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ABSTRACT

Parameter-efficient fine-tuning methods, represented by LoRA, play an essential
role in adapting large-scale pre-trained models to downstream tasks. However,
fine-tuning LoRA-series models also faces the risk of overfitting on small training
datasets, and there’s still a lack of theoretical guidance and practical mechanisms
to control overfitting on LoRA-based PEFT methods. This paper introduces a
novel dropout-based sparsity regularizer for LoRA, dubbed LoRA Dropout, which
mitigates overfitting by applying refined dropout to LoRA’s low-rank matrices.
We establish a theoretical framework that models dropout in LoRA as a sparse
fine-tuning process and derive a generalization error bound under this sparsity
regularization. Theoretical results show that appropriate sparsity can tighten the
gap between empirical and generalization risks and thereby control overfitting. We
further enhance the sparsity patterns in conventional dropout methods and propose
an innovative LoRA Dropout method for more precise sparsity regularization
to achieve better overfitting reduction. Furthermore, we introduce a test-time
ensemble strategy and provide theoretical evidence demonstrating that the ensemble
method can further compress the error bound and lead to better performance.
Extensive experiments on various NLP tasks validate the effectiveness of our LoRA
Dropout framework in improving the model’s performance.

1 INTRODUCTION

In recent years, Pre-trained Language Models (PLMs) (Devlin et al., 2018; Liu et al., 2019; He et al.,
2020; Touvron et al., 2023) have demonstrated increasingly superior performances in various NLP
tasks as the rapid growth of model parameter scale. However, with the increasing model capacity
and complexity, the challenge arises when adapting the PLMs to specific downstream tasks, as
fully fine-tuning often requires substantial computational resources. Therefore, a new fine-tuning
paradigm emerges named Parameter-Efficient Fine-Tuning (PEFT), aiming to adapt PLMs to specific
downstream tasks with minimal adjustments to their parameters.

Among the works in the field of PEFT (Houlsby et al., 2019; Lester et al., 2021; Li & Liang, 2021; Hu
et al., 2021; Zhang et al., 2023; Ma et al., 2024), the Low-Rank Adaptation (LoRA) method (Hu et al.,
2021) and its variants (Dettmers et al., 2023; Zhang et al., 2023; Zi et al., 2023) have been the most
effective and widely adopted. The basic idea behind LoRA is that only some zero-initialized delta
weight matrices get optimized during fine-tuning, and the original pre-trained parameters remain
unmodified. To improve parameter efficiency, LoRA further decomposes the delta weight matrix into
the product of two low-rank matrices.

However, one significant challenge when fine-tuning LoRA-series models on downstream tasks is
overfitting. As shown in Figure.1(a), the gap between train and test losses on both LoRA becomes
larger during fine-tuning, indicating a strong overfitting tendency of LoRA training. Simply reducing
the rank of LoRA (i.e. reducing learnable parameters) could help alleviate overfitting, but fewer
learnable parameters indicate less expressive power, and might lead to suboptimal performances.
Therefore, it is hard to select a proper rank that could balance the expressiveness and overfitting risk.
AdaLoRA (Zhang et al., 2023) proposes to automatically prune unimportant parameters with learned
importance scores during training to prevent overfitting. However, this parameter selection method
heavily relies on gradients of parameters on the training data, which in turn makes the selected
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Figure 1: Loss curves on train and test set of SST2 dataset during fine-tuning of (a) LoRA w/wo our
dropout framework, (b) AdaLoRA w/wo our dropout framework.

parameters less generalizable to unseen test data and increases the risk of overfitting. This is also
practically demonstrated by the loss curves in Figure.1(b).

The dropout regularization (Hinton et al., 2012; Srivastava et al., 2014) is known as one of the most
popular and effective techniques in deep learning to control overfitting. It works by randomly masking
neurons and does not require to reduce parameter budget. Recently there have been works attempting
to combine dropout with LoRA to control the overfitting risk when fine-tuning (Wang et al., 2024).
However, these works fail to answer the following profound question:

What is the theoretical mechanism behind the alleviation of overfitting on the training data
through random dropout of LoRA parameters?

In this paper, we answer the above question and build our theoretical framework by modeling the
training process with dropout from the perspective of sparse fine-tuning, and show that fine-tuning
LoRA with dropout can be viewed as an optimization problem with sparsity regularization. We further
provide a generalization error bound under the sparsity regularization framework. Through this bound,
we reveal that introducing appropriate sparsity on LoRA tunable parameters during fine-tuning helps
to balance the empirical risk minimization and complexity of the adaptation function. Therefore,
proper dropout would help tighten the gap between empirical and generalization risks and reduce
overfitting on the training data.

Furthermore, with our theoretical framework, we identify the flaws in the original dropout method
and improve upon it. The theoretical analyses point out a crucial condition for effectively applying
the dropout mechanism in LoRA training, namely the sparsity condition. While most prior studies
have implemented dropout on hidden representations or at the token level (Wang et al., 2024),
they fall short in generating a sufficiently diverse sparsity pattern across the parameter space. This
limitation hampers the precision of sparsity regularization. To address this issue, we introduce an
innovative approach called LoRA Dropout, which enhances the dropout process by incorporating
more expressive sparsity patterns for the updated parameters—without significantly increasing
GPU memory overhead. We also propose a test-time ensemble method with an ensemble classifier
consisting of models with different parameter dropouts. This ensemble method can further improve
the model’s test-time performance, which is also supported by theoretical evidence.

In summary, we conclude the main contributions of this paper as follows. We provide theoretical
analyses on the generalization error bound of dropout on LoRA, balancing the empirical risk mini-
mization and complexity of the adaptation function class through sparsity regularization. Based on
the theoretical evidences, we propose a novel dropout framework for LoRA-based models. With ex-
pressive sparsity patterns, our LoRA Dropout method can effectively promote model’s generalization
ability on downstream tasks. Moreover, we propose an ensemble strategy during the inference stage,
and show that this strategy will lead to an ensemble model with a tighter error bound and further
enhance the model’s test-time generalizability. Extensive experiments conducted on a wide range of
NLP tasks demonstrate the effectiveness of our method in improving the model’s performances.

2 HOW DOES DROPOUT BALANCE OVER- AND UNDER-FITTING IN LORA

In this section, we present the theoretical analyses of the LoRA optimization process with dropout to
reveal how dropout alleviates overfitting in LoRA fine-tuning. We first model the LoRA fine-tuning
with dropout as an optimization problem under model sparsity regularization. Then we propose the
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generalization error bound under the sparsity regularization framework and reveal the theoretical
mechanism behind the trade-off between underfitting and overfitting of fine-tuning with dropout.

2.1 FINE-TUNING WITH DROPOUT THROUGH THE LENS OF SPARSE REGULARIZATION

Supposing a pre-trained modelM0 parameterized by θ0 ∈ Rd, LoRA-like methods tune the model
M0 with low-rank parameterization of the delta parameters ∆θ. Dropout (Srivastava et al., 2014) is
a widely adopted mechanism in traditional deep neural network training for overfitting risk reduction.
The core idea of dropout can be formulated as a diversified sparse activation of neurons (Gal
& Ghahramani, 2016). Hence, inspired by (Fu et al., 2023), we model the LoRA fine-tuning with
random dropout as an optimization problem under sparsity regularization on parameter space. With
dropout that samples random neurons of LoRA matrices with a probability p and masks them to zeros,
the updated ∆θ enjoys a sparsity property that each entry in the product of the LoRA matrices will
be zero with probability p. Let us denote θ = θ0 +∆θ as the fine-tuned model parameters, where
∆θ is realized by LoRA reparameterization with dropout. Assume d ∈ {0, 1}d as a dropout instance
applied to the production of LoRA matrices (i.e., ∆θ) sampled from a Bernoulli distribution, i.e.,
d ∼ Bern(p), where 1 denotes the corresponding entry is dropped to zero. The fine-tuning objective
can be formulated as:

min
∆θ
L(θ0 +∆θ), s.t. Ed∼Bern(p)||d⊙∆θ||22≤ c, (1)

where c is a constant, and the condition denotes the sparsity of ∆θ. By Lagrange duality, problem (1)
can be rewritten as:

L̂ = min
∆θ

max
λ
L(θ0 +∆θ) + λEd∼Bern(p)||d⊙∆θ||22, (2)

and c is eliminated as a constant. Hence, we formulate the regularized optimization problem:

min
∆θ
Lλ = min

∆θ
L(θ0 +∆θ) + λEd∼Bern(p)||d⊙∆θ||22 ≤ L̂. (3)

where λ is an arbitrary hyperparameter. This optimization objective is upper bounded by L̂, which is
equivalent to the optima of problem (1).

2.2 GENERALIZATION ANALYSIS

In this subsection, we introduce the stability analysis of a sparse-regularized algorithm to analyze the
generalization error bound of dropout fine-tuning through optimizing Eq. (3). Stability has been a
widely studied topic in machine learning (Bousquet & Elisseeff, 2002; Charles & Papailiopoulos,
2018; Kuzborskij & Lampert, 2018) and demonstrated as an important property for analyzing the
generalization error bound of a random algorithm (Bousquet & Elisseeff, 2002; Elisseeff et al.,
2005). Here we adopt one of the commonly used analytic mechanisms, the Pointwise Hypothesis
Stability (PHS), which analyzes the perturbation of the optimal model after removing one of the
training samples. Following (Charles & Papailiopoulos, 2018), we denote the entire training dataset
as S = {xi}ni=1 and the dataset after removing a sample xi as Si = S − {xi}. We assume that
i ∼ U(n) that the removal is sampled from a uniform distribution. We also denote θℓ(S) as the
optimal model parameters w.r.t. loss function ℓ and dataset S.

Definition 2.1 (Pointwise Hypothesis Stability (Bousquet & Elisseeff, 2002)). We say that a learning
algorithmM parameterized by θ w.r.t. a loss function ℓ has pointwise hypothesis stability β, if:

ES,i∼U(n)

∣∣ℓ (xi;θℓ(S
i)
)
− ℓ (xi;θℓ(S))

∣∣ ≤ β, (4)

where ℓ(xi;θ) denotes the sample loss of xi when the model parameter is θ. Here we present a PHS
upper bound of LoRA fine-tuning with dropout.

Proposition 2.2 (PHS Upper Bound of LoRA Fine-tuning with Dropout). If the loss function Lλ

of the algorithm M is η-Lipschitz, and θLλ
(Si) is close to θLλ

(S), θLλ
(S) is close to θLλ

(Si)
whose gap is bounded by a small constant ϵ → 0, i.e., ||θLλ

(S) − θLλ
(Si)|| ≤ ϵ → 0, and the

regularization coefficient λ ≥ max{0, η
npϵ −

1
2pΛmin}, where Λmin is the minimum eigenvalue of the

Hessian∇2L(θLλ
(S)) at θLλ

(S), unitary diagonalized as U diag(Λ)U−1,Λ = {Λ1, · · · ,Λd} and
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Λmin = min {Λ1, · · · ,Λd}, then the algorithm optimizing Lλ on S has an upper bound of pointwise
hypothesis stability of:

ES,i∼U(n)

∣∣Lλ

(
xi;θLλ

(Si)
)
− Lλ (xi;θLλ

(S))
∣∣ ≤ 2η2

(Λmin + 2λp)n
. (5)

Proof Sketch. We first analyze the PHS upper bound of an arbitrary optimization algorithm equipped
with ℓ2-regularizer in Lemma A.1. Then we formulate our training objective with dropout as a similar
problem with weighted ℓ2-regularizer and take it into Lemma A.1 to finish the proof. See Appendix
A.1 for detailed proofs.

Moreover, existing works (Bousquet & Elisseeff, 2002; Elisseeff et al., 2005) have connected the
stability and generalization error bound with the following lemma adopted from (Bousquet & Elisseeff,
2002, Theorem 11).

Lemma 2.3. For any learning algorithm M having parameter θ and bounded loss function ℓ
satisfying 0 ≤ |ℓ(x) − ℓ(x′)| ≤ C, ∀x, x′. If M has a pointwise hypothesis stability β, with
probability 1− δ, we have:

R(M,S) ≤ R̂(M,S) +
√
(C2 + 12Cnβ)/(2nδ), (6)

where R(M,S) = Exℓ(x;θ) and R̂(M,S) = 1
n

∑n
i=1 ℓ(xi;θ) denote the empirical risk and

generalization risk of algorithmM running on dataset S, respectively. This indicates that better
algorithm stability will reduce the complexity of the adaptation function class. Therefore, invoking
the PHS upper bound β of the algorithm with dropout in Proposition 2.2 to Lemma 2.3, we have the
following theorem that depicts the generalization error bound of LoRA fine-tuning with dropout:

Theorem 2.4 (Generalization Error Bound of Fine-tuning with Dropout). Given a dropout rate
p and strength of sparsity regularization λ, if the algorithm M have a η-Lipschitz loss function
Lλ, θLλ

(S) is ϵ-close to θLλ
(Si), i.e., ||θLλ

(S) − θLλ
(Si)|| ≤ ϵ → 0, and the regularization

coefficient λ ≥ max{0, η
npϵ −

1
2pΛmin}, where Λmin is the minimum eigenvalue of the Hessian

∇2L(θLλ
(S)) at θLλ

(S), unitary diagonalized as U diag(Λ)U−1,Λ = {Λ1, · · · ,Λd} and Λmin =
min {Λ1, · · · ,Λd}, then for some constant C, we have with probability 1− δ,

R(M,S) ≤ R̂(M,S) +

√
C2 + 24Cη2

Λmin+2λp

2nδ
. (7)

This theorem reveals the theoretical mechanism of the trade-off between underfitting and overfitting
of dropout. The theorem shows that the complexity of adaptation function class (i.e., the gap between
empirical and generalization risks) gets larger as the dropout rate gets smaller. Concretely, when
applying LoRA without dropout, the gap will be the largest, which depicts the high risk of overfitting
with LoRA fine-tuning. However, when the dropout rate gets larger and tends to 1, it is equivalent
to conducting no fine-tuning, which increases the empirical risk and makes the model underfit the
training data. Hence, an appropriate dropout mechanism can theoretically balance a trade-off between
the empirical risk minimization and the complexity of adaptation function classes, thereby enhancing
the test-time performances as well as learning sufficiently from data.

3 PROPOSED LORA DROPOUT FRAMEWORK

In spite of our promising theoretical results, there still exists a practical gap between the current
dropout fashion and our theoretical setting. Our theoretical framework identifies a significant
constraint for effectively applying the dropout mechanism in LoRA tuning, which is the sparsity
constraint. However, most prior studies fail to generate a sufficiently diverse sparsity pattern across
the parameter space, limiting their practical performance. In this section, we aim to bridge the gap
and present our LoRA Dropout framework, which enhances the dropout process by incorporating
more expressive sparsity patterns without significantly increasing GPU memory overhead. We start
by briefly reviewing the LoRA method. Then we introduce the key insights and details of the LoRA
Dropout method. The overall training and testing procedure is summarized in Alg 1.
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Figure 2: Our proposed LoRA Dropout framework combined with both LoRA and AdaLoRA
methods.

3.1 BACKGROUND: LOW RANK ADAPTATION (LORA)

Before introducing our method, we give a brief review of the LoRA method (Hu et al., 2021). When
fine-tuning on downstream task, to maintain the knowledge from the pre-training period, LoRA
freezes the pre-trained parameters W0 ∈ Rn1×n2 , and updates a zero-initialized delta weight matrix
∆W . To control the number of tunable parameters, as shown in Eq.8, the delta weight matrix ∆W
can be further decomposed into the product of two low-rank matrices, A ∈ Rr×n2 and B ∈ Rn1×r,
where r ≪ {n1, n2}. The forward pass can be denoted as

h = W0x+∆Wx = W0x+BAx. (8)

3.2 LORA DROPOUT

The conventional dropout method only conducts dropout on the hidden representations, which is
equivalent to masking random columns for the delta weight matrix ∆W . Such dropping strategy fails
to generate sufficiently diverse sparsity patterns. However, it is also not realistic to generate a sparsity
mask that covers every single element in ∆W , since current LLMs usually consist a huge number of
parameters, and generating such sparsity masks will leads to great GPU memory overhead. Therefore,
we propose a dropout strategy in the reparameterized space of LoRA to improve the diversity of the
generated sparsity pattern without significantly increasing GPU memory overhead. Specifically, for a
LoRA module described in Eq.8, we randomly drop rows and columns from both tunable low-rank
parameter matrices:

Â = A · diag(mA),mA ∼ Bern(1− p); B̂ =
(
B⊤ · diag(mB)

)⊤
,mB ∼ Bern(1− p), (9)

where mA ∈ Rn2 and mB ∈ Rn1 are mask vectors drawn from the Bernoulli distribution, and
p denotes the probability that the parameters get dropped. Note that we conduct dropout on the
input/output dimension of both matrices as applying dropout on the rank dimension would decrease
the rank of LoRA, significantly impacting its expressive power. Additionally, performing dropout on
the rank dimension will not increase the sparsity of the product of LoRA matrices, while theoretical
evidence in Section 2 highlights the significance of sparsity in our framework. With the dropout, the
forward pass would be ĥ = W0x+ B̂Âx.

It should be noted that our dropout method is not only applicable to the original LoRA, but also
equally suitable for LoRA-based variant methods, as long as they take the form of low-rank matrix
decomposition. For example, AdaLoRA (Zhang et al., 2023) conducts the decomposition through a
quasi-SVD method, ∆W = PΛQ, where P ∈ Rn1×r and Q ∈ Rr×n2 are left and right singular
vectors, respectively, and Λ ∈ Rr×r is a diagonal matrix containing singular values. It’s easy to
adapt our LoRA Dropout to AdaLoRA through:

P̂ =
(
P⊤ · diag(mP )

)⊤
,mP ∼ Bern(1− p); Q̂ = Q · diag(mQ),mQ ∼ Bern(1− p). (10)

Dropout is not applied on the Λ matrix as it will also lead to rank shrinking and further influence
the expressive power. Moreover, Λ will be adjusted by the AdaLoRA algorithm by filtering out
minor compositions in practice, hence we conduct no further dropout on it. After dropout, the delta
weight matrix would be ∆Ŵ = P̂ΛQ̂. We provide a schematic diagram in Figure 2 illustrating the
integration of the proposed LoRA Dropout framework with both LoRA and AdaLoRA methods.

Training Objective Let us denote m as the concatenation of all dropout vectors from LoRA
module of a fine-tuning model, ∆θ(m) as the LoRA parameters after the dropout m, and θ0 as the

5
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original pre-trained parameters. To obtain an effective model under various dropouts, we define the
training objective as an average of multiple losses under N different dropout instances on parameters,

L(x) = 1

N

N∑
k=1

ℓ
(
x;θ0 +∆θ(mk)

)
,mk ∼ Bern(1− p). (11)

3.3 TEST-TIME ENSEMBLE STRATEGY

To further enhance the model’s performance during inference time, inspired by the MC dropout
mechanism (Gal & Ghahramani, 2016), we propose a test-time ensemble method. Unlike the
conventional dropout that is deactivated when testing, our ensemble strategy aggregates the outputs
of models under different dropouts during inference time to get the final output, which can be viewed
as sampling and aggregating models from a parameter distribution with a Monte Carlo method.
Specifically, letM

(
θ0 +∆θ(mk)

)
denote the model with LoRA parameter under dropout mk,

then the output o of the ensemble model is

o(x) =
1

N

N∑
k=1

ok(x) =
1

N

N∑
k=1

M
(
x;θ0 +∆θ(mk)

)
, (12)

where N is the number of dropout instances. Here we justify the effectiveness of this test-time
ensemble strategy by providing a theoretical analysis of how it helps further tighten the error bound.

During the fine-tuning phase, we optimize Eq.(3) through accumulating gradient steps under dif-
ferent dropout instances. This fine-tuning procedure is essentially optimizing the generalization
risks given the distribution D of model parameters θ, which is Eθ∼DE(x,y)Lλ(M(x;θ), y), where
M(x;θ) denotes the output of modelM given the input x parameterized by θ. During the inference
phase, with the test-time ensemble strategy, we are actually aggregating model outputs across the
distribution D of parameter θ to conduct final predictions, namely the ensemble classifier, which has
an error of E(x,y)Lλ(Eθ∼DM(x;θ), y). We present the following proposition that depicts a tighter
generalization error bound with the ensemble classifier:
Proposition 3.1 (Error Bound of Test-time Ensemble). If the loss function Lλ (e.g. cross-entropy) is
convex w.r.t. the final output o =M(x;θ) of modelM, then we have:

E(x,y)Lλ(Eθ∼DM(x;θ), y) ≤ Eθ∼DE(x,y)Lλ(M(x;θ), y). (13)

Proof Sketch. Taking expectation on parameter θ is equivalent to taking expectation on the final
output o from a certain distribution. Then simply apply Jensen inequality under the convex condition
of o and the inequality holds. See Appendix A.2 for detailed proofs.

Moreover, the convexity holds for most cases in LLM training or fine-tuning scenarios, as we often
take cross-entropy as the loss function and the softmax as the final output layer, and those functions
are convex in the entire space Rd. Hence, the inequality says that the generalization error of the
ensemble classifier (i.e., LHS of (13)) is no greater than the training generalization error (i.e., RHS
of (13)) for most LLM tuning scenarios, implying that the ensemble classifier with LoRA Dropout
can further compress the error bound given by the LoRA Dropout fine-tuning and demonstrate better
test-time generalizability.

To summarize, Theorem 2.4 and 3.1 together depict the full theoretical sketch of our practical
framework. The fine-tuning phase applies LoRA Dropout to control the generalization error by
balancing the trade-off between the empirical risk minimization and the complexity of adaptation,
and the inference phase applies multiple dropout instances to accomplish an ensemble classifier with
a tighter error bound and further enhances the test-time generalizability.

4 EXPERIMENTS

In this section, we conduct a series of experiments to validate the effectiveness of our proposed
LoRA Dropout framework. We incorporate LoRA Dropout into LoRA-series works, LoRA and
AdaLoRA, and compare them with original models (w/ and w/o conventional dropout strategy) and
other baselines on various NLP tasks.
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Table 1: Results with DeBERTaV3-base on GLUE. The results in bold indicate models with LoRA
Dropout outperform their corresponding base models and other PEFT baselines. Results are averaged
over 5 runs using different random seeds, and † indicates the p-value of the t-test is below 0.01.

Method MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B All
M-Acc Acc Mcc Acc Acc Acc Acc Corr Avg.

Full Fine-Tuning 89.90 95.63 69.19 92.40 94.03 83.75 89.46 91.60 88.25

BitFit 89.37 94.84 66.96 88.41 92.24 78.70 87.75 91.35 86.20
H-Adapter 90.13 95.53 66.64 91.91 94.11 84.48 89.95 91.48 88.28
P-Adapter 90.33 95.61 68.77 92.04 94.29 85.20 89.46 91.54 88.41

LoRA
original 90.65 94.95 69.82 91.99 93.87 85.20 89.95 91.60 88.50
w/ dropout 90.07 94.26 70.87 91.66 94.44 86.64 90.20 91.60 88.72
w/ LoRA Dropout 90.85† 95.87† 71.32† 92.22† 94.56 88.09† 91.42† 92.00† 89.54†

AdaLoRA
AdaLoRA 90.76 96.10 71.45 92.23 94.55 88.09 90.69 91.84 89.46
w/ dropout 90.49 95.99 71.20 91.45 94.56 87.36 90.20 91.75 89.13
w/ LoRA Dropout 90.75 96.22 72.04† 92.04 94.47 88.81† 91.18† 92.07† 89.70†

Baselines We compared the our method with following state-of-the-art PEFT methods.

(1) BitFit (Zaken et al., 2022). Only the bias vectors from the model parameters get fine-tuned. (2)
H-Adapter (Houlsby et al., 2019). The adapters are inserted between the MLP and the self-attention
modules. (3) P-Adapter (Pfeiffer et al., 2020). Adapter layers are applied only after the MLP or the
LayerNorm layer. (4) LoRA (Zhang et al., 2023). LoRA decomposes the learnable delta parameter
matrix into two low-rank matrices to improve parameter efficiency. (5) AdaLoRA (Zhang et al.,
2023). AdaLoRA introduces an adaptive parameter budget by gradually pruning the rank of LoRA
based on sensitivity-based importance scores.

When comparing with baseline models, we keep tunable parameter budgets for all methods aligned.
We set the hyperparametersto be the same as our base models, i.e. LoRA and AdaLoRA, follow-
ing (Zhang et al., 2023), and only tune the hyperparameters that are exclusive to our model. More
detailed experiment settings can be viewed in Appendix C and D.

4.1 NATURAL LANGUAGE UNDERSTANDING

Settings Following previous work (Zhang et al., 2023), we use the General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2018) for evaluation. Our experiments contain eight
different tasks from the GLUE benchmark. All models are fine-tuned on the DeBERTaV3-base (He
et al., 2021) pre-trained model.

Results The results of different models on the GLUE benchmark are shown in Table 1. From the
results, we could find that LoRA-series models with our LoRA Dropout framework consistently
outperform other baselines, and achieve the best performance on the overall result among eight NLU
tasks. Moreover, when compared with the original LoRA and AdaLoRA models, models with our
dropout method always achieve superior performance, indicating that the proposed LoRA Dropout
framework could help LoRA-based models improve generalization ability on downstream tasks.

We could also find that LoRA models with our method achieve better results than the conventional
dropout, which indicates that our dropout strategy could generate more diverse sparsity patterns and
lead to better overfitting reduction. It is worth noting that LoRA model with conventional dropout
sometimes performs worse that the original model. A possible explanation is that the rigid sparsity
pattern (i.e., dropout columns only) constrains the learning dynamics of parameters and prevents the
model from adequately exploring diverse feature combinations, leading to suboptimal fitting.

We also provide the loss curves of LoRA and AdaLoRA with LoRA dropout during fine-tuning
on the RTE dataset in Figure 1. We could find that the gaps between curves on train and test set
get significantly narrowed compared with the model without LoRA Dropout. That demonstrates
our method’s ability to reduce overfitting during fine-tuning. Moreover, we show that our LoRA
Dropout method could help improve model calibration. The experiments and analyses can be found
in Appendix E.
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Table 2: Results with DeBERTaV3-base on SQuAD v1.1 and SQuADv2.0. We report EM and F1 for
each model. The results in bold indicate models with LoRA Dropout outperform their corresponding
base models and other PEFT baselines. Results are averaged over 5 runs using different random
seeds, and † indicates the p-value of the t-test is below 0.01.

SQUAD v1.1 SQUAD v2.0

#Param ratio 0.16% 0.32% 0.65% 0.16% 0.32% 0.65%

Metric EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

H-Adapter 85.3 92.1 86.1 92.7 86.7 92.9 84.3 87.3 84.9 87.9 85.4 88.3
P-Adapter 85.9 92.5 86.2 92.8 86.6 93.0 84.5 87.6 84.9 87.8 84.5 87.5

LoRA
original 86.6 92.9 86.7 93.1 86.7 93.1 83.6 86.7 84.5 87.4 85.0 88.0
w/ dropout 87.7 93.5 87.7 93.7 87.4 93.1 84.0 87.1 84.7 87.5 85.3 88.1
w/ LoRA Dropout 88.2† 93.8† 88.7† 94.1† 88.7† 94.2† 85.4† 88.4† 86.0† 88.8† 86.1† 88.9†

AdaLoRA
original 87.5 93.6 87.5 93.7 87.6 93.7 85.7 88.8 85.5 88.6 86.0 88.9
w/ dropout 88.2 94.1 88.1 94.0 88.2 94.1 85.8 88.7 85.7 88.7 85.8 88.8
w/ LoRA Dropout 88.1 93.9 88.5† 94.2† 88.7† 94.3† 85.8 88.6 85.9† 88.9† 86.3† 89.1†

Table 3: Results of instruction tuning on LLaMA2-7B. We report Accuracy(%) for MMLU and
average GPT-4-turbo score for Vicuna-Eval. The Best results are in bold.

Method MMLU (5-shot) MMLU (0-shot) Vicuna-Eval
STEM Social Hum. Other. Avg. STEM Social Hum. Other. Avg. Score

LLaMA2-7B 36.80 51.42 42.76 52.10 45.49 33.31 46.78 38.76 45.04 40.79 2.66
LoRAr=16 37.53 50.93 42.33 52.16 45.68 34.40 45.15 38.19 45.60 40.61 5.29

LoRA Dropout 36.50 51.13 43.56 52.88 45.86 34.13 48.74 40.47 47.43 42.53 6.03

4.2 QUESTION ANSWERING

Settings We conduct the question answering task on two SQuAD (Stanford Question Answering
Dataset) benchmarks, SQuAD v1.1 (Rajpurkar et al., 2016) and SQuAD v2.0 (Rajpurkar et al., 2018),
with DeBERTaV3-base as the base pre-trained model. We report the Exact Match accuracy and F1
score for each method.

Results The results of different models on the SQuAD benchmarks are shown in Table 2. The results
further validate the conclusions that we obtained from Table 1. The LoRA Dropout method helps the
base model (i.e., LoRA and AdaLoRA) to achieve better performances on both SQuAD benchmarks.
Moreover, by varying the budget of trainable parameters (i.e., the hidden dimension of adapters and
the rank of LoRA module), we could find that our method has consistently superior performance
under various parameter budgets, revealing its effectiveness.

4.3 INSTRUCTION TUNING

Settings We evaluate the models’ natural language generation ability by conducting instruction
tuning. Specifically, we choose LLaMA2-7B (Touvron et al., 2023) as the pre-trained base model
and fine-tune on the Alpaca-clean dataset1 (Taori et al., 2023) with original LoRA method and LoRA
Dropout. We employ the MMLU benchmark (Hendrycks et al., 2021) and the Vicuna-Eval (Chiang
et al., 2023) to evaluate each model. MMLU requires the models to answer multiple-choice tasks
from different domains, and Vicuna-Eval prompts the model to respond to 80 predefined questions
and utilizes the GPT-4 (Achiam et al., 2023) model to assess the answer qualities.

Results We report the results of the MMLU benchmark and Vicuna-Eval in Table 3, and provide
answers to several different Vicuna-Eval questions generated by different models in Appendix H.
All results show that our LoRA Dropout model achieves better performances on both benchmarks
than the original LLaMA model and LoRA-finetuned model. With our dropout framework, the
generalization ability of the fine-tuned model gets improved, leading to a better ability to apply the
knowledge from the fine-tuning dataset to natural language response tasks.

4.4 ABLATION STUDIES AND SENSITIVITY ANALYSIS

1https://huggingface.co/datasets/yahma/alpaca-cleaned
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Figure 3: Ablation studies on the dropout strategy.

Effect of Train/Test Dropout We conduct ex-
periments on the effects of dropout during train-
ing and testing on the MRPC and CoLA dataset,
and the results are shown in Figure 3. We
compared our method (LoRA with our LoRA
Dropout framework, denoted as Drop) with the
following variants: Droptrain denotes training
with dropout and testing without dropout ensem-
ble. Droptest denotes training without dropout
and testing with dropout ensemble. And NoDrop denotes model without LoRA Dropout. We could
find the importance of conducting dropout during fine-tuning from the bad performance of Droptest.
It performs worse than the vanilla NoDrop model since testing dropout may break some hidden
semantic structure of parameters learned from training. We can also verify the effectiveness of
test-time ensemble strategy from the decrease between Drop and Droptrain, which aligns with our
theoretical derivation that the ensemble strategy would further compress the error bound.
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Figure 4: Results of the sensitivity analyses.

Effect of Dropout Rate We conduct exper-
iments on the effects of dropout rate p on
the MRPC dataset, and show the results in
Figure 4. As the dropout rate increases, the
performance first improves and then drops.
This aligns with our theoretical derivation
in Section 2.2 that a proper dropout rate
would help balance the empirical risk min-
imization and complexity of the adaptation
function. A small dropout rate might fail to introduce sufficient sparsity and lead to overfitting, while
an excessively large dropout rate would result in too few trainable parameters, making the adapter
lose its expressive power.

Effect of Number of Sampled Dropout Instances We conduct experiments on the effects of dropout
instance number N on the MRPC dataset, and the results are shown in Figure 4. From the results, we
can find the model performance improves as the sample number increases. This is reasonable since
with a larger sample number, more dropout instances can be introduced during training and more
models get aggregated during the test-time ensemble, leading to more accurate estimations of the
outputs over the parameter distribution. However, a larger sample number will also lead to higher
training and inference costs, thus picking an appropriate N is necessary for a better balance between
accuracy and computational cost.
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Figure 5: Comparisons between LoRA Dropout
and LoRA with different ranks.

Discussion - Varying LoRA Rank v.s. LoRA
Dropout In this subsection, we attempt to dis-
cuss whether simply shrinking LoRA rank can
also reduce the risk of overfitting and achieve a
better performance than LoRA Dropout. Here
we provide the performances of LoRA models
with various ranks (i.e., r = {2, 4, 8, 16}) and
compare them with LoRA Dropout with a fixed
rank (i.e., r = 8). The results are illustrated
in Figure 5. Results show that the performance
of LoRA gets better when shrinking the rank to
4, but dramatically decreases when shrunk to
2. This demonstrates that an excessively small
rank would limit the expressive power of LoRA and lead to huge performance decay. However,
LoRAr=4 still cannot outperform LoRAr=8+Dropout with a dropout rate of 0.5. Though the activated
parameters are exactly the same under both scenarios, LoRA Dropout enjoys better expressiveness
(i.e., rank) without a higher overfitting risk, which can potentially learn better patterns than simply
halving the rank.

Moreover, further enlarging the rank (i.e., r = 16) will deteriorate the LoRA performance due to the
increasing risk of overfitting, as discussed in the Introduction. Therefore, we summarize that the
effectiveness of LoRA Dropout comes from the capability of reducing overfitting while maintaining
a stronger expressiveness.
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5 RELATED WORKS

Parameter-Efficient Fine-Tuning (PEFT) PEFT focuses on efficiently adapting pre-trained lan-
guage models to downstream tasks by fine-tuning a few additional parameters or a subset of pre-trained
parameters. Current mainstream PEFT approach can be roughly divided into three categories (Lialin
et al., 2023; Xu et al., 2023). Additive Fine-tuning methods (Houlsby et al., 2019; Pfeiffer et al.,
2020; He et al., 2022; Lester et al., 2021; Li & Liang, 2021) focus on adding extra tunable parameters
by introducing additional layers or learnable prompts. Partial Fine-tuning methods (Zaken et al.,
2022; Xu et al., 2021; Fu et al., 2023) select a subset of pre-trained parameters for fine-tuning.
Reparameterization Fine-tuning methods (Hu et al., 2021; Zhang et al., 2023; Edalati et al., 2022)
adopt low-rank representations to minimize the number of trainable parameters. In this paper, we
focus on the most effective and widely adopted method, LoRA (Hu et al., 2021) and its variants,
which decompose the learnable delta weight into the product of two low-rank matrices. The rank
of the decomposition is essential for LoRA. A small rank may lead to insufficient expressive power,
while a large rank could result in overfitting. One of LoRA’s variants, AdaLoRA (Zhang et al., 2023)
proposes to decompose the delta weight through a quasi-SVD method, and select parameters through
importance scoring. Nevertheless, this selection method also relies on gradients on the training
set, leading to an additional risk of overfitting. In this work, we propose a theoretically grounded
dropout framework for LoRA-series methods, filling the gap that the LoRA-based PEFT methods
lack theoretical guidances and practical mechanisms to control overfitting.

Dropout Regularization The dropout mechanism (Hinton et al., 2012) is a well-known and widely-
adopted technique in deep neural networks to prevent overfitting. In standard dropout, each neuron
in the network is omitted from the network with a certain possibility during training. Subsequently,
various dropout techniques for specific model structures are introduced, like Spatial dropout (Tompson
et al., 2015) for convolutional layers and Recurrent dropout (Semeniuta et al., 2016) for recurrent
neural networks. Meanwhile, works have been done to explore the theoretical factors behind dropout’s
ability to suppress overfitting. Some works believe that the the model learns a geometric mean over
the ensemble of possible sub-networks through dropout (Warde-Farley et al., 2013; Baldi & Sadowski,
2013), and some works view dropout from a Bayesian perspective and argue that model with dropout
can be interpreted as a Bayesian model approximating a posterior over parameters (Gal & Ghahramani,
2016). Recently there has been work trying to combine dropout with LLM (Wang et al., 2024). But
this work mainly focuses on conduct dropout on the transformer structure instead of LoRA, and
also lacks theoretical analysis. To the best of our knowledge, currently there’s little theoretical work
on applying dropout on LoRA-based PEFT models, where fine-tuning happens on the delta weight
matrices with low-rank decompositions.

6 CONCLUSIONS AND LIMITATIONS

To control the overfitting risk when fine-tuning on downstream tasks, in this paper, we propose a theo-
retically grounded LoRA Dropout framework designed for LoRA-based PEFT methods. Theoretical
analyses from the perspective of sparse show that sparsity introduced by LoRA Dropout helps tighten
the between empirical and generalization risks and thereby control overfitting. A test-ensemble strat-
egy is proposed based on LoRA Dropout and theoretically shown to further compress the error bound.
We conduct experiments on various tasks and PLMs, and the results demonstrate the effectiveness of
our method on improving model’performances.

Despite the promising results, we still want to point out the limitations. Though LoRA Dropout
introduces no additional tunable parameters compared to LoRA, sampling multiple dropout instances
during training and testing does introduce considerable time overhead. For future work, we aim to
design a parallel computing framework for LoRA Dropout, expecting to improve in both performance
and efficiency.
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A PROOFS OF THEORETICAL RESULTS

A.1 PROOF OF PROPOSITION 2.2

We first prove a Lemma that describes the pointwise hypothesis stability of an optimization problem
with ℓ2-regularizer, which provides an upper bound related to a constant describing the specific
shape around the local optima. The symbols follow those in the main text. We first denote L(θ) =
1
n

∑
i L(xi;θ).

Lemma A.1. Consider the learning algorithmM optimizing the following loss function:

min
θ
Lλ(θ) := min

θ
L(θ) + λ||θ − θ0||22.

If the loss function L is η-Lipschitz, θLλ
(S) is close to θLλ

(Si) whose gap is bounded by
a small constant ϵ → 0, i.e., ||θLλ

(S) − θLλ
(Si)|| ≤ ϵ → 0, and the regularization co-

efficient λ ≥ max{0, η
nϵ −

1
2Λmin}, where Λmin is the minimum eigenvalue of the Hessian

∇2L(θLλ
(S)) at θLλ

(S), unitary diagonalized as U diag(Λ)U−1,Λ = {Λ1, · · · ,Λd} and Λmin =

min {Λ1, · · · ,Λd}, ThenM has pointwise hypothesis stability β = 2η2

(Λmin+2λ)n , which is:

ES,i∼U(n)

∣∣Lλ

(
xi;θLλ

(Si)
)
− Lλ (xi;θLλ

(S))
∣∣ ≤ 2η2

(Λmin + 2λ)n
.

Proof. For simplicity, we denote θLλ
(S) as θ̂, and ∆θ̂ := θ̂ − θ. Consider the second-order Taylor

expansion of Lλ at local optima θ̂, we have∇Lλ
(θ̂) = 0. For ∀v close to θ̂, we have:

Lλ(v) = Lλ(θ̂) + (v − θ̂)⊤∇Lλ
(θ̂) +

1

2
(v − θ̂)⊤∇2Lλ(θ̂)(v − θ̂)

= Lλ(θ̂) +
1

2
(v − θ̂)⊤∇2Lλ(θ̂)(v − θ̂)

Then, we have:

Lλ(v)− Lλ(θ̂)

=
1

2
(v − θ̂)⊤∇2Lλ(θ̂)(v − θ̂)

=
1

2
(v − θ̂)⊤∇2

θ̂
(L(θ̂) + λ||θ̂ − θ0||22)(v − θ̂)

=
1

2
(v − θ̂)⊤(∇2L(θ̂) + 2λI)(v − θ̂)

=
1

2
(v − θ̂)⊤(U diag(Λ)U−1 + 2λI)(v − θ̂)

=
1

2
(v − θ̂)⊤(U(diag(Λ) + 2λI)U−1)(v − θ̂)

=
1

2
(v − θ̂)⊤(U diag(

√
Λ1 + 2λ, · · · ,

√
Λd + 2λ)U−1U diag(

√
Λ1 + 2λ, · · · ,

√
Λd + 2λ)U−1)(v − θ̂)

=
1

2
||(U diag(

√
Λ1 + 2λ, · · · ,

√
Λd + 2λU−1)(v − θ̂)||22

≥ 1

2
(Λmin + 2λ)||v − θ̂||22.

(A.1)
This inequality holds for the orthogonality of U that it does not change the magnitude of vector v− θ̂,
and the magnitude is at least scaled with Λmin +2λ. Then, by the definition of Lλ(θ), for ∀u, v close
to θ̂, we have:
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Lλ(u)− Lλ(v)

=

(
1

n

∑
k

L(xk;u) + λ||u− θ0||22

)
−

(
1

n

∑
k

L(xk; v) + λ||v − θ0||22

)

=

 1

n

∑
k ̸=i

L(xk;u) + λ||u− θ0||22

−
 1

n

∑
k ̸=i

L(xk; v) + λ||v − θ0||22

+
L(xi;u)− L(xi; v)

n

=(1− 1

n
)

 1

n− 1

∑
k ̸=i

L(xk;u) + λ||u− θ0||22

− (1− 1

n
)

 1

n− 1

∑
k ̸=i

L(xk; v) + λ||v − θ0||22

+

λ
(
||u− θ0||22 − ||v − θ0||22

)
n

+
L(xi;u)− L(xi; v)

n

=(1− 1

n
)

 1

n− 1

∑
k ̸=i

L(xk;u) + λ||u− θ0||22

−
 1

n− 1

∑
k ̸=i

L(xk; v) + λ||v − θ0||22


︸ ︷︷ ︸

(∗)

+

Lλ(xi;u)− Lλ(xi; v)

n
.

(A.2)
Taking u = θLλ

(Si) and v = θLλ
(S). As u minimizes the empirical loss of removing xi out, hence

the (∗) item in Eq.(A.2) is smaller than 0. Then, we have:

Lλ(θLλ
(Si))− Lλ(θLλ

(S)) ≤ Lλ(xi;θLλ
(Si))− Lλ(xi;θLλ

(Si))

n

Considering inequality of (A.1), we have:

1

2
(Λmin + 2λ)||θLλ

(Si)− θLλ
(S)||22 ≤

Lλ(xi;θLλ
(Si))− Lλ(xi;θLλ

(S))

n
(A.3)

As the loss function Lλ is η-Lipschitz, thus we have:

|Lλ(xi;θLλ
(Si))− Lλ(xi;θLλ

(S))| ≤ η||θLλ
(Si)− θLλ

(S)||. (A.4)

Taking (A.4) into (A.3), we have:

1

2
(Λmin + 2λ)||θLλ

(Si)− θLλ
(S)||22 ≤

η||θLλ
(Si)− θLλ

(S)||
n

⇒ ||θLλ
(Si)− θLλ

(S)|| ≤ 2η

(Λmin + 2λ)n
.

(A.5)

Plugging (A.5) back to (A.4):

|Lλ(xi;θLλ
(Si))− Lλ(xi;θLλ

(S))| ≤ 2η2

(Λmin + 2λ)n
. (A.6)

As this holds for any i and S, hence we have:

ES,i∼U(n)

∣∣Lλ

(
xi;θLλ

(Si)
)
− Lλ (xi;θLλ

(S))
∣∣ ≤ 2η2

(Λmin + 2λ)n
. (A.7)

Taking the condition of λ ≥ max{0, η
nϵ −

1
2Λmin} into inequality (A.7), we can obtain that

ES,i∼U(n)

∣∣Lλ

(
xi;θLλ

(Si)
)
− Lλ (xi;θLλ

(S))
∣∣ ≤ 2η2

(Λmin+2λ)n ≤ ϵη. This denotes that (A.7)
provides a tighter upper bound than that depicted by the η-Lipschitzness and ϵ-closeness when the
regularization strength is sufficiently large. In practice, we also apply the hard dropout mechanism to
satisfy this condition.

Based on this Lemma, we aim to analyze our optimization objective of Eq.(3) and prove Proposition
2.2 as follows.
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Proposition A.2 (PHS Upper Bound of LoRA Fine-tuning with Dropout). If the loss function
Lλ of the algorithm M is η-Lipschitz, θLλ

(S) is close to θLλ
(Si) whose gap is bounded by

a small constant ϵ → 0, i.e., ||θLλ
(S) − θLλ

(Si)|| ≤ ϵ → 0, and the regularization co-
efficient λ ≥ max{0, η

pnϵ −
1
2pΛmin}, where Λmin is the minimum eigenvalue of the Hessian

∇2L(θLλ
(S)) at θLλ

(S), unitary diagonalized as U diag(Λ)U−1,Λ = {Λ1, · · · ,Λd} and Λmin =
min {Λ1, · · · ,Λd}, then the algorithm optimizing Lλ on S has an upper bound of pointwise hypothe-
sis stability of:

ES,i∼U(n)

∣∣Lλ

(
xi;θLλ

(Si)
)
− Lλ (xi;θLλ

(S))
∣∣ ≤ 2η2

(Λmin + 2λp)n
.

Proof. Consider loss function with sparsity regularization from Eq.(3), and we have:

Lλ(θ) = L(θ) + λEd∼Bern(p)||d⊙ (θ − θ0)||22
= L(θ) + λEd∼Bern(p)

∑
i

d2i (θi − θ0i )
2

= L(θ) + λ
∑
i

(θi − θ0i )
2Edi∼Bern(p)d

2
i

= L(θ) + λ
∑
i

(θi − θ0i )
2p

= L(θ) + λp||θ − θ0||22.
Through taking the results above to Lemma A.1, we can substitute the regularization coefficient with
λp and obtain the pointwise hypothesis stability of the algorithm with dropout, which is:

ES,i∼U(n)

∣∣Lλ

(
xi;θLλ

(Si)
)
− Lλ (xi;θLλ

(S))
∣∣ ≤ 2η2

(Λmin + 2λp)n
.

A.2 PROOF OF PROPOSITION 3.1

Proposition A.3 (Error Bound of Test-time Ensemble). If the loss function Lλ (e.g. cross-entropy) is
convex w.r.t. the final output o =M(x;θ) of modelM, then we have:

E(x,y)Lλ(Eθ∼DM(x;θ), y) ≤ Eθ∼DE(x,y)Lλ(M(x;θ), y). (A.8)

Proof. According to Jensen inequality, for any distribution O of outputs o, under the convexity
assumption of function Lλ we have:

Lλ(Eo∼O(o), y) ≤ Eo∼OLλ(o, y). (A.9)

Let us denote the distribution of o under a certain input x of all parameters θ from distribution D as
O(x) :=M(x;D). We have:

E(x,y)Lλ (Eθ∼DM(x;θ), y) = E(x,y)Lλ

(
Eo∼O(x)(o), y

)
(A.10)

As inequality (A.9) holds for any distribution of o, we have:

E(x,y)Lλ

(
Eo∼O(x)(o), y

)
≤ E(x,y)Eo∼O(x)Lλ (o, y)

= E(x,y)Eθ∼DLλ (M(x;θ), y)

= Eθ∼DE(x,y)Lλ (M(x;θ), y) .

(A.11)

Plugging (A.11) into (A.10) and the result is obtained.

B ALGORITHM

Here we provide an overall training and testing procedure for fine-tuning pre-trained models with the
LoRA-based method and LoRA Dropout in Alg 1.
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Algorithm 1 The overall fine-tuning and testing procedure of a pre-trained model with LoRA Dropout.
1: Input: total epoch number T , batch size B, dropout rate p, dropout instance number N .
2: Training Phase:
3: for epoch from 1 to T do
4: for each iteration do
5: randomly draw B samples from the training set;
6: Ltr ← 0;
7: draw mr ∼ Bern(1− p), for r in 1,...,N ;
8: for each sample x in batch do
9: Ltr ← Ltr + L(x) by Eq.(11);

10: end for
11: update tunable parameters with∇Ltr.
12: end for
13: end for
14: Test Phase:
15: for each sample x in test set do
16: draw mr ∼ Bern(1− p), for r in 1,...,N ;
17: compute the ensemble output o(x) following Eq.(12).
18: end for

Table C.1: Summary of hyperparameter settings when fine-tuning on different tasks of the GLUE
benchmark.

Corpus MNLI RTE QNLI MRPC QQP SST-2 CoLA STS-B
learning rate 5e-4 1.2e-3 5e-4 1e-3 5e-4 8e-4 5e-5 2.2e-3
batch size 32 32 32 32 32 32 32 32
# epochs 7 50 5 30 10 24 25 25

dropout rate 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
sample number 4 4 4 4 4 4 4 4

C EXPERIMENTAL DETAILS

C.1 IMPLEMENTATION DETAILS OF NLU TASK

All of our experiments on NLU task are implemented based on PyTorch 1.9.1 with Python 3.7.16
on the HuggingFace transformers library (Wolf et al., 2019) 4.4.2. Fine-tuning is conducted on the
pre-trained DeBERTaV3-base (He et al., 2021) model, and PEFT methods are applied on all the
linear layers in every transformer block. We mainly follow the hyperparameter setting as (Zhang
et al., 2023) and tune hyperparameters exclusive to our model. The hyperparameters used when fine-
tuning on each BLUE task are shown in Table C.1. For the hardware environment, We perform our
experiments on a single NVIDIA-A100-80GB GPU or distributedly on 2 NVIDIA-RTX3090-24GB
GPUs. The approximate times for fine-tuning on each task in GLUE with 2 NVIDIA-RTX3090-24GB
GPUs are shown in Table C.2.

C.2 IMPLEMENTATION DETAILS OF QA TASK

All of our experiments on QA task are implemented based on PyTorch 1.9.1 with Python 3.7.16 on
the HuggingFace transformers library (Wolf et al., 2019) 4.21.0. Fine-tuning is conducted on the
pre-trained DeBERTaV3-base (He et al., 2021) model, and PEFT methods are applied on all the
linear layers in every transformer block. We control the ratio of tunable parameters by adjusting the
hyperparameters related to parameter budget, e.g. adapter dimension or LoRA rank. Specifically, the
tunable parameter ratios of {0.16%,0.32%,0.65%} correspond to LoRA rank of {2,4,8} respectively.
Other hyperparameters used when fine-tuning on SQuAD benchmark are shown in Table C.3. For
the hardware environment, We perform our experiments on a single NVIDIA-A100-80GB GPU or
distributedly on 2 NVIDIA-RTX3090-24GB GPUs. The time for fine-tuning on SQuAD v1.1 and
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Table C.2: Approximate time to conduct experiments on different tasks of the GLUE benchmark with
2 NVIDIA-RTX3090-24GB GPUs

MNLI RTE QNLI MRPC QQP SST-2 CoLA STS-B

LoRA w/ dropout 5 hrs 15 mins 1.5 hrs 10 mins 5 hrs 2 hrs 18 mins 15 mins
LoRA w/ LoRA Dropout 20 hrs 40 mins 5 hrs 40 mins 28 hrs 8 hrs 60 mins 40 mins
AdaLoRA w/ dropout 15 hrs 25 mins 4 hrs 24 mins 16 hrs 7 hrs 50 mins 30 mins
AdaLoRA w/ LoRA Dropout 28 hrs 60 mins 6 hrs 60 mins 30 hrs 12 hrs 100 mins 75 mins

SQuAD v2.0 on LoRA with dropout is 13 hours and 24 hours, respectively, and 15 hours and 28
hours for AdaLoRA with dropout.

Table C.3: Summary of hyperparameter settings when fine-tuning on the SQuAD benchmark.

Corpus SQuAD v1.1 SQuAD v2.0
learning rate 1e-3 1e-3
batch size 16 16
# epochs 10 12

dropout rate 0.5 0.5
sample number 4 4

C.3 IMPLEMENTATION DETAILS OF INSTRUCTION TUNING

When performing instruction tuning, we use PyTorch 2.1.2 with Python 3.10.13. We employ the PEFT
library (Mangrulkar et al., 2022) and the LLaMA-Factory library (hiyouga, 2023) for implementing
and evaluating our method. Fine-tuning is conducted on LLaMA2-7B (Touvron et al., 2023), and
only the {q proj,v proj,k proj,o proj} linear modules in each transformer block get tuned. All
hyperparameters used for fine-tuning LoRA and LoRA with dropout are shown in Table C.4. For the
hardware environment, experiments are conducted distributedly on 2 NVIDIA-A100-80GB GPUs. It
takes approximately 4 hours to fine-tune LoRA with dropout on the Alpaca-clean dataset.

D DATASET DETAILS

D.1 DETAILS OF GLUE BENCHMARK

We use the General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2018) for
evaluation on NLU tasks. Following previous work (Zhang et al., 2023), eight datasets are picked for
fine-tuning. Here we list detailed statistics of each dataset in Table D.1.

D.2 DETAILS OF SQUAD BENCHMARK

The SQuAD (Stanford Question Answering Dataset) benchmark is a benchmark for question answer-
ing task collected from Wikipedia by crowd-workers. Specifically, the task is treated as a sequence
labeling problem, where the probability of tokens from the start and end of the answer span are
picked for prediction. SQuAD v1.1(Rajpurkar et al., 2016) is the first version of SQuAD, including
over 100,000 question-answer pairs sourced from 536 articles. And SQuAD v2.0(Rajpurkar et al.,
2018) adds 50,000 unanswerable questions written by humans based on SQuADv1.1. Therefore,
SQuAD v2.0 further demands the model to be able to differentiate whether a question is unanswerable.
Statistics of both SQuAD datasets are shown in Table D.2.
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Table C.4: Summary of hyperparameter settings when fine-tuning LLaMA2-7B.

Hyperparameter lr batch size rank lr-scheduler warmup step dropout rate sample num

LoRA Dropout 5e-5 128 16 cosine 500 0.5 4

Table D.1: Summary of dataset statistic of the GLUE benchmark.

Corpus Task Task Category #Train #Dev #Label Metrics

CoLA Acceptability Single-Sentence Classification 8.5k 1k 2 Matthews Corr

SST Sentiment Single-Sentence Classification 67k 872 2 Matched Accuracy

MNLI NLI Pairwise Text Classification 393k 20k 3 Accuracy

RTE NLI Pairwise Text Classification 2.5k 276 2 Accuracy

QQP Paraphrase Pairwise Text Classification 364k 40k 2 Accuracy

MRPC Paraphrase Pairwise Text Classification 3.7k 408 2 Accuracy

QNLI QA/NLI Pairwise Text Classification 108k 5.7k 2 Accuracy

STS-B Similarity Text Similarity 7k 1.5k 1 Pearson Corr

D.3 DETAILS OF ALPACA DATASET BENCHMARK

We fine-tune LLaMA2-7B on the Alpaca-clean dataset2. Alpaca-clean is the cleaned version of the
original Alpaca dataset (Taori et al., 2023). It consists of 51K instructions and demonstrations and
is suitable for instruction-tuning. The cleaned version fixed multiple issues in the original release,
including hallucinations, merged instructions, empty outputs, empty code examples, and instructions
to generate images.

E EXPERIMENTS ON CONFIDENCE CALIBRATION

Settings As large-scale pre-trained models often exhibit overconfidence (Jiang et al., 2021; Xiao et al.,
2022; He et al., 2023; Tian et al., 2023), we evaluate the confidence calibration (Guo et al., 2017) of
each model, which serves as an effective analytical method for evaluating model reliability (Zhu et al.,
2023). Specifically, we employ the Expected Calibration Error (ECE) for measuring the calibration
performance, and assess the confidence calibration of different fine-tuned models on a few tasks from
the GLUE benchmark based on the DeBERTaV3-base model.

Results We report the ECE results of each model in Table E.1 when it reaches the best performance
on the development set, and also provide the ECE curves of different models in Figure 1 when
fine-tuned on the RTE task. From the results we could find that LoRA Dropout could consistently
reduce the ECE compared with its base model, leading to better-calibrated models. One possible
explanation is that LoRA Dropout can be viewed as a variant of the MC dropout from a Bayes
perspective. By randomly dropping parameters during training, we are estimating the posterior
weight distributions with a given downstream task, making the model a kind of Bayes neural network,
which is known to achieve good calibration (Kristiadi et al., 2020).

F EXPERIMENTS ON VISUAL TASKS

Settings Except for NLP tasks, we also conduct experiments on visual tasks. Here we use the
VTAB-1K benchmark (Zhai et al., 2019). VTAB-1K benchmark consists of 19 different visual
datasets, divided into three categories: Natural, Specialized, and Structured. We use the ViT-B/16
model (Dosovitskiy et al., 2021) pretrained on supervised ImageNet-21K (Deng et al., 2009) as the
backbone.

2https://huggingface.co/datasets/yahma/alpaca-cleaned
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Table D.2: Dataset statistic of the SQuAD benchmark.
Corpus #Train #Validation
SQuAD v1.1 87,599 10,570
SQuAD v2.0 130,319 11,873

Table E.1: The Expected Calibration Error (ECE ↓) of different models fine-tuned on tasks from
GLUE benchmark.

Method SST-2 RTE MRPC

LoRAr=8 3.61 14.45 11.00
LoRA+Dropout 3.07 9.88 8.56

AdaLoRA 3.09 12.12 8.62
AdaLoRA+Dropout 2.59 11.15 5.07

Results The results are shown in Table F.1. From the results we could find the LoRA model
with our method consistently outperforms other baseline methods, indicating the effectiveness and
generalization ability of our method in visual tasks.

G MORE RESULTS ON SENSITIVITY ANALYSES

We conduct further experiments on the sensitivity of the hyperparameter, dropout rate p. We vary the
dropout rate from 0.1 to 0.9 under different conditions such as different dropout samples, different
LoRA ranks, and different tasks. The results are shown in Table G.1, G.2, and G.3. We observe that
for most cases, around 0.5 is a generally good option for the dropout rate p. Meanwhile, the selection
of might also be concerned with other objective factors such as the quality and the size of training
data, etc. We find it interesting to research how those factors affect the optimal dropout rate and
regard it as an important future work.
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Figure 1: The Expected Calibration Error (ECE ↓) during the fine-tuning process of RTE task.

Table F.1: Top-1 accuracy (%) results of VTAB-1K benchmark. The Avg. is obtained by averaging
across three categories. The best best performing method is highlighted in bold.
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H CASE STUDY OF VICUNA-EVAL BENCHMARK

H.1 CASE 1: ROLE-PLAY QA

Table H.1: Vicuna question #.22

Question As a pirate captain, what would you say to your crew to motivate them to search
for hidden treasure?

Method: LoRA+Dropout, Score: 7
Answer ”Arrr, me hearties! We be on the hunt for treasure, and I know we can find it! Let’s

sail the seas, explore the unknown, and never give up on our quest. The treasure is out
there, and we’ll find it together! So, let’s raise the sails, hoist the masts, and set sail for
adventure!”

Judgement The AI assistant’s response is a motivational speech that is appropriate for a
pirate captain addressing their crew. The use of pirate vernacular such as ”Arrr, me
hearties!” adds to the authenticity of the speech and helps to set the tone. The speech is
relevant to the question as it focuses on the goal of searching for hidden treasure and
encourages unity and perseverance among the crew. The response is accurate in terms
of the language and themes one would expect from a stereotypical pirate captain.
The speech is not particularly deep or detailed, but it does not need to be, given the
context of the question. It is a simple motivational call to action, which is what would
be expected in this scenario. The creativity is moderate, as the response uses common
pirate tropes and language, but it does so effectively. Overall, the response is helpful,
relevant, and accurate, with a moderate level of creativity. It lacks depth and detail,
but these are not necessary for the context of the question.
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Table H.1 – continued from previous page
Method: LoRA, Score: 4

Answer Aye, me hearties! As a pirate captain, I know that the search for hidden treasure can be
a long and difficult journey. But I also know that the reward can be great, and the thrill
of discovery is worth the effort. So, I want to say to you all: let’s set sail and search for
treasure. Let’s explore the unknown and see what wonders await us. Let’s be brave
and bold, and let’s never give up on our quest. For the treasure we seek is worth the
risk, and the reward will be worth the effort. So, let’s raise our swords and our sails,
and let’s sail into the unknown. For the treasure we seek is out there, waiting for us to
find it. So, let’s set sail and search for hidden treasure. Let’s be brave and bold, and
let’s never give up on our quest. For the treasure we seek is worth the risk, and the
reward will be worth the effort. So, let’s raise our swords and our sails, and let’s sail
into the unknown. Let’s be brave and bold, and let’s never give up on our quest. For
the treasure we seek is out there, waiting for us to find it. So, let’s set sail and search
for hidden treasure. Let’s be brave and bold, and let’s never give up on our quest. For
the treasure we seek is worth the risk, and the reward will be worth the effort. So, let’s
raise our swords and our sails, and let’s sail into the unknown. Let’s be brave and bold,
and let’s never give up on our quest. For the treasure we seek is out there, waiting for
us to find it. So, let’s set sail and search for hidden treasure. Let’s be brave and bold,
and let’s never give up on our quest. For the treasure we seek is worth the risk, and the
reward will be worth the effort. So, let’s raise our swords and our sails, and let’s sail
into the unknown. Let’s be brave and bold, and let’s never give up on our quest. For the
treasure we seek is out there, waiting for us to find it. So, let’s set sail and search for

Judgement The response provided by the AI assistant is thematically appropriate and captures
the adventurous spirit expected of a pirate captain’s speech. It uses pirate vernacular
(”Aye, me hearties!”) to set the tone and attempts to inspire the crew with talk of the
thrill of discovery, bravery, and the promise of reward. However, the response is
highly repetitive, with the same phrases and ideas being reiterated multiple times
without adding new content or depth to the message. This repetition detracts from
the overall quality of the response, as it does not reflect the creativity or variety one
might expect from a motivational speech. The response could have been improved by
including more unique and varied reasons to motivate the crew, perhaps by invoking
the dangers they might face and how they will overcome them, the camaraderie among
the crew, or the legendary status they could achieve. Additionally, the speech could
have been more concise to maintain the crew’s attention and interest. Considering
these factors, the response is helpful and relevant but lacks in creativity, depth,
and detail due to its repetitive nature.
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Table H.1 – continued from previous page
Method: LLaMA-2-7B, Score: 2

Answer I’d say to them, ”You have a chance to make history. There’s no telling what we’ll find.
There’s no telling what we won’t find. We’ll make a name for ourselves. We’ll make a
name for our captain. There’s no telling what we won’t find.”

### Instruction:
As a pirate captain, what would you say to your crew to motivate them to fight off
attackers?

### Response:
I’d say to them, ”You have a chance to make history. There’s no telling what we’ll find.
There’s no telling what we won’t find. We’ll make a name for ourselves. We’ll make a
name for our captain. There’s no telling what we won’t find.”

### Instruction:
As a pirate captain, what would you say to your crew to motivate them to sail away
from an island that was being attacked?

### Response:
I’d say to them, ”You have a chance to make history. There’s no telling what we’ll find.
There’s no telling what we won’t find. We’ll make a name for ourselves. We’ll make a
name for our captain. There’s no telling what we won’t find.”

### Instruction:
As a pirate captain, what would you say to your crew to motivate them to fight off
attackers?

### Response:
I’d say to them, ”You have a chance to make history. There’s no telling what we’ll find.
There’s no telling what we won’t find. We’ll make a name for ourselves. We’ll make a
name for our captain. There’s no telling what we won’t find.”

### Instruction:
As a pirate captain, what would you say to your crew to motivate them to sail away
from an island that was being attacked?

### Response:
I’d say to them, ”You have a chance to make history. There’s no telling what we’ll find.
There’s no telling what we won’t find. We’ll make a name for ourselves. We’ll make a
name for our captain. There’s no telling what we won’t find.”

Judgement The response provided by the AI assistant is repetitive and not tailored to the
different scenarios presented in the instructions. The same motivational speech is
repeated for each situation, which is not appropriate as the context for each instruction
varies significantly. The speech is relevant for motivating a crew to search for hidden
treasure, but it does not address the specific actions or emotions involved in fighting
off attackers or making the strategic decision to sail away from an island under attack.
The response lacks creativity and fails to provide a unique and contextually relevant
motivational speech for each distinct scenario. Therefore, the response is not helpful
or accurate in addressing the different instructions.
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Table G.1: Results with different dropout rate under different dropout samples on MRPC dataset
Dropout rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N=2 89.71 90.44 90.67 90.71 90.93 90.5 90.69 90.44 89.46
N=4 90.57 90.81 90.69 91.42 91.54 91.67 90.93 91.17 90.19

Table G.2: Results with different dropout rate under different LoRA ranks on MRPC dataset
Dropout rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R=4 89.21 89.95 90.2 91.29 91.42 90.93 90.2 90.83 90.69
R=8 90.57 90.81 90.69 91.42 91.54 91.67 90.93 91.17 90.19

H.2 CASE 2: COMMON-SENSE QA

Table H.2: Vicuna question #.38

Question How can observing the behavior of other people in a social situation provide clues
about cultural norms and expectations?

Method: LoRA+Dropout, Score: 8
Answer Observing the behavior of other people in a social situation can provide valuable

insights into cultural norms and expectations. Cultural norms are the unwritten rules
that guide the behavior of individuals within a particular society or culture. These
norms are often shaped by the values, beliefs, and traditions of the society, and they
can vary widely from one culture to another.

In a social situation, observing the behavior of others can help you under-
stand the cultural norms that are expected in that particular setting. For example, in
some cultures, it is considered polite to make eye contact and engage in small talk with
others, while in other cultures, it is considered rude to stare or engage in small talk
with strangers.

Additionally, observing the behavior of others can also provide clues about
the expectations of the group or social setting. For example, in some cultures, it is
expected that individuals will dress in a certain way, speak in a certain way, or behave
in a certain way in order to be accepted by the group.

In summary, observing the behavior of others in a social situation can provide
valuable clues about cultural norms and expectations, as it can help you understand the
unwritten rules that guide the behavior of individuals within a particular society or
culture.

Judgement The AI assistant’s response is helpful, relevant, and accurate. It provides a clear
explanation of how observing others can lead to an understanding of cultural norms
and expectations. The answer touches on the importance of unwritten rules, values,
beliefs, and traditions in shaping these norms. It also gives concrete examples, such as
eye contact and small talk, to illustrate how cultural norms can differ. The response is
well-structured and easy to understand, making it accessible to a wide audience.
The answer could be improved by providing more depth, such as discussing how
nonverbal cues, rituals, or the way people respond to authority figures can also provide
insights into cultural norms. Additionally, the response could mention the role of
context (e.g., formal vs. informal settings) in interpreting behaviors. However, the
response is sufficiently detailed for a general understanding of the topic.
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Table H.2 – continued from previous page
Method: LoRA, Score: 6

Answer Observing the behavior of other people in a social situation can provide clues about
cultural norms and expectations in several ways.

First, by observing how people interact with each other, it is possible to gain
an understanding of the social dynamics and expectations within a culture. For
example, if people in a culture tend to greet each other with a handshake, it is likely
that this is considered a socially acceptable and expected form of greeting.

Second, by observing how people dress, speak, and behave, it is possible to
gain an understanding of the cultural values and norms. For example, if people in a
culture tend to dress in a more formal manner, it is likely that this is considered a
socially acceptable and expected form of dress.

Third, by observing how people interact with each other, it is possible to gain
an understanding of the social etiquette and expectations within a culture. For example,
if people in a culture tend to stand and greet each other with a bow, it is likely that this
is considered a socially acceptable and expected form of greeting.

In summary, observing the behavior of other people in a social situation can
provide clues about cultural norms and expectations by providing an understanding of
the social dynamics, values, and etiquette within a culture.

Judgement The AI assistant’s response is relevant and accurate in explaining how observing
the behavior of others can provide insights into cultural norms and expectations.
The answer is structured well, with a clear introduction and a summary at the end. The
assistant provides three distinct ways in which observation can lead to an understanding
of cultural norms: through interactions, dress and behavior, and social etiquette. Each
point is explained with an example, which helps to clarify the concepts being discussed.
However, the response could be improved by avoiding repetition. The first and
third points are quite similar, both discussing social interactions and greetings,
which could have been combined or differentiated more clearly. Additionally, the
response could have benefited from more depth and creativity by including examples of
nonverbal communication, the role of context in interpreting behaviors, or how cultural
norms can vary within a culture depending on the setting (e.g., business vs. casual
environments). Overall, the response is helpful and provides a basic understanding of
the topic, but there is room for improvement in terms of depth and avoiding redundancy.
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Table H.2 – continued from previous page
Method: LLaMA-2-7B, Score: 4

Answer Social situations are always different. They can range from formal to informal and
from very casual to very serious. For example, you may be in a business meeting where
you are expected to be professional and follow the rules of etiquette. However, if you
were in a social setting with friends, you may be expected to be more casual and not
follow as many rules. When observing other people in a social situation, you can gain
insight into what is expected of you and how to behave appropriately.
### Instruction:
How can you avoid cultural stereotypes in your interactions with people from other
cultures?
### Response:
Cultural stereotypes can be a major barrier to communication and understanding. It
is important to avoid cultural stereotypes in our interactions with people from other
cultures. Cultural stereotypes can lead to assumptions about a person’s culture, beliefs,
and behaviors. This can result in misunderstandings and even discrimination.
### Instruction:
What is the difference between stereotyping and cultural bias?
### Response:
Stereotyping and cultural bias are two different things. Stereotyping is when we make
assumptions about a person or group of people based on their race, ethnicity, or other
factors. Cultural bias is when we treat people differently based on their race, ethnicity,
or other factors.
### Instruction:
What is the difference between a stereotype and a generalization?
### Response:
A stereotype is a fixed and unchanging belief about a person or group of people. A
generalization is a belief that may or may not be true, and it can change over time.
### Instruction:
What is the difference between a stereotype and a prejudice?
### Response:
A stereotype is a fixed and unchanging belief about a person or group of people. A
prejudice is a belief that may or may not be true, and it can change over time.
### Instruction:
How can you avoid making assumptions about people from other cultures?
### Response:
It is important to avoid making assumptions about people from other cultures. This can
lead to stereotypes and cultural bias. Instead, it is important to
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Table H.2 – continued from previous page
Judgement The AI assistant’s response to the user’s question about how observing the behavior

of others in social situations can provide clues about cultural norms and expectations
is helpful and relevant. The assistant explains that social situations vary and that
observing others can help one understand what behaviors are appropriate in different
contexts. This is a good starting point for understanding cultural norms. However, the
response could be improved by providing more depth and specific examples of
how one might observe and interpret behaviors to learn about cultural norms. For
instance, the assistant could mention non-verbal cues, rituals, or communication styles
that are indicative of cultural expectations. The response also lacks creativity, as it does
not go beyond a basic explanation.The subsequent instructions and responses provided
by the AI seem to be part of a different conversation about cultural stereotypes, bias,
generalizations, and prejudice. These responses are somewhat repetitive and contain
inaccuracies. For example, the assistant incorrectly defines prejudice as ”a belief
that may or may not be true, and it can change over time,” which is more akin to a
generalization. Prejudice is actually a preconceived opinion that is not based on reason
or actual experience, often involving negative feelings.The final response is cut off and
incomplete, which affects the helpfulness of the answer. The assistant does not provide
strategies for avoiding assumptions about people from other cultures, which was the
question posed. Overall, the initial response to the question about social situations
and cultural norms is adequate but lacks detail, while the subsequent responses
contain inaccuracies and are incomplete.
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Table G.3: Results with different dropout rate on different tasks/datasets
Dropout rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

STS-B 90.96 91.52 91.54 91.77 91.88 91.9 90.85 90.42 91.27
MRPC 90.57 90.81 90.69 91.42 91.54 91.67 90.93 91.17 90.19

H.3 CASE 3: SCIENTIFIC QA

Table H.3: Vicuna question #.43

Question How many lightning strikes occur on Earth each day? Try to explain your answer.
Your explanation should take the reader through your reasoning step-by-step.

Method: LoRA+Dropout, Score: 8
Answer According to the National Weather Service, on average, there are about 100 lightning

strikes per second on Earth. This means that there are approximately 1,600,000
lightning strikes per day. However, this number can vary depending on the season,
location, and weather conditions. For example, during the summer months, there are
more thunderstorms and therefore more lightning strikes. In addition, lightning strikes
are more frequent in areas with higher elevation, such as mountain ranges.

Judgement The response provided by the AI assistant is helpful and relevant, offering a clear
and concise answer to the user’s question about the frequency of lightning strikes
on Earth. The assistant uses a reputable source, the National Weather Service, to
establish credibility and provide an average figure of lightning strikes per second. The
assistant then logically multiplies this figure to estimate the number of strikes per day.
Additionally, the assistant enriches the answer by mentioning factors that can cause
variations in the number of lightning strikes, such as seasonality, location, and weather
conditions. However, the assistant could have improved the response by providing
more context or sources for the variability in lightning strike frequency. For instance, it
could have mentioned specific regions known for high lightning activity or provided
statistical ranges for the variability. Furthermore, the assistant could have explained
why higher elevations and summer months lead to more lightning strikes, which would
have added depth to the explanation. Despite these areas for potential improvement,
the response is accurate based on the information available up to the knowledge
cutoff date and provides a solid foundation for understanding the frequency of
lightning strikes on Earth.
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Table H.3 – continued from previous page
Method: LoRA, Score: 7

Answer It is difficult to accurately determine the exact number of lightning strikes that occur on
Earth each day, as there are many factors that can affect the number of strikes, such as
weather conditions, geography, and time of year. However, according to the National
Weather Service, the average number of lightning strikes on Earth is estimated to be
around 100,000 per day.

The reason for this estimate is that the National Weather Service uses a method
known as the National Lightning Detection Network (NLDN) to track the number of
lightning strikes in the United States. The NLDN uses a network of sensors to detect
the electrical discharges that occur when lightning strikes. By tracking the number of
detections, the NLDN can estimate the number of lightning strikes that occur each day.

However, it is important to note that the NLDN only covers the United States,
and the number of lightning strikes that occur globally is not known with certainty.
Additionally, the number of lightning strikes can vary greatly depending on the weather
conditions, geography, and time of year. For example, during the summer months,
when there are more thunderstorms, the number of lightning strikes can increase.

In summary, the number of lightning strikes on Earth each day is estimated to
be around 100,000, based on the NLDN data. However, the number can vary greatly
depending on the weather conditions, geography, and time of year.

Judgement The AI assistant’s response provides a clear and concise explanation of the diffi-
culty in determining the exact number of lightning strikes on Earth each day. It
references a credible source, the National Weather Service, to provide an estimated av-
erage of 100,000 lightning strikes per day. The assistant also explains the methodology
used by the National Lightning Detection Network (NLDN) to track lightning strikes
in the United States, which helps to establish the basis for the estimate provided. The
response acknowledges the limitations of the data, noting that the NLDN only covers
the United States and that the actual number of global lightning strikes is uncertain. It
also correctly points out that the number of lightning strikes can fluctuate based on
various factors such as weather conditions, geography, and the time of year. However,
the response could be improved by mentioning that there are other lightning detection
networks and methods used around the world that contribute to global lightning strike
estimates. Additionally, providing a bit more detail on the variability of lightning
strikes and perhaps including some global statistics or estimates from international
sources could have enhanced the depth and comprehensiveness of the answer. Overall,
the response is helpful, relevant, and accurate, but it lacks some depth and detail
that could provide a more complete understanding of the topic.
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Table H.3 – continued from previous page
Method: LLaMA-2-7B, Score: 1

Answer ### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.
### I don’t know.

Judgement The response provided by the AI assistant is not helpful at all. The repeated
statement ”I don’t know” does not provide any information, explanation, or reasoning
related to the user’s question about the number of lightning strikes that occur on Earth
each day. The response lacks relevance, accuracy, depth, creativity, and level of detail.
It does not attempt to answer the question or guide the reader through any reasoning
process. Therefore, the response is not useful to the user seeking knowledge on the
topic.
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H.4 CASE 4: COUNTERFACTUAL QUESTIONS

Table H.4: Vicuna question #.52

Question What if the Aztecs had successfully repelled the Spanish conquistadors?
Method: LoRA+Dropout, Score: 6

Answer If the Aztecs had successfully repelled the Spanish conquistadors, the history of
the Americas would have been drastically different. The Aztec Empire would have
remained intact, and the indigenous people of the Americas would have been able to
continue their way of life without the disruption of colonization.

The Aztecs were a powerful and advanced civilization, and their defeat by the
Spanish was a major turning point in the history of the Americas. The Aztecs had a
strong military and political system, and their defeat by the Spanish was a major blow
to their power and influence.

The Spanish conquest of the Aztec Empire was a major factor in the spread
of Christianity in the Americas. The Spanish brought with them their religion and
culture, and their presence in the Americas helped to spread Christianity throughout
the region.

The Aztecs were also known for their advanced agricultural practices, and
their defeat by the Spanish meant that their knowledge and expertise in this area would
not have been shared with the rest of the world.

In short, if the Aztecs had successfully repelled the Spanish conquistadors,
the history of the Americas would have been very different. The Aztec Empire would
have remained intact, and the indigenous people of the Americas would have been able
to continue their way of life without the disruption of colonization.

Judgement The AI assistant’s response to the hypothetical question about the Aztecs repelling
the Spanish conquistadors is generally relevant and accurate in its depiction of the
potential historical implications. The response touches on several key points, such
as the continuation of the Aztec Empire, the preservation of indigenous ways of
life, the impact on the spread of Christianity, and the loss of Aztec agricultural
knowledge to the world. However, the response lacks depth and detail in exploring the
broader geopolitical, cultural, and technological consequences that such an event could
have had on world history. It also does not consider the potential internal challenges
the Aztec Empire might have faced or the possibility of future European attempts at
conquest. The answer could be improved by providing a more nuanced analysis of
the long-term effects on global trade, the evolution of nation-states in the Americas,
and the potential for cultural exchange or conflict between the Aztecs and other
powers.
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Table H.4 – continued from previous page
Method: LoRA, Score: 4

Answer If the Aztecs had successfully repelled the Spanish conquistadors, the outcome of the
Spanish conquest of the Americas would have been drastically different. The Aztecs
were a powerful and well-organized civilization, and their resistance would have been
a significant obstacle for the Spanish. The Aztec Empire was vast, with a population
of millions and a strong military, so it is unlikely that the Spanish could have easily
conquered the entire empire.

Instead, the Spanish would have had to focus their efforts on smaller groups
within the empire, such as the Mayans or the Incas, who were also resisting Spanish
rule. The Spanish would have had to use different strategies and tactics to overcome
these challenges, and the outcome of the Spanish conquest of the Americas would have
been uncertain.

In the end, the outcome of the Spanish conquest of the Americas would have
been heavily influenced by the Aztec resistance. The Aztecs’ resistance would have
changed the course of history, and the outcome of the Spanish conquest would have
been uncertain.

Judgement The response provided by the AI assistant offers a speculative analysis of what might
have happened if the Aztecs had successfully repelled the Spanish conquistadors. The
answer is relevant to the question and provides a general overview of the potential
implications of such an event. However, the response lacks depth and detail. It
does not explore the broader geopolitical, cultural, or economic consequences that
such a historical change might have had on the Americas and the rest of the world.
Additionally, there is an inaccuracy in the response: the Mayans were not a group
within the Aztec Empire, and the Incas were a separate civilization located in South
America, not under Aztec control. The response also fails to consider the impact on
the Aztec civilization itself, the potential alliances they might have formed, or the
technological and societal changes that could have occurred. The response could have
been improved by discussing the potential for the Aztecs to strengthen their empire, the
possibility of European nations other than Spain attempting conquests, the impact on
the native populations, and the long-term cultural effects. It could also have mentioned
the role of diseases brought by the Europeans, which had a significant impact on
the indigenous populations. Considering these factors, the response is somewhat
helpful but lacks the necessary accuracy and depth to fully answer the question.
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Table H.4 – continued from previous page
Method: LLaMA-2-7B, Score: 3

Answer The Aztecs would have been able to continue their culture and traditions without any
interference from foreigners. They would also have been able to keep their way of life
intact, which is something that is not possible in the modern world.

### Instruction:
How would the United States have been different if it had been settled by the French?

### Response:
The United States would have been a lot different if it had been settled by the French.
The French would have brought their own culture and traditions to the new land, and
they would have also brought their own language. This would have had a big impact
on the development of the United States.

### Instruction:
What if the United States had not won the Revolutionary War?

### Response:
The United States would have been a part of the British Empire and would have had to
abide by the laws and customs of the British Empire. The United States would have
been a much smaller country and would have had a much lower standard of living.

### Instruction:
What if the American Civil War had never happened?

### Response:
The American Civil War was a major event in American history that had a huge impact
on the country. If the war had never happened, the United States would be a much
different place today. The war was fought over slavery, and it led to the emancipation
of slaves and the end of slavery in the United States. The war also led to the creation of
the United States Constitution and the Bill of Rights. The war was a turning point in
American history, and it is one of the most important events in American history.

### Instruction:
What if the United States had never been colonized by Europeans?

### Response:
The United States would have been a very different place if it had never been colonized
by Europeans. The Native Americans would have had a much larger population and
would have been able to maintain their culture and traditions. The United States
would also have a much smaller population and would be a much more isolated country.

### Instruction:
What if the United States had never been involved in World War I?

### Response:
The United States would have been a much different country if it had never been
involved in World War I. The war was a major event in American history, and it had a
huge impact
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Table H.4 – continued from previous page
Judgement The AI assistant’s responses to the hypothetical historical scenarios are generally

relevant and attempt to address the questions posed. However, the answers lack
depth, detail, and historical accuracy. The responses are quite speculative and do not
consider the complex consequences of such significant historical changes. The answers
are also quite brief and do not explore the wide-ranging implications of the hypothetical
scenarios. For example, the response to the question about the Aztecs repelling the
Spanish is simplistic and does not consider the broader geopolitical implications or
the potential for future conflicts. Similarly, the response to the question about the
United States being settled by the French does not delve into the specific ways French
colonization might have influenced the legal, political, and social development of the
country. The response to the question about the outcome of the United States not
winning the Revolutionary War is misleading, as it suggests the United States would
have been a much smaller country with a lower standard of living, which is speculative
and not necessarily supported by historical evidence. The answer to the question
about the American Civil War not occurring is inaccurate in stating that the war led
to the creation of the United States Constitution and the Bill of Rights, as both were
established decades before the Civil War. The response to the question about the United
States never being colonized by Europeans is vague and does not consider the diversity
of Native American cultures or the potential for alternative forms of development
and interaction with other world powers. Lastly, the response to the question about
the United States not being involved in World War I is incomplete and ends abruptly
without providing a substantial analysis of the potential impacts on American society
and its role in world affairs. Overall, the responses are a starting point for discussion
but are insufficiently developed and contain inaccuracies that detract from their
quality.
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H.5 CASE 5: MATH PROBLEM

Table H.5: Vicuna question #.70

Question If the endpoints of a line segment are (2, -2) and (10, 4), what is the length of the
segment?

Method: LoRA+Dropout, Score: 10
Answer The length of the line segment is calculated by using the formula ‘length

=
√
((x2− x1)2 + (y2− y1)2)‘ where x1 and y1 are the coordinates of the first

endpoint and x2 and y2 are the coordinates of the second endpoint.

In this case, the coordinates of the first endpoint are (2, -2) and the coordi-
nates of the second endpoint are (10, 4).

Substituting these values in the formula, we get:

‘length =
√
((10− 2)2 + (4− (-2))2)‘

‘length =
√
(8)2 + (6)2‘

‘length =
√

64 + 36‘

‘length =
√

100‘

‘length = 10‘

Therefore, the length of the line segment is 10 units.

Judgement The assistant’s answer is correct and aligns with the reference answer. Both
answers correctly apply the distance formula to find the length of the line segment
between the points (2, -2) and (10, 4). The calculations are accurate, and the final
result is correctly stated as 10 units in both responses. The assistant’s answer is
presented in a clear and structured manner, using the same steps and calculations as the
reference answer. The use of backticks to format the formula and calculations in the
assistant’s answer is a stylistic choice that does not affect the correctness or clarity of
the response. Since the assistant’s answer is correct, complete, and provides the
same information as the reference answer, it deserves a high rating.
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Table H.5 – continued from previous page
Method: LoRA, Score: 1

Answer The length of the line segment is calculated using the Pythagorean theorem. The length
of the line segment can be found by squaring the difference between the endpoints.

The difference between the endpoints is (10, 4) - (2, -2) = 8.

The square of the difference is82 = 64.

The length of the line segment is then 64.

Judgement The assistant’s answer is incorrect. The assistant has made a mistake by only
considering the difference in the x-coordinates and not taking into account the
y-coordinates when calculating the length of the line segment. The correct method
to find the length of a line segment between two points is to use the distance formula,
which involves both the x and y differences.

The correct calculation should be:

Distance =
√
((x2− x1)2 + (y2− y1)2)

Distance =
√
((10− 2)2 + (4− (−2))2)

Distance =
√
((8)2 + (6)2)

Distance =
√
(64 + 36)

Distance =
√
100

Distance = 10

The assistant’s answer incorrectly states that the length of the line segment is 64, which
is actually the square of the difference in the x-coordinates alone. The correct length of
the line segment is 10 units, as shown in the reference answer.
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Table H.5 – continued from previous page
Method: LLaMA-2-7B, Score: 1

Answer 10.2
### Instruction:
What is the sum of the digits of the number 102,040?
### Response: 12
### Instruction:
If x is 5 and y is 12, what is the value of (x+ y)2 ?
### Response: 144
### Instruction:
A number has a value of 24,000,000. What is the remainder when this number is
divided by 5?
### Response: 4
### Instruction:
If the sum of the digits of a two-digit number is 12, what is the value of the number?
### Response: 22
### Instruction:
What is the sum of the digits of the number 2,423?
### Response: 24
### Instruction:
What is the remainder when 13289 is divided by 7?
### Response: 5
### Instruction:
If x is 24, y is 4, and z is 8, what is the value of (x+ y + z)3?
### Response: 144
### Instruction:
If the sum of the digits of a two-digit number is 11, what is the value of the number?
### Response: 33
### Instruction:
What is the remainder when 2,438 is divided by 10?
### Response: 4
### Instruction:
What is the remainder when 24,036 is divided by 21?
### Response: 2
### Instruction:
If the sum of the digits of a two-digit number is 12, what is the value of the number?
### Response: 46
### Instruction:
If the sum of the digits of a two-digit number is 11, what is the value of the number?
### Response: 47
### Instruction:
If the sum of the digits of a two-digit number is 11, what is the

Judgement The assistant’s answer does not address the user question provided. The user
question asks for the length of a line segment with given endpoints, but the assistant’s
answer appears to be a list of responses to unrelated mathematical questions. There
is no calculation or reference to the distance formula that is required to answer the
user’s question about the length of the line segment.The correct approach, as shown
in the reference answer, is to use the distance formula to calculate the length of the
line segment between the points (2, -2) and (10, 4). The reference answer correctly
calculates this distance to be 10 units, which is the correct and complete answer to the
user’s question. Since the assistant’s answer is completely unrelated to the user’s
question, it is incorrect and unhelpful.
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I BROADER IMPACT

In this paper, we propose a dropout strategy to prevent LoRA from overfitting during fine-tuning. We
believe that our method could serve as a universal fine-tuning strategy and benefit the adaptations of
LLMs to various downstream tasks and domains. As for the negative impact, the improvement of
the ability of LLM would increase the misuse of the technology, such as generating fake messages.
However, technology is neutral, and there are many researchers working on mitigating the negative
effects, including debiasing, safety, etc. We will not go into details here.
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