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ABSTRACT

Offline meta-reinforcement learning seeks to overcome the challenges of poor
generalization and expensive data collection by leveraging datasets for related
tasks. Context encoding is a prevalent approach, where an encoder maps transition
histories to a task representation. In parallel, latent world models – which map ob-
servations into temporally consistent latent spaces – advanced self-supervised rep-
resentation learning for planning and policy optimization. In this work, we unify
these directions by introducing contextual latent world models: world models
conditioned on the task representation and trained jointly with the context encoder.
Coupling task inference with predictive modeling yields task representations that
capture variation factors across tasks and empirically improves generalization to
out-of-distribution tasks in diverse benchmarks, including MuJoCo, Contextual-
DeepMind Control suite, and Meta-World.

1 INTRODUCTION

Reinforcement learning (RL) methods utilize predictive dynamics and reward functions in differ-
ent ways. Model-based approaches attempt to increase sample efficiency with predictive models
(Deisenroth & Rasmussen, 2011; Chua et al., 2018; Janner et al., 2019) to unroll trajectories into the
future. On the other hand, model-free approaches use predictive models to improve value estimation
(Feinberg et al., 2018) or to guide exploration (Stadie et al., 2015; Houthooft et al., 2016; Pathak
et al., 2017; Achiam & Sastry, 2017; Pathak et al., 2019; Shyam et al., 2019; Scannell et al., 2024b)
toward uncertain regions. Instead of learning predictive dynamics and reward functions directly in
the observation/state space, latent world models map the observations to a (compact) latent vector
and then learn a latent dynamics. Model-based approaches make use of latent world models for real-
time planning (Hafner et al., 2019; Schrittwieser et al., 2020; Hansen et al., 2022; 2024; Scannell
et al., 2025) or optimizing the policy by imagination (Hafner et al., 2020; 2021; 2025). Model-
free approaches exploit latent world models for representation learning (Zhao et al., 2023; Fujimoto
et al., 2023; Scannell et al., 2024a; Fujimoto et al., 2025). Utilizing latent world models in both
model-based and model-free RL can improve sample efficiency and training stability considerably.

A key shortcoming of RL methods is limited generalization: a policy trained on one task typically
cannot be directly applied to related tasks. Meta-RL aims to sidestep this issue by considering a
distribution over a set of training tasks and learning a generalizable policy that can adapt within a
few trials (Finn et al., 2017; Zintgraf et al., 2021; Beck et al., 2025). However, meta-RL is limited to
simulation since direct interaction with a set of training tasks can be costly and even infeasible in the
real world. Offline meta-RL (OMRL) attempts to overcome this issue by assuming that datasets exist
for similar tasks and then leveraging the datasets to learn a generalizable policy. In context-based
approaches (Li et al., 2020; Gao et al., 2024; Zhou et al., 2024; Li et al., 2024; Nakhaeinezhadfard
et al., 2025; Wang et al., 2023; Zhang et al., 2025), a context encoder encodes a history of transitions
to a latent vector called the task representation, and the agent (including policy and value functions)
is conditioned on the task representation. The task representation serves as an implicit task identifier
without requiring knowledge about the underlying task and the variation factors.

In this paper, we explore latent world models in the context-based OMRL setting. Our contributions
are as follows:
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C1 We present Contextual Discrete Codebook World Models (C-DCWM), a novel OMRL
method which is based on latent world models. More specifically, we extend discrete code-
book world models (DCWM, Scannell et al., 2025) by conditioning the latent world model
on the task representation and training the encoder and the world model jointly. We show
that our approach of representation learning can improve generalization to unseen tasks.

C2 We compare different latent space formulations in world modeling and demonstrate the
benefit of discretizing the latent space and training with a classification objective for the
temporal consistency loss in the context-based OMRL setting.

C3 We evaluate task representation learning through the lens of disentanglement, showing
that latent temporal consistency can better capture variation factors compared to predic-
tive models, while including contrastive learning can enhance task distinguishability.

2 BACKGROUND

In this section, we review context-based offline meta-RL and introduce finite scalar quantization
(FSQ), both of which are central to our method.

2.1 CONTEXT-BASED OFFLINE META REINFORCEMENT LEARNING

In offline meta-RL, there is a set of training tasks, each modeled as a Markov Decision Process
(MDP), Mi = ⟨S,A, Ri, Pi, γ, ρ0⟩, consisting of a shared state space S, action space A, discount
factor γ ∈ [0, 1], initial state distribution ρ0(s0), a task-specific reward function Ri : S × A → R,
and task-specific transition dynamics Pi(st+1|st, at). For each task represented as an MDP, there
is a corresponding dataset Di. The objective is to train a meta-policy π that can generalize to new
tasks, i.e., maximize the expected cumulative reward over the distribution of test tasks

J(π) = EMi∼ptest(M)

[
Es0∼ρ0(s0),st+1∼Pi(·|st,at),at∼π(at|·)

[
T∑
t=0

γtRi(st, at)

]]
. (1)

Context-based methods use an encoder, called the context encoder, to implicitly infer the task Mi

from limited samples collected by interacting with the environment. During meta training, a context
encoder Eϕ : S × A × R × S → Z learns a mapping from transitions {(sj , aj , rj , s′j)} to a task
representation z. This task representation can be used e.g., by the policy π(ai | si, z), Q-value
function Q(si, ai, z), or a learned dynamics model p(st+1 | st, at, z) to adapt to the identified task.

2.2 FINITE SCALAR QUANTIZATION

The goal of quantization is to learn a codebook C whose elements provide a compressed represen-
tation of the input data. Unlike vector quantization (VQ, Van Den Oord et al., 2017), which maps
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Figure 1: Illustration of FSQ with two levels L = [5, 3] The continuous vector x is first reshaped
into |L| channels, each channel bi is quantized to the nearest integer according to its resolution Li,
and the resulting quantized representation is then mapped back to the original dimensionality of x.
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a continuous latent vector to the nearest codebook entry, finite scalar quantization (FSQ, Mentzer
et al., 2024) divides the latent space into b channels and quantizes each channel independently via
bounded rounding, potentially with different resolutions. Concretely, a continuous latent vector
x ∈ Rd is reshaped into x′ ∈ Rd

′×b, where d′ = d/b denotes the latent dimension per chan-
nel. Each latent dimension is quantized into an independent codebook, resulting in d′ codebooks
in total. FSQ defines an ordered set of quantization levels L = [L1, L2, . . . , Lb], where each Li
specifies the resolution (number of quantized values) for channel bi. Quantization is performed as
c′:,i = round

(⌊
Li

2

⌋
tanh(x′:,i)

)
, which maps each channel to Li discrete integer values. Conse-

quently, each codebook over the d′ latent dimensions contains |C| =
∏
i Li codes. The quantized

vectors c′ ∈ Rd
′×b are then reshaped back to c ∈ Rd, preserving the dimensionality of the orig-

inal latent vector x. Figure 1 illustrates this process. To enable gradient propagation through the
non-differentiable rounding operation, FSQ employs the straight-through estimator (STE, Bengio,
2013). This approach produces a fixed grid partition in a lower-dimensional space, eliminating the
need for the commitment and codebook losses typically used in VQ. As a result, FSQ yields efficient
and stable discretization of the latent space.

3 METHOD

We start by providing a general overview, and then we detail our method for contextual world models
and policy optimization. Fig. 2 provides a high-level illustration of C-DCWM.

Overview C-DCWM has the following main components:

Context encoder: z = E[Eθ(st, at, rt, st+1)] (2)
Observation encoder: xt = Fϕ(st) (3)
Quantization model: ct = f(xt) (4)
Latent dynamics: ĉt+1 ∼ Categorical(p1, ..., p|c|) where pi = Dϕ(ĉt+1 = ci | ct, at, z) (5)

Reward function: q = Rϕ(ct, at, z) (6)
Q-value function: q = Qψ(ct, at, z) (7)
Value function: v = Vω(ct, z) (8)
Policy: at ∼ πη(at | ct, z) (9)

The latent world model in C-DCWM comprises a context encoder, an observation encoder, a quan-
tization module, latent dynamics, and a reward function. The policy, value function, and Q-function
are conditioned on both the discrete latent codes ct and the task representation z. This design is
related to TCRL (Zhao et al., 2023), which demonstrates that converting the observation space of
an RL agent using latent temporal consistency can enhance performance. On the other hand, our
approach leverages latent temporal consistency within the offline meta-RL setting by jointly training
the world model and the context encoder.

3.1 CONTEXTUAL DISCRETE CODEBOOK WORLD MODEL

In context-based OMRL methods, a context encoder maps transitions into a task representation z,
which is then used to condition the agent and enable generalization to new tasks. Analogously, we
extend discrete codebook world models (DCWM, Scannell et al., 2025) by conditioning them on
task representations. Specifically, we condition the latent dynamics Dϕ and reward function Rϕ on
z, while sharing the observation encoder Fϕ and the quantization model across tasks. This design
reflects the fact that tasks differ in dynamics and/or reward functions.

At each training iteration, a meta-batch of datasets is sampled, and from each dataset, a batch of
transitions is drawn. Given a dataset Di corresponding to training task i (formulated as an MDP
Mi), the context encoder computes the task representation as

zi = E(st,at,rt,st+1)∼Di
[Eϕ(st, at, rt, st+1)]. (10)

The observation encoder maps states from all tasks into continuous latent vectors according to
Eq. (3), which are subsequently quantized using FSQ. Following DCWM, we use quantization levels

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Datasets of 
different tasks

FSQ FSQ FSQ
Value

Functions
Policy

Figure 2: Method Overview. Left: Context encoder Eθ maps transitions of different tasks (from
datasets during training and from previous interactions in testing) to a task representation, i.e. an im-
plicit task identifier. Middle: During world model training, the observation encoder Fϕ first maps
observations st to a latent vector xt, which is then quantized – using FSQ – to a latent code ct.
The latent transition dynamics Dϕ predicts the next latent quantized vectors ĉt+1:t+h conditioned
on the task representation z computed by the context encoder. We use the cross-entropy loss (i.e.
classification loss) between predictions from the dynamics model and predictions from the encoder
at the next time step, to train the world model and context encoder jointly. Right: Policy optimiza-
tion, the policy is optimized based on the quantized latent vectors ct while conditioned on the task
representation z.

L = [5, 3], with codes normalized to lie in [−1, 1]. Given the discrete latent space, transition dy-
namics are modeled as categorical distributions over the next latent state. The latent space is divided
into d′ = d

|L| codebooks, each containing |C| =
∏
i Li = 15 codes. For each codebook, the la-

tent dynamics outputs unnormalized logits over possible next codes ĉt+1 conditioned on the current
code ct, action at, and task representation z according to Eq. (5). Probabilities for |C| = 15 codes
are obtained via a softmax normalization, yielding a potentially multimodal, stochastic transition
distribution. To enable gradient-based training, we employ the straight-through Gumbel-Softmax
estimator (Jang et al., 2017) for sampling. We jointly optimize the context encoder, observation
encoder, latent dynamics, and reward function using backpropagation through time with the world
model objective:

LWM(θ, ϕ) =

H−1∑
h=0

γh
(
CE(Dϕ(ĉt+h, at+h, z), ct+h+1) + ∥Rϕ(ĉt+h, at+h, z)− rt+h∥22

)
(11)

with ĉ0 = f(Fϕ(st))︸ ︷︷ ︸
First latent state

, ĉt+h+1 ∼ Dϕ(ĉt+h, at+h, z)︸ ︷︷ ︸
Stochastic latent dynamics

, ct+h = sg(f(Fϕ̄(st+h)))︸ ︷︷ ︸
Target latent code

. (12)

Here, H denotes the multi-step prediction horizon, γ the discount factor, ϕ̄ the exponential moving
average of the observation encoder parameters, and CE the cross-entropy loss.

To ensure that task representations are discriminative, the context encoder is trained with a con-
trastive objective. Specifically, transitions from the same task should map to nearby representations,
while those from different tasks should be further apart. We adopt the InfoNCE loss (van den Oord
et al., 2019):

LContrastive(θ) = −
∑
i

log
S(zi, z̄i)∑
j S(z

i, z̄j)
, (13)

where z̄i = λzi + (1 − λ)z̄i is the moving average of task representations controlled by λ, and
S(zi, zj) = exp

(
− ∥zi − zj∥22/α

)
is an RBF kernel measuring similarity. This objective provides

a lower bound on the mutual information between tasks and task representations, I(z;M) (Zhang
et al., 2024). Positive samples are obtained from the moving average of the same task representation,
while negatives are drawn from other tasks. The moving average stabilizes training by smoothing
updates. In practice, the context encoder is optimized with a combined objective:

LContext Encoder(θ) = LWM(θ) + βLContrastive(θ),

4
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66 72 78 84

C-DCWM

UNICORN-SUP
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FOCAL
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Median
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IQM

66 72 78 84

Mean

18 24 30 36

Optimality Gap
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Figure 3: Few-shot in-distribution performance, including success rate (median, IQM, mean) and
optimality gap (lower is better), on Meta-World benchmark (30 environments, each with 6 random
seeds). C-DCWM with the latent world model outperforms baselines.

Table 1: Few-shot in-distribution performance on MuJoCo and Contextual-DMC benchmarks. C-
DCWM with the latent world model outperforms baselines. Average returns over 6 random
seeds, ± represents 95% confidence intervals. Bold indicates the highest value with statistical sig-
nificance according to the t-test with p-value < 0.05.

Environment C-DCWM CSRO DORA FOCAL UNICORN-SS UNICORN-SUP
Ant-dir 863.1 ± 36.2 798.0 ± 39.3 596.5 ± 54.6 804.0 ± 35.0 812.9 ± 24.5 429.0 ± 30.6
Cheetah-LS 944.8 ± 4.9 831.2 ± 60.0 895.3 ± 24.1 852.2 ± 26.4 795.9 ± 39.4 832.0 ± 52.9
Cheetah-speed 751.2 ± 27.9 576.3 ± 78.2 547.0 ± 45.6 515.7 ± 62.7 554.3 ± 71.6 586.4 ± 40.7
Finger-LS 968.0 ± 5.5 869.2 ± 46.6 822.3 ± 47.5 880.8 ± 39.2 885.6 ± 14.1 753.2 ± 56.3
Finger-speed 967.4 ± 2.0 631.6 ± 56.1 441.2 ± 33.6 609.5 ± 25.0 515.9 ± 25.5 526.9 ± 36.8
Hopper-mass 590.6 ± 3.5 476.4 ± 68.7 563.3 ± 26.8 572.7 ± 13.0 540.9 ± 36.5 442.5 ± 119.2
Walker-friction 563.6 ± 33.5 521.8 ± 34.4 487.7 ± 27.8 532.3 ± 46.7 485.5 ± 57.8 539.1 ± 13.7
Walker-LS 934.6 ± 20.1 899.2 ± 41.8 862.5 ± 55.5 875.0 ± 51.5 880.7 ± 54.7 914.2 ± 23.0
walker-speed 835.6 ± 37.3 771.2 ± 20.0 390.9 ± 84.0 768.9 ± 30.1 730.7 ± 48.6 518.6 ± 55.3

where β balances world model learning and contrastive task discrimination. The remaining compo-
nents of the contextual DCWM are optimized solely with the world model objective in Eq. (11).

3.2 META POLICY OPTIMIZATION

Context-based OMRL extends offline RL by conditioning the value functions and policy on task
representation, thereby enabling the learning of generalizable policies from datasets corresponding
to different tasks. A central challenge in offline RL is out-of-distribution (OOD) action selection
during temporal-difference (TD) learning. Actor-critic methods without regularization overestimate
the value function while the policy is trained to optimize it. In principle, any offline RL algorithm
can be employed to mitigate this issue. We adopt Implicit Q-Learning (IQL Kostrikov et al., 2022).
IQL utilizes expectile regression in policy evaluation to predict an upper expectile of the TD targets
in SARSA style without querying OOD actions. In our setting, we replace raw observations with
quantized latent vectors from the world model. The value function then approximates an expectile
with respect to only the action distribution LV (ω) = Lτ2(Qψ̄(ct, at, z)− Vω(ct, z)) where Lτ2(x) =
(τ − 1(x < 0))x2 is τ expectile regression and ψ̄ is exponential moving average of ψ. The value
function is then used in computing the target for training the Q-value function LQ(ψ) = ∥rt +
Vω(ct, z)−Qψ(ct, at, z)∥22. The policy is optimized based on advantage weighted regression (Peng
et al., 2019) Lπ(η) = − log πη(ct, z) exp

(
BA(ct, at, z)

)
where A(ct, at, z) = Qψ(ct, at, z) −

Vω(ct, z) is the advantage function and B ∈ [0,∞) is the inverse temperature hyperparameter.

4 EXPERIMENTS

We evaluate C-DCWM on a set of multi-task environments from MuJoCo (Todorov et al., 2012),
Contextual DeepMind Control (Contextual-DMC Tunyasuvunakool et al., 2020; Rezaei-Shoshtari
et al., 2022), and Meta-World (Yu et al., 2020) benchmarks. Our experiments seek to answer the
following research questions:
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RQ1 Does C-DCWM’s representation learning based on latent world models improve the per-
formance of context-based OMRL agents in few-shot and zero-shot settings?

RQ2 How does C-DCWM generalize to out-of-distribution tasks and new environments com-
pared to baselines?

RQ3 How does the latent-state space formulation e.g., (i) classification loss, (ii) discrete code-
book, and (iii) bounding the latent space, affect the performance.

RQ4 How do different objectives for training the context encoder, e.g., (i) only contrastive ob-
jective, (ii) only world model objective, (iii) combination of them, affect the performance
and task representation learning?

RQ5 How important is bounding the task representation for offline-meta RL performance e.g.,
tanh vs ℓ2-normalization vs hypercube with FSQ?

Experimental Setup: We compare C-DCWM against the following baselines:

• FOCAL (Li et al., 2020): trains the context encoder using a distance metric objective, mini-
mizing the squared ℓ2 distance between task representations from the same task and the inverse
squared ℓ2 distance between those from different tasks.

• CSRO (Gao et al., 2024): extends FOCAL by additionally reducing context distribution shift
through minimizing the CLUB (Cheng et al., 2020) upper bound on mutual information.

• DORA (Zhang et al., 2024): employs the InfoNCE loss, also used in C-DCWM, to train the
context encoder. In contrast, C-DCWM augments this with the latent world model objective
and introduces a discrete latent observation space.

• UNICORN: trains the context encoder via conditional predictive dynamics and reward func-
tions with reconstruction. UNICORN-SS augments this with the FOCAL objective, while
UNICORN-SUP relies solely on predictive models. These approaches share similarities with
C-DCWM, but unlike them, C-DCWM leverages a discrete latent space.

To generate the datasets, we use Dropout Q-function (DroQ, Hiraoka et al., 2022) and we train
separate agents for each task. Each dataset consists of trajectories collected from rolling out the
agent at different phases of the training. Each dataset contains 1000 trajectories from a random
policy to potentially an expert policy by training the DroQ agent up to 1M steps.

In the MuJoCO and the Contextual-DMC benchmarks, we sample 20 tasks for training, 10 tasks with
the same distributions for variation factors for in-distribution testing, and 10 tasks with different
distributions for variation factors for out-of-distribution testing. In the Meta-World benchmark,
we use Meta-RL (ML1, ML10, ML45) settings. The ML1 setting involves generalization to goal
variation within a single environment, where each environment consists of 50 different tasks (with
different goal/object positions). We select 40 tasks for training and 10 tasks for in-distribution
testing. The ML10 and ML45 settings involve generalization to previously unseen environments
without providing any prior information (e.g., task IDs) and include randomized goals. They consist
of 10 and 45 training environments, respectively, along with 5 unseen testing environments. Sec. A
provides more details including hyperparameters (Table 5), hardware, and environments (Table 6).

4.1 GENERALIZATION TO NEW TASKS AND ENVIRONMENTS

During meta-testing, the agent is not provided with prior information about the current task or en-
vironment and must infer it based on its interaction experience. Context-based OMRL methods
embed the collected experience in the task representation vector z, which is initially set to zero. At
each time step t, the agent stores the interaction data (st, at, rt, st+1), referred to as the context, and
updates the task representation z according to Eq. (2). As the agent gathers more interaction data,
the task representation progressively captures the underlying task more accurately, enabling better
generalization.

Table 1 and Fig. 3 summarize the few-shot performance of different methods on in-distribution tasks.
C-DCWM outperforms the baselines in almost all the environments. Fig. 4 illustrates generalization
to out-of-distribution tasks, where the in-distribution tasks are highlighted. C-DCWM can better
generalize to out-of-distribution tasks, outperforming baselines while demonstrating more consistent

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

-6.9 -5.0 -4.0 -2.0 2.0 4.0 5.0 6.9
Speed (m/s)

0

20

40

60

80

100

N
or

m
al

iz
ed

R
et

ur
n

Cheetah-Speed

0.48 0.52 0.73 0.83 1.06 1.21 1.37 1.55 1.91
Scale Coeff

0

20

40

60

80

100

120

N
or

m
al

iz
ed

R
et

ur
n

Walker-friction

CSRO DORA FOCAL UNICORN-SS UNICORN-SUP C-DCWM

Figure 4: C-DCWM outperforms baselines on both in-distribution (highlighted regions) and
out-of-distribution tasks, demonstrating superior generalization. Boxes represent the interquartile
range with the median.

performance along different variation factors. These results suggest that jointly training the context
encoder with latent temporal consistency and contrastive objectives, while leveraging a discrete
latent world model, improves both in-distribution performance and generalization.

Table 2 summarizes the few-shot performance on new environments under the ML10 and ML45
setting in the Meta-World benchmark. C-DCWM outperforms baselines on both the training and
testing environments in both settings. The performance on the testing environments is slightly better
on the ML45 setting, where a more diverse set of environments is considered for training. However,
there is a significant performance drop when generalizing to entirely new environments, especially
compared to generalization to new tasks within a single environment (e.g., different goal or object
positions).

Sec. B.1 provides few-shot results for all Meta-World environments in Table 7 and zero-shot results
for MuJoCo and the Contextual-DMC benchmarks for both in-distribution tasks (Table 8) and out-
of-distribution tasks (Table 9). Sec. B.3 investigates the impact of contrastive and latent temporal
consistency objectives on generalization to both in-distribution (Table 12) and out-of-distribution
(Table 13) tasks.

4.2 COMPARISON OF DIFFERENT LATENT SPACES

Different RL methods formulate the latent space in different ways; TD-MPC (Hansen et al., 2022)
employs a continuous latent space with a mean squared error (MSE) loss for enforcing temporal con-
sistency, while TCRL (Zhao et al., 2023) replaces this with a cosine similarity objective. TD-MPC2
(Hansen et al., 2024) further constrains the latent space using a SimNorm operation. iQRL (Scannell
et al., 2024a) discretizes and bounds the latent space with FSQ while maximizing cosine similarity,
and DC-MPC (Scannell et al., 2025) formulates latent temporal consistency as a classification task
using a cross-entropy loss. We investigate the impact of these alternative formulations in our setting,
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Table 2: Generalization to new environments: C-DCWM demonstrates better generalization to
unseen environments. Increasing the number of training environments can improve generalization
to testing environments. Average success rate over 6 random seeds, ± represents 95% confidence
intervals. Bold indicates the highest value with statistical significance according to the t-test with
p-value < 0.05.

Setting C-DCWM CSRO DORA FOCAL UNICORN-SS UNICORN-SUP
ML10-Train 83.5 ± 6.1 43.3 ± 7.6 49.6 ± 3.2 43.3 ± 6.5 43.3 ± 3.0 25.4 ± 3.7
ML10-Test 15.0 ± 3.7 4.2 ± 4.1 1.7 ± 2.1 5.0 ± 5.1 4.2 ± 4.7 2.5 ± 3.3
ML45-Train 58.7 ± 2.9 32.8 ± 2.4 32.6 ± 1.3 32.2 ± 2.9 30.7 ± 1.7 18.3 ± 1.2
ML45-Test 24.0 ± 10.0 8.3 ± 6.0 6.7 ± 6.5 3.3 ± 4.1 8.3 ± 10.6 8.3 ± 9.4

84 88 92 96

Continuous+MSE

Continuous+Cosine

SimNorm+MSE

SimNorm+Cosine

Discrete+MSE

Discrete+Cosine

Discrete+CE

Median

88 92 96

IQM

84 88 92 96

Mean

4 8 12 16

Optimality Gap

Normalized Score

Figure 5: Normalized returns (median, IQM, mean) and optimality gap (lower is better) for differ-
ent world modeling methods, evaluated on 9 environments with 6 random seeds per environment.
The main advantage of discretizing the latent space is due to classification loss (cross entropy).
Bounding or discretizing the latent space alone does not improve performance.

with results summarized in Fig. 5 for MuJoCo and Contextual-DMC benchmarks. Our findings indi-
cate that bounding or discretizing the latent space, as well as replacing MSE with cosine similarity,
does not yield performance gains. However, framing latent temporal consistency as a classifica-
tion problem, rather than regression, can enhance performance. Similarly, Farebrother et al. (2024)
demonstrates the advantages of classification compared to regression in training value functions.

4.3 INVESTIGATING TASK REPRESENTATION

Previous OMRL methods have investigated task representation learning using t-SNE (van der
Maaten & Hinton, 2008), which maps task representations for different tasks to a lower-dimensional
space (typically two-dimensional) for visualization to assess task distinguishability. However,
this approach has limitations: it evaluates the context encoder’s ability to distinguish tasks solely
through visualization and does not account for the relationship between true variation factors and
the task representations, and is sensitive to hyperparameters and initialization (Wang et al., 2021).

To address these limitations, we propose using disentanglement metrics, which quantify the extent
to which latent vectors isolate individual variation factors, with each dimension ideally capturing
only one factor. We employ DCI (Eastwood & Williams, 2018) metrics, which is based on regres-
sion models with an importance matrix, and InfoMEC (Hsu et al., 2023) metrics, which is based on
normalized mutual information, to evaluate task representation learning across different objectives.
The DCI metrics comprise disentanglement, which measures the degree to which each dimension
captures a single variation factor; completeness, which assesses the extent to which each variation
factor is modeled by a single dimension; and informativeness, which quantifies the information
captured by the latent vector based on prediction error. The InfoMEC metrics include modularity,
which evaluates the separation of variation factors into disjoint sets of latent dimensions; explic-
itness, which measures the simplicity with which latent vectors encode each variation factor; and
compactness, which assesses the degree to which each dimension encodes information about dis-
joint sets of variation factors. When the latent vector dimensionality exceeds the number of variation
factors, achieving perfect modularity and perfect compactness simultaneously is impossible (Hsu
et al., 2023), and modularity should be prioritized.
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Table 3: Disentanglement metrics (DCI, InfoMEC) for the Cheetah-length-speed (Ls) environment.
Latent world models disentangle the variation factors more effectively, while contrastive learn-
ing enhances task distinguishability, reflected in informativeness and explicitness. WM denotes
training the context encoder solely with the world model objective (Eq. (11)); FOCAL and InfoNCE
represent two contrastive objectives, and UNICORN-SUP indicates training with reconstruction (de-
coder). Average metrics over 6 random seeds, ± represents 95% confidence intervals.

Disentanglement Completeness Informativeness Modularity Explicitness Compactness
FOCAL 0.33 ± 0.11 0.25 ± 0.08 0.82 ± 0.04 0.77 ± 0.04 0.75 ± 0.05 0.20 ± 0.05
CSRO 0.31 ± 0.05 0.32 ± 0.05 0.83 ± 0.04 0.75 ± 0.03 0.78 ± 0.03 0.21 ± 0.04
DORA (InfoNCE) 0.24 ± 0.04 0.29 ± 0.05 0.75 ± 0.04 0.70 ± 0.04 0.78 ± 0.03 0.13 ± 0.08
UNICORN-SS 0.32 ± 0.06 0.29 ± 0.09 0.83 ± 0.04 0.76 ± 0.01 0.76 ± 0.04 0.23 ± 0.05
UNICORN-SUP 0.36 ± 0.09 0.23 ± 0.06 0.54 ± 0.06 0.76 ± 0.05 0.71 ± 0.02 0.24 ± 0.07
WM 0.45 ± 0.06 0.49 ± 0.07 0.81 ± 0.03 0.70 ± 0.02 0.82 ± 0.02 0.23 ± 0.07
WM+FOCAL 0.42 ± 0.05 0.47 ± 0.06 0.87 ± 0.02 0.71 ± 0.03 0.86 ± 0.02 0.24 ± 0.06
WM+InfoNCE (ours) 0.50 ± 0.05 0.49 ± 0.05 0.89 ± 0.02 0.74 ± 0.03 0.87 ± 0.01 0.26 ± 0.05

Table 4: Bounding the task representation enables better generalization in certain environ-
ments, though discretizing with FSQ yields no advantages. Average returns and success rates over
6 random seeds, ± represents 95% confidence intervals.

Environment Identity ℓ2-Norm FSQ Tanh
Ant-dir 452.7 ± 121.3 838.0 ± 72.9 866.0 ± 46.2 863.1 ± 36.2
Cheetah-LS 933.8 ± 10.5 932.3 ± 16.7 938.3 ± 5.8 944.8 ± 4.9
Cheetah-speed 670.3 ± 75.1 778.0 ± 27.8 730.7 ± 30.2 764.1 ± 39.2
Finger-LS 962.2 ± 3.8 956.6 ± 11.4 969.6 ± 5.4 968.0 ± 5.5
Finger-speed 715.4 ± 133.6 855.1 ± 83.8 950.4 ± 30.4 967.4 ± 2.0
Walker-LS 922.7 ± 20.0 924.7 ± 15.7 932.4 ± 42.9 934.6 ± 20.1
Button-press 98.3 ± 3.3 100.0 ± 0.0 98.3 ± 3.3 100.0 ± 0.0
Coffee-button 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Dial-turn 96.7 ± 4.1 95.0 ± 4.4 78.0 ± 33.6 96.7 ± 4.1
Door-open 95.0 ± 6.7 98.3 ± 3.3 100.0 ± 0.0 100.0 ± 0.0
Door-unlock 98.3 ± 3.3 96.7 ± 4.1 98.3 ± 3.3 100.0 ± 0.0

Table 3 summarizes the disentanglement scores for different methods in the Cheetah-LS envi-
ronment, which features two variation factors: desired speed and torso length. We select 10 in-
distribution and 10 out-of-distribution tasks, collecting 1000 samples per task while updating the
task representation (akin to a few-shot setting). Here, WM denotes training the context encoder
solely with the world model objective (Eq. (11)); FOCAL and InfoNCE represent two contrastive
objectives; and UNICORN-SUP indicates training with a conditional predictive model (decoder).
Comparing WM and UNICORN-SUP shows that leveraging the latent world model, rather than a
predictive model, improves disentanglement metrics. Incorporating contrastive learning objectives
enhances task distinguishability (as reflected in informativeness and explicitness). Sec. B.2 provides
disentanglement scores for additional environments.

4.4 BOUNDING THE TASK REPRESENTATION

In this section, we evaluate how bounding the task representation z affects the generalization. By
default, C-DCWM utilize Tanh as the activation function for the context encoder, consistent with
prior OMRL methods. Table 4 summarize the results. We compare unbounded representations
(Identity), ℓ2-normalization, FSQ, and Tanh for bounding the latent space. Since we utilize FSQ
in our latent world model, we investigate whether discretizing the task representation with FSQ
influences generalization. The results indicate that bounding the task representation significantly
enhances generalization in certain environments (e.g., Ant-dir, Cheetah-speed). Discretizing the
task representation with FSQ yields no advantages over Tanh, and ℓ2-normalization is less robust
across different environments.

5 RELATED WORK

Latent World Models Ha & Schmidhuber (2018) introduced world models, wherein a variational
autoencoder compresses the observation space, and a recurrent neural network models the dynam-
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ics in the latent space. PlaNet (Hafner et al., 2019) employs a recurrent state-space model (RSSM;
Doerr et al., 2018), jointly training the encoder, latent dynamics, and reward function by maximiz-
ing the evidence lower bound (via reconstruction) and performing decision-time planning. Dreamer
(Hafner et al., 2020) optimizes the policy using value functions in imagined trajectories generated by
the latent world model. Subsequent versions (Hafner et al., 2021; 2025) incorporate discrete latent
spaces (in the form of one-hot encoding) trained with classification objectives, yielding significant
performance enhancements. In contrast, TD-MPC (Hansen et al., 2022; 2024) relies on latent tem-
poral consistency within a continuous latent space, eschewing reconstruction. DC-MPC (Scannell
et al., 2025) discretizes the latent space and employs classification for temporal consistency, demon-
strating superior performance in continuous control. Model-free methods such as TCRL (Zhao
et al., 2023), TD7 (Fujimoto et al., 2023), and MR.Q (Fujimoto et al., 2025) leverage latent world
models to modify or augment representations for policies and value functions based on temporal
consistency.

Context-based Offline Meta-RL Offline meta-RL (OMRL) methods seek to enable policies to
generalize to unseen tasks within a few trials, leveraging datasets from a distribution of related
tasks. Contrastive learning has been utilized to train context encoders (Li et al., 2020; Yuan & Lu,
2022). However, contrastive learning fails to address context distribution shifts, which arise from
discrepancies between the distributions of context samples during training and testing, due to dif-
ferences between the learned policy and the behavior policies that collected the datasets. CSRO
(Gao et al., 2024) mitigates this shift by approximately minimizing the mutual information between
task representations and behavior policies. ER-TRL (Nakhaeinezhadfard et al., 2025) reformulates
this mutual information in entropy terms and shows that maximizing the entropy of a meta-behavior
policy can alleviate the distribution shift. UNICORN (Li et al., 2024) addresses this issue using
predictive models, demonstrating that reconstructing the next state and reward via conditional dy-
namics and reward predictors encourages the context encoder to encode task-relevant information.
C-DCWM, in contrast, employs latent world models.

6 CONCLUSION

This paper presents a novel approach to offline meta-RL, contextual latent world models, wherein
world models are conditioned on the task representation. We train the latent world model and context
encoder jointly with latent temporal consistency and contrastive learning. We compare various latent
space formulations and demonstrate that a discrete latent space with classification-based temporal
consistency yields superior results. We then use the discrete latent state and task representation
for policy optimization. Empirical results indicate that this representation learning paradigm more
effectively captures underlying variation factors and exhibits enhanced generalization.

Limitations Extending our framework to accommodate different state and action spaces across
tasks is a promising direction for future research. Furthermore, we evaluate C-DCWM in envi-
ronments with only state information; in the future, the observation encoder architecture could be
modified to support visual observations.
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APPENDICES

In this appendix, we provide details of our method in Sec. A and additional results in Sec. B.

LARGE LANGUAGE MODELS

We use large language models (LLMs) to assist with paper writing, including proofreading for typos
and grammar errors. We also employ LLMs to generate scripts for visualizing results and creating
figures.

A IMPLEMENTATION DETAILS

We implemented C-DCWM with PyTorch (Paszke et al., 2019) and used the AdamW optimizer
(Loshchilov & Hutter, 2019) for training the world model and the Adam optimizer (Kingma & Ba,
2017) for the other models. All neural networks are implemented as MLPs where each intermedi-
ate linear layer is followed by Layer Normalization (Ba et al., 2016) and Mish activation function
(Misra, 2019). Below we summarize the architecture of C-DCWM for the Cheetah-LS environ-
ment.
Context Encoder: Mlp(

(net): Sequential(
(0): NormedLinear(in_features=41, out_features=256, bias=True, act=Mish)
(1): NormedLinear(in_features=256, out_features=256, bias=True, act=Mish)
(2): NormedLinear(in_features=256, out_features=256, bias=True, act=Mish)
(3): Linear(in_features=256, out_features=10, bias=True)

)
)
World Model: ContextualWorldModel(

(Fsq): FSQ(levels=[5, 3])
(Encoder): Mlp(
(net): Sequential(

(0): NormedLinear(in_features=17, out_features=512, bias=True, act=Mish)
(1): Linear(in_features=512, out_features=1024, bias=True)

)
)
(Encoder_tar): Mlp(
(net): Sequential(

(0): NormedLinear(in_features=17, out_features=512, bias=True, act=Mish)
(1): Linear(in_features=512, out_features=1024, bias=True)

)
)
(Trans): Mlp(
(net): Sequential(

(0): NormedLinear(in_features=1040, out_features=512, bias=True, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(2): Linear(in_features=512, out_features=7680, bias=True)

)
)
(Reward): Vectorized [Mlp(
(net): Sequential(

(0): NormedLinear(in_features=1040, out_features=512, bias=True, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(2): Linear(in_features=512, out_features=1, bias=True)

)
)]

)
Policy: Mlp(

(net): Sequential(
(0): NormedLinear(in_features=1034, out_features=256, bias=True, act=Mish)
(1): NormedLinear(in_features=256, out_features=256, bias=True, act=Mish)
(2): Linear(in_features=256, out_features=12, bias=True)

)
)
Q-Functions: Vectorized [Mlp(

(net): Sequential(
(0): NormedLinear(in_features=1040, out_features=256, bias=True, act=Mish)
(1): NormedLinear(in_features=256, out_features=256, bias=True, act=Mish)
(2): Linear(in_features=256, out_features=1, bias=True)

)
), Mlp(

(net): Sequential(
(0): NormedLinear(in_features=1040, out_features=256, bias=True, act=Mish)
(1): NormedLinear(in_features=256, out_features=256, bias=True, act=Mish)
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(2): Linear(in_features=256, out_features=1, bias=True)
)

)]
Value Function: Mlp(

(net): Sequential(
(0): NormedLinear(in_features=1034, out_features=256, bias=True, act=Mish)
(1): NormedLinear(in_features=256, out_features=256, bias=True, act=Mish)
(2): Linear(in_features=256, out_features=1, bias=True)

)
)
Learnable parameters: 7.55 M

Hardware We used AMD Instinct MI250X GPUs to run our experiments. All experiments have
been run on a single GPU with 2 CPU workers and 32GB of RAM.

Hyperparameters Table 5 illustrates the hyperparameters for our experiments. We use the same
hyperparameters for all of the experiments. For a fair comparison, we use the same network archi-
tecture for all the baselines.

Table 5: Hyperparameters of our method C-DCWM.
HYPERPARAMETER VALUE DESCRIPTION
DATA COLLECTION
TRAIN STEPS 106

RANDOM STEPS 5 × 104 NUM. RANDOM STEPS AT START
NUM. EVAL EPISODES 50 NUM. TRAJECTORIES IN EVALUATION

EVAL. EVERY STEPS 5 × 104

POLICY MLP DIMS [512, 512]
VALUE FUNCTION MLP DIMS [512, 512]
DROPOUT RATIO 0.1
LEARNING RATE 10−4 VALUE FUNCTION, ENTROPY COEFF

3 × 10−4 POLICY
TARGET ENTROPY −∥A∥1

BATCH SIZE 1024
DISCOUNT FACTOR γ 0.99
MOMENTUM COEF 0.005 SOFT UPDATE TARGET NETWORKS
CONTEXTUAL LATENT WORLD MODEL
OBSERVATION ENCODER MLP DIMS [512]
CONTEXT ENCODER MLP DIMS [256, 256]
LATENT DYNAMICS AND REWARD MLP DIMS [512, 512]
TASK REPRESENTATION DIM 5
LATENT DIM 1024
FSQ LEVELS [5, 3]
CONSISTENCY COEFF 1.0
REWARD COEFF 1.0
DISCOUNT FACTOR γ 0.99
TRAINING HORIZON H 5
LEARNING RATE 10−4

CONTRASTIVE OBJ WEIGHT β 1.0
MOMENTUM COEF 0.005 SOFT UPDATE TARGET ENCODER
OFFLINE META-RL
META BATCH SIZE 16
BATCH SIZE 256
NUM. TRAIN TASK 20 MUJOCO & DMC

40 METAWORLD
NUM. EVAL TASK 10
NUM. OOD TASK 10 MUJOCO & DMC

0 METAWORLD
CONTEXT SIZE 256
BUFFER SIZE 2 × 105 FOR EACH TASK
DISCOUNT FACTOR γ 0.99
(Q-)VALUE FUNCTION MLP DIMS [256, 256]
NUM. Q FUNCTIONS 2
POLICY MLP DIMS [256, 256]

LEARNING RATE 3 × 10−4 POLICY AND (Q-)VALUE FUNCTIONS
EXPECTILE REGRESSION τ 0.8
INVERSE TEMPERATURE B 3.0 IN POLICY OPTIMIZATION
MOMENTUM COEF. 0.005 SOFT UPDATE TARGET NETWORKS
NUM. TEST TRAJECTORIES 3 K FEW-SHOT

Environments We evaluated C-DCWM on 3 MuJoCo (Todorov et al., 2012) environments, 6
Contextual DeepMind Control (Tunyasuvunakool et al., 2020; Rezaei-Shoshtari et al., 2022) envi-
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ronments, and 50 Meta-World ML1 Beck et al. (2025) environments. Table 6 provides details of
the environments we used, including the dimensionality of the observation and action space, and the
distribution of variation factors

• Ant-direction: an ant (quadruped) robot moving in different desired directions in different
tasks.

• Hopper-mass: a hopper (one-legged robot) must move as fast as it can, while the mass is
different for different tasks.

• Walker-friction: a walker (bi-legged) robot must move as fast as it can, while the friction
coefficient is different for different tasks.

• Cheetah-speed: a cheetah robot moving forwards/backwards with different desired speeds in
different tasks.

• Finger-speed: a planar finger robot rotating a body on an unactuated hinge with different
desired angular speeds (both directions) for different tasks.

• Walker-speed: a walker robot moving forwards/backwards with different desired speeds in
different tasks.

• Cheetah-length-speed (LS): a cheetah robot moving forwards, where torso length (change in
morphology) and/or desired speed are different for each task.

• Finger-length-speed (LS): a planar finger robot rotating a body on an unactuated hinge, while
the length of the link and/or desired angular speed differ in each task.

• Walker-length-speed (LS): a walker robot moving forwards, where torso length (change in
morphology) and/or desired speed are different for each task.

• Meta-World ML1: consists of 50 robotic manipulation environments featuring a Sawyer arm
with various everyday objects. Each environment consists of 50 different tasks where the posi-
tion of objects and goals is different for each task.

• Meta-World ML10: evaluates generalization to new environments. Similar to the ML1 set-
ting, it consists of robotic manipulation environments, where 10 environments are used for
training and 5 environments are reserved for testing generalization capabilities. The testing
environments share structural similarities with the training environments. During testing, no
prior information about the environment (such as environment ID) is provided, and agents must
identify and adapt to the environment solely based on interaction data.

• Meta-World ML45: evaluates generalization to new environments, similar to the ML10 set-
ting, but with a larger and more diverse set of 45 training environments.

Table 6: Environment used for evaluation of different methods.

ENVIRONMENT OBS DIM ACTION DIM ID VARIATION FACTORS OOD VARIATION FACTORS
ANT-DIRECTION 29 8 θ ∼ [−π, π] θ ∼ [−1.5π,−π] ∪ [π, 1.5π]
HOPPER-MASS 11 3 log fm ∼ [−1.5, 1.5] log fm ∼ [−2,−1.5] ∪ [1.5, 2]
WALKER-FRICTION 17 6 log ff ∼ [−1.5, 1.5] log ff ∼ [−2,−1.5] ∪ [1.5, 2]
CHEETAH-SPEED 17 6 v ∼ [−10,−6] ∪ [−2, 2] ∪ [6, 10] v ∼ [−6,−2] ∪ [2, 6]
FINGER-SPEED 17 6 v ∼ [−15,−9] ∪ [−3, 3] ∪ [9, 15] v ∼ [−9,−3] ∪ [3, 9]
WALKER-SPEED 24 6 v ∼ [−5,−3] ∪ [−1, 1] ∪ [3, 5] v ∼ [−3,−1] ∪ [1, 3]
CHEETAH-LENGTH-SPEED 17 6 v ∼ [3, 8] v ∈ {1, 2, 9, 10}

L ∼ [0.4, 0.6] L ∈ {0.3, 0.35, 0.65, 0.7}
FINGER-LENGTH-SPEED 9 2 v ∼ [5, 10] v ∈ {3, 4, 11, 12}

L ∼ [0.15, 0.25] L ∈ {0.1, 0.12, 0.27, 0.3}
WALKER-LENGTH-SPEED 24 6 v ∼ [2, 4.5] v ∈ {1, 1.5, 5, 5.5}

L ∼ [0.2, 0.4] L ∈ {0.1, 0.15, 0.45, 0.5}
META-WORLD 39 4

Open-source code For full details of the implementation, model architectures, and training, please
check the code, which is available in the submitted supplementary material and will be made public
upon acceptance to guarantee reproducibility.
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B FURTHERE RESULTS

B.1 GENERALIZATION TO NEW TASKS

Table 7 summarizes the results across all environments in the Meta-World ML1 benchmark. We
collected datasets for these environments at varying difficulty levels using the same RL algorithm
(DroQ) with identical hyperparameters. In certain environments, such as Assembly, the datasets lack
successful trajectories. Consequently, various OMRL methods fail to learn the corresponding tasks.
In the majority of environments, C-DCWM outperforms the baselines, achieving higher success
rates during few-shot adaptation.

Table 7: Few-shot in-distribution performance on all environments in MetaWorld benchmarks.
Average success rate over 6 random seeds, ± represents 95% confidence intervals. We use DroQ
with the same hyperparameters to collect the datasets for all environments, resulting in a lack of
successful trajectories in the datasets for some environments. Bold indicates the highest value with
statistical significance according to the t-test with p-value < 0.05.

Environment C-DCWM CSRO DORA FOCAL UNICORN-SS UNICORN-SUP
Assembly 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Basketball 8.3 ± 6.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Bin-picking 1.7 ± 3.3 3.3 ± 4.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Box-close 26.7 ± 9.7 11.7 ± 6.0 1.7 ± 3.3 6.7 ± 6.5 3.3 ± 4.1 11.7 ± 9.4
Button-press 100.0 ± 0.0 95.0 ± 6.7 90.0 ± 5.1 98.3 ± 3.3 91.7 ± 6.0 90.0 ± 7.2
Button-press-topdown 83.3 ± 33.1 68.3 ± 9.4 75.0 ± 18.8 78.3 ± 6.0 83.3 ± 6.5 68.3 ± 7.9
Button-press-topdown-wall 90.0 ± 5.1 55.0 ± 14.1 36.7 ± 8.3 35.0 ± 15.0 35.0 ± 11.0 31.7 ± 11.8
Button-press-wall 96.7 ± 4.1 83.3 ± 4.1 86.7 ± 4.1 91.7 ± 7.9 91.7 ± 6.0 81.7 ± 11.8
Coffee-button 100.0 ± 0.0 98.3 ± 3.3 96.7 ± 4.1 95.0 ± 6.7 100.0 ± 0.0 100.0 ± 0.0
Coffee-pull 3.3 ± 4.1 1.7 ± 3.3 0.0 ± 0.0 1.7 ± 3.3 0.0 ± 0.0 3.3 ± 4.1
Coffee-push 25.0 ± 8.4 18.3 ± 13.8 13.3 ± 8.3 13.3 ± 12.0 18.3 ± 7.9 18.3 ± 6.0
Dial-turn 88.3 ± 9.4 93.3 ± 6.5 90.0 ± 10.1 90.0 ± 8.8 86.7 ± 8.3 65.0 ± 16.6
Disassemble 25.0 ± 8.4 16.7 ± 8.3 8.3 ± 6.0 5.0 ± 6.7 18.3 ± 10.6 6.7 ± 6.5
Door-close 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 96.7 ± 4.1
Door-lock 95.0 ± 4.4 86.7 ± 4.1 93.3 ± 6.5 81.7 ± 9.4 90.0 ± 5.1 85.0 ± 6.7
Door-open 98.3 ± 3.3 93.3 ± 9.7 93.3 ± 6.5 90.0 ± 7.2 93.3 ± 4.1 61.7 ± 24.5
Door-unlock 96.7 ± 4.1 90.0 ± 7.2 91.7 ± 6.0 90.0 ± 5.1 96.7 ± 4.1 86.7 ± 8.3
Drawer-close 100.0 ± 0.0 100.0 ± 0.0 98.3 ± 3.3 98.3 ± 3.3 98.3 ± 3.3 98.3 ± 3.3
Drawer-open 50.0 ± 12.4 33.3 ± 10.9 31.7 ± 11.8 30.0 ± 14.3 21.7 ± 14.7 45.0 ± 13.1
Faucet-close 96.7 ± 4.1 95.0 ± 6.7 83.3 ± 10.9 83.3 ± 18.0 90.0 ± 7.2 78.3 ± 11.8
Faucet-open 90.0 ± 5.1 90.0 ± 10.1 68.3 ± 24.0 88.3 ± 3.3 80.0 ± 7.2 65.0 ± 20.7
Hammer 33.3 ± 14.0 20.0 ± 11.3 33.3 ± 10.9 36.7 ± 15.7 40.0 ± 16.0 40.0 ± 13.4
Hand-insert 30.0 ± 11.3 16.7 ± 10.9 26.7 ± 8.3 25.0 ± 8.4 15.0 ± 4.4 25.0 ± 8.4
Handle-press 98.3 ± 3.3 91.7 ± 6.0 93.3 ± 4.1 93.3 ± 6.5 91.7 ± 7.9 93.3 ± 4.1
Handle-press-side 95.0 ± 4.4 88.3 ± 7.9 85.0 ± 8.4 93.3 ± 9.7 93.3 ± 9.7 88.3 ± 7.9
Handle-pull 68.3 ± 12.8 45.0 ± 11.0 26.7 ± 9.7 40.0 ± 10.1 36.7 ± 4.1 50.0 ± 14.3
Handle-pull-side 75.0 ± 15.8 78.3 ± 13.8 36.7 ± 6.5 68.3 ± 16.3 66.7 ± 21.3 58.3 ± 9.4
Lever-pull 25.0 ± 11.0 21.7 ± 6.0 23.3 ± 9.7 25.0 ± 4.4 25.0 ± 8.4 28.3 ± 6.0
Peg-insert-side 41.7 ± 10.6 23.3 ± 10.9 25.0 ± 13.1 18.3 ± 6.0 26.7 ± 9.7 23.3 ± 8.3
Peg-unplug-side 71.7 ± 12.8 68.3 ± 10.6 51.7 ± 22.3 60.0 ± 11.3 58.3 ± 15.5 50.0 ± 13.4
Pick-out-of-hole 25.0 ± 6.7 26.7 ± 14.0 18.3 ± 9.4 30.0 ± 7.2 28.3 ± 17.1 0.0 ± 0.0
Pick-place 1.7 ± 2.2 3.3 ± 2.8 0.0 ± 0.0 0.0 ± 0.0 1.7 ± 2.2 0.0 ± 0.0
Pick-place-wall 0.0 ± 0.0 5.0 ± 6.7 1.7 ± 3.3 1.7 ± 3.3 3.3 ± 4.1 0.0 ± 0.0
Plate-slide 56.7 ± 12.0 56.7 ± 12.0 48.3 ± 11.8 60.0 ± 8.8 53.3 ± 14.9 63.3 ± 9.7
Plate-slide-back 38.3 ± 9.4 23.3 ± 18.0 20.0 ± 13.4 15.0 ± 15.0 15.0 ± 9.8 8.3 ± 10.6
Plate-slide-back-side 74.0 ± 17.5 66.7 ± 6.5 74.0 ± 13.3 68.0 ± 25.1 63.3 ± 13.1 76.7 ± 8.3
Plate-slide-side 75.0 ± 23.3 61.7 ± 24.0 61.7 ± 13.8 53.3 ± 23.6 66.7 ± 12.0 63.3 ± 14.0
Push 38.3 ± 11.8 13.3 ± 4.1 20.0 ± 7.2 16.7 ± 6.5 8.3 ± 12.8 13.3 ± 9.7
Push-back 25.0 ± 5.7 20.0 ± 4.8 25.0 ± 5.7 16.7 ± 4.4 21.7 ± 5.3 16.7 ± 5.6
Push-wall 60.0 ± 11.3 21.7 ± 7.9 41.7 ± 10.6 21.7 ± 10.6 21.7 ± 7.9 36.7 ± 15.7
Reach 6.7 ± 3.3 5.0 ± 4.4 3.3 ± 4.1 1.7 ± 3.3 6.7 ± 9.7 1.7 ± 3.3
Reach-wall 6.7 ± 4.1 3.3 ± 4.1 5.0 ± 4.4 0.0 ± 0.0 4.0 ± 4.8 5.0 ± 6.7
Shelf-place 15.0 ± 11.0 5.0 ± 6.7 6.7 ± 6.5 5.0 ± 6.7 5.0 ± 6.7 1.7 ± 3.3
Soccer 38.3 ± 6.0 18.3 ± 7.9 21.7 ± 9.4 20.0 ± 10.1 10.0 ± 0.0 30.0 ± 13.4
Stick-pull 6.7 ± 8.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.7 ± 3.3
Stick-push 0.0 ± 0.0 5.0 ± 4.4 0.0 ± 0.0 1.7 ± 3.3 1.7 ± 3.3 5.0 ± 6.7
Sweep 88.3 ± 8.3 75.0 ± 8.4 91.7 ± 6.0 76.7 ± 9.7 56.7 ± 8.3 88.3 ± 9.4
Sweep-into 88.3 ± 9.4 68.3 ± 14.7 65.0 ± 15.0 58.3 ± 15.5 60.0 ± 18.2 85.0 ± 13.1
Window-close 100.0 ± 0.0 95.0 ± 4.4 95.0 ± 6.7 98.3 ± 3.3 100.0 ± 0.0 98.3 ± 3.3
Window-open 100.0 ± 0.0 88.3 ± 6.0 78.3 ± 11.8 81.7 ± 6.0 73.3 ± 9.7 81.7 ± 10.6

Table 8 summarize zero-shot adaptation performance for in-distribution tasks and Table 9 summarize
zero-shot adaptation performance for out-of-distribution tasks. For environments where some varia-
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Table 8: Zero-shot in-distribution performance on MuJoCo and Contextual-DMC benchmarks.
Average returns over 6 random seeds, ± represents 95% confidence intervals. Bold indicates the
highest value with statistical significance according to the t-test with p-value < 0.05.

Environment C-DCWM CSRO DORA FOCAL UNICORN-SS UNICORN-SUP
Ant-dir 726.7 ± 38.1 699.3 ± 26.6 526.9 ± 28.0 678.4 ± 40.3 668.1 ± 46.4 366.6 ± 41.6
Cheetah-LS 935.0 ± 11.9 828.3 ± 34.9 901.7 ± 25.3 825.3 ± 36.6 794.5 ± 44.5 841.9 ± 50.9
Cheetah-speed 706.4 ± 33.1 556.5 ± 31.3 497.1 ± 44.0 447.3 ± 73.0 490.2 ± 82.1 447.9 ± 49.1
Finger-LS 972.0 ± 5.0 897.8 ± 41.8 869.2 ± 46.4 863.0 ± 58.3 885.3 ± 49.6 824.0 ± 30.6
Finger-speed 943.3 ± 8.4 773.7 ± 48.5 492.4 ± 51.7 746.7 ± 49.3 671.9 ± 54.6 614.4 ± 45.0
Hopper-mass 566.0 ± 13.5 450.8 ± 79.2 555.0 ± 20.6 535.0 ± 33.3 533.7 ± 38.3 491.6 ± 145.6
Walker-friction 578.2 ± 13.6 503.7 ± 39.5 513.9 ± 29.1 522.0 ± 32.8 522.1 ± 21.6 476.7 ± 32.4
Walker-LS 937.2 ± 9.9 882.5 ± 100.3 885.5 ± 40.8 898.9 ± 30.3 900.0 ± 49.2 889.9 ± 36.9
Walker-speed 829.7 ± 53.5 767.1 ± 31.7 446.3 ± 43.8 653.1 ± 99.4 598.6 ± 54.4 513.1 ± 48.7

Table 9: Zero-shot out-of-distribution performance on MuJoCo and Contextual-DMC benchmarks.
Average returns over 6 random seeds, ± represents 95% confidence intervals. Bold indicates the
highest value with statistical significance according to the t-test with p-value < 0.05.

Environment C-DCWM CSRO DORA FOCAL UNICORN-SS UNICORN-SUP
Ant-dir 410.7 ± 36.9 399.2 ± 63.9 156.8 ± 44.7 368.8 ± 64.2 405.9 ± 38.5 −211.4 ± 195.5
Cheetah-LS 865.5 ± 20.4 813.9 ± 28.1 785.8 ± 39.6 826.6 ± 20.6 806.1 ± 28.6 795.8 ± 44.3
Cheetah-speed 756.0 ± 92.5 603.5 ± 96.5 573.0 ± 59.0 607.8 ± 160.4 598.8 ± 103.4 554.8 ± 75.9
Finger-LS 886.7 ± 11.8 762.7 ± 57.9 717.8 ± 53.3 786.8 ± 32.6 816.1 ± 47.7 691.5 ± 54.8
Finger-speed 948.1 ± 9.3 822.8 ± 32.3 532.9 ± 85.5 771.3 ± 39.0 709.6 ± 43.6 675.3 ± 66.0
Hopper-mass 583.4 ± 4.1 543.6 ± 32.1 534.2 ± 23.3 547.3 ± 13.3 550.7 ± 11.3 463.9 ± 133.6
Walker-friction 474.1 ± 30.3 475.1 ± 22.5 462.4 ± 26.5 473.7 ± 36.5 484.6 ± 25.0 435.2 ± 53.8
Walker-LS 788.0 ± 27.8 611.5 ± 31.6 650.9 ± 42.5 658.0 ± 41.0 657.6 ± 41.7 649.9 ± 50.7
Walker-speed 831.5 ± 44.5 767.2 ± 24.0 425.3 ± 56.1 659.6 ± 120.1 623.7 ± 98.0 535.5 ± 44.2

tion factors in the out-of-distribution tasks interpolate those seen during training (e.g., [Cheetah, Fin-
ger, Walker]-speed), the performance on out-of-distribution tasks is relatively close to in-distribution
performance. In contrast, when out-of-distribution generalization requires extrapolating beyond the
training variation factors (e.g., [Cheetah, Finger, Walker]-LS, Ant-Dir), a larger performance gap
between in-distribution and out-of-distribution tasks is observed. C-DCWM performs more consis-
tently compared to baselines when generalizing to out-of-distribution tasks. These results indicate
that latent temporal consistency can improve performance on in-distribution tasks by converting the
observation space to a latent space and can increase generalization to out-of-distribution tasks by
encouraging the context encoder to capture latent dynamics.

B.2 DISENTANGLEMENT METRICS

Table 10 and Table 11 illustrate disentanglement metrics for Finger-LS and Walker-LS environments
respectively. We observe similar trends as Table 3, where training the context encoder based on
world modeling (WM) results in higher disentanglement than training the context encoder with re-
construction (UNICORN-SUP), and including contrastive learning can improve task distinguishabil-
ity (informativeness, explicitness). However, while the reconstruction objective (UNICORN-SUP)
results in higher disentanglement than contrastive objectives (FOCAL, InfoNCE) in Cheetah-LS
(Table 3), in [Finger, Walker]-LS reconstruction objective results in a lower disentanglement score.

B.3 ABLATION: CONTRASTIVE LEARNING

In this section, we perform an ablation study on the contrastive and world modeling objectives used
to train the context encoder. We compare two contrastive learning objectives commonly employed
in OMRL: InfoNCE and FOCAL Li et al. (2020) (also referred to as distance metric learning). The
FOCAL objective is defined as:

LFOCAL(ϕ) = 1{i = j}∥zi − zj∥22 + 1{i ̸= j} β

∥zi − zj∥22 + ϵ0
. (14)

For a fair comparison, we convert the observation space to a discrete latent space for all the methods
with the same world model (DCWM). Table 12 reports few-shot in-distribution testing and Table 13
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Table 10: Disentanglement metrics (DCI, InfoMEC) for the Finger Length/Speed environment.
Average metrics over 6 random seeds, ± represents 95% confidence intervals.

Disentanglement Completeness Informativeness Modularity Explicitness Compactness
FOCAL 0.36 ± 0.06 0.30 ± 0.07 0.70 ± 0.01 0.83 ± 0.02 0.80 ± 0.01 0.24 ± 0.01
CSRO 0.36 ± 0.03 0.38 ± 0.08 0.71 ± 0.02 0.82 ± 0.02 0.79 ± 0.01 0.24 ± 0.01
DORA (InfoNCE) 0.41 ± 0.09 0.43 ± 0.09 0.64 ± 0.03 0.77 ± 0.03 0.79 ± 0.02 0.23 ± 0.01
UNICORN-SS 0.33 ± 0.05 0.31 ± 0.08 0.69 ± 0.02 0.79 ± 0.02 0.78 ± 0.01 0.15 ± 0.01
UNICORN-SUP 0.25 ± 0.05 0.34 ± 0.06 0.57 ± 0.01 0.85 ± 0.02 0.73 ± 0.01 0.30 ± 0.04
WM 0.41 ± 0.03 0.43 ± 0.02 0.70 ± 0.01 0.82 ± 0.02 0.85 ± 0.01 0.23 ± 0.01
WM+FOCAL 0.41 ± 0.06 0.43 ± 0.04 0.80 ± 0.04 0.83 ± 0.02 0.86 ± 0.02 0.23 ± 0.01
WM+InfoNCE 0.46 ± 0.06 0.43 ± 0.04 0.82 ± 0.03 0.82 ± 0.02 0.87 ± 0.02 0.23 ± 0.01

Table 11: Disentanglement metrics (DCI, InfoMEC) for the Walker Length/Speed environment.
Average metrics over 6 random seeds, ± represents 95% confidence intervals.

Disentanglement Completeness Informativeness Modularity Explicitness Compactness
FOCAL 0.33 ± 0.07 0.31 ± 0.06 0.83 ± 0.04 0.69 ± 0.03 0.82 ± 0.02 0.23 ± 0.01
CSRO 0.42 ± 0.08 0.41 ± 0.09 0.79 ± 0.03 0.72 ± 0.03 0.82 ± 0.02 0.23 ± 0.01
DORA (InfoNCE) 0.22 ± 0.07 0.17 ± 0.14 0.67 ± 0.05 0.68 ± 0.05 0.76 ± 0.03 0.23 ± 0.01
UNICORN-SS 0.38 ± 0.07 0.31 ± 0.05 0.84 ± 0.03 0.73 ± 0.03 0.84 ± 0.03 0.24 ± 0.01
UNICORN-SUP 0.20 ± 0.03 0.18 ± 0.07 0.38 ± 0.04 0.80 ± 0.04 0.64 ± 0.02 0.26 ± 0.02
WM 0.39 ± 0.05 0.27 ± 0.06 0.75 ± 0.04 0.79 ± 0.05 0.78 ± 0.03 0.24 ± 0.02
WM+FOCAL 0.43 ± 0.04 0.29 ± 0.02 0.88 ± 0.05 0.77 ± 0.05 0.86 ± 0.03 0.23 ± 0.01
WM+InfoNCE 0.44 ± 0.09 0.30 ± 0.09 0.84 ± 0.04 0.79 ± 0.04 0.88 ± 0.03 0.24 ± 0.01

reports few-shot out-of-distribution testing. Here, WM refers to training the context encoder with
the world modeling objective, and + indicates the combination of objectives. For environments
in Meta-World benchmarks (last 6 rows in Table 12), we observe no significant difference in the
performance of different objectives. Training the context encoder solely with the world modeling
objective (WM) is insufficient, as it fails to distinguish between different tasks. This limitation is
particularly pronounced in environments where variation factors affect only the reward function,
rather than the transition dynamics (e.g., Ant-dir, where the desired forward direction varies, or
environments requiring the inference of desired speed). Only using contrastive learning results in
good performance across most tasks, while InfoNCE outperforms FOCAL significantly in certain
environments, especially on out-of-distribution testing. Adding the world modeling objective to
the contrastive objective has an insignificant impact on in-distribution performance; however, it
can improve generalization to out-of-distribution tasks for certain environments. We employ the
same relative weighting of the contrastive objective with respect to the world modeling objective
across all environments. Overall, combining InfoNCE with the world modeling objective produces
more robust results across environments compared to combining FOCAL with the world modeling
objective.

Table 12: Ablation on contrastive learning and world modeling, few-shot in-distribution perfor-
mance. Average returns/success rates over 6 random seeds, ± represents 95% confidence intervals.
Bold indicates the highest value with statistical significance according to the t-test with p-value
< 0.05.

Environment FOCAL InfoNCE WM WM+FOCAL WM+InfoNCE
Ant-dir 841.6 ± 31.1 857.7 ± 42.3 487.5 ± 91.8 859.0 ± 20.5 863.1 ± 36.2
Cheetah-LS 940.0 ± 16.2 937.7 ± 17.7 941.5 ± 16.6 933.2 ± 15.0 944.8 ± 4.9
Cheetah-speed 721.1 ± 54.2 727.3 ± 23.8 395.0 ± 36.2 711.2 ± 94.0 764.1 ± 39.2
Finger-LS 971.0 ± 10.5 968.4 ± 10.8 974.6 ± 5.5 973.7 ± 2.8 968.0 ± 5.5
Finger-speed 789.7 ± 189.6 958.1 ± 5.7 706.1 ± 150.3 770.0 ± 185.2 967.4 ± 2.0
Walker-LS 929.8 ± 24.4 947.7 ± 15.1 904.5 ± 24.9 928.9 ± 21.6 934.6 ± 20.1
Walker-speed 622.6 ± 65.9 842.2 ± 35.6 522.1 ± 95.4 552.0 ± 82.4 835.7 ± 37.3
Button-press 100.0 ± 0.0 100.0 ± 0.0 98.3 ± 3.3 100.0 ± 0.0 100.0 ± 0.0
Coffee-button 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Dial-turn 93.3 ± 4.1 93.3 ± 6.5 98.3 ± 3.3 96.7 ± 4.1 98.3 ± 3.3
Door-open 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 96.7 ± 6.5 100.0 ± 0.0
Door-unlock 98.3 ± 3.3 95.0 ± 6.7 98.3 ± 3.3 98.3 ± 3.3 100.0 ± 0.0
Handle-press 96.7 ± 4.1 96.7 ± 4.1 95.0 ± 6.7 95.0 ± 6.7 98.3 ± 3.3
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Table 13: Ablation on contrastive learning and world modeling, few-shot out-of-distribution per-
formance. Average returns over 6 random seeds, ± represents 95% confidence intervals. Bold
indicates the highest value with statistical significance according to the t-test with p-value < 0.05.
Combining contrastive learning with latent temporal consistency enhances generalization to
out-of-distribution tasks.

Environment FOCAL InfoNCE WM WM+FOCAL WM+InfoNCE
Ant-dir 529.0 ± 41.0 363.2 ± 173.9 203.6 ± 102.9 540.8 ± 111.2 401.8 ± 92.4
Cheetah-LS 864.4 ± 21.7 864.7 ± 29.9 867.2 ± 7.5 876.1 ± 24.7 860.6 ± 10.2
Cheetah-speed 729.0 ± 42.4 754.9 ± 70.6 486.8 ± 111.1 908.7 ± 74.2 967.7 ± 10.5
Finger-LS 836.3 ± 45.5 809.6 ± 53.1 838.3 ± 64.8 860.0 ± 42.7 850.9 ± 41.5
Finger-speed 793.8 ± 189.0 868.5 ± 10.3 766.6 ± 176.2 755.7 ± 185.0 978.5 ± 6.0
Walker-LS 740.2 ± 52.9 793.2 ± 62.2 757.0 ± 65.2 738.9 ± 51.8 792.3 ± 41.3
Walker-speed 619.4 ± 111.4 782.7 ± 32.2 507.7 ± 103.4 568.7 ± 128.5 833.2 ± 64.5

B.4 ABLATION: NUMBER OF PARAMETERS

In this section, we investigate how increasing the number of trainable parameters affects perfor-
mance across different methods. C-DCWM maps the observation space to a latent space using a
latent world model, which increases the total number of parameters. Fig. 6 illustrates the few-shot
in-distribution performance of each method for different model sizes. For the baselines, we vary the
number of hidden layers in {2, 3} and the number of hidden units in {256, 512, 1024}, resulting in
six model sizes (default is two hidden layers with 256 neurons). To ensure architectural consistency
with C-DCWM, we apply Layer Normalization and the Mish activation function across all baseline
networks. For C-DCWM, we set the latent dimension and the number of neurons in the dynamic
head of the latent world model to {64, 128, 256, 512} while setting the number of neurons in the
offline RL (IQL) networks to {64, 128, 256, 512} (6 combinations, default is 512 latent dimensions
and neurons in the dynamic head, 256 neurons for the offline RL networks). C-DCWM exhibits bet-
ter scaling with model size: performance generally improves as the number of parameters increases.
However, for smaller model sizes, C-DCWM underperforms the baselines in some environments.
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Figure 6: C-DCWM scales more effectively. Few-shot generalization to in-distribution tasks for
different model sizes. The shaded area represents the standard deviation over 6 random seeds.
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Table 14: Ablation: different offline RL methods for policy optimizations. Few-shot generaliza-
tion to in-distribution tasks. Average returns/success rates over 6 random seeds, ± represents 95%
confidence intervals. Bold indicates the highest value with statistical significance according to the
t-test with p-value < 0.05.

Environment CQL IQL (Def) TD3+BC
Ant-dir 780.7 ± 54.4 863.1 ± 36.2 731.8 ± 29.8
Cheetah-LS 949.8 ± 12.1 943.0 ± 11.5 846.2 ± 60.6
Cheetah-speed 813.3 ± 3.5 751.2 ± 27.9 620.8 ± 133.0
Finger-LS 987.5 ± 3.8 957.1 ± 23.9 330.7 ± 26.7
Finger-speed 970.2 ± 4.3 962.0 ± 9.2 208.7 ± 31.8
Hopper-mass 584.2 ± 1.1 587.5 ± 4.9 159.4 ± 26.1
Walker-friction 585.6 ± 32.6 563.6 ± 33.5 535.6 ± 26.6
Walker-LS 948.0 ± 7.2 937.1 ± 16.6 710.2 ± 84.9
Walker-speed 814.0 ± 42.4 827.6 ± 34.6 655.7 ± 108.2
Button-press 95.0 ± 9.8 100.0 ± 0.0 80.0 ± 5.1
Coffee-button 100.0 ± 0.0 100.0 ± 0.0 91.7 ± 7.9
Dial-turn 90.0 ± 19.6 91.7 ± 10.6 95.0 ± 4.4
Door-open 100.0 ± 0.0 100.0 ± 0.0 23.3 ± 4.1
Door-unlock 100.0 ± 0.0 100.0 ± 0.0 51.7 ± 10.6
Handle-press 60.0 ± 19.6 93.3 ± 4.1 76.7 ± 6.5

B.5 ABLATION: OFFLINE RL

As described in Sec. 3.2, policy optimization with offline data requires regularization to avoid OOD
action selection when computing the target for the value function. Offline RL methods address this
issue in different ways, and in principle, any offline RL method can be used for policy optimization
in C-DCWM. By default, we use Implicit Q-Learning (IQL) for all methods, which predicts an
upper expectile of the TD targets in SARSA style without querying OOD actions. We also evaluate
C-DCWM with Conservative Q-Learning (CQL, Kumar et al. 2020) and TD3+BC (Fujimoto &
Gu, 2021) for policy optimization, summarized in Table 14. CQL regularizes the value function by
reducing the q-value for OOD actions, resulting in a pessimistic value function. TD3+BC, on the
other hand, regularizes the policy to stay close to the behavior policy by adding a behavior cloning
objective to the policy optimization. We used one set of hyperparameters (default values) for all
methods without further fine-tuning. We find that IQL in general is more robust, performing well in
diverse environments. CQL generally performs on par with IQL, even outperforming significantly in
two environments. However, the computation cost of CQL is generally higher than IQL. We some-
times observe a performance drop when training for a larger number of steps. TD3+BC generally
has a lower performance than CQL and IQL in our settings. We hypothesize that fine-tuning the
regularization weight for each environment can increase the performance.

B.6 COMPUTATION COST

Fig. 7 compares the computation cost for different methods. All experiments are conducted using
the same hardware, as described in Sec. A, to ensure a fair comparison. Although C-DCWM has
a longer training time per step, it generally converges faster than the baselines, compensating for
the higher per-step computational cost. During testing, C-DCWM is slightly slower because it
first maps the observation to the latent space using the observation encoder, after which the policy
produces actions.

UNICORN-SUP trains the context encoder solely using the prediction loss and has the lowest com-
putational cost per training step. However, incorporating contrastive learning can improve task
representation learning and, consequently, generalization to new tasks. DORA, which uses the In-
foNCE loss for contrastive learning, has a lower per-step computational cost than FOCAL, which
uses distance metric learning, suggesting that InfoNCE is more computationally efficient than the
FOCAL objectives in Eq. (14). CSRO and UNICORN-SS aim to reduce context distribution shift
by minimizing a CLUB upper bound of mutual information and by adding a prediction loss, re-
spectively. These approaches require additional networks, increasing their computational cost per
training step. During test time, all baselines have the same computational cost since the policy and
context encoder architectures are identical across the baseline methods.
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Figure 7: Comparing the computation cost. Left: Few-shot performance on in-distribution tasks
with training time. Middle: Number of training steps (full backpropagation and updating the net-
works) per second. Right: Number of time steps per second during testing. C-DCWM is com-
putationally more expensive during training, yet it converges faster. Mapping the observation
space to the latent space adds insignificant computation overhead during testing. Results are aver-
aged over 3 random seeds while considering the standard deviation.

B.7 COMPARISON TO DREAMERV3

DreamerV3 (Hafner et al., 2025) is a model-based RL method that employs a Recurrent State-Space
Model (RSSM; Doerr et al., 2018) for latent dynamics while jointly predicting rewards, observa-
tions, and terminations. Its latent space includes both continuous and discrete variables, resembling
the discrete latent space used in C-DCWM. The policy and value function are optimized within the
world model. However, DreamerV3 uses one-hot encoding for its discrete latent variables, whereas
C-DCWM employs a codebook-based representation. To compare DreamerV3 with C-DCWM in
the OMRL setting, we use a public PyTorch implementation1 with default hyperparameters.

Table 15 reports the zero-shot performance on in-distribution tasks; for DreamerV3, we reset the
RSSM hidden state at the initial timestep during meta-testing. DreamerV3 struggles to generalize to
new tasks in OMRL settings, particularly in environments where optimal policies differ significantly
across tasks. For example, in [Cheetah, Finger, Walker]-speed environments, the agent must move
both forward and backward at different speeds, and in Ant-dir environments, the agent must move
in different directions. On the other hand, DreamerV3 shows better generalization in environments
where optimal task-specific policies are more similar, such as Hopper-mass and Walker-friction.

We also hypothesize that the policy may exploit inaccuracies in the world model, since the world
model is trained solely on static datasets. The policy is optimized to maximize expected return
under the world model’s predictions, without any penalty for acting in uncertain or poorly modeled
regions. In online RL settings, the policy’s actions would be executed in the real environment, and

1https://github.com/NM512/dreamerv3-torch
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the world model would be updated accordingly; however, this corrective mechanism is absent in the
offline OMRL scenario.

Table 15: DreamerV3 fails to generalize in OMRL settings. Zero-shot generalization to in-
distribution tasks. Average returns/success rates over 3 random seeds, ± represents 95% confidence
intervals.

Environment C-DCWM DreamerV3
Ant-dir 649.9 ± 50.7 −3.6 ± 3.0
Cheetah-LS 936.5 ± 10.8 584.8 ± 53.2
Cheetah-speed 664.4 ± 51.7 178.7 ± 20.8
Finger-LS 966.4 ± 5.5 438.6 ± 85.3
Finger-speed 946.9 ± 9.6 187.0 ± 72.7
Hopper-mass 579.9 ± 9.5 555.1 ± 3.6
Walker-friction 580.6 ± 4.7 523.6 ± 41.1
Walker-LS 939.7 ± 8.3 643.6 ± 46.0
Walker-speed 705.8 ± 70.9 149.9 ± 10.3
Button-press 96.7 ± 4.1 2.2 ± 3.2
Coffee-button 100.0 ± 0.0 72.8 ± 21.1
Dial-turn 91.7 ± 6.0 0.6 ± 1.1
Door-open 100.0 ± 0.0 0.0 ± 0.0
Door-unlock 100.0 ± 0.0 0.0 ± 0.0
Handle-press 95.0 ± 4.4 4.4 ± 4.0

B.8 DECISION TIME PLANNING

Planning with the latent world model can improve sample-efficiency in RL (Hansen et al., 2022;
2024; Scannell et al., 2025). We investigate whether decision time planning with our latent world
model can outperform policy optimization by changing the observation space in the OMRL setting.
A key challenge for model-based RL methods in offline settings is limited dataset coverage, which
can lead to inaccurate predictions in certain regions of the state-action space. By discretizing the la-
tent space into fixed codebooks and predicting the next latent state via classification, this issue may
be mitigated. Fig. 8 presents the results of decision-time planning across different planning hori-
zons. We use Model Predictive Path Integral (MPPI) for planning, similar to (Hansen et al., 2024;
Scannell et al., 2025). For planning, we use the Model Predictive Path Integral (MPPI) method, fol-
lowing Hansen et al. (2024); Scannell et al. (2025). As the planning horizon increases, performance
improves, although testing time grows approximately linearly.

We also experimented with incorporating value functions into planning. However, including esti-
mated values trained with IQL for the final step led to a decrease in performance. We hypothesize
that value estimates for unobserved state-action pairs are unreliable due to limited dataset coverage.
Additionally, IQL does not penalize the Q function for out-of-distribution (OOD) actions; it simply
avoids querying them during policy optimization. Planning with value estimates trained using pes-
simistic methods, such as conservative Q-learning (CQL Kumar et al., 2020), is an interesting future
endeavor.
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Figure 8: Decision-time planning with our latent world model, zero-shot performance of planning
with MPPI. Policy optimized on the latent space outperforms planning. A longer planning hori-
zon increases the performance, but planning time also scales linearly, making it unsuitable for real-
time control.
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