LORA DROPOUT AS A SPARSITY REGULARIZER FOR OVERFITTING REDUCTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Parameter-efficient fine-tuning methods, represented by LoRA, play an essential role in adapting large-scale pre-trained models to downstream tasks. However, fine-tuning LoRA-series models also faces the risk of overfitting on small training datasets, and there's still a lack of theoretical guidance and practical mechanisms to control overfitting on LoRA-based PEFT methods. This paper introduces a novel dropout-based sparsity regularizer for LoRA, dubbed LoRA Dropout, which mitigates overfitting by applying refined dropout to LoRA's low-rank matrices. We establish a theoretical framework that models dropout in LoRA as a sparse fine-tuning process and derive a generalization error bound under this sparsity regularization. Theoretical results show that appropriate sparsity can tighten the gap between empirical and generalization risks and thereby control overfitting. We further enhance the sparsity patterns in conventional dropout methods and propose an innovative LoRA Dropout method for more precise sparsity regularization to achieve better overfitting reduction. Furthermore, we introduce a test-time ensemble strategy and provide theoretical evidence demonstrating that the ensemble method can further compress the error bound and lead to better performance. Extensive experiments on various NLP tasks validate the effectiveness of our LoRA Dropout framework in improving the model's performance.

028 029

031

004

010 011

012

013

014

015

016

017

018

019

021

025

026

027

1 INTRODUCTION

In recent years, Pre-trained Language Models (PLMs) (Devlin et al., 2018; Liu et al., 2019; He et al., 2020; Touvron et al., 2023) have demonstrated increasingly superior performances in various NLP tasks as the rapid growth of model parameter scale. However, with the increasing model capacity and complexity, the challenge arises when adapting the PLMs to specific downstream tasks, as fully fine-tuning often requires substantial computational resources. Therefore, a new fine-tuning paradigm emerges named Parameter-Efficient Fine-Tuning (PEFT), aiming to adapt PLMs to specific downstream tasks with minimal adjustments to their parameters.

Among the works in the field of PEFT (Houlsby et al., 2019; Lester et al., 2021; Li & Liang, 2021; Hu et al., 2021; Zhang et al., 2023; Ma et al., 2024), the Low-Rank Adaptation (LoRA) method (Hu et al., 2021) and its variants (Dettmers et al., 2023; Zhang et al., 2023; Zi et al., 2023) have been the most effective and widely adopted. The basic idea behind LoRA is that only some zero-initialized delta weight matrices get optimized during fine-tuning, and the original pre-trained parameters remain unmodified. To improve parameter efficiency, LoRA further decomposes the delta weight matrix into the product of two low-rank matrices.

However, one significant challenge when fine-tuning LoRA-series models on downstream tasks is
overfitting. As shown in Figure.1(a), the gap between train and test losses on both LoRA becomes
larger during fine-tuning, indicating a strong overfitting tendency of LoRA training. Simply reducing
the rank of LoRA (i.e. reducing learnable parameters) could help alleviate overfitting, but fewer
learnable parameters indicate less expressive power, and might lead to suboptimal performances.
Therefore, it is hard to select a proper rank that could balance the expressiveness and overfitting risk.
AdaLoRA (Zhang et al., 2023) proposes to automatically prune unimportant parameters with learned
importance scores during training to prevent overfitting. However, this parameter selection method
heavily relies on gradients of parameters on the training data, which in turn makes the selected

Figure 1: Loss curves on train and test set of SST2 dataset during fine-tuning of (a) LoRA w/wo our dropout framework, (b) AdaLoRA w/wo our dropout framework.

parameters less generalizable to unseen test data and increases the risk of overfitting. This is also practically demonstrated by the loss curves in Figure.1(b).

The dropout regularization (Hinton et al., 2012; Srivastava et al., 2014) is known as one of the most popular and effective techniques in deep learning to control overfitting. It works by randomly masking neurons and does not require to reduce parameter budget. Recently there have been works attempting to combine dropout with LoRA to control the overfitting risk when fine-tuning (Wang et al., 2024). However, these works fail to answer the following profound question:

What is the theoretical mechanism behind the alleviation of overfitting on the training data through random dropout of LoRA parameters?

In this paper, we answer the above question and build our theoretical framework by modeling the
training process with dropout from the perspective of sparse fine-tuning, and show that fine-tuning
LoRA with dropout can be viewed as an optimization problem with sparsity regularization. We further
provide a generalization error bound under the sparsity regularization framework. Through this bound,
we reveal that introducing appropriate sparsity on LoRA tunable parameters during fine-tuning helps
to balance the empirical risk minimization and complexity of the adaptation function. Therefore,
proper dropout would help tighten the gap between empirical and generalization risks and reduce
overfitting on the training data.

Furthermore, with our theoretical framework, we identify the flaws in the original dropout method 083 and improve upon it. The theoretical analyses point out a crucial condition for effectively applying 084 the dropout mechanism in LoRA training, namely the sparsity condition. While most prior studies 085 have implemented dropout on hidden representations or at the token level (Wang et al., 2024), 086 they fall short in generating a sufficiently diverse sparsity pattern across the parameter space. This 087 limitation hampers the precision of sparsity regularization. To address this issue, we introduce an 880 innovative approach called LoRA Dropout, which enhances the dropout process by incorporating 089 more expressive sparsity patterns for the updated parameters-without significantly increasing 090 GPU memory overhead. We also propose a test-time ensemble method with an ensemble classifier consisting of models with different parameter dropouts. This ensemble method can further improve 091 the model's test-time performance, which is also supported by theoretical evidence. 092

093 In summary, we conclude the main contributions of this paper as follows. We provide theoretical 094 analyses on the generalization error bound of dropout on LoRA, balancing the empirical risk mini-095 mization and complexity of the adaptation function class through sparsity regularization. Based on 096 the theoretical evidences, we propose a novel dropout framework for LoRA-based models. With expressive sparsity patterns, our LoRA Dropout method can effectively promote model's generalization 097 ability on downstream tasks. Moreover, we propose an ensemble strategy during the inference stage, 098 and show that this strategy will lead to an ensemble model with a tighter error bound and further enhance the model's test-time generalizability. Extensive experiments conducted on a wide range of 100 NLP tasks demonstrate the effectiveness of our method in improving the model's performances. 101

102

062

063 064 065

066

- 103
- 104
- 2 How Does Dropout Balance Over- and Under-Fitting in LoRA

105 106

In this section, we present the theoretical analyses of the LoRA optimization process with dropout to reveal how dropout alleviates overfitting in LoRA fine-tuning. We first model the LoRA fine-tuning with dropout as an optimization problem under model sparsity regularization. Then we propose the

generalization error bound under the sparsity regularization framework and reveal the theoretical
 mechanism behind the trade-off between underfitting and overfitting of fine-tuning with dropout.

111 112

> 126 127

> 128

129 130 131

136

137 138

153

154

2.1 FINE-TUNING WITH DROPOUT THROUGH THE LENS OF SPARSE REGULARIZATION

113 Supposing a pre-trained model \mathcal{M}^0 parameterized by $\theta^0 \in \mathbb{R}^d$, LoRA-like methods tune the model 114 \mathcal{M}^0 with low-rank parameterization of the delta parameters $\Delta \theta$. Dropout (Srivastava et al., 2014) is a widely adopted mechanism in traditional deep neural network training for overfitting risk reduction. 115 116 The core idea of dropout can be formulated as a **diversified sparse activation of neurons** (Gal & Ghahramani, 2016). Hence, inspired by (Fu et al., 2023), we model the LoRA fine-tuning with 117 random dropout as an optimization problem under sparsity regularization on parameter space. With 118 dropout that samples random neurons of LoRA matrices with a probability p and masks them to zeros, 119 the updated $\Delta \theta$ enjoys a sparsity property that each entry in the product of the LoRA matrices will 120 be zero with probability p. Let us denote $\theta = \theta^0 + \Delta \theta$ as the fine-tuned model parameters, where 121 $\Delta \theta$ is realized by LoRA reparameterization with dropout. Assume $d \in \{0, 1\}^d$ as a dropout instance 122 applied to the production of LoRA matrices (i.e., $\Delta \theta$) sampled from a Bernoulli distribution, i.e., 123 $d \sim \text{Bern}(p)$, where 1 denotes the corresponding entry is dropped to zero. The fine-tuning objective 124 can be formulated as: 125

$$\min_{\Delta \boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}^0 + \Delta \boldsymbol{\theta}), \text{ s.t. } \mathbb{E}_{\boldsymbol{d} \sim \text{Bern}(p)} || \boldsymbol{d} \odot \Delta \boldsymbol{\theta} ||_2^2 \leq \boldsymbol{c},$$
(1)

where c is a constant, and the condition denotes the sparsity of $\Delta \theta$. By Lagrange duality, problem (1) can be rewritten as:

$$\hat{\mathcal{L}} = \min_{\Delta \theta} \max_{\lambda} \mathcal{L}(\theta^0 + \Delta \theta) + \lambda \mathbb{E}_{\boldsymbol{d} \sim \operatorname{Bern}(p)} || \boldsymbol{d} \odot \Delta \theta ||_2^2,$$
(2)

and c is eliminated as a constant. Hence, we formulate the regularized optimization problem:

$$\min_{\Delta \boldsymbol{\theta}} \mathcal{L}_{\lambda} = \min_{\Delta \boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}^0 + \Delta \boldsymbol{\theta}) + \lambda \mathbb{E}_{\boldsymbol{d} \sim \operatorname{Bern}(p)} || \boldsymbol{d} \odot \Delta \boldsymbol{\theta} ||_2^2 \le \hat{\mathcal{L}}.$$
(3)

where λ is an arbitrary hyperparameter. This optimization objective is upper bounded by $\hat{\mathcal{L}}$, which is equivalent to the optima of problem (1).

139 2.2 GENERALIZATION ANALYSIS

140 In this subsection, we introduce the stability analysis of a sparse-regularized algorithm to analyze the 141 generalization error bound of dropout fine-tuning through optimizing Eq. (3). Stability has been a 142 widely studied topic in machine learning (Bousquet & Elisseeff, 2002; Charles & Papailiopoulos, 143 2018; Kuzborskij & Lampert, 2018) and demonstrated as an important property for analyzing the 144 generalization error bound of a random algorithm (Bousquet & Elisseeff, 2002; Elisseeff et al., 145 2005). Here we adopt one of the commonly used analytic mechanisms, the Pointwise Hypothesis 146 Stability (PHS), which analyzes the perturbation of the optimal model after removing one of the training samples. Following (Charles & Papailiopoulos, 2018), we denote the entire training dataset 147 as $\mathbf{S} = \{x_i\}_{i=1}^n$ and the dataset after removing a sample x_i as $\mathbf{S}^i = \mathbf{S} - \{x_i\}$. We assume that 148 $i \sim U(n)$ that the removal is sampled from a uniform distribution. We also denote $\theta_{\ell}(\mathbf{S})$ as the 149 optimal model parameters w.r.t. loss function ℓ and dataset S. 150

Definition 2.1 (Pointwise Hypothesis Stability (Bousquet & Elisseeff, 2002)). We say that a learning algorithm \mathcal{M} parameterized by θ w.r.t. a loss function ℓ has pointwise hypothesis stability β , if:

$$\mathbb{E}_{\mathbf{S},i\sim \mathrm{U}(n)}\left|\ell\left(x_{i};\boldsymbol{\theta}_{\ell}(\mathbf{S}^{i})\right)-\ell\left(x_{i};\boldsymbol{\theta}_{\ell}(\mathbf{S})\right)\right|\leq\beta,\tag{4}$$

where $\ell(x_i; \theta)$ denotes the sample loss of x_i when the model parameter is θ . Here we present a PHS upper bound of LoRA fine-tuning with dropout.

Proposition 2.2 (PHS Upper Bound of LoRA Fine-tuning with Dropout). If the loss function \mathcal{L}_{λ} of the algorithm M is η -Lipschitz, and $\theta_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i})$ is close to $\theta_{\mathcal{L}_{\lambda}}(\mathbf{S})$, $\theta_{\mathcal{L}_{\lambda}}(\mathbf{S})$ is close to $\theta_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i})$ whose gap is bounded by a small constant $\epsilon \to 0$, i.e., $||\theta_{\mathcal{L}_{\lambda}}(\mathbf{S}) - \theta_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i})|| \le \epsilon \to 0$, and the regularization coefficient $\lambda \ge \max\{0, \frac{\eta}{np\epsilon} - \frac{1}{2p}\Lambda_{\min}\}$, where Λ_{\min} is the minimum eigenvalue of the Hessian $\nabla^{2}\mathcal{L}(\theta_{\mathcal{L}_{\lambda}}(\mathbf{S}))$ at $\theta_{\mathcal{L}_{\lambda}}(\mathbf{S})$, unitary diagonalized as $U \operatorname{diag}(\Lambda)U^{-1}$, $\Lambda = \{\Lambda_{1}, \dots, \Lambda_{d}\}$ and $\begin{array}{ll} & \Lambda_{\min} = \min \{\Lambda_1, \cdots, \Lambda_d\}, \ \text{then the algorithm optimizing } \mathcal{L}_{\lambda} \ \text{on } \mathbf{S} \ \text{has an upper bound of pointwise} \\ & \text{hypothesis stability of:} \end{array}$

$$\mathbb{E}_{\mathbf{S},i\sim \mathrm{U}(n)} \left| \mathcal{L}_{\lambda}\left(x_{i};\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i})\right) - \mathcal{L}_{\lambda}\left(x_{i};\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S})\right) \right| \leq \frac{2\eta^{2}}{\left(\Lambda_{\min}+2\lambda p\right)n}.$$
(5)

168*Proof Sketch.* We first analyze the PHS upper bound of an arbitrary optimization algorithm equipped169with ℓ_2 -regularizer in Lemma A.1. Then we formulate our training objective with dropout as a similar170problem with weighted ℓ_2 -regularizer and take it into Lemma A.1 to finish the proof. See Appendix171A.1 for detailed proofs.

Moreover, existing works (Bousquet & Elisseeff, 2002; Elisseeff et al., 2005) have connected the stability and generalization error bound with the following lemma adopted from (Bousquet & Elisseeff, 2002, Theorem 11).

Lemma 2.3. For any learning algorithm \mathcal{M} having parameter θ and bounded loss function ℓ satisfying $0 \leq |\ell(x) - \ell(x')| \leq C, \forall x, x'$. If \mathcal{M} has a pointwise hypothesis stability β , with probability $1 - \delta$, we have:

 $R(\mathcal{M}, \mathbf{S}) \le \hat{R}(\mathcal{M}, \mathbf{S}) + \sqrt{(C^2 + 12Cn\beta)/(2n\delta)},\tag{6}$

where $R(\mathcal{M}, \mathbf{S}) = \mathbb{E}_x \ell(x; \boldsymbol{\theta})$ and $\hat{R}(\mathcal{M}, \mathbf{S}) = \frac{1}{n} \sum_{i=1}^n \ell(x_i; \boldsymbol{\theta})$ denote the empirical risk and generalization risk of algorithm \mathcal{M} running on dataset \mathbf{S} , respectively. This indicates that better algorithm stability will reduce the complexity of the adaptation function class. Therefore, invoking the PHS upper bound β of the algorithm with dropout in Proposition 2.2 to Lemma 2.3, we have the following theorem that depicts the generalization error bound of LoRA fine-tuning with dropout:

Theorem 2.4 (Generalization Error Bound of Fine-tuning with Dropout). Given a dropout rate p and strength of sparsity regularization λ , if the algorithm M have a η -Lipschitz loss function $\mathcal{L}_{\lambda}, \theta_{\mathcal{L}_{\lambda}}(\mathbf{S})$ is ϵ -close to $\theta_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i})$, i.e., $||\theta_{\mathcal{L}_{\lambda}}(\mathbf{S}) - \theta_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i})|| \leq \epsilon \rightarrow 0$, and the regularization coefficient $\lambda \geq \max\{0, \frac{\eta}{np\epsilon} - \frac{1}{2p}\Lambda_{\min}\}$, where Λ_{\min} is the minimum eigenvalue of the Hessian $\nabla^{2}\mathcal{L}(\theta_{\mathcal{L}_{\lambda}}(\mathbf{S}))$ at $\theta_{\mathcal{L}_{\lambda}}(\mathbf{S})$, unitary diagonalized as $U \operatorname{diag}(\Lambda)U^{-1}, \Lambda = \{\Lambda_{1}, \dots, \Lambda_{d}\}$ and $\Lambda_{\min} = \min\{\Lambda_{1}, \dots, \Lambda_{d}\}$, then for some constant C, we have with probability $1 - \delta$,

 $R(\boldsymbol{M}, \mathbf{S}) \leq \hat{R}(\boldsymbol{M}, \mathbf{S}) + \sqrt{\frac{C^2 + \frac{24C\eta^2}{\Lambda_{\min} + 2\lambda p}}{2n\delta}}.$ (7)

This theorem reveals the theoretical mechanism of the trade-off between underfitting and overfitting of dropout. The theorem shows that the complexity of adaptation function class (i.e., the gap between empirical and generalization risks) gets larger as the dropout rate gets smaller. Concretely, when applying LoRA without dropout, the gap will be the largest, which depicts the high risk of overfitting with LoRA fine-tuning. However, when the dropout rate gets larger and tends to 1, it is equivalent to conducting no fine-tuning, which increases the empirical risk and makes the model underfit the training data. Hence, an appropriate dropout mechanism can theoretically balance a trade-off between the empirical risk minimization and the complexity of adaptation function classes, thereby enhancing the test-time performances as well as learning sufficiently from data.

204 205 206

207

193

194

195 196

197

199

200

201

202

203

166 167

172

179

180

3 PROPOSED LORA DROPOUT FRAMEWORK

208 In spite of our promising theoretical results, there still exists a practical gap between the current 209 dropout fashion and our theoretical setting. Our theoretical framework identifies a significant 210 constraint for effectively applying the dropout mechanism in LoRA tuning, which is the sparsity 211 constraint. However, most prior studies fail to generate a sufficiently diverse sparsity pattern across 212 the parameter space, limiting their practical performance. In this section, we aim to bridge the gap 213 and present our LoRA Dropout framework, which enhances the dropout process by incorporating more expressive sparsity patterns without significantly increasing GPU memory overhead. We start 214 by briefly reviewing the LoRA method. Then we introduce the key insights and details of the LoRA 215 Dropout method. The overall training and testing procedure is summarized in Alg 1.

Figure 2: Our proposed LoRA Dropout framework combined with both LoRA and AdaLoRA methods.

3.1 BACKGROUND: LOW RANK ADAPTATION (LORA)

Before introducing our method, we give a brief review of the LoRA method (Hu et al., 2021). When fine-tuning on downstream task, to maintain the knowledge from the pre-training period, LoRA freezes the pre-trained parameters $W_0 \in \mathbb{R}^{n_1 \times n_2}$, and updates a zero-initialized delta weight matrix ΔW . To control the number of tunable parameters, as shown in Eq.8, the delta weight matrix ΔW can be further decomposed into the product of two low-rank matrices, $A \in \mathbb{R}^{r \times n_2}$ and $B \in \mathbb{R}^{n_1 \times r}$, where $r \ll \{n_1, n_2\}$. The forward pass can be denoted as

$$h = W_0 x + \Delta W x = W_0 x + BAx. \tag{8}$$

3.2 LORA DROPOUT

237 The conventional dropout method only conducts dropout on the hidden representations, which is 238 equivalent to masking random columns for the delta weight matrix ΔW . Such dropping strategy fails 239 to generate sufficiently diverse sparsity patterns. However, it is also not realistic to generate a sparsity mask that covers every single element in ΔW , since current LLMs usually consist a huge number of 240 parameters, and generating such sparsity masks will leads to great GPU memory overhead. Therefore, 241 we propose a dropout strategy in the reparameterized space of LoRA to improve the diversity of the 242 generated sparsity pattern without significantly increasing GPU memory overhead. Specifically, for a 243 LoRA module described in Eq.8, we randomly drop rows and columns from both tunable low-rank 244 parameter matrices:

245 246 247

223

224 225

226

233 234 235

236

$$\hat{\boldsymbol{A}} = \boldsymbol{A} \cdot \operatorname{diag}(\boldsymbol{m}_A), \boldsymbol{m}_A \sim \operatorname{Bern}(1-p); \ \hat{\boldsymbol{B}} = \left(\boldsymbol{B}^\top \cdot \operatorname{diag}(\boldsymbol{m}_B)\right)^\top, \boldsymbol{m}_B \sim \operatorname{Bern}(1-p), \ (9)$$

where $m_A \in \mathbb{R}^{n_2}$ and $m_B \in \mathbb{R}^{n_1}$ are mask vectors drawn from the Bernoulli distribution, and p denotes the probability that the parameters get dropped. Note that we conduct dropout on the input/output dimension of both matrices as applying dropout on the rank dimension would decrease the rank of LoRA, significantly impacting its expressive power. Additionally, performing dropout on the rank dimension will not increase the sparsity of the product of LoRA matrices, while theoretical evidence in Section 2 highlights the significance of sparsity in our framework. With the dropout, the forward pass would be $\hat{h} = W_0 x + \hat{B}\hat{A}x$.

It should be noted that our dropout method is not only applicable to the original LoRA, but also equally suitable for LoRA-based variant methods, as long as they take the form of low-rank matrix decomposition. For example, AdaLoRA (Zhang et al., 2023) conducts the decomposition through a quasi-SVD method, $\Delta W = P \Lambda Q$, where $P \in \mathbb{R}^{n_1 \times r}$ and $Q \in \mathbb{R}^{r \times n_2}$ are left and right singular vectors, respectively, and $\Lambda \in \mathbb{R}^{r \times r}$ is a diagonal matrix containing singular values. It's easy to adapt our LoRA Dropout to AdaLoRA through:

$$\hat{\boldsymbol{P}} = \left(\boldsymbol{P}^{\top} \cdot \operatorname{diag}(\boldsymbol{m}_{P})\right)^{\top}, \boldsymbol{m}_{P} \sim \operatorname{Bern}(1-p); \ \hat{\boldsymbol{Q}} = \boldsymbol{Q} \cdot \operatorname{diag}(\boldsymbol{m}_{Q}), \boldsymbol{m}_{Q} \sim \operatorname{Bern}(1-p).$$
(10)

263 Dropout is not applied on the Λ matrix as it will also lead to rank shrinking and further influence 264 the expressive power. Moreover, Λ will be adjusted by the AdaLoRA algorithm by filtering out 265 minor compositions in practice, hence we conduct no further dropout on it. After dropout, the delta 266 weight matrix would be $\Delta \hat{W} = \hat{P} \Lambda \hat{Q}$. We provide a schematic diagram in Figure 2 illustrating the 267 integration of the proposed LoRA Dropout framework with both LoRA and AdaLoRA methods.

268

261 262

Training Objective Let us denote m as the concatenation of all dropout vectors from LoRA module of a fine-tuning model, $\Delta \theta(m)$ as the LoRA parameters after the dropout m, and θ^0 as the

original pre-trained parameters. To obtain an effective model under various dropouts, we define the training objective as an average of multiple losses under N different dropout instances on parameters,

275

274

$\mathcal{L}(\boldsymbol{x}) = \frac{1}{N} \sum_{k=1}^{N} \ell\left(\boldsymbol{x}; \boldsymbol{\theta}^{0} + \Delta \boldsymbol{\theta}(\boldsymbol{m}_{k})\right), \boldsymbol{m}_{k} \sim \text{Bern}(1-p).$ (11)

276 3.3 TEST-TIME ENSEMBLE STRATEGY

To further enhance the model's performance during inference time, inspired by the MC dropout mechanism (Gal & Ghahramani, 2016), we propose a test-time ensemble method. Unlike the conventional dropout that is deactivated when testing, our ensemble strategy aggregates the outputs of models under different dropouts during inference time to get the final output, which can be viewed as sampling and aggregating models from a parameter distribution with a Monte Carlo method. Specifically, let $\mathcal{M}(\theta^0 + \Delta\theta(m_k))$ denote the model with LoRA parameter under dropout m_k , then the output o of the ensemble model is

285 286

287

300 301

$$\boldsymbol{o}(\boldsymbol{x}) = \frac{1}{N} \sum_{k=1}^{N} \boldsymbol{o}_{k}(\boldsymbol{x}) = \frac{1}{N} \sum_{k=1}^{N} \mathcal{M}\left(\boldsymbol{x}; \boldsymbol{\theta}^{0} + \Delta \boldsymbol{\theta}(\boldsymbol{m}_{k})\right), \qquad (12)$$

where N is the number of dropout instances. Here we justify the effectiveness of this test-time ensemble strategy by providing a theoretical analysis of how it helps further tighten the error bound.

290 During the fine-tuning phase, we optimize Eq.(3) through accumulating gradient steps under dif-291 ferent dropout instances. This fine-tuning procedure is essentially optimizing the generalization 292 risks given the distribution \mathcal{D} of model parameters $\boldsymbol{\theta}$, which is $\mathbb{E}_{\boldsymbol{\theta} \sim \mathcal{D}} \mathbb{E}_{(x,y)} \mathcal{L}_{\lambda}(\mathcal{M}(x;\boldsymbol{\theta}),y)$, where 293 $\mathcal{M}(x;\theta)$ denotes the output of model \mathcal{M} given the input x parameterized by θ . During the inference 294 phase, with the test-time ensemble strategy, we are actually aggregating model outputs across the distribution \mathcal{D} of parameter θ to conduct final predictions, namely the ensemble classifier, which has 295 an error of $\mathbb{E}_{(x,y)}\mathcal{L}_{\lambda}(\mathbb{E}_{\theta\sim\mathcal{D}}\mathcal{M}(x;\theta),y)$. We present the following proposition that depicts a tighter 296 generalization error bound with the ensemble classifier: 297

Proposition 3.1 (Error Bound of Test-time Ensemble). If the loss function \mathcal{L}_{λ} (e.g. cross-entropy) is convex w.r.t. the final output $\boldsymbol{o} = \mathcal{M}(x; \boldsymbol{\theta})$ of model \mathcal{M} , then we have:

$$\mathbb{E}_{(x,y)}\mathcal{L}_{\lambda}(\mathbb{E}_{\boldsymbol{\theta}\sim\mathcal{D}}\mathcal{M}(x;\boldsymbol{\theta}),y) \leq \mathbb{E}_{\boldsymbol{\theta}\sim\mathcal{D}}\mathbb{E}_{(x,y)}\mathcal{L}_{\lambda}(\mathcal{M}(x;\boldsymbol{\theta}),y).$$
(13)

302Proof Sketch. Taking expectation on parameter θ is equivalent to taking expectation on the final303output o from a certain distribution. Then simply apply Jensen inequality under the convex condition304of o and the inequality holds. See Appendix A.2 for detailed proofs.305

Moreover, the convexity holds for most cases in LLM training or fine-tuning scenarios, as we often take cross-entropy as the loss function and the softmax as the final output layer, and those functions are convex in the entire space \mathbb{R}^d . Hence, the inequality says that the generalization error of the ensemble classifier (i.e., LHS of (13)) is no greater than the training generalization error (i.e., RHS of (13)) for most LLM tuning scenarios, implying that the ensemble classifier with LoRA Dropout can further compress the error bound given by the LoRA Dropout fine-tuning and demonstrate better test-time generalizability.

To summarize, Theorem 2.4 and 3.1 together depict the full theoretical sketch of our practical framework. The fine-tuning phase applies LoRA Dropout to control the generalization error by balancing the trade-off between the empirical risk minimization and the complexity of adaptation, and the inference phase applies multiple dropout instances to accomplish an ensemble classifier with a tighter error bound and further enhances the test-time generalizability.

318

4 EXPERIMENTS

319 320

In this section, we conduct a series of experiments to validate the effectiveness of our proposed
 LoRA Dropout framework. We incorporate LoRA Dropout into LoRA-series works, LoRA and
 AdaLoRA, and compare them with original models (w/ and w/o conventional dropout strategy) and
 other baselines on various NLP tasks.

	Method	MNLI M-Acc	SST-2 Acc	CoLA Mcc	QQP Acc	QNLI Acc	RTE Acc	MRPC Acc	STS-B Corr	All Avg.
Ful	ll Fine-Tuning	89.90	95.63	69.19	92.40	94.03	83.75	89.46	91.60	88.25
	BitFit	89.37	94.84	66.96	88.41	92.24	78.70	87.75	91.35	86.20
	H-Adapter	90.13	95.53	66.64	91.91	94.11	84.48	89.95	91.48	88.28
	P-Adapter	90.33	95.61	68.77	92.04	94.29	85.20	89.46	91.54	88.41
	original	90.65	94.95	69.82	91.99	93.87	85.20	89.95	91.60	88.50
LoRA	w/ dropout	90.07	94.26	70.87	91.66	94.44	86.64	90.20	91.60	88.72
	w/ LoRA Dropout	90.85 [†]	95.87 [†]	71.32 [†]	92.22 [†]	94.56	88.09 [†]	91.42 [†]	92.00 [†]	89.54

71.45

71.20

72.04

92.23

91.45

92.04

94.55

94.56

94.47

88.09

87.36

88.81[†]

90.69

90.20

91.18[†]

91.84

91.75

92.07[†]

89.46

89.13

89.70[†]

Table 1: Results with DeBERTaV3-base on GLUE. The results in **bold** indicate models with LoRA Dropout outperform their corresponding base models and other PEFT baselines. Results are averaged over 5 runs using different random seeds, and † indicates the p-value of the t-test is below 0.01.

Baselines We compared the our method with following state-of-the-art PEFT methods.

96.10

95.99

96.22

90.76

90.49

90.75

(1) BitFit (Zaken et al., 2022). Only the bias vectors from the model parameters get fine-tuned. (2)
H-Adapter (Houlsby et al., 2019). The adapters are inserted between the MLP and the self-attention modules. (3) P-Adapter (Pfeiffer et al., 2020). Adapter layers are applied only after the MLP or the LayerNorm layer. (4) LoRA (Zhang et al., 2023). LoRA decomposes the learnable delta parameter matrix into two low-rank matrices to improve parameter efficiency. (5) AdaLoRA (Zhang et al., 2023). AdaLoRA introduces an adaptive parameter budget by gradually pruning the rank of LoRA based on sensitivity-based importance scores.

When comparing with baseline models, we keep tunable parameter budgets for all methods aligned.
We set the hyperparameters be the same as our base models, i.e. LoRA and AdaLoRA, following (Zhang et al., 2023), and only tune the hyperparameters that are exclusive to our model. More
detailed experiment settings can be viewed in Appendix C and D.

353 354 355

356

4.1 NATURAL LANGUAGE UNDERSTANDING

AdaLoRA

w/ dropout w/ LoRA Dropout

AdaLoRA

Settings Following previous work (Zhang et al., 2023), we use the General Language Understanding
 Evaluation (GLUE) benchmark (Wang et al., 2018) for evaluation. Our experiments contain eight
 different tasks from the GLUE benchmark. All models are fine-tuned on the DeBERTaV3-base (He
 et al., 2021) pre-trained model.

361 Results The results of different models on the GLUE benchmark are shown in Table 1. From the 362 results, we could find that LoRA-series models with our LoRA Dropout framework consistently 363 outperform other baselines, and achieve the best performance on the overall result among eight NLU 364 tasks. Moreover, when compared with the original LoRA and AdaLoRA models, models with our 365 dropout method always achieve superior performance, indicating that the proposed LoRA Dropout 366 framework could help LoRA-based models improve generalization ability on downstream tasks.

We could also find that LoRA models with our method achieve better results than the conventional dropout, which indicates that our dropout strategy could generate more diverse sparsity patterns and lead to better overfitting reduction. It is worth noting that LoRA model with conventional dropout sometimes performs worse that the original model. A possible explanation is that the rigid sparsity pattern (i.e., dropout columns only) constrains the learning dynamics of parameters and prevents the model from adequately exploring diverse feature combinations, leading to suboptimal fitting.

We also provide the loss curves of LoRA and AdaLoRA with LoRA dropout during fine-tuning
on the RTE dataset in Figure 1. We could find that the gaps between curves on train and test set
get significantly narrowed compared with the model without LoRA Dropout. That demonstrates
our method's ability to reduce overfitting during fine-tuning. Moreover, we show that our LoRA
Dropout method could help improve model calibration. The experiments and analyses can be found
in Appendix E.

324 325

326

327 328

336

337

379	Table 2: Results with DeBERTaV3-base on SQuAD v1.1 and SQuADv2.0. We report EM and F1 for
380	each model. The results in bold indicate models with LoRA Dropout outperform their corresponding
381	base models and other PEFT baselines. Results are averaged over 5 runs using different random
382	seeds, and † indicates the p-value of the t-test is below 0.01.

				SQUA	D v1.1					SQUA	D v2.0		
#Param ratio		0.1	6%	0.3	2%	0.6	5%	0.1	6%	0.3	2%	0.6	5%
	Metric	EM	F1	EM	F1	EM	F1	EM	F1	EM	F1	EM	F1
I	H-Adapter	85.3	92.1	86.1	92.7	86.7	92.9	84.3	87.3	84.9	87.9	85.4	88.3
	P-Adapter	85.9	92.5	86.2	92.8	86.6	93.0	84.5	87.6	84.9	87.8	84.5	87.5
LoRA	original	86.6	92.9	86.7	93.1	86.7	93.1	83.6	86.7	84.5	87.4	85.0	88.0
	w/ dropout	87.7	93.5	87.7	93.7	87.4	93.1	84.0	87.1	84.7	87.5	85.3	88.1
	w/ LoRA Dropout	88.2 [†]	93.8 [†]	88.7 [†]	94.1 [†]	88.7 [†]	94.2 [†]	85.4 [†]	88.4 [†]	86.0 [†]	88.8 [†]	86.1 [†]	88.9 [†]
AdaLoRA	original	87.5	93.6	87.5	93.7	87.6	93.7	85.7	88.8	85.5	88.6	86.0	88.9
	w/ dropout	88.2	94.1	88.1	94.0	88.2	94.1	85.8	88.7	85.7	88.7	85.8	88.8
	w/ LoRA Dropout	88.1	93.9	88.5 [†]	94.2 [†]	88.7 [†]	94.3 [†]	85.8	88.6	85.9 [†]	88.9 [†]	86.3 [†]	89.1 [†]

Table 3: Results of instruction tuning on LLaMA2-7B. We report Accuracy(%) for MMLU and average GPT-4-turbo score for Vicuna-Eval. The Best results are in **bold**.

Mathad		MMLU (5-shot)					MMI	Vicuna-Eval			
Methoa	STEM	Social	Hum.	Other.	Avg.	STEM	Social	Hum.	Other.	Avg.	Score
LLaMA2-7B	36.80	51.42	42.76	52.10	45.49	33.31	46.78	38.76	45.04	40.79	2.66
$LoRA_{r=16}$	37.53	50.93	42.33	52.16	45.68	34.40	45.15	38.19	45.60	40.61	5.29
LoRA Dropout	36.50	51.13	43.56	52.88	45.86	34.13	48.74	40.47	47.43	42.53	6.03

4.2 QUESTION ANSWERING

Settings We conduct the question answering task on two SQuAD (Stanford Question Answering Dataset) benchmarks, SQuAD v1.1 (Rajpurkar et al., 2016) and SQuAD v2.0 (Rajpurkar et al., 2018), with DeBERTaV3-base as the base pre-trained model. We report the Exact Match accuracy and F1 score for each method.

Results The results of different models on the SQuAD benchmarks are shown in Table 2. The results further validate the conclusions that we obtained from Table 1. The LoRA Dropout method helps the base model (i.e., LoRA and AdaLoRA) to achieve better performances on both SQuAD benchmarks. Moreover, by varying the budget of trainable parameters (i.e., the hidden dimension of adapters and the rank of LoRA module), we could find that our method has consistently superior performance under various parameter budgets, revealing its effectiveness.

 4.3 INSTRUCTION TUNING

Settings We evaluate the models' natural language generation ability by conducting instruction tuning. Specifically, we choose LLaMA2-7B (Touvron et al., 2023) as the pre-trained base model and fine-tune on the Alpaca-clean dataset¹ (Taori et al., 2023) with original LoRA method and LoRA Dropout. We employ the MMLU benchmark (Hendrycks et al., 2021) and the Vicuna-Eval (Chiang et al., 2023) to evaluate each model. MMLU requires the models to answer multiple-choice tasks from different domains, and Vicuna-Eval prompts the model to respond to 80 predefined questions and utilizes the GPT-4 (Achiam et al., 2023) model to assess the answer qualities.

Results We report the results of the MMLU benchmark and Vicuna-Eval in Table 3, and provide
answers to several different Vicuna-Eval questions generated by different models in Appendix H.
All results show that our LoRA Dropout model achieves better performances on both benchmarks
than the original LLaMA model and LoRA-finetuned model. With our dropout framework, the
generalization ability of the fine-tuned model gets improved, leading to a better ability to apply the
knowledge from the fine-tuning dataset to natural language response tasks.

4.4 Ablation Studies and Sensitivity Analysis

¹https://huggingface.co/datasets/yahma/alpaca-cleaned

432 Effect of Train/Test Dropout We conduct ex-433 periments on the effects of dropout during train-434 ing and testing on the MRPC and CoLA dataset, 435 and the results are shown in Figure 3. We 436 compared our method (LoRA with our LoRA Dropout framework, denoted as Drop) with the 437 following variants: Drop_{train} denotes training 438 with dropout and testing without dropout ensem-439 ble. Drop_{test} denotes training without dropout 440

Figure 3: Ablation studies on the dropout strategy.

and testing with dropout ensemble. And *NoDrop* denotes model without LoRA Dropout. We could find the importance of conducting dropout during fine-tuning from the bad performance of $Drop_{test}$. It performs worse than the vanilla *NoDrop* model since testing dropout may break some hidden semantic structure of parameters learned from training. We can also verify the effectiveness of test-time ensemble strategy from the decrease between *Drop* and *Drop*_{train}, which aligns with our theoretical derivation that the ensemble strategy would further compress the error bound.

446 Effect of Dropout Rate We conduct exper-447 iments on the effects of dropout rate p on 448 the MRPC dataset, and show the results in 449 Figure 4. As the dropout rate increases, the 450 performance first improves and then drops. 451 This aligns with our theoretical derivation 452 in Section 2.2 that a proper dropout rate 453 would help balance the empirical risk minimization and complexity of the adaptation 454

Figure 4: Results of the sensitivity analyses.

function. A small dropout rate might fail to introduce sufficient sparsity and lead to overfitting, while
 an excessively large dropout rate would result in too few trainable parameters, making the adapter
 lose its expressive power.

458 Effect of Number of Sampled Dropout Instances We conduct experiments on the effects of dropout 459 instance number N on the MRPC dataset, and the results are shown in Figure 4. From the results, we 460 can find the model performance improves as the sample number increases. This is reasonable since 461 with a larger sample number, more dropout instances can be introduced during training and more models get aggregated during the test-time ensemble, leading to more accurate estimations of the 462 outputs over the parameter distribution. However, a larger sample number will also lead to higher 463 training and inference costs, thus picking an appropriate N is necessary for a better balance between 464 accuracy and computational cost. 465

Discussion - Varying LoRA Rank v.s. LoRA 466 **Dropout** In this subsection, we attempt to dis-467 cuss whether simply shrinking LoRA rank can 468 also reduce the risk of overfitting and achieve a 469 better performance than LoRA Dropout. Here 470 we provide the performances of LoRA models 471 with various ranks (i.e., $r = \{2, 4, 8, 16\}$) and 472 compare them with LoRA Dropout with a fixed 473 rank (i.e., r = 8). The results are illustrated 474 in Figure 5. Results show that the performance 475 of LoRA gets better when shrinking the rank to 476 4, but dramatically decreases when shrunk to

477

2. This demonstrates that an excessively small

Figure 5: Comparisons between LoRA Dropout and LoRA with different ranks.

rank would limit the expressive power of LoRA and lead to huge performance decay. However, LoRA_{r=4} still cannot outperform LoRA_{r=8}+Dropout with a dropout rate of 0.5. Though the activated parameters are exactly the same under both scenarios, LoRA Dropout enjoys better expressiveness (i.e., rank) without a higher overfitting risk, which can potentially learn better patterns than simply halving the rank.

483 Moreover, further enlarging the rank (i.e., r = 16) will deteriorate the LoRA performance due to the 484 increasing risk of overfitting, as discussed in the Introduction. Therefore, we summarize that the 485 effectiveness of LoRA Dropout comes from the capability of reducing overfitting while maintaining a stronger expressiveness.

486 5 RELATED WORKS

487 488

Parameter-Efficient Fine-Tuning (PEFT) PEFT focuses on efficiently adapting pre-trained lan-489 guage models to downstream tasks by fine-tuning a few additional parameters or a subset of pre-trained 490 parameters. Current mainstream PEFT approach can be roughly divided into three categories (Lialin 491 et al., 2023; Xu et al., 2023). Additive Fine-tuning methods (Houlsby et al., 2019; Pfeiffer et al., 492 2020; He et al., 2022; Lester et al., 2021; Li & Liang, 2021) focus on adding extra tunable parameters by introducing additional layers or learnable prompts. Partial Fine-tuning methods (Zaken et al., 493 <u>191</u> 2022; Xu et al., 2021; Fu et al., 2023) select a subset of pre-trained parameters for fine-tuning. Reparameterization Fine-tuning methods (Hu et al., 2021; Zhang et al., 2023; Edalati et al., 2022) 495 adopt low-rank representations to minimize the number of trainable parameters. In this paper, we 496 focus on the most effective and widely adopted method, LoRA (Hu et al., 2021) and its variants, 497 which decompose the learnable delta weight into the product of two low-rank matrices. The rank 498 of the decomposition is essential for LoRA. A small rank may lead to insufficient expressive power, 499 while a large rank could result in overfitting. One of LoRA's variants, AdaLoRA (Zhang et al., 2023) 500 proposes to decompose the delta weight through a quasi-SVD method, and select parameters through 501 importance scoring. Nevertheless, this selection method also relies on gradients on the training 502 set, leading to an additional risk of overfitting. In this work, we propose a theoretically grounded 503 dropout framework for LoRA-series methods, filling the gap that the LoRA-based PEFT methods 504 lack theoretical guidances and practical mechanisms to control overfitting.

506 **Dropout Regularization** The dropout mechanism (Hinton et al., 2012) is a well-known and widelyadopted technique in deep neural networks to prevent overfitting. In standard dropout, each neuron 507 in the network is omitted from the network with a certain possibility during training. Subsequently, 508 various dropout techniques for specific model structures are introduced, like Spatial dropout (Tompson 509 et al., 2015) for convolutional layers and Recurrent dropout (Semeniuta et al., 2016) for recurrent 510 neural networks. Meanwhile, works have been done to explore the theoretical factors behind dropout's 511 ability to suppress overfitting. Some works believe that the the model learns a geometric mean over 512 the ensemble of possible sub-networks through dropout (Warde-Farley et al., 2013; Baldi & Sadowski, 513 2013), and some works view dropout from a Bayesian perspective and argue that model with dropout 514 can be interpreted as a Bayesian model approximating a posterior over parameters (Gal & Ghahramani, 515 2016). Recently there has been work trying to combine dropout with LLM (Wang et al., 2024). But 516 this work mainly focuses on conduct dropout on the transformer structure instead of LoRA, and 517 also lacks theoretical analysis. To the best of our knowledge, currently there's little theoretical work on applying dropout on LoRA-based PEFT models, where fine-tuning happens on the delta weight 518 matrices with low-rank decompositions. 519

520 521

522

505

6 CONCLUSIONS AND LIMITATIONS

To control the overfitting risk when fine-tuning on downstream tasks, in this paper, we propose a theoretically grounded LoRA Dropout framework designed for LoRA-based PEFT methods. Theoretical analyses from the perspective of sparse show that sparsity introduced by LoRA Dropout helps tighten the between empirical and generalization risks and thereby control overfitting. A test-ensemble strategy is proposed based on LoRA Dropout and theoretically shown to further compress the error bound.
 We conduct experiments on various tasks and PLMs, and the results demonstrate the effectiveness of our method on improving model' performances.

Despite the promising results, we still want to point out the limitations. Though LoRA Dropout introduces no additional tunable parameters compared to LoRA, sampling multiple dropout instances during training and testing does introduce considerable time overhead. For future work, we aim to design a parallel computing framework for LoRA Dropout, expecting to improve in both performance and efficiency.

535 536

536 REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
 arXiv preprint arXiv:2303.08774, 2023.

- 540 Pierre Baldi and Peter J Sadowski. Understanding dropout. Advances in neural information processing 541 systems, 26, 2013. 542
- Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learning 543 Research, 2:499–526, 2002. 544
- Zachary Charles and Dimitris Papailiopoulos. Stability and generalization of learning algorithms that 546 converge to global optima. In International conference on machine learning, pp. 745–754. PMLR, 547 2018.
- 548 Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, 549 Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An 550 open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https: 551 //lmsys.org/blog/2023-03-30-vicuna/. 552
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale 553 hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, 554 pp. 248-255. Ieee, 2009. 555
- 556 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of quantized llms. arXiv preprint arXiv:2305.14314, 2023.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep 559 bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. 560
- 561 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas 562 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image 563 is worth 16x16 words: Transformers for image recognition at scale. In International Conference on Learning Representations, 2021. 564
- 565 Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J Clark, and Mehdi 566 Rezagholizadeh. Krona: Parameter efficient tuning with kronecker adapter. arXiv preprint 567 arXiv:2212.10650, 2022.
- 568 Andre Elisseeff, Theodoros Evgeniou, Massimiliano Pontil, and Leslie Pack Kaelbing. Stability of 569 randomized learning algorithms. Journal of Machine Learning Research, 6(1), 2005. 570
- 571 Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam, Lidong Bing, and Nigel Collier. On 572 the effectiveness of parameter-efficient fine-tuning. In Proceedings of the AAAI Conference on 573 Artificial Intelligence, volume 37, pp. 12799–12807, 2023.
- 574 Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model 575 uncertainty in deep learning. In *international conference on machine learning*, pp. 1050–1059. PMLR, 2016.
- Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural 578 networks. In International conference on machine learning, pp. 1321–1330. PMLR, 2017. 579

- 580 Guande He, Jianfei Chen, and Jun Zhu. Preserving pre-trained features helps calibrate fine-tuned 581 language models. In The Eleventh International Conference on Learning Representations, 2023. 582
- Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards 583 a unified view of parameter-efficient transfer learning. In International Conference on Learning 584 Representations, 2022. 585
- 586 Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert with disentangled attention. In International Conference on Learning Representations, 2020.
- 588 Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style 589 pre-training with gradient-disentangled embedding sharing. arXiv preprint arXiv:2111.09543, 590 2021.
- Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob 592 Steinhardt. Measuring massive multitask language understanding. In International Conference on Learning Representations, 2021.

594 595 596	Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors. <i>arXiv preprint</i> <i>arXiv:1207.0580</i> , 2012.
598	hiyouga. Llama factory. https://github.com/hiyouga/LLaMA-Factory, 2023.
599 600 601	Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In <i>International Conference on Machine Learning</i> , pp. 2790–2799. PMLR, 2019.
602 603 604 605	Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. <i>arXiv preprint arXiv:2106.09685</i> , 2021.
606 607 608	Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham Neubig. How can we know when language models know? on the calibration of language models for question answering. <i>Transactions of the Association for Computational Linguistics</i> , 9:962–977, 2021.
610 611 612	Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit, fixes overconfidence in relu networks. In <i>International conference on machine learning</i> , pp. 5436–5446. PMLR, 2020.
613 614	Ilja Kuzborskij and Christoph Lampert. Data-dependent stability of stochastic gradient descent. In <i>International Conference on Machine Learning</i> , pp. 2815–2824. PMLR, 2018.
615 616 617 618	Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning. In <i>Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing</i> , pp. 3045–3059, 2021.
619 620 621 622	Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In <i>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</i> , pp. 4582–4597, 2021.
623 624 625	Vladislav Lialin, Vijeta Deshpande, and Anna Rumshisky. Scaling down to scale up: A guide to parameter-efficient fine-tuning. <i>arXiv preprint arXiv:2303.15647</i> , 2023.
626 627 628	Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. <i>arXiv preprint arXiv:1907.11692</i> , 2019.
629 630 631	Xinyu Ma, Xu Chu, Zhibang Yang, Yang Lin, Xin Gao, and Junfeng Zhao. Parameter efficient quasi-orthogonal fine-tuning via givens rotation. <i>arXiv preprint arXiv:2404.04316</i> , 2024.
632 633 634	Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github. com/huggingface/peft, 2022.
635 636 637 638	Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter- fusion: Non-destructive task composition for transfer learning. <i>arXiv preprint arXiv:2005.00247</i> , 2020.
639 640 641	Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for machine comprehension of text. In <i>Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing</i> , pp. 2383–2392, 2016.
642 643 644 645	Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don't know: Unanswerable questions for squad. In <i>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</i> , pp. 784–789, 2018.
646 647	Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. Recurrent dropout without memory loss. In <i>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics:</i> <i>Technical Papers</i> , pp. 1757–1766, 2016.

648 649 650	Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. <i>The journal of machine learning research</i> , 15(1):1929–1958, 2014.
652 653 654	Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model. https://github.com/tatsu-lab/stanford_alpaca, 2023.
655 656 657 658	Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn, and Christopher D Manning. Just ask for calibration: Strategies for eliciting calibrated confidence scores from language models fine-tuned with human feedback. <i>arXiv preprint arXiv:2305.14975</i> , 2023.
659 660 661	Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler. Efficient object localization using convolutional networks. In <i>Proceedings of the IEEE conference on computer vision and pattern recognition</i> , pp. 648–656, 2015.
663 664 665	Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. <i>arXiv preprint arXiv:2307.09288</i> , 2023.
666 667 668	Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue: A multi-task benchmark and analysis platform for natural language understanding. <i>arXiv preprint</i> <i>arXiv:1804.07461</i> , 2018.
669 670 671	Sheng Wang, Liheng Chen, Jiyue Jiang, Boyang Xue, Lingpeng Kong, and Chuan Wu. LoRA meets dropout under a unified framework. pp. 1995–2008, Bangkok, Thailand and virtual meeting, 2024. Association for Computational Linguistics.
673 674	David Warde-Farley, Ian J Goodfellow, Aaron Courville, and Yoshua Bengio. An empirical analysis of dropout in piecewise linear networks. <i>arXiv preprint arXiv:1312.6197</i> , 2013.
676 677 678	Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface's transformers: State-of-the-art natural language processing. <i>arXiv preprint arXiv:1910.03771</i> , 2019.
679 680 681	Yuxin Xiao, Paul Pu Liang, Umang Bhatt, Willie Neiswanger, Ruslan Salakhutdinov, and Louis- Philippe Morency. Uncertainty quantification with pre-trained language models: A large-scale empirical analysis. <i>arXiv preprint arXiv:2210.04714</i> , 2022.
682 683 684	Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang. Parameter-efficient fine-tuning methods for pretrained language models: A critical review and assessment. <i>arXiv</i> preprint arXiv:2312.12148, 2023.
685 686 687	Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan, Baobao Chang, Songfang Huang, and Fei Huang. Raise a child in large language model: Towards effective and generalizable fine-tuning. <i>arXiv</i> preprint arXiv:2109.05687, 2021.
689 690 691	Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning for transformer-based masked language-models. In <i>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</i> , pp. 1–9, 2022.
692 693 694 695	Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A large-scale study of representation learning with the visual task adaptation benchmark. <i>arXiv preprint arXiv:1910.04867</i> , 2019.
696 697 698 699	Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In <i>The Eleventh International Conference on Learning Representations</i> , 2023.
700 701	Chiwei Zhu, Benfeng Xu, Quan Wang, Yongdong Zhang, and Zhendong Mao. On the calibration of large language models and alignment. In <i>Findings of the Association for Computational Linguistics: EMNLP 2023</i> , pp. 9778–9795, 2023.

Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang, Kam-Fai Wong, and Lei Zhang. Delta-lora: Fine-tuning high-rank parameters with the delta of low-rank matrices. *arXiv preprint arXiv:2309.02411*, 2023.

A PROOFS OF THEORETICAL RESULTS

709 A.1 PROOF OF PROPOSITION 2.2

We first prove a Lemma that describes the pointwise hypothesis stability of an optimization problem with ℓ_2 -regularizer, which provides an upper bound related to a constant describing the specific shape around the local optima. The symbols follow those in the main text. We first denote $\mathcal{L}(\theta) = \frac{1}{n} \sum_i \mathcal{L}(x_i; \theta)$.

Lemma A.1. Consider the learning algorithm \mathcal{M} optimizing the following loss function:

$$\min_{\boldsymbol{\theta}} \mathcal{L}_{\lambda}(\boldsymbol{\theta}) := \min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) + \lambda ||\boldsymbol{\theta} - \boldsymbol{\theta}^{0}||_{2}^{2}$$

718 If the loss function \mathcal{L} is η -Lipschitz, $\theta_{\mathcal{L}_{\lambda}}(\mathbf{S})$ is close to $\theta_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i})$ whose gap is bounded by **719** a small constant $\epsilon \to 0$, i.e., $||\theta_{\mathcal{L}_{\lambda}}(\mathbf{S}) - \theta_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i})|| \leq \epsilon \to 0$, and the regularization co- **720** efficient $\lambda \geq \max\{0, \frac{\eta}{n\epsilon} - \frac{1}{2}\Lambda_{\min}\}$, where Λ_{\min} is the minimum eigenvalue of the Hessian **721** $\nabla^{2}\mathcal{L}(\theta_{\mathcal{L}_{\lambda}}(\mathbf{S}))$ at $\theta_{\mathcal{L}_{\lambda}}(\mathbf{S})$, unitary diagonalized as $U \operatorname{diag}(\Lambda)U^{-1}, \Lambda = \{\Lambda_{1}, \cdots, \Lambda_{d}\}$ and $\Lambda_{\min} =$ **722** $\min\{\Lambda_{1}, \cdots, \Lambda_{d}\}$, Then \mathcal{M} has pointwise hypothesis stability $\beta = \frac{2\eta^{2}}{(\Lambda_{\min}+2\lambda)n}$, which is:

$$\mathbb{E}_{\mathbf{S},i\sim \mathrm{U}(n)}\left|\mathcal{L}_{\lambda}\left(x_{i};\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i})\right)-\mathcal{L}_{\lambda}\left(x_{i};\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S})\right)\right| \leq \frac{2\eta^{2}}{\left(\Lambda_{\min}+2\lambda\right)n}.$$

Proof. For simplicity, we denote $\theta_{\mathcal{L}_{\lambda}}(\mathbf{S})$ as $\hat{\theta}$, and $\Delta \hat{\theta} := \hat{\theta} - \theta$. Consider the second-order Taylor expansion of \mathcal{L}_{λ} at local optima $\hat{\theta}$, we have $\nabla_{\mathcal{L}_{\lambda}}(\hat{\theta}) = 0$. For $\forall v$ close to $\hat{\theta}$, we have:

$$\mathcal{L}_{\lambda}(v) = \mathcal{L}_{\lambda}(\hat{\theta}) + (v - \hat{\theta})^{\top} \nabla_{\mathcal{L}_{\lambda}}(\hat{\theta}) + \frac{1}{2} (v - \hat{\theta})^{\top} \nabla^{2} \mathcal{L}_{\lambda}(\hat{\theta}) (v - \hat{\theta})$$
$$= \mathcal{L}_{\lambda}(\hat{\theta}) + \frac{1}{2} (v - \hat{\theta})^{\top} \nabla^{2} \mathcal{L}_{\lambda}(\hat{\theta}) (v - \hat{\theta})$$

Then, we have:

$$\begin{aligned} \mathcal{L}_{\lambda}(v) - \mathcal{L}_{\lambda}(\theta) \\ &= \frac{1}{2}(v - \hat{\theta})^{\top} \nabla^{2} \mathcal{L}_{\lambda}(\hat{\theta})(v - \hat{\theta}) \\ &= \frac{1}{2}(v - \hat{\theta})^{\top} \nabla^{2}_{\hat{\theta}}(\mathcal{L}(\hat{\theta}) + \lambda || \hat{\theta} - \theta^{0} ||_{2}^{2})(v - \hat{\theta}) \\ &= \frac{1}{2}(v - \hat{\theta})^{\top} \nabla^{2} \mathcal{L}(\hat{\theta}) + 2\lambda I)(v - \hat{\theta}) \\ &= \frac{1}{2}(v - \hat{\theta})^{\top} (U \operatorname{diag}(\Lambda) U^{-1} + 2\lambda I)(v - \hat{\theta}) \\ &= \frac{1}{2}(v - \hat{\theta})^{\top} (U \operatorname{diag}(\Lambda) + 2\lambda I) U^{-1})(v - \hat{\theta}) \\ &= \frac{1}{2}(v - \hat{\theta})^{\top} (U \operatorname{diag}(\sqrt{\Lambda_{1} + 2\lambda}, \cdots, \sqrt{\Lambda_{d} + 2\lambda}) U^{-1} U \operatorname{diag}(\sqrt{\Lambda_{1} + 2\lambda}, \cdots, \sqrt{\Lambda_{d} + 2\lambda}) U^{-1})(v - \hat{\theta}) \\ &= \frac{1}{2} ||(U \operatorname{diag}(\sqrt{\Lambda_{1} + 2\lambda}, \cdots, \sqrt{\Lambda_{d} + 2\lambda} U^{-1})(v - \hat{\theta})||_{2}^{2} \\ &\geq \frac{1}{2} (\Lambda_{\min} + 2\lambda) ||v - \hat{\theta}||_{2}^{2}. \end{aligned}$$
(A.1)

This inequality holds for the orthogonality of U that it does not change the magnitude of vector $v - \hat{\theta}$, and the magnitude is at least scaled with $\Lambda_{\min} + 2\lambda$. Then, by the definition of $\mathcal{L}_{\lambda}(\theta)$, for $\forall u, v$ close to $\hat{\theta}$, we have:

 $\mathcal{L}_{\lambda}(u) - \mathcal{L}_{\lambda}(v)$

$$\begin{aligned} &= \left(\frac{1}{n}\sum_{k}\mathcal{L}(x_{k};u) + \lambda||u - \theta^{0}||_{2}^{2}\right) - \left(\frac{1}{n}\sum_{k}\mathcal{L}(x_{k};v) + \lambda||v - \theta^{0}||_{2}^{2}\right) \\ &= \left(\frac{1}{n}\sum_{k\neq i}\mathcal{L}(x_{k};u) + \lambda||u - \theta^{0}||_{2}^{2}\right) - \left(\frac{1}{n}\sum_{k\neq i}\mathcal{L}(x_{k};v) + \lambda||v - \theta^{0}||_{2}^{2}\right) + \frac{\mathcal{L}(x_{i};u) - \mathcal{L}(x_{i};v)}{n} \\ &= (1 - \frac{1}{n})\left(\frac{1}{n-1}\sum_{k\neq i}\mathcal{L}(x_{k};u) + \lambda||u - \theta^{0}||_{2}^{2}\right) - (1 - \frac{1}{n})\left(\frac{1}{n-1}\sum_{k\neq i}\mathcal{L}(x_{k};v) + \lambda||v - \theta^{0}||_{2}^{2}\right) + \end{aligned}$$

$$\frac{\lambda\left(||u-\boldsymbol{\theta}^{0}||_{2}^{2}-||v-\boldsymbol{\theta}^{0}||_{2}^{2}\right)}{n} + \frac{\mathcal{L}(x_{i};u) - \mathcal{L}(x_{i};v)}{n}$$

$$=\underbrace{(1-\frac{1}{n})\left[\left(\frac{1}{n-1}\sum_{k\neq i}\mathcal{L}(x_k;u)+\lambda||u-\boldsymbol{\theta}^0||_2^2\right)-\left(\frac{1}{n-1}\sum_{k\neq i}\mathcal{L}(x_k;v)+\lambda||v-\boldsymbol{\theta}^0||_2^2\right)\right]}_{(*)}+\underbrace{(*)}$$

$$\frac{\mathcal{L}_{\lambda}(x_i; u) - \mathcal{L}_{\lambda}(x_i; v)}{n}.$$

(A.2)

Taking $u = \theta_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i})$ and $v = \theta_{\mathcal{L}_{\lambda}}(\mathbf{S})$. As u minimizes the empirical loss of removing x_{i} out, hence the (*) item in Eq.(A.2) is smaller than 0. Then, we have:

$$\mathcal{L}_{\lambda}(\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i})) - \mathcal{L}_{\lambda}(\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S})) \leq \frac{\mathcal{L}_{\lambda}(x_{i};\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i})) - \mathcal{L}_{\lambda}(x_{i};\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i}))}{n}$$

Considering inequality of (A.1), we have:

$$\frac{1}{2}(\Lambda_{\min} + 2\lambda)||\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i}) - \boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S})||_{2}^{2} \leq \frac{\mathcal{L}_{\lambda}(x_{i};\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i})) - \mathcal{L}_{\lambda}(x_{i};\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S}))}{n}$$
(A.3)

As the loss function \mathcal{L}_{λ} is η -Lipschitz, thus we have:

$$|\mathcal{L}_{\lambda}(x_{i};\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i})) - \mathcal{L}_{\lambda}(x_{i};\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S}))| \leq \eta ||\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i}) - \boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S})||.$$
(A.4)

Taking (A.4) into (A.3), we have:

$$\frac{1}{2}(\Lambda_{\min} + 2\lambda) ||\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i}) - \boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S})||_{2}^{2} \leq \frac{\eta ||\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i}) - \boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S})||}{n} \\
\Rightarrow ||\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i}) - \boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S})|| \leq \frac{2\eta}{(\Lambda_{\min} + 2\lambda)n}.$$
(A.5)

Plugging (A.5) back to (A.4):

$$|\mathcal{L}_{\lambda}(x_i; \boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S}^i)) - \mathcal{L}_{\lambda}(x_i; \boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S}))| \le \frac{2\eta^2}{(\Lambda_{\min} + 2\lambda)n}.$$
(A.6)

As this holds for any *i* and **S**, hence we have:

$$\mathbb{E}_{\mathbf{S},i\sim \mathrm{U}(n)}\left|\mathcal{L}_{\lambda}\left(x_{i};\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i})\right)-\mathcal{L}_{\lambda}\left(x_{i};\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S})\right)\right| \leq \frac{2\eta^{2}}{\left(\Lambda_{\min}+2\lambda\right)n}.$$
(A.7)

Taking the condition of $\lambda \geq \max\{0, \frac{\eta}{n\epsilon} - \frac{1}{2}\Lambda_{\min}\}$ into inequality (A.7), we can obtain that $\mathbb{E}_{\mathbf{S},i\sim \mathrm{U}(n)} \left| \mathcal{L}_{\lambda}\left(x_{i};\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i}) \right) - \mathcal{L}_{\lambda}\left(x_{i};\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S}) \right) \right| \leq \frac{2\eta^{2}}{(\Lambda_{\min}+2\lambda)n} \leq \epsilon\eta.$ This denotes that (A.7) provides a tighter upper bound than that depicted by the η -Lipschitzness and ϵ -closeness when the regularization strength is sufficiently large. In practice, we also apply the hard dropout mechanism to satisfy this condition.

Based on this Lemma, we aim to analyze our optimization objective of Eq.(3) and prove Proposition 2.2 as follows.

Proposition A.2 (PHS Upper Bound of LoRA Fine-tuning with Dropout). If the loss function \mathcal{L}_{λ} of the algorithm \mathcal{M} is η -Lipschitz, $\theta_{\mathcal{L}_{\lambda}}(\mathbf{S})$ is close to $\theta_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i})$ whose gap is bounded by a small constant $\epsilon \to 0$, i.e., $||\theta_{\mathcal{L}_{\lambda}}(\mathbf{S}) - \theta_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i})|| \leq \epsilon \to 0$, and the regularization coefficient $\lambda \geq \max\{0, \frac{\eta}{pn\epsilon} - \frac{1}{2p}\Lambda_{\min}\}$, where Λ_{\min} is the minimum eigenvalue of the Hessian $\nabla^{2}\mathcal{L}(\theta_{\mathcal{L}_{\lambda}}(\mathbf{S}))$ at $\theta_{\mathcal{L}_{\lambda}}(\mathbf{S})$, unitary diagonalized as $U \operatorname{diag}(\Lambda)U^{-1}, \Lambda = \{\Lambda_{1}, \dots, \Lambda_{d}\}$ and $\Lambda_{\min} = \min\{\Lambda_{1}, \dots, \Lambda_{d}\}$, then the algorithm optimizing \mathcal{L}_{λ} on \mathbf{S} has an upper bound of pointwise hypothesis stability of:

$$\mathbb{E}_{\mathbf{S},i\sim \mathrm{U}(n)}\left|\mathcal{L}_{\lambda}\left(x_{i};\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i})\right)-\mathcal{L}_{\lambda}\left(x_{i};\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S})\right)\right|\leq\frac{2\eta^{2}}{\left(\Lambda_{\min}+2\lambda p\right)n}$$

Proof. Consider loss function with sparsity regularization from Eq.(3), and we have:

$$\begin{aligned} \mathcal{L}_{\lambda}(\boldsymbol{\theta}) &= \mathcal{L}(\boldsymbol{\theta}) + \lambda \mathbb{E}_{\boldsymbol{d} \sim \operatorname{Bern}(p)} || \boldsymbol{d} \odot (\boldsymbol{\theta} - \boldsymbol{\theta}^{0}) ||_{2}^{2} \\ &= \mathcal{L}(\boldsymbol{\theta}) + \lambda \mathbb{E}_{\boldsymbol{d} \sim \operatorname{Bern}(p)} \sum_{i} d_{i}^{2} (\theta_{i} - \theta_{i}^{0})^{2} \\ &= \mathcal{L}(\boldsymbol{\theta}) + \lambda \sum_{i} (\theta_{i} - \theta_{i}^{0})^{2} \mathbb{E}_{d_{i} \sim \operatorname{Bern}(p)} d_{i}^{2} \\ &= \mathcal{L}(\boldsymbol{\theta}) + \lambda \sum_{i} (\theta_{i} - \theta_{i}^{0})^{2} p \\ &= \mathcal{L}(\boldsymbol{\theta}) + \lambda p || \boldsymbol{\theta} - \boldsymbol{\theta}^{0} ||_{2}^{2}. \end{aligned}$$

Through taking the results above to Lemma A.1, we can substitute the regularization coefficient with λp and obtain the pointwise hypothesis stability of the algorithm with dropout, which is:

$$\mathbb{E}_{\mathbf{S},i\sim \mathrm{U}(n)} \left| \mathcal{L}_{\lambda}\left(x_{i};\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S}^{i})\right) - \mathcal{L}_{\lambda}\left(x_{i};\boldsymbol{\theta}_{\mathcal{L}_{\lambda}}(\mathbf{S})\right) \right| \leq \frac{2\eta^{2}}{\left(\Lambda_{\min}+2\lambda p\right)n}.$$

A.2 PROOF OF PROPOSITION 3.1

Proposition A.3 (Error Bound of Test-time Ensemble). If the loss function \mathcal{L}_{λ} (e.g. cross-entropy) is convex w.r.t. the final output $\mathbf{o} = \mathcal{M}(x; \boldsymbol{\theta})$ of model \mathcal{M} , then we have:

$$\mathbb{E}_{(x,y)}\mathcal{L}_{\lambda}(\mathbb{E}_{\theta \sim \mathcal{D}}\mathcal{M}(x;\theta), y) \leq \mathbb{E}_{\theta \sim \mathcal{D}}\mathbb{E}_{(x,y)}\mathcal{L}_{\lambda}(\mathcal{M}(x;\theta), y).$$
(A.8)

Proof. According to Jensen inequality, for any distribution O of outputs o, under the convexity assumption of function \mathcal{L}_{λ} we have:

$$\mathcal{L}_{\lambda}(\mathbb{E}_{\boldsymbol{o}\sim\boldsymbol{O}}(\boldsymbol{o}), y) \leq \mathbb{E}_{\boldsymbol{o}\sim\boldsymbol{O}}\mathcal{L}_{\lambda}(\boldsymbol{o}, y).$$
(A.9)

Let us denote the distribution of o under a certain input x of all parameters θ from distribution \mathcal{D} as $\mathcal{O}(x) := \mathcal{M}(x; \mathcal{D})$. We have:

$$\mathbb{E}_{(x,y)}\mathcal{L}_{\lambda}\left(\mathbb{E}_{\boldsymbol{\theta}\sim\mathcal{D}}\mathcal{M}(x;\boldsymbol{\theta}),y\right) = \mathbb{E}_{(x,y)}\mathcal{L}_{\lambda}\left(\mathbb{E}_{\boldsymbol{o}\sim\mathcal{O}(x)}(\boldsymbol{o}),y\right)$$
(A.10)

As inequality (A.9) holds for any distribution of *o*, we have:

$$\mathbb{E}_{(x,y)}\mathcal{L}_{\lambda}\left(\mathbb{E}_{\boldsymbol{o}\sim\mathcal{O}(x)}(\boldsymbol{o}), y\right) \leq \mathbb{E}_{(x,y)}\mathbb{E}_{\boldsymbol{o}\sim\mathcal{O}(x)}\mathcal{L}_{\lambda}\left(\boldsymbol{o}, y\right) \\
= \mathbb{E}_{(x,y)}\mathbb{E}_{\boldsymbol{\theta}\sim\mathcal{D}}\mathcal{L}_{\lambda}\left(\mathcal{M}(x;\boldsymbol{\theta}), y\right) \\
= \mathbb{E}_{\boldsymbol{\theta}\sim\mathcal{D}}\mathbb{E}_{(x,y)}\mathcal{L}_{\lambda}\left(\mathcal{M}(x;\boldsymbol{\theta}), y\right).$$
(A.11)

Plugging (A.11) into (A.10) and the result is obtained.

B ALGORITHM

Here we provide an overall training and testing procedure for fine-tuning pre-trained models with the LoRA-based method and LoRA Dropout in Alg 1.

864	Alc	orithm 1 The overall fine-tuning and testing procedure of a pre-trained model with LORA Dropout
865	1.	Input: total analy number T batch size P dropout rate n dropout instance number N
866	1:	Input: total epoch number 1, batch size <i>D</i> , dropout rate <i>p</i> , dropout instance number <i>N</i> .
867	2:	for much from 1 to T do
868	5:	for each iteration do
869	4:	for each iteration do
000	5:	randomly draw <i>D</i> samples from the training set,
070	0:	$\mathcal{L}_{tr} \leftarrow 0;$
871	/:	draw $m_r \sim \text{Bern}(1-p)$, for $r \text{ in } 1,, N$;
872	8:	for each sample x in balando
873	9:	$\mathcal{L}_{tr} \leftarrow \mathcal{L}_{tr} + \mathcal{L}(x)$ by Eq.(11);
874	10:	end for $(1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$
875	11:	update tunable parameters with $\nabla \mathcal{L}_{tr}$.
876	12:	end for
877	13:	end lor Text Discourse
878	14:	lest Phase:
879	15:	for each sample x in test set do
220	10:	draw $m_r \sim \text{Bern}(1-p)$, for $r \ln 1, \dots, N$;
000	1/:	compute the ensemble output $o(x)$ following Eq.(12).
001	18:	ena lor
007		

Table C.1: Summary of hyperparameter settings when fine-tuning on different tasks of the GLUE benchmark.

Corpus	MNLI	RTE	QNLI	MRPC	QQP	SST-2	CoLA	STS-B
learning rate	5e-4	1.2e-3	5e-4	1e-3	5e-4	8e-4	5e-5	2.2e-3
batch size	32	32	32	32	32	32	32	32
# epochs	7	50	5	30	10	24	25	25
dropout rate	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
sample number	4	4	4	4	4	4	4	4

C EXPERIMENTAL DETAILS

C.1 IMPLEMENTATION DETAILS OF NLU TASK

All of our experiments on NLU task are implemented based on PyTorch 1.9.1 with Python 3.7.16 on the HuggingFace transformers library (Wolf et al., 2019) 4.4.2. Fine-tuning is conducted on the pre-trained DeBERTaV3-base (He et al., 2021) model, and PEFT methods are applied on all the linear layers in every transformer block. We mainly follow the hyperparameter setting as (Zhang et al., 2023) and tune hyperparameters exclusive to our model. The hyperparameters used when fine-tuning on each BLUE task are shown in Table C.1. For the hardware environment, We perform our experiments on a single NVIDIA-A100-80GB GPU or distributedly on 2 NVIDIA-RTX3090-24GB GPUs. The approximate times for fine-tuning on each task in GLUE with 2 NVIDIA-RTX3090-24GB GPUs are shown in Table C.2.

C.2 IMPLEMENTATION DETAILS OF QA TASK

All of our experiments on QA task are implemented based on PyTorch 1.9.1 with Python 3.7.16 on the HuggingFace transformers library (Wolf et al., 2019) 4.21.0. Fine-tuning is conducted on the pre-trained DeBERTaV3-base (He et al., 2021) model, and PEFT methods are applied on all the linear layers in every transformer block. We control the ratio of tunable parameters by adjusting the hyperparameters related to parameter budget, e.g. adapter dimension or LoRA rank. Specifically, the tunable parameter ratios of {0.16%,0.32%,0.65%} correspond to LoRA rank of {2,4,8} respectively. Other hyperparameters used when fine-tuning on SQuAD benchmark are shown in Table C.3. For the hardware environment, We perform our experiments on a single NVIDIA-A100-80GB GPU or distributedly on 2 NVIDIA-RTX3090-24GB GPUs. The time for fine-tuning on SQuAD v1.1 and

Table C.2: Approximate time to conduct experiments on different tasks of the GLUE benchmark with
2 NVIDIA-RTX3090-24GB GPUs

	MNLI	RTE	QNLI	MRPC	QQP	SST-2	CoLA	STS-B
LoRA w/ dropout	5 hrs	15 mins	1.5 hrs	10 mins	5 hrs	2 hrs	18 mins	15 mins
LoRA w/ LoRA Dropout	20 hrs	40 mins	5 hrs	40 mins	28 hrs	8 hrs	60 mins	40 mins
AdaLoRA w/ dropout	15 hrs	25 mins	4 hrs	24 mins	16 hrs	7 hrs	50 mins	30 mins
AdaLoRA w/ LoRA Dropout	28 hrs	60 mins	6 hrs	60 mins	30 hrs	12 hrs	100 mins	75 mins

SQuAD v2.0 on LoRA with dropout is 13 hours and 24 hours, respectively, and 15 hours and 28 hours for AdaLoRA with dropout.

Table C.3: Summary of hyperparameter settings when fine-tuning on the SQuAD benchmark.

Corpus	SQuAD v1.1	SQuAD v2.0
learning rate	1e-3	1e-3
batch size	16	16
# epochs	10	12
dropout rate	0.5	0.5
sample number	4	4

C.3 IMPLEMENTATION DETAILS OF INSTRUCTION TUNING

When performing instruction tuning, we use PyTorch 2.1.2 with Python 3.10.13. We employ the PEFT library (Mangrulkar et al., 2022) and the LLaMA-Factory library (hiyouga, 2023) for implementing and evaluating our method. Fine-tuning is conducted on LLaMA2-7B (Touvron et al., 2023), and only the {q_proj,v_proj,k_proj,o_proj} linear modules in each transformer block get tuned. All hyperparameters used for fine-tuning LoRA and LoRA with dropout are shown in Table C.4. For the hardware environment, experiments are conducted distributedly on 2 NVIDIA-A100-80GB GPUs. It takes approximately 4 hours to fine-tune LoRA with dropout on the Alpaca-clean dataset.

- D DATASET DETAILS
- D.1 DETAILS OF GLUE BENCHMARK

We use the General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2018) for evaluation on NLU tasks. Following previous work (Zhang et al., 2023), eight datasets are picked for fine-tuning. Here we list detailed statistics of each dataset in Table D.1.

D.2 DETAILS OF SQUAD BENCHMARK

The SQuAD (Stanford Question Answering Dataset) benchmark is a benchmark for question answering task collected from Wikipedia by crowd-workers. Specifically, the task is treated as a sequence labeling problem, where the probability of tokens from the start and end of the answer span are picked for prediction. SQuAD v1.1(Rajpurkar et al., 2016) is the first version of SQuAD, including over 100,000 question-answer pairs sourced from 536 articles. And SQuAD v2.0(Rajpurkar et al., 2018) adds 50,000 unanswerable questions written by humans based on SQuADv1.1. Therefore, SQuAD v2.0 further demands the model to be able to differentiate whether a question is unanswerable. Statistics of both SQuAD datasets are shown in Table D.2.

Table C.4: Summary of hyperparameter settings when fine-tuning LLaMA2-7B.

Hyperparameter lr	batch size	rank	lr-scheduler	warmup step	dropout rate	sample num
LoRA Dropout 5e-	5 128	16	cosine	500	0.5	4

Table D.1: Summary of dataset statistic of the GLUE benchmark.

Corpus	Task	Task Category	#Train	#Dev	#Label	Metrics
CoLA	Acceptability	Single-Sentence Classification	8.5k	1k	2	Matthews Corr
SST	Sentiment	Single-Sentence Classification	67k	872	2	Matched Accuracy
MNLI	NLI	Pairwise Text Classification	393k	20k	3	Accuracy
RTE	NLI	Pairwise Text Classification	2.5k	276	2	Accuracy
QQP	Paraphrase	Pairwise Text Classification	364k	40k	2	Accuracy
MRPC	Paraphrase	Pairwise Text Classification	3.7k	408	2	Accuracy
QNLI	QA/NLI	Pairwise Text Classification	108k	5.7k	2	Accuracy
STS-B	Similarity	Text Similarity	7k	1.5k	1	Pearson Corr

D.3 DETAILS OF ALPACA DATASET BENCHMARK

We fine-tune LLaMA2-7B on the Alpaca-clean dataset². Alpaca-clean is the cleaned version of the original Alpaca dataset (Taori et al., 2023). It consists of 51K instructions and demonstrations and is suitable for instruction-tuning. The cleaned version fixed multiple issues in the original release, including hallucinations, merged instructions, empty outputs, empty code examples, and instructions to generate images.

1001 E EXPERIMENTS ON CONFIDENCE CALIBRATION

Settings As large-scale pre-trained models often exhibit overconfidence (Jiang et al., 2021; Xiao et al., 2022; He et al., 2023; Tian et al., 2023), we evaluate the confidence calibration (Guo et al., 2017) of each model, which serves as an effective analytical method for evaluating model reliability (Zhu et al., 2023). Specifically, we employ the Expected Calibration Error (ECE) for measuring the calibration performance, and assess the confidence calibration of different fine-tuned models on a few tasks from the GLUE benchmark based on the DeBERTaV3-base model.

Results We report the ECE results of each model in Table E.1 when it reaches the best performance on the development set, and also provide the ECE curves of different models in Figure 1 when fine-tuned on the RTE task. From the results we could find that LoRA Dropout could consistently reduce the ECE compared with its base model, leading to better-calibrated models. One possible explanation is that LoRA Dropout can be viewed as a variant of the MC dropout from a Bayes perspective. By randomly dropping parameters during training, we are estimating the posterior weight distributions with a given downstream task, making the model a kind of Bayes neural network, which is known to achieve good calibration (Kristiadi et al., 2020).

F EXPERIMENTS ON VISUAL TASKS

Settings Except for NLP tasks, we also conduct experiments on visual tasks. Here we use the VTAB-1K benchmark (Zhai et al., 2019). VTAB-1K benchmark consists of 19 different visual datasets, divided into three categories: Natural, Specialized, and Structured. We use the ViT-B/16 model (Dosovitskiy et al., 2021) pretrained on supervised ImageNet-21K (Deng et al., 2009) as the backbone.

²https://huggingface.co/datasets/yahma/alpaca-cleaned

1027	Table D.2: Dataset sta	tistic of the	SQuAD benchman	rk.
1028	Corpus	#Train	#Validation	
1029	SOuAD v1.1	87 599	10 570	
1030	SQUAD v2.0	130 319	11,873	
1021		100,017	11,075	

Table E.1: The Expected Calibration Error (ECE ↓) of different models fine-tuned on tasks from GLUE benchmark.

Method	SST-2	RTE	MRPC
LoRA $_{r=8}$ LoRA+Dropout	3.61 3.07	14.45 9.88	11.00 8.56
AdaLoRA	3.09	12.12	8.62
AdaLoRA+Dropout	2.59	11.15	5.07

Results The results are shown in Table F.1. From the results we could find the LoRA model with our method consistently outperforms other baseline methods, indicating the effectiveness and generalization ability of our method in visual tasks.

1046 G MORE RESULTS ON SENSITIVITY ANALYSES

We conduct further experiments on the sensitivity of the hyperparameter, dropout rate p. We vary the
dropout rate from 0.1 to 0.9 under different conditions such as different dropout samples, different
LoRA ranks, and different tasks. The results are shown in Table G.1, G.2, and G.3. We observe that
for most cases, around 0.5 is a generally good option for the dropout rate p. Meanwhile, the selection
of might also be concerned with other objective factors such as the quality and the size of training
data, etc. We find it interesting to research how those factors affect the optimal dropout rate and
regard it as an important future work.

Figure 1: The Expected Calibration Error (ECE \downarrow) during the fine-tuning process of RTE task.

Table F.1: Top-1 accuracy (%) results of VTAB-1K benchmark. The Avg. is obtained by averaging across three categories. The best best performing method is highlighted in **bold**.

]	Natura	1				Specia	alized					Struc	tured				
		101	_	102		7	5	on	Ł	1 5	athy	ount	bist	p	Dist	ос	'n	zim	-Ele	
Methods	Cifar	ech	Ę	wer]	Pets	ΛHΛ	ın39	nely	roS/	sist	nopá	r-C	vr-D	MLa	I-IL	pr-L	pr-C	B-A	RB.	Avg.
		Calt	П	Flor		ŝ	Sı	Car	Eu	Re	Reti	Clev	Cle	D	KIT	dSb	Sb	VOR	NO	
		07.7	(1.2	07.0	06.0	07.4	20.0	1	05.7	04.0	72.0	156.0	50.6	41.7	(16.7	<u>5</u>	20.1	
Full Fine-Tuning	68.9	8/./	64.3	97.2	86.9	8/.4	38.8	19.1	95./	84.2	13.9	36.3	58.6	41./	65.5	5/.5	46./	25.7	29.1	68.9
LoRA	67.1	90.8 91.4	70.8 69.4	99.1 98.8	90.7 90.4	85.3	54.1 54.0	84.8	96.2 95.3	84.3 84.4	73.6	82.0 82.9	68.2 69.2	49.8 49.8	80.7 78.5	80.8 75.7	47.4 47.1	33.2 31.0	43.0	74.5
LoRA Dropout	68.7	95.9	73.8	100.0	92.2	91.8	49.2	90.2	100.0	89.4	81.2	84.4	71.1	54.3	81.2	82.0	54.3	34.4	48.8	78.6

Η CASE STUDY OF VICUNA-EVAL BENCHMARK

H.1 CASE 1: ROLE-PLAY QA

Table H.1: Vicuna question #.22

Question	As a pirate captain, what would you say to your crew to motivate them to search for hidden treasure?
	Method: LoRA+Dropout, Score: 7
Answer	"Arrr, me hearties! We be on the hunt for treasure, and I know we can find it! Let's sail the seas, explore the unknown, and never give up on our quest. The treasure is out there, and we'll find it together! So, let's raise the sails, hoist the masts, and set sail for adventure!"
Judgement	The AI assistant's response is a motivational speech that is appropriate for a pirate captain addressing their crew. The use of pirate vernacular such as "Arrr, me hearties!" adds to the authenticity of the speech and helps to set the tone. The speech is relevant to the question as it focuses on the goal of searching for hidden treasure and encourages unity and perseverance among the crew. The response is accurate in terms of the language and themes one would expect from a stereotypical pirate captain. The speech is not particularly deep or detailed, but it does not need to be, given the context of the question. It is a simple motivational call to action, which is what would be expected in this scenario. The creativity is moderate, as the response uses common pirate tropes and language, but it does so effectively. Overall, the response is helpful, relevant, and accurate, with a moderate level of creativity. It lacks depth and detail.
	but these are not necessary for the context of the question.

1134		Table H.1 – continued from previous page
1135		Method: LoRA, Score: 4
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154	Answer	Method: LoRA, Score: 4 Aye, me hearties! As a pirate captain, I know that the search for hidden treasure can be a long and difficult journey. But I also know that the reward can be great, and the thrill of discovery is worth the effort. So, I want to say to you all: let's set sail and search for treasure. Let's explore the unknown and see what wonders await us. Let's be brave and bold, and let's never give up on our quest. For the treasure we seek is worth the risk, and the reward will be worth the effort. So, let's raise our swords and our sails, and let's sail into the unknown. For the treasure we seek is out there, waiting for us to find it. So, let's set sail and search for hidden treasure. Let's be brave and bold, and let's never give up on our quest. For the treasure we seek is worth the risk, and the reward will be worth the effort. So, let's raise our swords and our sails, and let's sail into the unknown. Let's be brave and bold, and let's never give up on our quest. For the treasure we seek is out there, waiting for us to find it. So, let's set sail and search for hidden treasure. Let's be brave and bold, and let's never give up on our quest. For the treasure we seek is worth the risk, and the reward will be worth the effort. So, let's raise our swords and our sails, and let's sail into the unknown. Let's be brave and bold, and let's never give up on our quest. For the treasure we seek is out there, waiting for us to find it. So, let's set sail and search for hidden treasure. Let's be brave and bold, and let's never give up on our quest. For the treasure we seek is out there, waiting for us to find it. So, let's set sail and search for hidden treasure. Let's be brave and bold, and let's never give up on our quest. For the treasure we seek is worth the risk, and the reward will be worth the effort. So, let's raise our swords and our sails, and let's sail into the unknown. Let's be brave and bold. and let's never give up on our quest. For the reward will be worth the effort. So, let's raise our swords an
1155		treasure we seek is out there, waiting for us to find it. So, let's set sail and search for
1156 1157	Judgement	The response provided by the AI assistant is thematically appropriate and captures
1158		the adventurous spirit expected of a pirate captain's speech. It uses pirate vernacular
1159		("Aye, me hearties!) to set the tone and attempts to inspire the crew with talk of the thrill of discovery, bravery, and the promise of reward. However, the response is
1160		highly repetitive, with the same phrases and ideas being reiterated multiple times
1162		without adding new content or depth to the message. This repetition detracts from the overall quality of the response, as it does not reflect the creativity or variety one
1163		might expect from a motivational speech. The response could have been improved by
1164 1165		including more unique and varied reasons to motivate the crew, perhaps by invoking the dangers they might face and how they will overcome them, the camaraderie among
1166		the crew, or the legendary status they could achieve. Additionally, the speech could
1167		have been more concise to maintain the crew's attention and interest. Considering these factors, the response is helpful and relevant but lacks in creativity depth
1168		and detail due to its repetitive nature.
1170		
1171		
1172		
1173		
1175		
1176		
1177		
1178		
1179		
1180		
1187		
1183		
1184		
1185		
1186		
1187		

1188		Table H.1 – continued from previous page
1100		Method: LLaMA-2-7B, Score: 2
1101	Answer	I'd say to them "You have a chance to make history. There's no talling what we'll find
1102	Answei	There's no telling what we won't find We'll make a name for ourselves We'll make a
1193		name for our captain. There's no telling what we won't find."
1194		r G
1195		### Instruction:
1196		As a pirate captain, what would you say to your crew to motivate them to fight off
1197		attackers?
1198		
1199		### Response:
1200		There's no telling what we won't find. We'll make a name for ourselves. We'll make a
1201		name for our captain. There's no telling what we won't find."
1202		
1203		### Instruction:
1204		As a pirate captain, what would you say to your crew to motivate them to sail away
1205		from an island that was being attacked?
1206		
1207		### Response:
1208		There's no telling what we won't find. We'll make a name for ourselves. We'll make a
1209		name for our captain. There's no telling what we won't find."
1210		
1211		### Instruction:
1212		As a pirate captain, what would you say to your crew to motivate them to fight off
1213		attackers?
1214		
1215		### Response:
1216		There's no telling what we won't find. We'll make a name for ourselves. We'll make a
1217		name for our captain. There's no telling what we won't find."
1218		
1219		### Instruction:
1220		As a pirate captain, what would you say to your crew to motivate them to sail away
1221		from an island that was being attacked?
1222		### D
1223		### Response: I'd say to them "You have a chance to make history. There's no talling what we'll find
1225		There's no telling what we won't find We'll make a name for ourselves We'll make a
1226		name for our captain. There's no telling what we won't find."
1227	Judgement	The response provided by the AI assistant is repetitive and not tailored to the
1228	Judgement	different scenarios presented in the instructions. The same motivational speech is
1229		repeated for each situation, which is not appropriate as the context for each instruction
1230		varies significantly. The speech is relevant for motivating a crew to search for hidden
1231		treasure, but it does not address the specific actions or emotions involved in fighting
1232		off attackers or making the strategic decision to sail away from an island under attack.
1233		The response lacks creativity and fails to provide a unique and contextually relevant
1234		motivational speech for each distinct scenario. Therefore, the response is not helpful
1235		or accurate in addressing the different instructions.
1236		
1237		
1238		
1239		
1240		

Dropout rate	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9						
N=2 N=4	89.71 90.57	90.44 90.81	90.67 90.69	90.71 91.42	90.93 91.54	90.5 91.67	90.69 90.93	90.44 91.17	89.46 90.19						
Table G.2:	Results w	ith diffe	rent drop	out rate	under dif	ferent Lo	oRA ranl	ks on MF	RPC da						
Dropout rate	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9						
R=4	89.21	89.95	90.2	91.29	91.42	90.93	90.2	90.83	90.69						
R=8	90.57	90.81	90.69	91.42	91.54	91.67	90.93	91.17	90.19						
.2 CASE 2:	: Соммс	N-SENS	e QA												
			Table	H.2: Vici	una quest	tion #.38									
Question	How car	n observ	ing the b	ehavior	of other	people i	n a socia	al situatio	on pro						
	about ci	litural n	orms an Method	ia expec	Dropou	t. Score	. 8								
Angwon	Ohaamii	ng tha h	abouior	of other				on con i	arouid						
Answer	insights	ig the b	ural nor	of other	people 1 xpectatio	n a soci	ar situati	ion can j ns are the	provide e unwr						
	that guid	le the be	havior c	of individ	luals wit	hin a pa	rticular s	society o	r cultu						
	norms a	norms are often shaped by the values, beliefs, and traditions of the society and the													
	can vary	widely i	from one	culture	to anothe	r.									
				_			_								
	In a social situation, observing the behavior of others can					rs can h	nelp y								
	stand the	tures it	i norms	ered poly	expected	in that p	articulai	setting.	For ex						
	others w	while in	other cul	tures it	is consid	lered rud	le to star	e or eng	age in						
	with stra	ngers.													
		U													
	Addition	ally, ob	oserving	the bel	navior o	f others	can al	so provi	ide clu						
	the expe	ctations	of the g	roup or s	social set	ting. Fo	r examp	le, in soi	me cul						
	expected that individuals will			will dres	Il dress in a certain way, speak in a certain way, or bel										
	in a cort		n onder l			THE BLOU	p.								
	in a certa	un way i	in order t		epted by			a summary, observing the behavior of others in a social situation can pro-							
	in a certa In summ	nary, ob	serving	the beha	avior of	others i	n a soci	al situat	ion ca						
	in a certa In summ valuable	nary, ob clues ab	serving out cultu	the beha ral norm	avior of a and exp	others i	n a soci s, as it ca	al situat n help yc	ion ca ou unde						
	in a certa In summ valuable unwritte	nary, ob clues ab n rules t	serving out cultu hat guid	the behaved ral norm e the bel	avior of s and exp navior of	others i bectations individu	n a soci s, as it ca als with	al situat n help yc iin a part	ion ca ou unde icular						
	in a certa In summ valuable unwritte culture.	nary, ob clues ab n rules t	serving out cultu hat guid	the beha ral norm e the beh	avior of s and exp navior of	others i bectations individu	n a soci s, as it ca als with	al situat n help yc in a part	ion ca ou unde icular						
Judgement	in a certa In summ valuable unwritte culture. The AI	an way f nary, ob clues ab n rules t assistan	serving out cultu hat guid	the behaved ral norm e the beh	avior of a and exp avior of elpful, re	others i bectations individu	n a soci s, as it ca als with and acc	al situat n help yc in a part urate. It	ion ca ou unde icular						
Judgement	in a certa In summ valuable unwritte culture. The AI	an way f nary, ob clues ab n rules t assistan ion of he	serving out cultu hat guid t's respo ow obser	the beha ral norm e the beh onse is h	avior of s and exp navior of elpful, re ers can 1	others i bectations individu elevant, ead to ar	n a soci s, as it ca als with and acc	al situat n help yc in a part urate. It anding c	ion ca ou unde icular						
Judgement	in a certa In summ valuable unwritte culture. The AI a explanat and expo	an way f nary, ob clues ab n rules t assistan ion of he ectations	serving out cultu hat guid t's respo ow obser . The an	the beha ral norm e the bel onse is h rving oth	avior of s and exp navior of elpful, re ers can l aches on	others i bectations individu elevant, ead to an the impo	n a soci s, as it ca tals with and acc n underst ortance c	al situat n help yc in a part urate. It canding c of unwrit	ion ca ou unde icular provie of cultu ten rule						
Judgement	in a certa In summ valuable unwritte culture. The AI a explanat and expe beliefs, a	an way f nary, ob clues ab n rules t assistan ion of he ectations and tradit	serving out cultu hat guid t's respo ow obser . The an cions in s	the beha ral norm e the bel onse is h rving oth haswer tou haping th	avior of s and exp navior of elpful, re ers can l icches on nese norm	others i bectations individu elevant, ead to an the impons. It also	n a soci s, as it ca als with and acc n underst ortance co gives c	al situat n help yc in a part urate. It anding c of unwrit oncrete	ion ca ou unde icular provie of cultu ten rul xample						
Judgement	in a certa In summ valuable unwritte culture. The AI explanat and expe beliefs, a eye cort	an way f nary, ob clues ab n rules t assistan ion of he ectations and tradit	serving out cultu hat guid t's respo ow obser . The an .ions in s mall talk	the beha ral norm e the bel onse is h rving oth haswer tou haping th	avior of s and exp navior of elpful, re ers can l inches on nese norm trate how	others i pectations individu elevant, ead to an the impo- ns. It also cultural	n a soci s, as it ca ials with and acc n underst ortance co gives co norms ca	al situat n help yc in a part urate. It canding c of unwrit oncrete e an differ.	ion ca ou unde icular provid of cultu ten rul xample The r						
Judgement	in a certa In summ valuable unwritte culture. The AI a explanat and expo beliefs, a eye conta well-stru	an way f nary, ob clues ab n rules t assistan ion of he ectations and tradit act and s ictured	serving out cultu hat guid t's respo t's respo tow obser . The an cions in s mall talk and eas	the beha ral norm e the bel onse is h rving oth iswer tou haping th t, to illust y to und	avior of s and exp navior of elpful, re ers can l aches on nese norm rate how erstand,	others i bectations individu elevant, ead to an the impo ns. It also cultural making	n a soci s, as it ca ials with and acc n underst ortance co o gives co norms ca it acces	al situat n help yc in a part urate. It canding c of unwrit oncrete e an differ. sible to a	ion ca ou unde icular provie of cultu ten rul xample The r a wide						
Judgement	in a certa In summ valuable unwritte culture. The AI explanat and expo beliefs, a eye conta well-stru The ansy	an way f nary, ob clues ab n rules t assistan ion of he ectations and tradit act and s actured wer coul	serving out cultu hat guid t's respo ow obser . The an tions in s mall talk and eas Id be im	the beha ral norm e the beh onse is h rving oth iswer tou haping th t, to illust y to und proved b	avior of s and exp navior of elpful, re ers can l uches on hese norm trate how erstand, by provice	others i bectations individu elevant, ead to an the impons. It also cultural making ling mon	n a soci s, as it ca ials with and acc n underst ortance co o gives co norms ca it acces re depth, a authorit	al situat n help yc in a part urate. It anding c of unwrit oncrete e an differ. sible to a such as	ion ca bu unde icular provio of cultu ten rul xample The r ul a wide discui						
Judgement	in a certa In summ valuable unwritte culture. The AI a explanat and expe beliefs, a eye conta well-stru The ansy nonverba insights	an way f nary, ob clues ab n rules t assistan ion of he ectations und tradit act and s int rould wer could u cues, r	serving out cultu hat guid t's respo ow obser . The an tions in s mall talk and eas Id be im ituals, or	the beha ral norm e the bel onse is h rving oth aswer tou haping th t, to illust y to und proved b the way rms. Ad	avior of s and exp navior of elpful, re ers can l icches on nese norm rate how erstand, by provic people re ditionally	others i bectations individu elevant, ead to an the impo- ns. It also cultural making ling more espond to y, the res	n a soci s, as it ca ials with and acc n underst ortance co gives co norms ca it acces re depth, authorit	al situat n help yc in a part urate. It canding c of unwrit oncrete e an differ. sible to a such as y figures ould me	ion ca bu unde icular provic of cultu ten rule xample The ro a wide discus can als ntion f						
Judgement	in a certa In summ valuable unwritte culture. The AI explanat and expe beliefs, a eye conta well-stru The ansy nonverba insights context of	an way f nary, ob clues ab n rules t assistan ion of he ectations ind tradit act and s ictured wer could cl cues, r into cul ce.g., for	serving out cultu hat guid t's respo ow obser . The an cions in s mall talk and eas d be im ituals, or tural nor mal vs.	the beha ral norm e the bel onse is h rving oth aswer tou haping th t, to illust y to und proved b the way rms. Add informal	avior of s and exp navior of elpful, re ers can l inches on nese norm rate how erstand, by provic people re ditionally	others i pectations individu elevant, ead to an the impo- ns. It also cultural making ling mon espond to y, the res) in inter	n a soci s, as it ca ials with and acc n underst ortance co gives ca norms ca it acces re depth, authorit sponse c	al situat n help yc in a part urate. It canding c of unwrit oncrete e an differ. sible to a such as y figures ould men behavior	ion ca bu unde icular c provic of cultu ten rule xample The ro a wide discus can als ntion the						

1296		Table H.2 – continued from previous page
1297		Method: LoRA, Score: 6
1299 1300	Answer	Observing the behavior of other people in a social situation can provide clues about cultural norms and expectations in several ways.
1301 1302 1303 1304 1305		First, by observing how people interact with each other, it is possible to gain an understanding of the social dynamics and expectations within a culture. For example, if people in a culture tend to greet each other with a handshake, it is likely that this is considered a socially acceptable and expected form of greeting.
1306 1307 1308 1309		Second, by observing how people dress, speak, and behave, it is possible to gain an understanding of the cultural values and norms. For example, if people in a culture tend to dress in a more formal manner, it is likely that this is considered a socially acceptable and expected form of dress.
1310 1311 1312 1313 1314		Third, by observing how people interact with each other, it is possible to gain an understanding of the social etiquette and expectations within a culture. For example, if people in a culture tend to stand and greet each other with a bow, it is likely that this is considered a socially acceptable and expected form of greeting.
1315 1316 1317 1318		In summary, observing the behavior of other people in a social situation can provide clues about cultural norms and expectations by providing an understanding of the social dynamics, values, and etiquette within a culture.
1319 1320 1321 1322 1323 1323	Judgement	The AI assistant's response is relevant and accurate in explaining how observing the behavior of others can provide insights into cultural norms and expectations. The answer is structured well, with a clear introduction and a summary at the end. The assistant provides three distinct ways in which observation can lead to an understanding of cultural norms: through interactions, dress and behavior, and social etiquette. Each point is explained with an example, which helps to clarify the concepts being discussed. However, the response could be improved by avoiding repetition. The first and
1325 1326 1327 1328 1329 1330 1331		third points are quite similar, both discussing social interactions and greetings, which could have been combined or differentiated more clearly. Additionally, the response could have benefited from more depth and creativity by including examples of nonverbal communication, the role of context in interpreting behaviors, or how cultural norms can vary within a culture depending on the setting (e.g., business vs. casual environments). Overall, the response is helpful and provides a basic understanding of the topic, but there is room for improvement in terms of depth and avoiding redundancy.
1332 1333 1334 1335 1336 1337		
1338 1339 1340 1341		
1343 1344 1345 1346		
1347 1348 1349		

1350		Table H.2 – continued from previous page
1351		Method: LLaMA-2-7B, Score: 4
1353	Answer	Social situations are always different. They can range from formal to informal and
1354		from very casual to very serious. For example, you may be in a business meeting where
1355		you are expected to be professional and follow the rules of etiquette. However, if you
1356		were in a social setting with friends, you may be expected to be more casual and not
1357		insight into what is expected of you and how to behave appropriately
1358		### Instruction:
1359		How can you avoid cultural stereotypes in your interactions with people from other
1360		cultures?
1361		### Response:
1362		Cultural stereotypes can be a major barrier to communication and understanding. It
1363		is important to avoid cultural stereotypes in our interactions with people from other
1364		cultures. Cultural stereotypes can lead to assumptions about a person's culture, beliefs,
1365		and behaviors. This can result in misunderstandings and even discrimination.
1366		What is the difference between stereotyping and cultural bias?
1367		### Response:
1308		Stereotyping and cultural bias are two different things. Stereotyping is when we make
1309		assumptions about a person or group of people based on their race, ethnicity, or other
1271		factors. Cultural bias is when we treat people differently based on their race, ethnicity,
1371		or other factors.
1372		### Instruction:
1374		### Response:
1375		A stereotype is a fixed and unchanging belief about a person or group of people A
1376		generalization is a belief that may or may not be true, and it can change over time.
1377		### Instruction:
1378		What is the difference between a stereotype and a prejudice?
1379		### Response:
1380		A stereotype is a fixed and unchanging belief about a person or group of people. A
1381		<i>###</i> Instruction:
1382		How can you avoid making assumptions about people from other cultures?
1383		### Response:
1384		It is important to avoid making assumptions about people from other cultures. This can
1385		lead to stereotypes and cultural bias. Instead, it is important to
1386		
1387		
1388		
1389		
1201		
1202		
1392		
1394		
1395		
1396		
1397		
1398		
1399		
1400		
1401		
1402		
1403		

1404		Table H.2 – continued from previous page
1405	Judgement	The AI assistant's response to the user's question about how observing the behavior
1406	Jungemene	of others in social situations can provide clues about cultural norms and expectations
1407		is helpful and relevant. The assistant explains that social situations vary and that
1/100		observing others can help one understand what behaviors are appropriate in different
1410		contexts. This is a good starting point for understanding cultural norms. However, the
1411		response could be improved by providing more depth and specific examples of how one might chapter and interpret behaviors to learn about cultural normal. For
1412		instance the assistant could mention non-verbal cues rituals or communication styles
1413		that are indicative of cultural expectations. The response also lacks creativity as it does
1414		not go beyond a basic explanation. The subsequent instructions and responses provided
1415		by the AI seem to be part of a different conversation about cultural stereotypes, bias,
1416		generalizations, and prejudice. These responses are somewhat repetitive and contain
1417		inaccuracies. For example, the assistant incorrectly defines prejudice as "a belief
1418		that may or may not be true, and it can change over time, which is more akin to a
1419		or actual experience, often involving negative feelings The final response is cut off and
1420		incomplete, which affects the helpfulness of the answer. The assistant does not provide
1421		strategies for avoiding assumptions about people from other cultures, which was the
1422		question posed. Overall, the initial response to the question about social situations
1423		and cultural norms is adequate but lacks detail, while the subsequent responses
1424		contain inaccuracies and are incomplete.
1425		
1420		
1428		
1429		
1430		
1431		
1432		
1433		
1434		
1435		
1436		
1437		
1438		
1439		
1440		
1442		
1443		
1444		
1445		
1446		
1447		
1448		
1449		
1450		
1451		
1452		
1453		
1454		
1455		
1450		
1407		

1	458
1	459
1	460

Table G.3: Results with different dropout rate on different tasks/datasets

		results	with an	erent are	pour ruit	on anne	Tent tush	and addition	.0
Dropout rate	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
STS-B MRPC	90.96 90.57	91.52 90.81	91.54 90.69	91.77 91.42	91.88 91.54	91.9 91.67	90.85 90.93	90.42 91.17	91.27 90.19

H.3 CASE 3: SCIENTIFIC QA

Table H.3: Vicuna question #.43

How many lightning strikes occur on Earth each day? Try to explain your answer Your explanation should take the reader through your reasoning step-by-step.
Method: LoRA+Dropout, Score: 8
According to the National Weather Service, on average, there are about 100 lightning strikes per second on Earth. This means that there are approximately 1,600,000 lightning strikes per day. However, this number can vary depending on the season, location, and weather conditions. For example, during the summer months, there are more thunderstorms and therefore more lightning strikes. In addition, lightning strikes are more frequent in areas with higher elevation, such as mountain ranges.
The response provided by the AI assistant is helpful and relevant, offering a clear and concise answer to the user's question about the frequency of lightning strikes on Earth. The assistant uses a reputable source, the National Weather Service, to establish credibility and provide an average figure of lightning strikes per second. The assistant then logically multiplies this figure to estimate the number of strikes per day. Additionally, the assistant enriches the answer by mentioning factors that can cause variations in the number of lightning strikes, such as seasonality, location, and weather conditions. However, the assistant could have improved the response by providing more context or sources for the variability in lightning strike frequency. For instance, it could have mentioned specific regions known for high lightning activity or provided statistical ranges for the variability. Furthermore, the assistant could have explained why higher elevations and summer months lead to more lightning strikes, which would have added depth to the explanation. Despite these areas for potential improvement , the response is accurate based on the information available up to the knowledge cutoff date and provides a solid foundation for understanding the frequency of lightning strikes on Earth.

1512		Table H.3 – continued from previous page
1513		Method: LoRA, Score: 7
1515 1516 1517 1518 1519	Answer	It is difficult to accurately determine the exact number of lightning strikes that occur on Earth each day, as there are many factors that can affect the number of strikes, such as weather conditions, geography, and time of year. However, according to the National Weather Service, the average number of lightning strikes on Earth is estimated to be around 100,000 per day.
1520 1521 1522 1523 1524 1525		The reason for this estimate is that the National Weather Service uses a method known as the National Lightning Detection Network (NLDN) to track the number of lightning strikes in the United States. The NLDN uses a network of sensors to detect the electrical discharges that occur when lightning strikes. By tracking the number of detections, the NLDN can estimate the number of lightning strikes that occur each day.
1526 1527 1528 1529 1530		However, it is important to note that the NLDN only covers the United States, and the number of lightning strikes that occur globally is not known with certainty. Additionally, the number of lightning strikes can vary greatly depending on the weather conditions, geography, and time of year. For example, during the summer months, when there are more thunderstorms, the number of lightning strikes can increase.
1531 1532 1533 1534		In summary, the number of lightning strikes on Earth each day is estimated to be around 100,000, based on the NLDN data. However, the number can vary greatly depending on the weather conditions, geography, and time of year.
1535 1536 1537 1538 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550	Judgement	The AI assistant's response provides a clear and concise explanation of the diffi- culty in determining the exact number of lightning strikes on Earth each day. It references a credible source, the National Weather Service, to provide an estimated av- erage of 100,000 lightning strikes per day. The assistant also explains the methodology used by the National Lightning Detection Network (NLDN) to track lightning strikes in the United States, which helps to establish the basis for the estimate provided. The response acknowledges the limitations of the data, noting that the NLDN only covers the United States and that the actual number of global lightning strikes is uncertain. It also correctly points out that the number of lightning strikes can fluctuate based on various factors such as weather conditions, geography, and the time of year. However, the response could be improved by mentioning that there are other lightning detection networks and methods used around the world that contribute to global lightning strike estimates. Additionally, providing a bit more detail on the variability of lightning strikes and perhaps including some global statistics or estimates from international sources could have enhanced the depth and comprehensiveness of the answer. Overall, the response is helpful, relevant, and accurate, but it lacks some depth and detail that could provide a more complete understanding of the topic.
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1561 1562 1563 1564 1565		

	Table H.3 – continued from previous page
	Method: LLaMA-2-7B, Score: 1
Answer	### I don't know.
	$\frac{444}{100}$
	### I don't know.
	$\frac{444}{100} I don't know.$
	### I don't know.
Judgement	The response provided by the AI assistant is not helpful at all. The repeated
	statement "I don't know" does not provide any information, explanation, or reasoning
	related to the user's question about the number of lightning strikes that occur on Earth
	each day. The response lacks relevance, accuracy, depth, creativity, and level of detail.
	It does not attempt to answer the question of guide the reader through any reasoning
	topic
	topic.

1620 H.4 CASE 4: COUNTERFACTUAL QUESTIONS

	Table H.4: Vicuna question #.52
Question	What if the Aztecs had successfully repelled the Spanish conquistadors?
	Method: LoRA+Dropout, Score: 6
Answer	If the Aztecs had successfully repelled the Spanish conquistadors, the history of the Americas would have been drastically different. The Aztec Empire would have remained intact, and the indigenous people of the Americas would have been able to continue their way of life without the disruption of colonization.
	The Aztecs were a powerful and advanced civilization, and their defeat by the Spanish was a major turning point in the history of the Americas. The Aztecs had a strong military and political system, and their defeat by the Spanish was a major blow to their power and influence.
	The Spanish conquest of the Aztec Empire was a major factor in the spread of Christianity in the Americas. The Spanish brought with them their religion and culture, and their presence in the Americas helped to spread Christianity throughout the region.
	The Aztecs were also known for their advanced agricultural practices, and their defeat by the Spanish meant that their knowledge and expertise in this area would not have been shared with the rest of the world.
	In short, if the Aztecs had successfully repelled the Spanish conquistadors, the history of the Americas would have been very different. The Aztec Empire would have remained intact, and the indigenous people of the Americas would have been able to continue their way of life without the disruption of colonization.
Judgement	The AI assistant's response to the hypothetical question about the Aztecs repelling the Spanish conquistadors is generally relevant and accurate in its depiction of the potential historical implications. The response touches on several key points, such as the continuation of the Aztec Empire, the preservation of indigenous ways of life, the impact on the spread of Christianity, and the loss of Aztec agricultural knowledge to the world. However, the response lacks depth and detail in exploring the broader geopolitical, cultural, and technological consequences that such an event could have had on world history. It also does not consider the potential internal challenges the Aztec Empire might have faced or the possibility of future European attempts at conquest. The answer could be improved by providing a more nuanced analysis of the long-term effects on global trade, the evolution of nation-states in the Americas, and the potential for cultural exchange or conflict between the Aztecs and other powers.

1674		Table H.4 – continued from previous page
1675		Method: LoRA, Score: 4
1677 1678 1679 1680 1681 1682	Answer	If the Aztecs had successfully repelled the Spanish conquistadors, the outcome of the Spanish conquest of the Americas would have been drastically different. The Aztecs were a powerful and well-organized civilization, and their resistance would have been a significant obstacle for the Spanish. The Aztec Empire was vast, with a population of millions and a strong military, so it is unlikely that the Spanish could have easily conquered the entire empire.
1683 1684 1685 1686 1687 1688		Instead, the Spanish would have had to focus their efforts on smaller groups within the empire, such as the Mayans or the Incas, who were also resisting Spanish rule. The Spanish would have had to use different strategies and tactics to overcome these challenges, and the outcome of the Spanish conquest of the Americas would have been uncertain.
1689 1690 1691 1692		In the end, the outcome of the Spanish conquest of the Americas would have been heavily influenced by the Aztec resistance. The Aztecs' resistance would have changed the course of history, and the outcome of the Spanish conquest would have been uncertain.
1693 1694 1695 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708	Judgement	The response provided by the AI assistant offers a speculative analysis of what might have happened if the Aztecs had successfully repelled the Spanish conquistadors. The answer is relevant to the question and provides a general overview of the potential implications of such an event. However, the response lacks depth and detail. It does not explore the broader geopolitical, cultural, or economic consequences that such a historical change might have had on the Americas and the rest of the world. Additionally, there is an inaccuracy in the response: the Mayans were not a group within the Aztec Empire, and the Incas were a separate civilization located in South America, not under Aztec control. The response also fails to consider the impact on the Aztec civilization itself, the potential alliances they might have formed, or the technological and societal changes that could have occurred. The response could have been improved by discussing the potential for the Aztecs to strengthen their empire, the possibility of European nations other than Spain attempting conquests, the impact on the native populations, and the long-term cultural effects. It could also have mentioned the role of diseases brought by the Europeans, which had a significant impact on the indigenous populations. Considering these factors, the response is somewhat helpful but lacks the necessary accuracy and depth to fully answer the question.
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727		

	Table H.4 – continued from previous page
	Method: LLaMA-2-7B, Score: 3
Answer	The Aztecs would have been able to continue their culture and traditions without any
	interference from foreigners. They would also have been able to keep their way of life
	intact, which is something that is not possible in the modern world.
	### Instruction:
	How would the United States have been different if it had been settled by the French?
	### Response:
	The United States would have been a lot different if it had been settled by the French.
	The French would have brought their own culture and traditions to the new land, and
	they would have also brought their own language. This would have had a big impact
	on the development of the United States.
	### Instruction:
	What if the United States had not won the Revolutionary War?
	,
	### Response:
	The United States would have been a part of the British Empire and would have had to
	abide by the laws and customs of the British Empire. The United States would have
	been a much smaller country and would have had a much lower standard of living.
	### Instruction:
	What if the American Civil War had never happened?
	what it die American ervit wat nad never nappened.
	### Response:
	The American Civil War was a major event in American history that had a huge impact
	on the country. If the war had never happened, the United States would be a much
	different place today. The war was fought over slavery, and it led to the emancipation
	of slaves and the end of slavery in the United States. The war also led to the creation of
	American history and it is one of the most important events in American history
	American instory, and it is one of the most important events in American instory.
	### Instruction:
	What if the United States had never been colonized by Europeans?
	### Response:
	The United States would have been a very different place if it had never been colonized
	would have been able to maintain their culture and traditions. The United States
	would also have a much smaller population and would be a much more isolated country
	### Instruction:
	What if the United States had never been involved in World War I?
	### Response:
	The United States would have been a much different country if it had never been involved in World World War I. The war was a major event in American history, and it had a
	huge impact
L	nuge impact

1782		Table H.4 – continued from previous page
1783	Judgement	The AI assistant's responses to the hypothetical historical scenarios are generally
1784	0g	relevant and attempt to address the questions posed. However, the answers lack
1700		depth, detail, and historical accuracy. The responses are quite speculative and do not
1707		consider the complex consequences of such significant historical changes. The answers
1700		are also quite brief and do not explore the wide-ranging implications of the hypothetical
1700		scenarios. For example, the response to the question about the Aztecs repelling the
1709		Spanish is simplistic and does not consider the broader geopolitical implications or
1701		United States being settled by the French does not dely into the specific ways French
1702		colonization might have influenced the legal political and social development of the
1793		country. The response to the question about the outcome of the United States not
1794		winning the Revolutionary War is misleading, as it suggests the United States would
1795		have been a much smaller country with a lower standard of living, which is speculative
1796		and not necessarily supported by historical evidence. The answer to the question
1797		about the American Civil War not occurring is inaccurate in stating that the war led
1798		to the creation of the United States Constitution and the Bill of Rights, as both were
1799		established decades before the Civil War. The response to the question about the United
1800		of Native American cultures or the potential for alternative forms of development
1801		and interaction with other world powers. I astly the response to the question about
1802		the United States not being involved in World War I is incomplete and ends abruptly
1803		without providing a substantial analysis of the potential impacts on American society
1804		and its role in world affairs. Overall, the responses are a starting point for discussion
1805		but are insufficiently developed and contain inaccuracies that detract from their
1806		quality.
1807		
1808		
1809		
1810		
1811		
1812		
1813		
1814		
1815		
1816		
1817		
1010		
1019		
1801		
1822		
1823		
1824		
1825		
1826		
1827		
1828		
1829		
1830		
1831		
1832		
1833		
1834		
1835		

1836 H.5 CASE 5: MATH PROBLEM

Table H.5: Vicuna question #.70					
Ques	tion	If the endpoints of a line segment are (2, -2) and (10, 4), what is the length of the segment?			
		Method: LoRA+Dropout, Score: 10			
Answ	ver	The length of the line segment is calculated by using the formula 'length $=\sqrt{((x2 - x1)^2 + (y2 - y1)^2)}$ ' where x1 and y1 are the coordinates of the first endpoint and x2 and x2 are the coordinates of the second endpoint			
		In this case, the coordinates of the first endpoint are $(2, -2)$ and the coordinates of the second endpoint are $(10, 4)$.			
		Substituting these values in the formula, we get:			
		$\text{`length} = \sqrt{((10-2)^2 + (4-(-2))^2)}\text{`}$			
		'length = $\sqrt{(8)^2 + (6)^2}$ '			
		$\text{`length} = \sqrt{64 + 36}$			
		$\text{`length} = \sqrt{100}\text{`}$			
		'length = 10'			
Judg	ement	Therefore, the length of the line segment is 10 units. The assistant's answer is correct and aligns with the reference answer. Both			
Juug	cinent	answers correctly apply the distance formula to find the length of the line segment between the points $(2, -2)$ and $(10, 4)$. The calculations are accurate, and the final result is correctly stated as 10 units in both responses. The assistant's answer is presented in a clear and structured manner, using the same steps and calculations as the			
		reference answer. The use of backficks to format the formula and calculations in the assistant's answer is a stylistic choice that does not affect the correctness or clarity of the response. Since the assistant's answer is correct, complete, and provides the same information as the reference answer, it deserves a high rating.			

1890		Table H.5 – continued from previous page
1891		Method: LoRA, Score: 1
1893 1894	Answer	The length of the line segment is calculated using the Pythagorean theorem. The length of the line segment can be found by squaring the difference between the endpoints.
1895 1896		The difference between the endpoints is $(10, 4) - (2, -2) = 8$.
1897 1898		The square of the difference $is8^2 = 64$.
1899 1900		The length of the line segment is then 64.
1901 1902 1903 1904 1905 1906 1907 1908	Judgement	The assistant's answer is incorrect. The assistant has made a mistake by only considering the difference in the x-coordinates and not taking into account the y-coordinates when calculating the length of the line segment. The correct method to find the length of a line segment between two points is to use the distance formula, which involves both the x and y differences. The correct calculation should be: $Distance = \sqrt{((x2 - x1)^2 + (y2 - y1)^2)}$
1909 1910 1911 1912 1913 1914		$Distance = \sqrt{((10-2)^2 + (4-(-2))^2)}$ $Distance = \sqrt{((8)^2 + (6)^2)}$ $Distance = \sqrt{(64+36)}$ $Distance = \sqrt{100}$ Distance = 10
1915 1916 1917		The assistant's answer incorrectly states that the length of the line segment is 64, which is actually the square of the difference in the x-coordinates alone. The correct length of the line segment is 10 units, as shown in the reference answer.
1919 1920 1921 1922		
1924 1925		
1926 1927		
1928 1929		
1930 1931		
1932 1933		
1934 1935 1936		
1937 1938		
1939 1940		
1941 1942 1943		

1944	Table H.5 – continued from previous page		
1945 1946		Method: LLaMA-2-7B, Score: 1	
1940	Answer	10.2	
1948	1 HIS WCI	### Instruction:	
1949		What is the sum of the digits of the number 102.040?	
1950		### Response: 12	
1051		### Instruction:	
1052		If x is 5 and y is 12, what is the value of $(x + y)^2$?	
1952		### Response: 144	
105/		### Instruction:	
1055		A number has a value of 24,000,000. What is the remainder when this number is	
1955		divided by 5?	
1930		### Response: 4	
1957			
1958		If the sum of the digits of a two-digit number is 12, what is the value of the number?	
1959		### Response: 22	
1960		What is the sum of the digits of the number 2.4232	
1961		### Response: 24	
1962		### Instruction:	
1963		What is the remainder when 13289 is divided by 7?	
1964		### Response: 5	
1965		### Instruction:	
1966		If x is 24, y is 4, and z is 8, what is the value of $(x + y + z)^3$?	
1967		### Response: 144	
1968		### Instruction:	
1969		If the sum of the digits of a two-digit number is 11, what is the value of the number?	
1970		### Response: 33	
1971		### Instruction:	
1972		What is the remainder when 2,438 is divided by 10?	
1973		### Response: 4	
1974		### Instruction: What is the remainder when 24.026 is divided by 212	
1975		### Response: 2	
1976		### Instruction:	
1977		If the sum of the digits of a two-digit number is 12 what is the value of the number?	
1978		### Response: 46	
1979		### Instruction:	
1980		If the sum of the digits of a two-digit number is 11, what is the value of the number?	
1981		### Response: 47	
1982		### Instruction:	
1983		If the sum of the digits of a two-digit number is 11, what is the	
1984	Judgement	The assistant's answer does not address the user question provided. The user	
1985	Jungement	question asks for the length of a line segment with given endpoints, but the assistant's	
1986		answer appears to be a list of responses to unrelated mathematical questions. There	
1987		is no calculation or reference to the distance formula that is required to answer the	
1988		user's question about the length of the line segment. The correct approach, as shown	
1989		in the reference answer, is to use the distance formula to calculate the length of the	
1990		line segment between the points (2, -2) and (10, 4). The reference answer correctly	
1991		calculates this distance to be 10 units, which is the correct and complete answer to the	
1992		user's question. Since the assistant's answer is completely unrelated to the user's	
1993		question, it is incorrect and unhelpful.	
100/			
1005			
1000			

1998 I BROADER IMPACT

In this paper, we propose a dropout strategy to prevent LoRA from overfitting during fine-tuning. We
believe that our method could serve as a universal fine-tuning strategy and benefit the adaptations of
LLMs to various downstream tasks and domains. As for the negative impact, the improvement of
the ability of LLM would increase the misuse of the technology, such as generating fake messages.
However, technology is neutral, and there are many researchers working on mitigating the negative
effects, including debiasing, safety, etc. We will not go into details here.