −Θ(d

7
20 )+O(d− 1

5 )
≤ r̄CFed ≤ 1 and 1− O(d− 1

5 )

tr(H)d
2
5 −Θ(d

7
20 )+O(d− 1

5 )
≤ r̄CFed ≤ 1.

Theorem 4.3 demonstrates that the local and global feature spaces learned by distributed CL are
distinct from those learned by distributed MIM. However, it is not obvious which feature spaces hold
a smaller gap between the lower and upper bounds. To determine which type of pre-training is less
sensitive to data heterogeneity, we further compare their global feature spaces learned in DecL and
FL framework, respectively, and summarize the results in the following theorem.

4.2 MIM IS INHERENTLY MORE ROBUST THAN CL WITH HETEROGENEOUS DATA

Theorem 4.4. Let s = maxk∈[c] r̄k − mink∈[c] r̄k be the sensitivity of distributed SSL to hetero-
geneous data x ∈ Rd, measured as the spread of the leading c coordinates of the learned global
representability vector r̄. For any network architecture, distributed SSL satisfies the following prop-
erty: limd→∞[sC > sM ], where sC and sM represent the sensitivities of distributed SSL adopting
contrastive learning and masked image modeling as the pre-training approach, respectively.

The main intuition for the greater robustness (or smaller sensitivity) of distributed MIM is that CL
learns representations from aligning features of the positive pair generated from the original data
through data augmentation, whereas MIM aligns features of the reconstructed and the raw data to
learn representations. Although the applied augmentation generally does not lead to a change in data
labels (Chen et al., 2020; Chen & He, 2021), the output is still a different image. In contrast, the
masking operation splits the original image into the masked and unmasked parts, but a portion of
the original data is retained in both parts. As a result, CL learns a local representation with greater
randomness, and that additional randomness is also biased by local labels. Considering that data
heterogeneity already exists among clients, the global representation learned by distributed CL is less
uniform than that learned by distributed MIM.

4.3 IMPACT OF THE AVERAGE CLIENT CONNECTIVITY ON NON-IID ROBUSTNESS

Next, we shift our focus to another dimension that distinguishes D-SSL algorithms and address the
question: how does the network architecture affect the robustness of the feature space learned by
D-SSL? The tool for solving this question is again the bounds of the representability vector. For the
DecL setup where clients directly communicate with their direct neighbors, Theorem 4.2 and 4.3
have implicitly shown the answer.
Corollary 4.5. For any SSL pre-training approaches, if the distributed scenario is fully decentralized
(i.e., without a central server), the robustness of distributed SSL against heterogeneous local data
improves with the average connectivity |Ā| between clients in the network.

Corollary 4.5 also implies that the robustness of D-SSL conducted in a federated setup should be no
worse than in a fully decentralized network. Consider the best case of the network topology, where
each client can communicate with all other clients in the network. In this case, each client receives a
model aggregated by the local models from all clients, which is exactly the global model distributed
by the server in the federated setup. We can continue exploring to verify that this intuition is correct.
Theoretically, combining Theorem 4.2, Theorem 4.3, and Corollary 4.5, we arrive at another main
theorem addressing the question introduced at the beginning of this section.
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Theorem 4.6. For any SSL pre-training paradigms, distributed SSL satisfies the following property:
limd→∞[sDec ≥ sFed], where sDec = maxk∈[c] r̄

(k)
Dec − mink∈[c] r̄

(k)
Dec denotes the sensitivity of

distributed SSL performed in the DecL setup (i.e., clients directly communicate with neighbors), and
sFed = maxk∈[c] r̄

(k)
Fed −mink∈[c] r̄

(k)
Fed represents the sensitivity of distributed SSL performed in the

FL setup (i.e., all clients are indirectly connected through the central server).

This theorem further demonstrates the robustness trade-off between applying SSL in federated and
decentralized frameworks. For less concern about the impact of data heterogeneity, we should conduct
distributed SSL in a federated setup (often also referred to as federated self-supervised learning
(Zhuang et al., 2021b;a; Lubana et al., 2022; Rehman et al., 2023)). However, the decentralized
case is more common in reality, as it is challenging to provide a central server that can be trusted by
all clients and has stable communication with them. Then, we can consider increasing the average
connectivity between clients to minimize the negative impact of heterogeneous data on training (e.g.,
identifying under-connected clients and creating additional direct communication links).

5 MAR LOSS: AN ILLUSTRATIVE CASE STUDY IN ENHANCING ROBUSTNESS

The preceding analysis has addressed the main focus of this paper by establishing theoretical insights
into the robustness of different D-SSL frameworks under heterogeneous data. As a further step, we
illustrate how these insights can guide a more robust algorithmic design. In particular, our results
show that although distributed MIM is fundamentally more robust than CL, its training dynamics are
dominated by the client-specific covariance, causing local encoders to drift toward different directions
before aggregation gradually mitigates this effect. This observation motivates us to refine the MIM
objective with an additional term that explicitly and dynamically promotes consistency between local
and global masked representations, which we term MAR loss. The integration of MAR into both
federated and decentralized frameworks is summarized in Algorithm 1 and Algorithm 2

Formally, MAR loss augments the MIM objective with an alignment regularization term:

LMAR = Ex∼Di
Ex1,x2|x

[
∥fd(fe(x1))− x2∥2 + γ

(i)
t · A-MMD(zi, z̄)

]
, (5)

where zi = fe(x1) and z̄ denote the local masked and global representations, and γ
(i)
t > 0 is a

dynamic weight for alignment. The alignment regularizer is based on Maximum Mean Discrepancy
(MMD), a widely used measure of distributional discrepancy in machine learning (Gretton et al.,
2012; Li et al., 2017; Gong et al., 2016). MMD compares whether two distributions P and Q differ
by mapping samples into a reproducing kernel Hilbert space (RKHS) and evaluating differences in
their feature means. Typically, MMD adopts a Gaussian kernel k(x, x′) = exp(−∥x− x′∥2/2σ2).

In MAR, we employ an adaptive version (A-MMD) to compare the feature spaces of local and global
representations more robustly. Unlike prior FL works that use vanilla MMD (Ma et al., 2024; Hu
et al., 2024; Liao et al., 2024b), A-MMD selects the kernel bandwidth automatically rather than fixing
it. Given batches of local and global embeddings of equal size B, A-MMD is computed as:

A-MMD(zi, z̄) =
1

B(B − 1)

(∑
a̸=b

k(zi,a, zi,b) +
∑
a̸=b

k(z̄a, z̄b)

)
− 2

B2

B∑
a=1

B∑
b=1

k(zi,a, z̄b), (6)

with the adaptive kernel defined as k(z, z′) = exp(− ||z−z′||
2(meana̸=b||za−zb||)2 ) . This data-driven choice

ensures stability across non-IID clients by scaling the kernel to the observed embedding distribution.

Finally, to balance early-stage consensus and late-stage efficiency, we design the regularization weight
γ
(i)
t to decay smoothly from γmax to γmin. We adopt a cosine schedule based on client participation:

γ
(i)
t = γmin + (γmax − γmin) · 12

(
1 + cos

π·ω(i)
t

Ω

)
, (7)

where ω
(i)
t counts the number of times client i has been selected up to round t, and Ω controls the

decay horizon. In DecL, where all clients participate every round, one can simply set Ω = T . In FL
with partial participation, a practical choice is the expected number of selections per client, or T as a
default. This schedule applies stronger alignment when client divergence is most pronounced, and
gradually relaxes toward γmin as training progresses, ensuring dynamic robustness gains.
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6 EXPERIMENTS

In this section, we conduct extensive experiments to validate the correctness of our derived theoretical
insights and evaluate the effectiveness of the MAR loss in improving the robustness of distributed
MIM against data heterogeneity. We first introduce the experimental setup. Then we assess our
results in different datasets, model backbones, and distributed settings.

6.1 EXPERIMENTAL SETUP

Datasets and Distributed Simulation. We pre-train our models on the Mini-ImageNet dataset
(Vinyals et al., 2016), which contains 60,000 images extracted from ImageNet (Deng et al., 2009). To
simulate a distributed scenario with label non-IIDness, the dataset is partitioned by sampling the class
priors of the Dirichlet distribution (Hsu et al., 2019). More heterogeneous division can be made with
a smaller Dirichlet parameter α during sampling, while the IID case is simulated with a very large
α. Besides, we follow prior works to simulate feature heterogeneity by uniformly dividing datasets
and applying unique data augmentation for each client (Wang et al., 2022; Zhu et al., 2021). Hence,
the local labels are kept the same but features are skewed into different domains before training.
Furthermore, to simulate DecL, we use the Erdős-Rényi model (ERDdS & R&wi, 1959) to initialize
a connected network with the number of clients and the average connectivity as inputs and return
the adjacency matrix A. For FL, we additionally assume a central server connecting with all clients.
After pre-training, the models’ backbones are fine-tuned on benchmark datasets, including CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009), and ImageNet. The fine-tuning accuracies are used for analysis.

Implementation Details. For our experiments, we use ResNet (He et al., 2016) and Vision Trans-
former (ViT) (Dosovitskiy et al., 2020) as the model architecture. Following the problem setup in
theoretical analysis, we select Simsiam (Chen & He, 2021) and MAE (He et al., 2022) as the repre-
sentatives of CL and MIM pre-training, respectively. In original works, Simsiam is used to pre-train
ResNet models, while MAE is used to pre-train ViTs. We implement two new SSL baselines to show
that our theoretical insights apply to any model architecture. One uses Simsiam to pre-train ViTs,
and the other one pre-trains ResNet through MAE. Furthermore, we follow the classical distributed
algorithms, D-PSGD (Lian et al., 2017) and FedAvg (McMahan et al., 2017a), to implement the DecL
and FL frameworks, and then implement our FedMAR and DecMAR algorithms based on these
frameworks. All our codes are implemented in Python using the Pytorch framework and executed on
a server with 4 NVIDIA® RTX 3090 GPUs. The detailed training setup and server configuration can
be found in Appendix A.2 because of page limitations.

6.2 EMPIRICAL STUDY

Insensitivity Superiority of Distributed MIM. Table 1 compares the impact of data heterogeneity
on the pre-training effectiveness between distributed MIM and CL. With highly heterogeneous data,
the learned local feature space will be significantly different across clients, resulting in a greater
divergence between local and global feature space and a larger drop in the performance compared to
the IID setup (Zhuang et al., 2021a;b; Lubana et al., 2022). Across various datasets and backbone
architectures, we observe that distributed MIM consistently exhibits a smaller gap between IID
and non-IID settings compared to distributed CL. The experimental results align with Theorem
4.4, verifying that MIM is less sensitive than CL when handling heterogeneous data in distributed
scenarios. To further substantiate this theoretical insight, we also visualize the local and global feature
spaces learned by distributed MIM and CL and compute the l2-norm weight distance between their
local and global models. Please see Appendix A.3.1 for these external experimental results.

Impact of Average Connectivity on Non-IID Robustness. We verify our second insight by setting
up decentralized networks with different average connectivity |Ā|. For the same |Ā|, we consider
two cases: (1) a general case where the number of neighbors |Ai| varies across clients, and (2) a
uniform case where all clients have the same connectivity, i.e., ∀i ∈ [N ], |Ai| = |Ā|. Additionally,
we set up an FL scenario with 20 clients training in parallel per round. Figure 2a shows that Corollary
4.5 is correct. We can observe that the fine-tuning accuracy of decentralized SSL increases with
|Ā|. Moreover, Figure 2a provides empirical evidence for Theorem 4.6. We find that pre-training in
FL is no less robust than in DecL against heterogeneous data. Additional results using alternative
consensus matrices for DecL are given in Appendix A.3.2, and confirm the same robustness ordering.
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Table 1: Fine-tuning accuracy (%) of backbones pre-trained by different D-SSL algorithms. All
results provided in this table are the mean of three trials (L/non-IID = Label Non-IID; F/non-IID =
Feature Non-IID). The values in brackets denote the gap between IID and non-IID performance.

CIFAR-10 CIFAR-100 ImageNet

IID L/non-IID F/non-IID IID L/non-IID F/non-IID IID L/non-IID F/non-IID

Simsiam + CNN 86.03 84.33 (↓1.70) 84.62 (↓1.41) 58.91 57.80 (↓1.11) 57.81 (↓1.10) 46.74 46.10 (↓0.64) 46.41 (↓0.33)
MAE + CNN 87.28 86.97 (↓0.31) 86.17 (↓1.11) 57.86 57.77 (↓0.09) 57.20 (↓0.66) 45.88 45.87 (↓0.01) 45.80 (↓0.08)
Simsiam + ViT 72.32 69.50 (↓2.82) 70.66 (↓1.66) 48.60 43.49 (↓5.11) 43.07 (↓5.53) 61.97 59.86 (↓2.11) 59.13 (↓2.84)
MAE + ViT 69.90 68.20 (↓1.70) 69.32 (↓0.58) 50.04 48.95 (↓1.09) 49.60 (↓0.44) 62.69 62.25 (↓0.44) 62.51 (↓0.18)
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Figure 2: (a) Impact of the average connectivity between clients on the non-IID robustness.
Models are pre-trained in a network with 20 clients and then fine-tuned on CIFAR-100. The blue
line shows the results of DecL, and the orange line shows FL results. (b) Comparison of MAR and
MIM loss on robustness to data heterogeneity in federated and decentralized settings.

Effectiveness of MAR loss. To further illustrate the practical relevance of our analysis, we evaluate
MAR loss against the standard MIM objective in both FL and DecL frameworks under varying
degrees of heterogeneity. Figure 2b shows that, as the level of non-IIDness increases (i.e., the
Dirichlet parameter α decreases from 1 to 0.001), the fine-tuning accuracy of all methods declines.
Nevertheless, models pre-trained with MAR loss consistently outperform those trained with the
vanilla MIM loss across all non-IID levels. This trend holds in both FL and DecL settings, suggesting
that MAR loss can effectively reduce the sensitivity of distributed MIM to heterogeneity. Besides,
to provide a more comprehensive evaluation, we extend the comparison to recent federated SSL
baselines and also conduct ablation studies on the components of MAR loss, including the alignment
term and its dynamic weighting. The detailed results of these analyses are provided in Appendix
A.4, A.5.1, and A.5.2, respectively. Finally, we assess the practical feasibility of MAR by analyzing
its privacy and communication overhead. Since MAR communicates only masked embeddings, the
additional overhead is modest, while privacy is also preserved through masking and can be further
strengthened with differential privacy. A detailed discussion is reported in Appendix A.6.

7 CONCLUSION

In this paper, we investigated the robustness of distributed self-supervised learning (D-SSL) under
heterogeneous data. Our theoretical analysis shows that MIM-based frameworks achieve greater
robustness than CL-based ones, and that the degree of robustness in decentralized learning is closely
tied to the average network connectivity, with federated learning being no less robust than decentral-
ized learning. These findings provide a principled foundation for understanding how algorithmic
choices and network structures affect distributed learning with unlabeled and heterogeneous data.
Beyond the theory, we also illustrated how such insights can inform practical design. As a case
study, we introduced MAR loss, a refinement of the MIM objective with alignment regularization,
which serves to demonstrate the applicability of our analysis. Extensive experiments across model
architectures and distributed settings validate our theoretical predictions, and further confirm the
utility of MAR loss in practice. We hope that our results can serve as a theoretical grounding and
guiding framework for future developments in distributed self-supervised learning.
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A APPENDIX

A.1 FULL PSEUDOCODE OF D-SSL WITH MAR LOSS

Algorithm 1 FedMAR Algorithm

Input: initial model W 0, number of local updates E, number of training rounds T , learning rate η,
the upper bound of regularization weight γmax, the lower bound γmin

Output: optimized global model WT

1: for t = 0, . . . , T − 1 do
2: if t = 0 then
3: server broadcasts W t to C ∼ [N ]
4: else
5: computes γ(i)

t by γmax and γmin on server (shown in Eq.(7))
6: server broadcasts W t, z̄, γ

(i)
t to C ∼ [N ]

7: end if
8: for client i ∈ C in parallel do
9: W t

i,0 ←W t

10: if t = 0 then
11: W t

i,E , zi ← SGD(W t
i,0, η, E,LMIM )

12: else
13: W t

i,E , zi ← SGD(W t
i,0, η, E,LMAR(z̄, γ

(i)
t )) (shown in Eq.(5))

14: end if
15: sends W t

i,E , zi to server
16: end for
17: z̄ = 1

|C|
∑

i∈C zi

18: W t+1 ← 1
|C|
∑

i∈C W
t
i,E

19: end for

Algorithm 2 DecMAR Algorithm

Input: initial models W−1
i,E , number of local updates E, number of training rounds T , learning rate

η, the upper bound of regularization weight γmax, the lower bound γmin

Output: optimized global model WT

1: for t = 0, . . . , T − 1 do
2: for client i ∈ [N ] in parallel do
3: if t = 0 then
4: send W t−1

i,E to its neighbors
5: else
6: computes γ(i)

t by γmax and γmin for each neighbor (shown in Eq.(7))
7: send W t−1

i,E , zi, γ
(i)
t to its neighbors

8: z̄ = 1
|Ai|

∑
j∈Ai

zj
9: end if

10: W t
i,0 ← 1

|Ai|
∑

j∈Ai
W t−1

j,0

11: if t = 0 then
12: W t

i,E , zi ← SGD(W t
i,0, η, E,LMIM )

13: else
14: W t

i,E , zi ← SGD(W t
i,0, η, E,LMAR(z̄, γ

(i)
t )) (shown in Eq.(5))

15: end if
16: end for
17: end for
18: WT ← 1

N

∑
i∈[N ] W

T−1
i,E

14
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A.2 DETAILS ABOUT EXPERIMENT SETUP

In this section, we have provided two tables to present our experiment setup. Table 2 shows the
experiment details, which include the specific settings for the model architecture, dataset, scenario,
and training. Table 3 demonstrates the setup of the running environment, including the configuration
of our test server.

Table 2: Settings of Experiments.

Details
Model Architecture ResNet, Vision Transformer (ViT)
Number of layers in ResNet 18
Number of blocks in ViT 5
Pre-train Method MAE, Simsiam
Pre-train Dataset Mini-ImageNet
Fine-tune Dataset CIFAR-10/100, ImageNet
Non-IID Options (i.e. the value of α) {1e5 (IID), 1, 0.1, 0.01, 0.001}
Options for the γ used in MAR loss {1, 0.1, 0.01, 0.001}
For Federated Learning (FL):
Number of clients 100
Number of sampled clients per round 5
Number of local training epochs 2
Number of total training rounds 100
For Decentralized Learning (DecL):
Number of clients 20
Options for average connectivity 3, 5, 10, 20 (equals to FL)
Number of local training epochs 1
Number of total training rounds 25
Fine-tuning Epochs 50/100 (CIFAR-10/100), 20/100 (ImageNet)
Pre-train Batch Size 128
Fine-tune Batch Size 256 (CIFAR-10/100), 1024 (ImageNet)
Base Learning Rate 1.5e-4

Table 3: Settings of Running Environment.

Config Details
Server GPU Count 4
Server GPU Type RTX 3090 (24GB)
Server CPU Type AMD EPYC 7282 16-Core
CUDA 12.4
Framework PyTorch
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A.3 EXTERNAL EXPERIMENTS

A.3.1 FEATURE SPACE VISUALIZATION AND MODEL DIFFERENCE
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Figure 3: Visualization of the feature space of local and global model in Non-IID setting. Each
column stands for a D-SSL framework (i.e., pre-training ViT by Simsiam, pre-training ViT by MAE,
and pre-training ViT by MAR). The first row shows the local feature space from client 1, the second
row shows the local feature space from client 100, and the last row shows the global feature space.

Besides Table 1 demonstrating the non-IID robustness of distributed CL and MIM by the gap in fine-
tuning accuracy, we further explore the differences in their learned features empirically. Specifically,
we simulate a heterogeneous setting with 100 clients using a Dirichlet sampling with α = 0.1. For
each D-SSL framework, we obtain three pre-trained ViT backbones: (1) a global model trained using
FL across all clients; and (2) two local models trained solely on data from client 1 and client 100,
respectively. To compare their learned feature spaces, we extract the encoder features of each model.
These high-dimensional features are first projected to 20 dimensions using principal component
analysis (PCA) and then embedded into 2D space using Umap (McInnes et al., 2018) for visualization.

Figure 3 presents the feature of local and global models learned by each D-SSL method. Each
column corresponds to one method, while each row shows features from a specific model (client 1,
client 100, and the global model). We observe that for distributed MIM methods, the local features
are more aligned with each other and also closer to the global features, suggesting more consistent
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representations across heterogeneous clients. In contrast, distributed CL exhibits greater divergence
between local and global features, indicating that it is inherently more sensitive to data heterogeneity.

To provide a more quantitative comparison, we also show the weight differences between local and
global models in Table 4. In particular, we compute the layer-wise ℓ2-norm difference between local
and global model weights and report the sum across all layers. The results show that distributed
MIM methods (MAE and MAR) yield significantly lower weight distances compared to distributed
CL, reinforcing the observation that MIM leads to more stable and consistent model updates in the
presence of non-IID data.

Table 4: Weight distance between local and global models learned from different D-SSL methods.

l2-Norm Difference SimSiam + ViT MAE + ViT MAR + ViT
local 1 vs local 100 45.37 36.10 35.75
local 1 vs global 40.34 31.57 31.38
local 100 vs global 38.39 31.77 31.25

A.3.2 EFFECT OF DIFFERENT CONSENSUS MATRICES ON ROBUSTNESS THEORY

Table 5: CIFAR-100 Accuracy (%) of decentralized MIM under different consensus matrices.
Results are averaged over three test runs.

Method Avg Connectivity ≈ 5 Avg Connectivity ≈ 10

FL (reference) 52.72 52.72
DecL with Data Size Weights 46.62 52.28
DecL with Degree Normalized 45.34 52.08
DecL with Doubly Stochastic 45.22 52.18
DecL with Push Sum 45.19 52.22

This experiment examines whether the robustness findings in Section 4.3 remain valid under different
choices of consensus matrices in decentralized learning. The theoretical bounds link robustness to
the average connectivity of the network graph, while the average connectivity is closely related to
how efficiently information mixes across clients. If various consensus rules produced qualitatively
different mixing behavior, they could in principle affect robustness. To test this, we conduct two
groups of experiments on decentralized networks with 20 clients under strong non-IID conditions
using α = 0.1. In the first group, the network has an average connectivity of around 5, while in the
second group, connectivity is increased to about 10. Within each group, we pre-train distributed MIM
using four commonly adopted consensus schemes, including data size weighting, degree normalized
averaging, doubly stochastic matrices, and push sum, and compare all results against a federated
learning baseline with the same number of clients. The results in Table 5 show a consistent pattern.
When connectivity is low, all decentralized variants suffer a noticeable accuracy loss relative to
federated learning, and the specific consensus rule makes only minor differences. When connectivity
increases, all decentralized variants recover to a level that is close to the federated baseline yet never
surpass it. These findings confirm that the qualitative ordering predicted by the theory persists. The
choice of consensus matrix influences only constant factors in mixing but does not overturn the
robustness relation that federated learning is at least as robust as decentralized learning.

A.4 COMPARE MAR TO STATE-OF-THE-ART BASELINES

We evaluate the effectiveness of our FedMAR by comparing it against several state-of-the-art (SOTA)
federated self-supervised learning (F-SSL) baselines in a non-IID distributed setting. The SOTA
baselines involve: 1) FedU (Zhuang et al., 2021a): Using the divergence-aware predictor module
for dynamic updates within the self-supervised BYOL network (Grill et al., 2020); 4) FedEMA
(Zhuang et al., 2021b): Employing EMA of the global model to adaptively update online networks;
5) Orchestra (Lubana et al., 2022): Combining clustering algorithms with Federated Learning for
better model aggregation. 6) FeatARC (Wang et al., 2022): Combing clustering techniques with
feature alignment; 7) LDAWA (Rehman et al., 2023): Smartly aggregating models according to the
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Table 6: Comparison of FedMAR with SOTA F-SSL methods on the Non-iid version (α = 0.1)
under cross-device (n = 100) settings. Each method was pre-trained with Mini-ImageNet Dataset.
The table shows the mean fine-tuning accuracy (%) of three trials.

Method Architecture Params GFLOPS CIFAR-10 CIFAR-100 ImageNet

FedU ResNet-18 38.47M 7.40 72.02 38.44 65.10
FedEMA ResNet-18 38.47M 7.40 70.73 40.78 65.24
Orchestra ResNet-18 11.84M 7.31 88.87 70.11 65.02
FeatARC ResNet-18 11.70M 1.83 89.60 64.11 68.17
LDAWA ResNet-18 15.39M 1.83 89.95 68.96 51.43
FedU2 ResNet-18 15.39M 1.83 82.39 55.49 45.27
FedMAR(Ours) ResNet-18 22.50M 3.64 92.70 70.82 65.36
FedMAR(Ours) Tiny-ViT 11.60M 0.88 90.03 71.28 75.99

angular divergence between local models; and 8) FedU2 (Liao et al., 2024a): Optimizing training
with the flexible uniform regularizer and efficient unified aggregator. Following prior works (Zhuang
et al., 2021a; Rehman et al., 2023), we simulate a highly heterogeneous scenario with 100 clients
sampled from a Dirichlet distribution with α = 0.1. In each round, 5 clients are randomly selected
and each conducts 10 epochs of local training for 200 rounds in total.

Since most baselines employ ResNet-18 (He et al., 2016) as the backbone, we first implement
FedMAR with ResNet-18 for a direct comparison. As shown in Table 6, FedMAR employed on
ResNet-18 achieves higher accuracy on CIFAR-10 and CIFAR-100 while obtaining comparable
results on ImageNet. This indicates that MAR loss can provide tangible improvements even when
using the same CNN backbone as prior methods.

To further examine the generality of MAR, we also evaluate FedMAR with a lightweight Vision
Transformer backbone (Tiny-ViT). Importantly, this model has a comparable number of parameters
and GFLOPs to ResNet-18, ensuring fairness in comparison. In this setting, FedMAR employed on
Tiny-ViT achieves superior performance on all three benchmarks, surpassing CNN-based baselines
while maintaining lower computational cost. These results suggest that MAR loss is not limited
to convolutional architectures and can be particularly effective when applied to transformer-based
models in federated self-supervised learning.

A.5 ABLATION STUDIES ON MAR

A.5.1 ABLATION ON ALIGNMENT METRIC

Table 7: Evaluation of different alignment metrics for MAR loss on CIFAR-100. We report
accuracy (%) under three settings of fixed γ: 1e−1, 1e−2, and 0 (degenerate to vanilla MIM).

Metric γ = 1e−1 γ = 1e−2 γ = 0
Cosine Similarity 51.71 52.47 51.45
Vanilla MMD (σ = 1) 51.79 52.12 51.45
A-MMD (median σ) 52.42 54.13 51.45
A-MMD (mean σ) [Ours] 54.09 54.39 51.45

Our MAR loss (Eq. 5) involves two key components: the dynamic regularization weight γt and the
A-MMD distributional penalty used to align local and global representations. To understand their
impact, we perform ablation studies on each component. We first evaluate the contribution of the
alignment metric.

For baselines, we consider two commonly used choices in prior work: cosine similarity, which has
been widely adopted in federated SSL studies for enforcing alignment between local and global
feature spaces (Wang et al., 2022), and vanilla MMD with a fixed kernel bandwidth, which has
also been explored in recent federated learning works (Ma et al., 2024; Hu et al., 2024; Liao et al.,
2024b). On top of these, we evaluate our adaptive variant A-MMD, where the kernel bandwidth
is chosen automatically based on either the median or mean of pairwise distances. As shown in
Table 7, A-MMD consistently outperforms cosine similarity and vanilla MMD across different γ

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

values. Between the two adaptive variants, using the mean of pairwise distances provides slightly
better performance, and we adopt this as our default design.

A.5.2 ABLATION ON REGULARIZATION WEIGHT

Table 8: Evaluation of regularization weight γ for MAR loss on CIFAR-100.

Weight Schedule Acc(%)
γ = 1 51.50
γ = 1e−1 54.09
γ = 1e−2 54.39
γ = 1e−3 53.55
γ : 1e−1→ 1e−3 (cosine decay) 54.91

Next, we analyze the impact of the regularization weight γ by fixing the alignment metric to A-MMD.
Results in Table 8 show that using a large weight (γ = 1) degrades performance, as the alignment
term overwhelms the reconstruction objective. Conversely, very small weights such as γ = 1e−3
reduce MAR to a near-vanilla MIM objective and fail to deliver sufficient robustness gains. Moderate
fixed values such as γ = 1e−2 and γ = 1e−1 yield stronger results, but still remain below our
proposed dynamic schedule.

Notably, the cosine decay schedule that smoothly decreases γ from 1e−1 to 1e−3 achieves the best
performance (54.91%). This validates our intuition behind dynamic weighting: stronger alignment is
most beneficial in the early stage when client divergence is high, while gradually relaxing the weight
avoids excessive penalty in later stages. These findings highlight the importance of the dynamic
design in MAR loss, which not only achieves higher accuracy but also improves training stability.

A.6 DISCUSSION ON PRIVACY AND COMMUNICATION OVERHEAD OF MAR

When deploying MAR loss in practice, natural concerns arise regarding the potential privacy risks
and the additional communication associated with sharing local representations. We provide both
quantitative and qualitative analyses below to show that these costs remain modest and manageable.

Privacy considerations. The information communicated by MAR is limited to local representations
zi = fe(x1) derived from the unmasked portion of the input. Because MIM typically adopts a
high masking ratio (e.g., 75% in MAE (He et al., 2022)), most raw content remains hidden and the
embedding dimensionality is substantially reduced, which mitigates potential leakage. For stronger
guarantees, MAR can be further combined with standard Differential Privacy (DP) mechanisms
(McMahan et al., 2017b; Wei et al., 2020) by perturbing embeddings before transmission, e.g.,
zi ← fe(x1) +N (0, σ2I) with σ calibrated to satisfy (ϵ, δ)-DP.

Communication overhead. In addition to the standard model updates (e.g., gradients or weights),
MAR transmits compact masked embeddings computed from the unmasked portion of each input.
This is the sole extra payload introduced by MAR. For instance, in the MAE (ViT-B/16) setting on
ImageNet with a 75% masking ratio, each image has 196 patches, of which 49 remain visible. With
hidden size 768 and batch size 256, this yields about 49 × 768 × 256 float values (≈ 36.8MB in
float32). By contrast, a full model with 86M parameters is ≈ 328MB, so the additional cost from
MAR is only ∼11% under this configuration. Crucially, in cross-device settings where small batches
are common, this extra cost decreases proportionally with the batch size: at B=128 it is ≈ 18MB
(∼5%), at B=64 it is ≈ 9MB (∼3%), and at B=32 it drops to around ∼1%. These calculations
indicate that the MAR-induced overhead remains acceptable in realistic deployments. Moreover,
MAR is optional: when minimal communication is the overriding priority, one can simply use the
standard MIM objective, whose effectiveness is explained by our theory, at zero additional cost.
When a small extra cost is acceptable, MAR offers corresponding robustness gains while keeping the
overhead low.
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A.7 FULL PROOF FOR THEORETICAL ANALYSIS

A.7.1 FORMAL ASSUMPTIONS

To make the theoretical analysis fully transparent and self-contained, we first summarize here all
assumptions used in deriving the main results. These assumptions complement the problem setup
in Section 3 and reflect the standard modeling choices commonly adopted in theoretical studies of
distributed and self-supervised learning.

Assumption A.1. (Communication Graph). The distributed system is modeled as a fixed and
connected communication graph G = (V, E) with N = |V| clients. Each client i communicates only
with its neighborhood Ai = {j : (i, j) ∈ E} ∪ {i}. We assume 2 ≤ |Ai| ≤ N for all i ∈ [N ]. The
average neighborhood size |Ā| = 1

N

∑N
i=1 |Ai| is used as a measure of connectivity.

Remark A.2. This formulation encompasses decentralized learning on arbitrary connected topologies
and federated learning as the fully connected special case (i.e., by the help of the central server, all
clients can indirectly communicate with each other so there exists |Ai| = N for all i ∈ [N ]).

Assumption A.3. (Consensus Weights). During decentralized aggregation, each client i forms a
mixing vector wi = {wij}j∈Ai satisfying:

• wij > 0 only if j ∈ Ai (topology-respecting sparsity);

•
∑

j∈Ai
wij = 1 (row-stochasticity).

Remark A.4. The above conditions represent the standard requirements for decentralized model
aggregation: each client averages only over its local neighborhood and the mixing vector is row-
stochastic. This formulation covers commonly used consensus rules in decentralized optimization,
including uniform averaging (McMahan et al., 2017a), degree-normalized weights (Lian et al., 2017),
and symmetric doubly-stochastic schemes (Tang et al., 2022). Our analysis relies only on these basic
structural properties, while more general mixing operators could in principle be incorporated by
extending the corresponding aggregation step. Exploring such extensions is an interesting direction
for future work, but it is not required for the results presented here.

Assumption A.5. (Non-degenerate Embedding). Throughout the analysis, we focus on non-trivial
stationary points of the regularized objectives, where the embedding matrix W ∈ Rc×d satisfies
W ̸= 0 and rank(W ) = c.

Remark A.6. The trivial solution W = 0 does not minimize the reconstruction or alignment terms
in either the MIM or CL objectives, and corresponds to a representation carrying no information.
Therefore, this assumption is generally satisfied in the theoretical analysis of self-supervised learning
(Liu et al., 2022; Wang et al., 2022).

Assumption A.7. (Independence Local Sampling.) For each client i, the local dataset Di consists of
|Di| independent samples drawn from its local distribution Di.

Remark A.8. The independence assumption is the minimal condition required for high-probability
spectral norm bounds of empirical covariance matrices. It does not alter the established non-IID
structure across clients, but ensures that the empirical covariance on each client concentrates around
its population counterpart. This is a standard assumption in the theoretical analysis of distributed
learning (Wang et al., 2022; Tang et al., 2022).

Assumption A.9. (Dissimilar Image Transformation for CL). When the two augmented views
(ga(x), gb(x)) used in CL are generated from dissimilar transformations, we model gb(x) by a linear
operator H ∈ Rd×d acting on the input space. In the theoretical analysis, H enters only through
the quadratic form x⊤Hx, and therefore only its symmetric component Hsym = (H +H⊤)/2 is
relevant. Let S = span{e1, . . . , ec} denote the class-dependent subspace in the non-IID generative
model, and let P be the orthogonal projection onto S. We assume that

tr(PHsymP ) > 0.

Remark A.10. The above condition ensures that the transformation H preserves nontrivial energy on
the class-dependent semantic subspace S . It is a mild requirement and is common to hold in standard
contrastive learning augmentations (Chen et al., 2020; Chen & He, 2021), including rotations, flips,
translations, crops, blurs, and color jittering. These transformations perturb the input in ways that do
not cancel class-discriminative directions, so tr(PHsymP ) remains strictly positive in practice.
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A.7.2 LEARNED REPRESENTABILITY FOR DECENTRALIZED MIM

This section provides the full proof of Theorem 4.2.

Proof. We begin by formulating the representability of local representation. Then, we derive the
global representation based on the local feature. Since FL is different from decentralized learning in
the updates, we establish the global representation for each distributed framework, respectively.

For local feature space. According to the alignment-style loss function of MIM shown in Eq.(4) and
by the definition of Kronecker product, we have

LMIM = −E[|(W (x⊙m))⊺(W (x⊙ (1−m)))] +
1

2
||W ⊺W ||2F

= −E[(W (diag(vec(x)) · vec(m)))⊺(W (diag(vec(x)) · vec(1−m)))] +
1

2
||W ⊺W ||2F .

(8)

Define
a = diag(vec(x)) · vec(m), b = diag(vec(x)) · vec(1−m), (9)

so that the above loss becomes

LMIM = −E[a⊺W ⊺Wb] +
1

2
||W ⊺W ||2F . (10)

Using the fact that

a⊺W ⊺Wb = tr(a⊺W ⊺Wb) = tr(W ⊺Wba⊺) = tr(Wba⊺W ⊺), (11)

we obtain
∂

∂W

(
a⊺W ⊺Wb

)
=

∂

∂W
(tr(Wba⊺W ⊺)) = W (ba⊺ + ab⊺). (12)

Together with
∂( 12∥W

⊤W∥2F )
∂W

= 2WW ⊺W, (13)

the gradient of the complete objective becomes

∂LMIM

∂W
= −WE

[
ba⊺ + ab⊺

]
+ 2WW ⊺W. (14)

Setting the gradient to zero yields

WE [ba⊺ + ab⊺] = 2WW ⊺W. (15)

Under Assumption A.5, multiplying both sides on the left by the Moore–Penrose pseudoinverse W+

reduces Eq.(15) to the stationary condition
1

2
E [ba⊺ + ab⊺] = W ⊺W. (16)

Let XM
i represent the left-hand side of this equation. Consider the binary matrix m used for masking

is sampled uniformly from the binomial distribution with a probability p, we establish

XM
i =

1

2
E[diag(vec(x))vec(1−m)vec(m)⊺diag(vec(x))⊺

+ diag(vec(x))vec(m)vec(1−m)⊺diag(vec(x))⊺]

=
2p (1− p)

|Di|

|Di|∑
j=1

(diag (vec (xi,j)) diag (vec (xi,j))
⊺
),

(17)

where Ex∼Di
[xx⊺] = 1

|Di|
∑|Di|

j=1 (diag (vec (xi,j)) diag (vec (xi,j))
⊺
) denotes the empirical covari-

ance matrix for the learning with local dataset on client i. Based on the setup of data generation in
Section 3, we also derive the following expectation of XM

i with τ = d
1
5 and µ = d−

1
5 :

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E
[
XM

i

]
= diag(

2p (1− p) τ2 +O
(
d−

2
5

)
, ..., 2p (1− p) +O

(
d−

2
5

)
︸ ︷︷ ︸

ith term

, ..., 2p (1− p) τ2 +O
(
d−

2
5

)
︸ ︷︷ ︸

N terms

,

O
(
d−

2
5

)
, ..., O

(
d−

2
5

)
︸ ︷︷ ︸

d−N terms

)

= diag
(
2p (1− p) d

2
5 +O

(
d−

2
5

)
, ..., 2p (1− p) +O

(
d−

2
5

)
,

..., 2p (1− p) d
2
5 +O

(
d−

2
5

)
, ..., O

(
d−

2
5

))

(18)

Next, consider the fact that up to a positive scaling and an additive constant, the regularized MIM
objective can be rewritten as the Frobenius-norm objective L(W ) = ∥XM

i − W ⊺W∥2F . Thus,
minimizing LMIM solves the Frobenius-norm best rank-c approximation problem for XM

i . According
to the Eckart-Young-Mirsky theorem (Eckart & Young, 1936), we notice that the row span of the
optimal W ∈ Rc×d is the span of the eigenvectors corresponding to the first c eigenvalues of
XM

i . Denoting the set of orthonormal eigenvectors of XM
i as

{
vMi,1, ..., v

M
i,d

}
, we have XM

i =∑d
j=1 λi,jv

M
i,j(v

M
i,j)

⊺, where λi,j := λj(X
M
i ) is the j-th largest eigenvalue of XM

i . Therefore, the
inequality below is satisfied:

e⊺kX
M
i ek = e⊺k

 d∑
j=1

λi,jv
M
i,j(v

M
i,j)

⊺

 ek

=

d∑
j=1

λi,j(e
⊺
kv

M
i,j)

2

≤ λM
i,1

d∑
j=1

(e⊺kv
M
i,j)

2,

(19)

for any ek with k ∈ [N ] \{i}. On the other hand, under the data construction described in Section 3.2,
the number of samples on each client equals to the sum of the samples from frequent classes and the
rare class. Since each of the two frequent classes grows in polynomials of d, while the amount of data
from the rare class is O(dα) with α ∈ (0, 1), the local sample size satisfies |Di| = Θ(dβ) with β ≥ 1.
Based on this sufficiently large sample size and Assumption A.7, the matrix concentration bounds
(Vershynin, 2018) implies that the spectral norm satisfies ∥XM

i − E
[
XM

i

]
∥2 ≤ O

(
d−

2
5

)
with

probability at least 1− 1
2e

−d
1
10 . Building on Weyl’s inequality, we obtain that with high probability,

∣∣λM
i,k − λkE

[
XM

i

]∣∣ ≤ ∥XM
i − E

[
XM

i

]
∥2 ≤ O

(
d−

2
5

)
. (20)

By combining Eqs.(18), (19) and (20), we can derive the below lower bound for e⊺kX
M
i ek:

e⊺kX
M
i ek = e⊺kE

[
XM

i

]
ek + e⊺k

[
XM

i − E
[
XM

i

]]
ek

≥ 2p (1− p) d
2
5 +O

(
d−

2
5

)
− ∥XM

i − E
[
XM

i

]
∥

≥ 2p (1− p) d
2
5 −O

(
d−

2
5

)
,

(21)
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which is led by the fact that ∥X∥max ≤ ∥X∥ for symmetric X . Likewise, we prove the upper bound
as follows:

e⊺kX
M
i ek = e⊺kE

[
XM

i

]
ek + e⊺k

[
XM

i − E
[
XM

i

]]
ek

≤ 2p (1− p) d
2
5 +O

(
d−

2
5

)
+ ∥XM

i − E
[
XM

i

]
∥

≤ 2p (1− p) d
2
5 +O

(
d−

2
5

)
.

(22)

Moreover, we notice from Eqs.(18) and (19) that the below statements hold for λM
i,1:

λM
i,1 ≥ λ1

(
E
[
XM

i

])
−O

(
d−

2
5

)
≥ 2p (1− p) d

2
5 −O

(
d−

2
5

)
λM
i,1 ≤ λ1

(
E
[
XM

i

])
+O

(
d−

2
5

)
= 2p (1− p) d

2
5 +O

(
d−

2
5

)
.

(23)

With Eqs.(21) - (23), we further establish

d∑
j=1

(e⊺kv
M
j )2 ≥

2p (1− p) d
2
5 −O

(
d−

2
5

)
2p (1− p) d

2
5 +O

(
d−

2
5

)
=

2p (1− p) d
2
5 +O

(
d−

2
5

)
2p (1− p) d

2
5 +O

(
d−

2
5

) − 2O
(
d−

2
5

)
2p (1− p) d

2
5 +O

(
d−

2
5

)
= 1−

O
(
d−

2
5

)
2p (1− p) d

2
5 +O

(
d−

2
5

) .
(24)

This completes the proof for local representation.

For global feature space. Since the local goal can be equivalently re-formulated as ∥XM
i −W ⊺W∥2F ,

by Assumptions A.1 and A.3, we re-write the global goal of D-SSL for DecL framework (shown in
Eq.(1)) as

min
W

1

N

∑
i∈[N ]

1

|Ai|
∑
j∈Ai

∥XM
j −W ⊺W∥2F . (25)

Note that the following function holds the same minimizer as Eq.(25):

min
W
∥ 1
N

∑
i∈[N ]

1

|Ai|
∑
j∈Ai

XM
j −W ⊺W∥2F

= min
W
∥ 1
N

∑
i∈[N ]

XM
i −W ⊺W∥2F

= min
W
∥XM −W ⊺W∥2F ,

(26)

where XM
i =

∑
j∈Ai

1
|Ai|X

M
j denotes the empirical covariance matrix for training with the local

datasets across the local datasets on client i and its neighbors. So, finding the optimal W for DecL is
equivalent to solving Eq.(26). Following the derivation of Eq.(18) and linearity of expectation, we
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establish
E
(
XM

i

)
= diag(

..., 2p (1− p)

((
1− 1

|Ai|

)
d

2
5 +

1

|Ai|

)
+O

(
d−

2
5

)
︸ ︷︷ ︸

j∈Ai\i

, ..., 2p (1− p) d
2
5 +O

(
d−

2
5

)
︸ ︷︷ ︸

ithterm

, ...,

︸ ︷︷ ︸
N terms

O
(
d−

2
5

)
, ..., O

(
d−

2
5

)
︸ ︷︷ ︸

d−N terms

)
,

(27)

where we prove with the fact that

(|Ai| − 1) 2p (1− p) d
2
5 + 2p (1− p) + |Ai|O

(
d−

2
5

)
|Ai|

=
(|Ai| − 1) 2p (1− p) d

2
5 + 2p (1− p)

|Ai|
+O

(
d−

2
5

)
= 2p (1− p)

(
1− 1

|Ai|

)
d

2
5 + 2p (1− p)

1

|Ai|
+O

(
d−

2
5

)
= 2p (1− p)

((
1− 1

|Ai|

)
d

2
5 +

1

|Ai|

)
+O

(
d−

2
5

)
.

(28)

With Eq.(27), we can also have

E
(
XM

)
= diag(

2p (1− p)

(
1− 1∣∣Ā∣∣

)
d

2
5 +O

(
d−

9
20

)
, ..., 2p (1− p)

(
1− 1∣∣Ā∣∣

)
d

2
5 +O

(
d−

9
20

)
︸ ︷︷ ︸

N terms

,

..., O
(
d−

2
5

))
(29)

where we consider 1
N

∑N
i=1

1
|Ai| =

∣∣Ā∣∣ and the fact that∑N
i=1

(
2p (1− p)

((
1− 1

|Ai|

)
d

2
5 + 1

|Ai|

)
+O

(
d−

2
5

))
N

= 2p (1− p)

((
1− 1

N

N∑
i=1

1

|Ai|

)
d

2
5 +

1

N

N∑
i=1

1

|Ai|

)
+O

(
d−

2
5

)
= 2p (1− p)

((
1− 1∣∣Ā∣∣

)
d

2
5 +

1∣∣Ā∣∣
)

+O
(
d−

2
6

)
= 2p (1− p)

(
1− 1∣∣Ā∣∣

)
d

2
5 +O

(
d−

2
5

)
.

(30)

Through similar proof from Eq.(21) to Eq.(23), we prove that the following statements hold for all
i ∈ [N ]:

e⊺kX
Mek ≥ 2p (1− p)

(
1− 1∣∣Ā∣∣

)
d

2
5 −O

(
d−

2
5

)
e⊺kX

Mek ≤ 2p (1− p)

(
1− 1∣∣Ā∣∣

)
d

2
5 +O

(
d−

2
5

) (31)
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λM
i,1 ≥ λ1

(
E
[
XM

])
+O

(
d−

2
5

)
= 2p (1− p)

(
1− 1∣∣Ā∣∣

)
d

2
5 −O

(
d−

2
5

)
λM
i,1 ≤ λ1

(
E
[
XM

])
+O

(
d−

2
5

)
= 2p (1− p)

(
1− 1∣∣Ā∣∣

)
d

2
5 +O

(
d−

2
5

)
,

(32)

which then implies:

d∑
j=1

(e⊺k v̄
M
j )2 ≥

2p (1− p)

(
1− 1

|Ā|

)
d

2
5 −O

(
d−

2
5

)
2p (1− p)

(
1− 1

|Ā|

)
d

2
5 +O

(
d−

2
5

)

=

2p (1− p)

(
1− 1

|Ā|

)
d

2
5 +O

(
d−

2
5

)
2p (1− p)

(
1− 1

|Ā|

)
d

2
5 +O

(
d−

2
5

) − 2O
(
d−

2
5

)
2p (1− p)

(
1− 1

|Ā|

)
d

2
5 +O

(
d−

2
5

)
= 1−

O
(
d−

2
5

)
2p (1− p)

(
1− 1

|Ā|

)
d

2
5 +O

(
d−

2
5

) .

(33)

The proof for the global featured space learned in the decentralized learning framework has been
completed. Next, consider federated learning (FL) as a special case of decentralized learning with
∀i ∈ [N ], |Ai| = N . The global of FL is thus:

min
W

1

N

∑
i∈[N ]

∥XM
i −W ⊺W∥2F . (34)

This is similar to solving

min
W
∥XM −W ⊺W∥2F , (35)

where XM := 1
N

∑
i∈[N ] X

M
i denotes the empirical covariance matrix for learning with the global

dataset. Then, we derive

E
(
XM

)
= diag

(
2p (1− p) d

2
5 −Θ

(
d

7
20

)
+O

(
d−

2
5

)
, ...,

2p (1− p) d
2
5 −Θ

(
d

7
20

)
+O

(
d−

2
5

)
, ...O

(
d−

2
5

)) (36)

where we adopt N = Θ(d
1
20 ) have used the fact that

(N − 1) 2p (1− p) d
2
5 + 2p (1− p) +NO

(
d−

2
5

)
N

=

(
Θ
(
d

1
20

)
− 1
)
2p (1− p) d

2
5 + 2p (1− p)

Θ
(
d

1
20

) +O
(
d−

2
5

)
= 2p (1− p)

(
1−Θ

(
d−

1
20

))
d

2
5 +Θ

(
d−

1
20

)
+O

(
d−

2
5

)
= 2p (1− p) d

2
5 −Θ

(
d

7
20

)
+O

(
d−

2
5

)
.

(37)
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Again, by similar arguments from Eq.(21) to Eq.(23), we further prove

d∑
j=1

(e⊺k v̄
M
j )2 ≥

2p (1− p) d
2
5 −Θ

(
d

7
20

)
−O

(
d−

2
5

)
2p (1− p) d

2
5 −Θ

(
d

7
20

)
+O

(
d−

2
5

)
=

2p (1− p) d
2
5 −Θ

(
d

7
20

)
+O

(
d−

2
5

)
2p (1− p) d

2
5 −Θ

(
d

7
20

)
+O

(
d−

2
5

) − 2O
(
d−

2
5

)
p (1− p) d

2
5 −Θ

(
d

7
20

)
+O

(
d−

2
5

)
= 1−

O
(
d−

2
5

)
2p (1− p) d

2
5 −Θ

(
d

7
20

)
+O

(
d−

2
5

) ,
(38)

which completes the proof of this theorem.
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A.7.3 LEARNED REPRESENTABILITY FOR DECENTRALIZED CONTRASTIVE LEARNING

This section provides the full proof of Theorem 4.3.

Lemma A.11. (Representability of Distributed CL under Similar Augmentations). Consider the same
distributed scenario in Theorem 4.2. For distributed SSL that utilizes Contrastive Learning (CL) in
pre-training and generate positive pairs through similar augmentations, with a high probability, the
following statements hold:

1. Let rCi = [rCi,1, . . . , r
C
i,c]

⊺ be the local RV learned on client i. If positive pairs are generated

by similar augmentations, we have 1− O(d− 1
5 )

d
2
5 +O(d− 1

5 )
≤ rCi,k ≤ 1, where i ∈ [N ]\k.

2. Let r̄CDec = [r̄C1 , . . . , r̄
C
c ]

⊺ be the RV learned through the global objective of DecL framework,

then we have 1− O(d− 1
5 )

(1− 1
|Ā| )d

2
5 +O(d− 1

5 )
≤ r̄C ≤ 1.

3. Let r̄MFed = [̄rM1 , . . . , r̄Mc ]⊺ be the RV learned through the global objective of FL framework,

we have 1− O(d− 1
5 )

d
2
5 −Θ(d

7
20 )+O(d− 1

5 )
≤ r̄CFed ≤ 1.

Proof. Following the proof in A.7.2, we first discuss local representability learned by distributed
contrastive learning and then derive the global representation based on these local features. Since
federated learning differs from decentralized learning in terms of updates, we construct separate
global representations for each distributed framework.

For local feature space. Let a = x + ξ and b = x + ξ′. Based on the loss function of contrastive
learning (CL) shown in Section 3.2, we obtain

LCL = −Ex∼Di
[(W (x+ ξ))⊺(W (x+ ξ′))] +

1

2
||W ⊺W ||2F

= −Ex∼Di
[a⊺W ⊺Wb] +

1

2
||W ⊺W ||2F .

(39)

By the same derivation between Eq.(11)-Eq.(14), the gradient of the above function is

∂LCL

∂W
= −WE

[
(x+ ξ′)(x+ ξ)⊺ + (x+ ξ)(x+ ξ′)⊺

]
+ 2WW ⊺W. (40)

To find the minimizer of LCL, we solve for

−WE
[
(x+ ξ′)(x+ ξ)⊺ + (x+ ξ)(x+ ξ′)⊺

]
+ 2WW ⊺W = 0. (41)

Under Assumption A.5, it leads to

1

2
E
[
2xx⊺ + xξ⊺ + ξ′x⊺ + x(ξ′)⊺ + ξx⊺ + ξ′ξ⊺ + ξ(ξ′)⊺

]
= W ⊺W. (42)

Similarly, let XC
i represent the left-hand side of this equation. We can then establish

XC
i =

1

2 |Di|

|Di|∑
j=1

(
2xi,jx

⊺
i,j + xi,jξ

⊺
i,j + ξ′i,jx

⊺
i,j + xi,j(ξ

′)⊺i,j + ξi,jx
⊺
i,j + ξ′i,jξ

⊺
i,j + ξi,j(ξ

′)⊺i,j
)
,

(43)
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where XC
i represents the empirical covariance matrix for the local feature learned by CL on client i.

Considering that ξ, ξ′ ∼ N (0, I), we also derive the following expectation of XC
i :

E
[
XC

i

]
= diagτ2 +O
(
d−

2
5

)
+ 2O

(
d−

1
5

)
, ..., 1 +O

(
d−

2
5

)
+ 2O

(
d−

1
5

)
︸ ︷︷ ︸

ith term

, ..., τ2 +O
(
d−

2
5

)
+ 2O

(
d−

1
5

)
︸ ︷︷ ︸

N terms

,

. . . 2O
(
d−

1
5

)
+O

(
d−

2
5

)
, ..., 2O

(
d−

1
5

)
+O

(
d−

2
5

)
︸ ︷︷ ︸

d−N terms


= diag

(
d

2
5 +O

(
d−

1
5

)
, ..., 1 +O

(
d−

1
5

)
, ..., d

2
5 +O

(
d−

1
5

)
, ..., O

(
d−

1
5

))
(44)

Next, using similar arguments from Eqs. (19) to (23), we arrive at the below results:

d
2
5 −O

(
d−

1
5

)
≤ e⊺kX

C
i ek ≤ d

2
5 +O

(
d−

1
5

)
d

2
5 −O

(
d−

1
5

)
≤ λC

i,1 ≤ d
2
5 +O

(
d−

1
5

)
.

(45)

With these inequalities, we derive

d∑
j=1

(e⊺kv
C
j )

2 ≥
d

2
5 −O

(
d−

1
5

)
d

2
5 +O

(
d−

1
5

)
= 1−

O
(
d−

1
5

)
d

2
5 +O

(
d−

1
5

) ,
(46)

which completes the proof of the local part.

For global feature space. Since the local goal can be equivalently reformulated as ∥XC
i −W ⊺W∥2F ,

by Assumptions A.1 and A.3, the global goal of distributed contrastive learning in the decentralized
learning (DecL) framework is given by

min
W

∑
i∈[N ]

1

N

∑
j∈Ai

1

|Ai|
∥XC

j −W ⊺W∥2F . (47)

Furthermore, we find this is equivalent to solving

min
W
∥ 1
N

∑
i∈[N ]

1

|Ai|
∑
j∈Ai

XC
j −W ⊺W∥2F

= min
W
∥ 1
N

∑
i∈[N ]

XC
i −W ⊺W∥2F

= min
W
∥XC −W ⊺W∥2F .

(48)

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Again, using similar arguments from Eq. (27) to Eq. (33), we further establish

d∑
k=1

(e⊺k v̄
C
j )

2 ≥

(
1− 1

|Ā|

)
d

2
5 −O

(
d−

1
5

)
(
1− 1

|Ā|

)
d

2
5 +O

(
d−

1
5

)
= 1−

O
(
d−

1
5

)
(
1− 1

|Ā|

)
d

2
5 +O

(
d−

1
5

) .
(49)

The proof for the global feature space learned in the DecL framework has been completed. Next,
denote federated learning (FL) as a special case of decentralized learning with ∀i, |Ai| = N . The
global objective of FL is expressed as

min
W
∥XC −W ⊺W∥2F . (50)

where we denote XC := 1
N

∑
i∈[N ] X

C
i . By similar arguments from Eq. (36) to Eq. (38), we have

d∑
j=1

(e⊺k v̄
C
j )

2 ≥
d

2
5 −Θ

(
d

7
20

)
−O

(
d−

1
5

)
d

2
5 −Θ

(
d

7
20

)
+O

(
d−

1
5

)
=

d
2
5 −Θ

(
d

7
20

)
+O

(
d−

1
5

)
d

2
5 −Θ

(
d

7
20

)
+O

(
d−

1
5

) − 2O
(
d−

1
5

)
d

2
5 −Θ

(
d

7
20

)
+O

(
d−

1
5

)
= 1−

O
(
d−

1
5

)
d

2
5 −Θ

(
d

7
20

)
+O

(
d−

1
5

) ,
(51)

which completes the proof of this lemma.

Then, we start to prove Theorem 4.3 as follows.

Proof. Lemma A.11 demonstrates the learned local and global representations of distributed CL
when positive pairs are generated by similar augmentations. For the other case using dissimilar
augmentations, we adopt a similar process to derive the local and global representations.

For local feature space. Define a = x+ξ and b = Hx. According to the loss function of contrastive
learning (CL) with dissimilar augmentations in Section 3.2, we have

L′
CL = −Ex∼D [(W (x+ ξ))

⊺
(WHx)] +

1

2
∥W ⊺W∥2F

= −E [a⊺W ⊺Wb] +
1

2
∥W ⊺W∥2F .

(52)

The minimizer of this loss function is

∂L′
CL

∂W
= −WE [Hx(x+ ξ)⊺ + (x+ ξ)x⊺H⊺] + 2WW ⊺W = 0. (53)

Rearranging it under Assumption A.5 derives

1

2
E [Hx(x+ ξ)⊺ + (x+ ξ)x⊺H⊺] = W ⊺W. (54)
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Let XC′

i denote the left-hand side of the above equation. Hence,

XC′

i =
1

2
E [Hx(x+ ξ)⊺ + (x+ ξ)x⊺H⊺]

=
1

2 |Di|

|Di|∑
j=1

(
Hxi,jx

⊺
i,j +Hxi,jξ

⊺
i,j + xi,jx

⊺
i,jH

⊺ + ξi,jx
⊺
i,jH

⊺
)
.

(55)

Similarly, based on the formulation that ξ ∼ N (0, I), τ = d
1
5 and µ = d−

1
5 , the expectation of XC′

i
can be written as

E(XC′

i ) =

diag
(

tr(H)τ2 +O
(
d−

2
5

)
, . . . , tr(H) +O

(
d−

2
5

)
,︸ ︷︷ ︸

ith term

. . . , tr(H)τ2 +O
(
d−

2
5

)
,

︸ ︷︷ ︸
N terms

. . . , O
(
d−

2
5

))

+ diag
(
O
(
d−

1
5

)
, . . . , O

(
d−

1
5

)
,︸ ︷︷ ︸

N terms

. . . , O
(
d−

1
5

))

= diag
(

tr(H)d
2
5 +O

(
d−

1
5

)
, . . . , tr(H) +O

(
d−

1
5

)
, . . . , tr(H)d

2
5 +O

(
d−

1
5

)
, . . . , O

(
d−

1
5

))
.

(56)

Following the proof process from Eqs. (20) to (23), the following inequalities can be found

∣∣∣λC′

i,k − λkE
[
XC′

i

]∣∣∣ ≤ ∥XC′

i − E
[
XC′

i

]
∥2 ≤ O

(
d−

1
5

)
tr(H)d

2
5 −O

(
d−

1
5

)
≤ e⊺kX

C′

i ek ≤ tr(H)d
2
5 +O

(
d−

1
5

)
tr(H)d

2
5 −O

(
d−

1
5

)
≤ λC′

i,1 ≤ tr(H)d
2
5 +O

(
d−

1
5

)
.

(57)

However, unlike the previous proof, there exists a potential issue that the image transformation matrix
H may lead to the case that XC′

i is not a square matrix. Then we denote XC′

i =
∑d

j=1 λi,ju
C′

i,jv
C′

i,j ,
where uC′

i,j and vC
′

i,j are left and right singular vectors produced by SVD decomposition. So, we have

e⊺kX
C′

i ek =

d∑
j=1

λi,j(e
⊺
ku

C′

i,jv
C′

i,jek)

≤ λC′

i,1

d∑
j=1

|e⊺ku
C′

i,jv
C′

i,jek|,

(58)

which further leads to

d∑
j=1

|e⊺ku
C′

i,jv
C′

i,jek| ≥
tr(H)d

2
5 −O

(
d−

1
5

)
tr(H)d

2
5 +O

(
d−

1
5

)
= 1−

O
(
d−

1
5

)
tr(H)d

2
5 +O

(
d−

1
5

) .
(59)
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For global feature space. By similar augments from Eq. (27) to Eq. (33) and based on Eq.(59), for
the global representation learned through the decentralized learning framework, we establish

d∑
k=1

|e⊺kū
C′

j v̄C
′

j ek| ≥
tr(H)

(
1− 1

|Ā|

)
d

2
5 −O

(
d−

1
5

)
tr(H)

(
1− 1

|Ā|

)
d

2
5 +O

(
d−

1
5

)
= 1−

O
(
d−

1
5

)
tr(H)

(
1− 1

|Ā|

)
d

2
5 +O

(
d−

1
5

) .
(60)

On the other hand, for the global objective of the federated learning framework, we follow the
arguments from Eq. (36) to Eq. (38) to derive

d∑
j=1

|e⊺kū
C′

j v̄C
′

j ek| ≥
tr(H)d

2
5 −Θ

(
d

7
20

)
−O

(
d−

1
5

)
tr(H)d

2
5 −Θ

(
d

7
20

)
+O

(
d−

1
5

)
= 1−

O
(
d−

1
5

)
tr(H)d

2
5 −Θ

(
d

7
20

)
+O

(
d−

1
5

) .
(61)

Combining Lemma A.11, Eq.(59), Eq.(60) and Eq.(61) completes the proof.

A.7.4 PROOF OF FIRST THEORETICAL INSIGHT

This section provides the full proof of Theorem 4.4.

Proof. According to Theorem 4.2 and Theorem 4.3, we can find the main difference between the
global representations lies in the lower bound. For the global feature learned in the decentralized
learning (DecL) framework, we denote the sensitivity of D-SSL as below:

sMDec =
O
(
d−

2
5

)
2p (1− p)

(
1− 1

|Ā|

)
d

2
5 +O

(
d−

2
5

) , (62)

sC1

Dec =
O
(
d−

1
5

)
(
1− 1

|Ā|

)
d

2
5 −O

(
d−

1
5

) , (63)

sC2

Dec =
O
(
d−

1
5

)
tr(H)

(
1− 1

|Ā|

)
d

2
5 −O

(
d−

1
5

) , (64)

where sMDec represents the sensitivity of MIM-based D-SSL to heterogeneous data, sC1

Dec represents
the sensitivity of CL-based SSL with similar augmentations, and sC2

Dec represents the sensitivity of
CL-based SSL with dissimilar augmentations. Then, we compare the magnitude of sMDec and sC1

Dec by
solving the following equation:
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sMDec − sC1

Dec =
O
(
d−

2
5

)
(
1− 1

|Ā|

)
d

2
5 +O

(
d−

2
5

) − O
(
d−

1
5

)
(
1− 1

|Ā|

)
d

2
5 −O

(
d−

1
5

)

=

O
(
d−

2
5

)((
1− 1

|Ā|

)
d

2
5 −O

(
d−

1
5

))
−O

(
d−

1
5

)((
1− 1

|Ā|

)
d

2
5 +O

(
d−

2
5

))
((

1− 1

|Ā|

)
d

2
5 −O

(
d−

1
5

))((
1− 1

|Ā|

)
d

2
5 +O

(
d−

2
5

)) .

(65)

Consider the dimension d of the Euclidean space is very large so that d→∞. Then, we have

lim
d→∞

[sMDec − sC1

Dec] =

lim
d→∞

O
(
d−

2
5

)((
1− 1

|Ā|

)
d

2
5 −O

(
d−

1
5

))
−O

(
d−

1
5

)((
1− 1

|Ā|

)
d

2
5 +O

(
d−

2
5

))
((

1− 1

|Ā|

)
d

2
5 −O

(
d−

1
5

))((
1− 1

|Ā|

)
d

2
5 +O

(
d−

2
5

))

= lim
d→∞

−
(
1− 1

|Ā|

)
O
(
d

1
5

)
(
1− 1

|Ā|

)2

Θ
(
d

4
5

) .

(66)

Due to the fact that 2 ≤
∣∣Ā∣∣ ≤ N , we prove

lim
d→∞

[sMDec − sC1

Dec] < 0. (67)

Similarly, under Assumption A.9, we determine if sMDec is less than sC2

Dec as follows

lim
d→∞

[
sC2

Dec

sMDec

] = lim
d→∞

O
(
d−

1
5

)
tr(H)

(
1− 1

|Ā|

)
d

2
5 +O

(
d−

1
5

)
O
(
d−

2
5

)
2p(1− p)

(
1− 1

|Ā|

)
d

2
5 +O

(
d−

2
5

)
=

d−
3
5

d−
4
5

=∞, (68)

which implies
lim
d→∞

[sMDec − sC2

Dec] < 0. (69)

Combining Eqs.(67) and (69) arrives

lim
d→∞

[sMDec − sCDec] < 0, (70)

where sCDec denotes the sensitivity of CL-based SSL to heterogeneous data. On the other hand, for
the federated learning (FL) framework, we denote the following sensitivity of D-SSL:

sMFed =
O
(
d−

2
5

)
2p (1− p) d

2
5 −Θ

(
d

7
20

)
+O

(
d−

2
5

) , (71)
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sC1

Fed =
O
(
d−

1
5

)
d

2
5 −Θ

(
d

7
20

)
+O

(
d−

1
5

) , (72)

sC2

Fed =
O
(
d−

1
5

)
tr(H)d

2
5 −Θ

(
d

7
20

)
+O

(
d−

1
5

) . (73)

The difference between sMFed and sC1

Fed is given by

sMFed − sC1

Fed =
O
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4
5

)
2p (1− p)−Θ
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1
20

)
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5

)
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1
20

)
+O

(
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3
5

)
=

O
(
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4
5

)(
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(
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1
20

)
+O

(
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3
5

))
−O

(
d−

3
5

)(
1−Θ

(
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1
20

)
+O

(
d−

4
5

))
(
1−Θ

(
d−

1
20

)
+O

(
d−

4
5

))(
1−Θ

(
d−

1
20

)
+O

(
d−

3
5

))
=
−O

(
d−

3
5

)
+Θ

(
d−

13
20

)
d

1
5 −Θ

(
d

3
20

)
+O

(
d−

3
5

) .
(74)

For the above result, let d→∞, we can establish

lim
d→∞

[sMFed − sC1

Fed] = lim
d→∞

−O
(
d−

3
5

)
+Θ

(
d−

13
20

)
d

1
5 −Θ

(
d

3
20

)
+O

(
d−

3
5

) = lim
d→∞

−O
(
d−

3
5

)
d

1
5

< 0 (75)

Then for the comparison between sMFed and sC2

Fed, under Assumption A.9, we have

lim
d→∞

[
sC2

Fed

sMFed

] = lim
d→∞

O
(
d−

1
5

)
tr(H) d

2
5 −Θ

(
d

7
20

)
+O

(
d−

1
5

)
O
(
d−

1
5

)
d

2
5 −Θ

(
d

7
20

)
+O

(
d−

1
5

)
=

d−
3
5

d−
4
5

=∞. (76)

With Eqs.(75) and (76), we find

lim
d→∞

[sMFed − sCFed] < 0. (77)

Combining Eq.(70) and Eq.(77) completes the proof.
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A.7.5 PROOF OF SECOND THEORETICAL INSIGHT

This section provides the full proof of Corollary 4.5 and Theorem 4.6.

Proof. For the decentralized learning (DecL) framework, we notice from Eqs.(62), (63) and (64) that
their denominators both include the term 1− 1

|Ā| . Since
∣∣Ā∣∣ is proportional to 1− 1

|Ā| , we derive

that
∣∣Ā∣∣ is inversely proportional to sMDec, sC1

Dec and sC2

Dec, which completes the proof of Corollary
4.5. Next, by a similar proof from Eq.(62) to Eq.(77), we compare the robustness of distributed MIM
between DecL and FL framework by solving

sMDec − sMFed =
O
(
d−

2
5

)
2p (1− p)

(
1− 1

|Ā|

)
d

2
5 +O
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2
5

) − O
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2
5

)
2p (1− p) d

2
5 −Θ

(
d

7
20

)
+O

(
d−

2
5

) .
(78)

This is equivalent to solving

2p (1− p)

(
1− 1∣∣Ā∣∣

)
d

2
5 −

(
2p (1− p) d

2
5 −Θ

(
d

7
20

))
= 2p (1− p) d

2
5 − 2p (1− p)∣∣Ā∣∣ d

2
5 − 2p (1− p) d

2
5 +Θ

(
d

7
20

)
.

(79)

Due to the fact that

lim
d→∞

[
2p (1− p) d

2
5 − 2p (1− p)∣∣Ā∣∣ d

2
5 − 2p (1− p) d

2
5 +Θ

(
d

7
20

)]
< 0, (80)

we have

lim
d→∞

[sMDec − sMFed] > 0. (81)

Similarly, for CL-based SSL, we have

sC1

Dec − sC1

Fed =
O
(
d−

1
5

)
(
1− 1
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)
d
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d
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d

7
20

)
+O

(
d−

1
5

) , (82)

sC2

Dec − sC2

Fed =
O
(
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1
5

)
tr(H)

(
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|Ā|

)
d

2
5 −O

(
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1
5

) − O
(
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1
5

)
tr(H)d

2
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7
20

)
+O

(
d−

1
5

) . (83)

Under Assumption A.9, the above results imply that

lim
d→∞

[sC1

Dec − sC1

Fed] > 0, (84)

lim
d→∞

[sC2

Dec − sC2

Fed] > 0. (85)

With Eqs.(84) and (85), we find
lim
d→∞

[sCDec − sCFed] > 0. (86)

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Combining Eq.(81) with Eq.(86) derives

lim
d→∞

[sDec > sFed]. (87)

Note that Eq.(87) holds for decentralized learning setups in which each client has an inconsistent
number of neighbors. However, there exists an optimal case for decentralized learning, denoted by
∀i, |Ai| = N . In this case, the global objective of decentralized learning can be re-formulated as
follows:

∑
i∈[N ]

1

N

∑
j∈[N ]

1

N
L =

∑
i∈[N ]

1

N
L. (88)

This equation is exactly the same as the global objective of federated learning shown in Eq.(1).
Therefore, we know the below statement holds:

lim
d→∞

[sDec = sFed], (89)

when ∀i ∈ [N ], |Ai| = N . Combining Eq.(87) and Eq.(89) completes the proof.
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