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Abstract

Recent breakthrough results by Dagan, Daskalakis, Fishelson and Golowich
[2023] and Peng and Rubinstein [2023] established an efficient algorithm
attaining at most ϵ swap regret over extensive-form strategy spaces of dimension
N in N Õ(1/ϵ) rounds. On the other extreme, Farina and Pipis [2023] developed
an efficient algorithm for minimizing the weaker notion of linear-swap regret in
poly(N)/ϵ2 rounds. In this paper, we develop efficient parameterized algorithms
for regimes between these two extremes. We introduce the set of k-mediator
deviations, which generalize the untimed communication deviations recently
introduced by Zhang, Farina and Sandholm [2024] to the case of having multiple
mediators, and we develop algorithms for minimizing the regret with respect
to this set of deviations in NO(k)/ϵ2 rounds. Moreover, by relating k-mediator
deviations to low-degree polynomials, we show that regret minimization against
degree-k polynomial swap deviations is achievable in NO(kd)3/ϵ2 rounds,
where d is the depth of the game, assuming a constant branching factor. For
a fixed degree k, this is polynomial for Bayesian games and quasipolynomial
more broadly when d = polylogN—the usual balancedness assumption on the
game tree. The first key ingredient in our approach is a relaxation of the usual
notion of a fixed point required in the framework of Gordon, Greenwald and
Marks [2008]. Namely, for a given deviation ϕ, we show that it suffices to
compute what we refer to as a fixed point in expectation; that is, a distribution
π such that Ex∼π[ϕ(x) − x] ≈ 0. Unlike the problem of computing an actual
(approximate) fixed point x ≈ ϕ(x), which we show is PPAD-hard, there is
a simple and efficient algorithm for finding a solution that satisfies our relaxed
notion. As a byproduct, we provide, to our knowledge, the fastest algorithm for
computing ϵ-correlated equilibria in normal-form games in the medium-precision
regime, obviating the need to solve a linear system in every round. Our second
main contribution is a characterization of the set of low-degree deviations, made
possible through a connection to low-depth decisions trees from Boolean analysis.
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1 Introduction

Correlated equilibrium (CE), introduced in a groundbreaking work by Aumann [1974], has emerged
as one of the most influential solution concepts in game theory. Often contrasted with Nash equi-
librium [Nash, 1950], it is regarded by many as more natural; in the words attributed to another
Nobel laureate, Roger Myerson, “if there is intelligent life on other planets, in a majority of them,
they would have discovered correlated equilibrium before Nash equilibrium.” Correlated equilibria
also enjoy more favorable computational properties: unlike Nash equilibria, they can be expressed
as solutions to a linear program, thereby enabling their computation in polynomial time, at least
in normal-form games [Papadimitriou and Roughgarden, 2008, Jiang and Leyton-Brown, 2011].
Further, a correlated equilibrium arises through repeated play from natural no-regret learning dy-
namics [Hart and Mas-Colell, 2000, Foster and Vohra, 1997].

However, many real-world strategic interactions feature sequential moves and imperfect in-
formation. In such scenarios, the so-called extensive form constitutes the canonical game
representation [Kuhn, 1953, Shoham and Leyton-Brown, 2009]: a normal-form description of the
game would be prohibitively large. It is startling to realize that 50 years after Aumann’s original
work, the complexity of computing correlated equilibria in extensive-form games—sometimes
referred to as normal-form correlated equilibria (NFCE) to disambiguate from other pertinent but
weaker solution concepts—remains an outstanding open problem [von Stengel and Forges, 2008,
Papadimitriou and Roughgarden, 2008].

The long-standing absence of efficient algorithms for computing an NFCE shifted the focus to nat-
ural relaxations thereof, which can be understood through the notion of Φ-regret [Greenwald and
Hall, 2003, Stoltz and Lugosi, 2007, Rakhlin et al., 2011]. In particular, Φ represents a set of strat-
egy deviations; the richer the set of deviations, the stronger the induced solution concept. When
Φ contains all possible transformations, one recovers the notion of NFCE—corresponding to swap
regret. At the other end of the spectrum, coarse correlated equilibria correspond to Φ consisting
solely of constant transformations (aka. external regret). Perhaps the most notable relaxation is the
extensive-form correlated equilibrium (EFCE) [von Stengel and Forges, 2008], which can be com-
puted exactly in time polynomial in the representation of the game tree [Huang and von Stengel,
2008]. Considerable interest in the literature has recently been on learning dynamics that minimize
Φ-regret (e.g., Morrill et al. [2021a,b], Bai et al. [2022], Bernasconi et al. [2023], Noarov et al.
[2023], Dudı́k and Gordon [2009], Gordon et al. [2008], Fujii [2023], Dann et al. [2023], Mansour
et al. [2022]). A key reference point in this line of work is the recent construction of Farina and Pipis
[2023], an efficient algorithm minimizing linear swap regret—that is, the notion of Φ-regret where
Φ contains all linear deviations. Such algorithms lead to an ϵ-equilibrium in time polynomial in the
game’s description and 1/ϵ—aka. a fully polynomial-time approximation scheme (FPTAS).

Yet, virtually nothing was known beyond those special cases until recent breakthrough results by Da-
gan et al. [2024] and Peng and Rubinstein [2024], who introduced a new approach for reducing swap
regret to external regret; unlike earlier reductions [Gordon et al., 2008, Blum and Mansour, 2007,
Stoltz and Lugosi, 2005], their algorithm can be implemented efficiently even in certain settings
with an exponential number of pure strategies. For extensive-form games, their reduction implies
a polynomial-time approximation scheme (PTAS) for computing an ϵ-correlated equilibrium; their
algorithm has complexity N Õ(1/ϵ) for games of size N , which is polynomial only when ϵ is an
absolute constant. Unfortunately, it was thereafter shown that in the usual regime of interest, where
instead ϵ ≤ poly(1/N), an exponential number of rounds is inevitable even against an oblivious
adversary [Daskalakis et al., 2024]. In light of that lower bound, our focus here is on developing al-
gorithms attaining a better complexity bound of poly(N, 1/ϵ)—the typical guarantee one hopes for
within the no-regret framework—by considering a more structured but rich class of deviations Φ.

2 Preliminaries

Before we proceed by giving an overview of our results and technical contributions, we first intro-
duce some basic background on tree-form decisions problems and Φ-regret minimization.
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2.1 Tree-form decision problems

A tree-form decision problem describes a sequential interaction between a player and a (possibly
adversarial) environment. There is a tree of nodes. The root is denoted ∅. We will use s ∈ S to
denote a generic node, and ps (where s ̸= ∅) to denote the parent of s. Leaves are called terminal
nodes; a generic terminal node is denoted z ∈ Z . Internal nodes can be one of three types: decision
points, where the player plays an action, observation points, where the environment picks the next
decision point. A generic decision point will be denoted j, and the set of actions at j will be denoted
Aj . The child node reached by following action a ∈ Aj is denoted ja. We will use N to denote the
number of terminal nodes. We will also assume without loss of generality that all decision points
have branching factor at least 2, and that decision and observation points alternate. Thus, the total
number of nodes in the tree is also O(N). The depth of a decision problem is the largest number of
decision points in any root-to-terminal-node path. An example of a tree-form decision problem is
depicted below in Figure 1.

A

B

x2 x3

C

x4 x5

x1

0

2 3 4 5

1

Figure 1: An example of a tree-form decision problem. Decision points are black squares with
white text labels; observataion points are white squares. Edges are labeled with action names,
which are numbers. Pure strategies in this decision problem are identified with vectors x =
(x1, x2, x3, x4, x5) ∈ {0, 1}5 satisfying 1− x1 = x2 + x3 = x4 + x5.

A pure strategy consists of an assignment of one action aj ∈ Aj to each decision point j. The
tree-form representation of the pure strategy is the vector x ∈ {0, 1}N where x[z] = 1 if and only if
the player plays all the actions on the ∅→ z path. Although x is a vector indexed only by terminal
nodes, we also overload notation to write x[s] = 1 if and only if the player plays all actions on
the ∅ → s path (In other words, x[s] = 1 if there exists some z ⪰ s with x[z] = 1). Multiple
pure strategies can have the same tree-form representation, but in this paper we will only concern
ourselves with strategies in tree-form representation, and thus for our purposes such strategies will
be treated as identical. We will use X ⊆ {0, 1}N to denote the set of tree-form strategies, and
sometimes (when context is clear) we will also use X to denote the tree-form decision problem
itself. For a point in the convex hull of X , convX , we also use the symbol x ∈ convX . For
mixed strategies, we instead use π ∈ ∆(X ). When it is relevant, we assume that utilities are rational
numbers representable with poly(N) bits.

2.2 Regret minimization

In the framework of online learning, a learner interacts with an adversary over a sequence of rounds.
In each round, the learner selects a strategy, whereupon the adversary constructs a utility function.
Throughout this paper, we operate in the full feedback setting, wherein the learner gets to observe
the entire utility function produced by the adversary after each round. We allow the adversary to be
strongly adaptive, so that the (linear) utility function at the tth round u(t) : X ∋ x 7→ ⟨u(t),x⟩ can
depend on the strategy of the learner at that round; this is a standard assumption (cf. the notion of
leaky forecasts in the context of calibration [Foster and Hart, 2018]) that will be used for our lower
bound (Theorem 3.3). We assume that utilities belong to U := {u : |⟨u,x⟩| ≤ 1,∀x ∈ X}. It will
be convenient to use ∥x∥X := maxu∈U ⟨u,x⟩ for the induced norm.

We measure the performance of an online learning algorithm as follows. Suppose that Φ ⊆
(convX )X is a set of deviations. If the learner outputs in each round a mixed strategy π(t) ∈ ∆(X ),
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its (time-average) Φ-regret [Greenwald and Hall, 2003, Stoltz and Lugosi, 2007] is defined as

Reg
T

Φ :=
1

T
max
ϕ∈Φ

T∑
t=1

〈
u(t), E

x(t)∼π(t)
[ϕ(x(t))− x(t)]

〉
. (1)

In the special case where Φ contains only constant transformations, one recovers the notion of ex-
ternal regret. On the other extreme, swap regret corresponds to Φ containing all functions X → X .

It is sometimes assumed that the learner instead selects in each round a strategy x(t) ∈ convX . To
translate (1) in that case, we introduce the extended mapping of a deviation ϕ : X → convX
as ϕδ := Ex′∼δ(x)[ϕ(x

′)], where δ : convX → ∆(X ) is a function that is consistent in the
sense that Ex′∼δ(x)[x

′] = x. A canonical example of such a function δ is the behavioral strategy
map β : convX → ∆(X ), which returns the unique (ignoring actions at decision points reached
with probability zero) mixed strategy whose actions at different decision points are independent
and whose expectation is x. We give another example of a consistent map later in Appendix C.2.
Accordingly, we let Φδ denote all extended mappings. In this context, Φδ-regret is defined as

Reg
T

Φδ :=
1

T
max
ϕδ∈Φδ

T∑
t=1

〈
u(t), ϕδ(x(t))− x(t)

〉
.

We are interested in algorithms whose regret is bounded by ϵ after T = poly(N, 1/ϵ) rounds. We
refer to such algorithms as fully polynomial no-regret learners.
Remark 2.1. We clarify that all the algorithms we consider in this paper are deterministic, even when
we allow mixed strategies. The fact that (1) contains an expectation over x(t) ∼ π(t) is simply how
Φ-regret is defined; at no point does the algorithm actually sample from π(t). Using deterministic
algorithms is in line with most of the prior work in the full feedback setting.

3 Overview of our results

In this section, we present an overview of our results on parameterized algorithms for minimizing
Φ-regret in extensive-form games. We shall first describe our results for the special case of Bayesian
games with two actions per player, and we then treat general extensive-form games.

3.1 Bayesian games

For now, we assume that each player’s strategy space is a hypercube {0, 1}N . Hypercubes are linear
transformations of tree-form decision problems; in particular, for Bayesian games in which each
player has exactly two actions, the strategy space of every player is, up to linear transformations, a
hypercube. Since our results are particularly clean for the hypercube case, we start with that.

First, we introduce the set of depth-k decision tree deviations Φk
DT, which can be described as

follows. For each of k ∈ N rounds, the deviator first elects a decision point and receives a rec-
ommendation, whereupon the deviator gets to decide which action to follow in that decision point.
More formally, the set of deviations Φk

DT is defined as follows:

1. The deviator observes an index j0 ∈ [N ].
2. For i = 1, . . . , k: the deviator selects an index ji ∈ [N ], and observes x[ji].
3. The deviator selects a0 ∈ {0, 1}.

We call attention to the order of operations. In particular, each query j is allowed to depend on
previously observed x[j]s. We can assume (WLOG) that the deviator always chooses k distinct
indices j. Now, the set of deviations ϕ : {0, 1}N → [0, 1]N that can be expressed in the above
manner is precisely the set of functions representable as (randomized) depth-k decision trees on N
variables. To connect Φk

DT with the concepts referred to earlier, we clarify that k = 1 corresponds
to linear-swap deviations, while k = N captures all possible swap deviations. Our first result is a
parameterized online algorithm minimizing regret with respect to deviations in Φk

DT. (All our results
are in the full feedback model under a strongly adaptive adversary.)

Theorem 3.1. There is an online algorithm incurring (average) Φk
DT-regret at most ϵ in NO(k)/ϵ2

rounds with a per-round running time of NO(k)/ϵ.

4



Next, we consider the set Φk
poly consisting of all degree-k polynomials ϕ : {0, 1}N → {0, 1}N . Our

result for this class of deviations mirrors the one for Φk
DT, but with a worse dependence on k.

Theorem 3.2. There is an online algorithm incurring Φk
poly-regret at most ϵ in NO(k3)/ϵ2 rounds

with a per-round running time of NO(k3)/ϵ.

We find those results surprising; we originally surmised that even for quadratic polynomials (k = 2)
the underlying online problem would be hard in the regime where ϵ ≤ poly(1/N). We will
elaborate on our technical approach for establishing those results in Section 4 coming up.

Hardness in behavioral strategies A salient aspect of the previous results, which was intention-
ally blurred above, is that the learner is allowed to output a mixed strategy—a probability distribution
over {0, 1}N . In stark contrast, and perhaps surprisingly, when the learner is constrained to output
behavioral strategies, that is to say, points in [0, 1]N , we show that the problem immediately be-
comes PPAD-hard even for degree k = 2 (Theorem 3.3)—thereby being intractable under standard
complexity assumptions. We are not aware of any such hardness results pertaining to a natural online
learning problem, necessitating the use of mixed strategies.

The key connection behind our lower bound is an observation by Hazan and Kale [2007], which
reveals that any Φβ-regret minimizer is inadvertedly able to compute approximate fixed points of
any deviation in Φβ (Proposition B.1). Computing fixed points is in general a well-known (presum-
ably) intractable problem, being PPAD-hard. In our context, the set Φβ does not contain arbitrary
(Lipschitz continuous) functions [0, 1]N → [0, 1]N , but instead contains multilinear functions from
[0, 1]N to [0, 1]N . To establish PPAD-hardness for our problem, we start with a generalized circuit
(Definition I.3), and we show that all gates can be approximately simulated using exclusively gates
involving multilinear operations (Proposition I.7); we defer the formal argument to Appendix I.1.
As a result, we arrive at the following hardness result.

Theorem 3.3. If a regret minimizer R outputs strategies in [0, 1]N , it is PPAD-hard to guarantee
RegΦβ ≤ ϵ/

√
N , even with respect to low-degree deviations and an absolute constant ϵ > 0.

3.2 Extensive-form games

We next expand our scope to arbitrary extensive-form games. We will assume here that the branching
factor b of the game is 2—any game can be transformed as such by incurring a log b factor overhead
in the depth d of the game tree. Generalizing Φk

DT described above, we introduce the set of k-
mediator deviations Φk

med. Informally, the player here has access to k distinct mediators, which the
player can query at any time; a formal definition is given in Section 4. Once again, the case k = 1
corresponds to linear-swap deviations. Further, if X denotes the set of pure strategies, we let Φk

poly
denote the set of all degree-k deviations X → X . We establish similar parameterized results in
extensive-form games, but which may now also depend on the depth of the game tree d.

Theorem 3.4. There is an online algorithm incurring at most an ϵΦk
poly regret inNO(kd)3/ϵ2 rounds

with a per-round running time of NO(kd)3/ϵ. For Φk
med both bounds instead scale as NO(k).

We recall that N here denotes the dimension of the strategy space. We further clarify that parameter
k appearing in Φk

poly is different than the k in Φk
med: the former refers to the degree of a polynomial,

while the latter is the number of mediators. As all k-mediator deviations are degree-k polynomials
(but not vice versa), it is to be expected that the bound in the theorem above concerning the former
is worse. For a fixed degree k and assuming that the game tree is balanced, in the sense that
d = polylogN , Theorem 3.4 guarantees a quasipolynomial complexity with respect to Φk

poly, even
when ϵ is itself inversely quasipolynomial. The complexity we obtain for Φk

med is more favorable,
being polynomial for any extensive-form game.1 Finally, in light of the connection between no-
regret learning and convergence to correlated equilibria, our results imply parameterized tractability
of the equilibrium concepts induced by Φk

med or Φk
poly (see Appendix F.1 for a formal treatment).

1The bounds of Theorem 3.4 when k ≫ 1—and in particular in the special case of swap regret—are inferior
to the ones obtained by Dagan et al. [2024] and Peng and Rubinstein [2024]. As we explain in more detail later
in Section 6, bridging those gaps is an interesting open problem.
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4 Technical contributions

From a technical standpoint, our starting point is the familiar template of Gordon et al. [2008] for
minimizing Φ-regret, which consists of two key components. Accordingly, we split our technical
overview into two parts.

4.1 Circumventing fixed points

The first key ingredient one requires in the framework of Gordon et al. [2008] is an algorithm for
computing an approximate fixed point of any function within the set of deviations. In particular, if
X is the set of pure strategies and convX is the convex hull of X , we now work with functions
Φδ ∋ ϕδ : convX → convX , so that fixed points exist by virtue of Brouwer’s theorem.2 As we
discussed earlier, this fixed point computation is—at least in some sense—inherent: Hazan and Kale
[2007] observed that minimizing Φδ-regret is computationally equivalent to computing approximate
fixed points of transformations in Φδ . Specifically, an efficient algorithm minimizing Φδ-regret—
with respect to any sequence of utilities—can be used to compute an approximate fixed point of
any transformation in Φδ (Proposition B.1 in Appendix B). Given that functions in Φδ are generally
nonlinear, this brings us to PPAD-hard territory (Theorem 3.3), seemingly contradicting the recent
positive results of Dagan et al. [2024] and Peng and Rubinstein [2024].

As we have alluded to, it turns out that there is a delicate precondition on the reduction of Hazan and
Kale [2007] that makes all the difference: computing approximate fixed points is only necessary if
the learner outputs points on convX . In stark contrast, a crucial observation that drives our approach
is that a learner who selects a probability distribution overX does not have to compute (approximate)
fixed points of functions in Φ. Instead, we show that it is enough to determine what we refer to as an
approximate fixed point in expectation. More precisely, for a deviation Φ ∋ ϕ : X → convX with
an efficient representation, it is enough to compute a distribution π ∈ ∆(X ) such that Ex∼π ϕ(x) ≈
Ex∼π x. It is quite easy to compute an approximate fixed point in expectation: take any x1 ∈
convX , and consider the sequence x1, . . . ,xL ∈ convX such that xℓ+1 := Ex′

ℓ∼δ(xℓ) ϕ(x
′
ℓ)

for all ℓ, where δ : convX → ∆(X ) is a mapping such that Ex′∼δ(x)[x
′] = x.3 Then, for

π := Eℓ∈[L][δ(xℓ)], we have

E
x∼π

[ϕ(x)− x] =
1

L

L∑
ℓ=1

E
x′

ℓ∼δ(xℓ)
[ϕ(x′

ℓ)− x′
ℓ] =

1

L
E

x′
L∼δ(xL)

[ϕ(x′
L)− x1] = O

(
1

L

)
.

This procedure can replace the fixed point oracle required by the template of Gordon et al. [2008],
which is prohibitive when Φ contains nonlinear functions, as we formalize in Appendix C.

Application to faster computation of correlated equilibria In fact, even in normal-form games
where considering linear deviations suffices, computing a fixed point is relatively expensive,
amounting to solving a linear system, dominating the per-iteration complexity. Leveraging instead
our new reduction, we obtain the fastest algorithm for computing an approximate correlated equilib-
rium in the moderate-precision regime (Corollary 4.1). In particular, let us focus for simplicity on n-
player normal-form games with a succinct representation. Here, each player i ∈ [n] selects as strat-
egy a probability distribution πi ∈ ∆(Ai), where we recall thatAi is a finite set of available actions.
The expected utility of player i is given by ui(π1, . . . , πn) := Ea1∼π1,...,an∼πn

[ui(a1, . . . , an)],
where ui : A1 × · · · × An → [−1, 1]. We assume that there is an expectation oracle that computes
the vector

(ui(ai, π−i))i∈[n],ai∈Ai
(2)

in time bounded by EO(n,A), where A := maxi |Ai|; it is known that EO(n,A) ≤ poly(n,A)
for most interesting classes of succinct classes of games [Papadimitriou and Roughgarden, 2008].
Using our framework, we arrive at the following result.

2We recall that δ : convX → ∆(X ) is used to extend a map ϕ : X → convX to a map ϕδ : convX →
convX .

3For technical reasons, it is more convenient to work with functions with domain X , which is why we use
a mapping δ to sample a point in X before applying ϕ.
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Corollary 4.1. For any n-player game in normal form, there is an algorithm that computes an
ϵ-correlated equilibrium and runs in time

O

(
A logA

ϵ2

(
EO(n,A) + n

A2

ϵ

))
.

Assuming that the oracle call to (2) (EO(n,A)) does not dominate the per-iteration running time—
which is indeed the case in, for example, polymatrix games—Corollary 4.1 gives (to our knowl-
edge) the fastest algorithm for computing ϵ-correlated equilibria in the moderate-precision regime
1/A

ω
2 −1 ≤ ϵ ≤ 1/ logA, where ω ≈ 2.37 is the exponent of matrix multiplication [Williams

et al., 2024]; without fast matrix multiplication, which is widely impractical, the lower bound in-
stead reads ϵ ≥ 1/

√
A. We provide a comparison with previous algorithms in Table 1 and defer

the details to Appendix I.3. Finally, we stress that similar improvements can be obtained beyond
normal-form games using our template; indeed, virtually all prior Φ-regret minimizers rely on some
fixed point operation.

Table 1: Time complexity for computing ϵ-correlated equilibria in n-player normal-form games with
A actions per player. The second column suppresses absolute constants and polylogarithmic factors.
For simplicity, issues related to bit complexity have been ignored (that is, we work in the RealRAM
model of computation).

Reference Time complexity

Ours (Theorem C.7) A
ϵ2

(
EO(n,A) + nA2

ϵ

)
[Anagnostides et al., 2022, Daskalakis et al., 2021] A

ϵ (EO(n,A) + nAω)

[Dagan et al., 2024, Peng and Rubinstein, 2024] nA log1/ϵ(nA)
[Papadimitriou and Roughgarden, 2008] (nA)cEO(n,A) for c≫ 1

[Huang and Pan, 2023] A2

ϵ2 (nA
ω)

Before moving on, it is worth stressing that the discrepancy that has arisen between operating over
∆(X ) versus convX is quite singular when it comes to regret minimization in extensive-form games
and beyond. Kuhn’s theorem [Kuhn, 1953] is often invoked to argue about their equivalence, but in
our setting it is the nonlinear nature of deviations in Φ that invalidates that equivalence.4 To tie up
the loose ends, we adapt the reduction of Hazan and Kale [2007] to show that minimizing Φ-regret
over ∆(X ) necessitates computing approximate fixed points in expectation (Proposition C.3), and
we observe that the reductions of Dagan et al. [2024] and Peng and Rubinstein [2024] are indeed
compatible with computing approximate fixed points in expectation; the latter observation is made
precise in Appendix F.3.

4.2 Regret minimization over the set of deviations Φ

The second ingredient prescribed by Gordon et al. [2008] is an algorithm minimizing external re-
gret but with respect to the set of deviations Φ. The crux in this second step lies in the fact that,
even in normal-form games, Φ contains at least an exponential number of deviations, so black-box
reductions are of little use here. Instead, the problem boils down to appropriately leveraging the
combinatorial structure of Φ, as we explain below.

We will first describe our approach whenX = {0, 1}N , and we then proceed with the more technical
generalization to extensive-form games. The key observation here is that regret minimization over
Φk

DT can be viewed as a tree-form decision problem of size NO(k). Terminal nodes in this decision
problem are identified by the original index j0 ∈ [N ], the queries j1, . . . , jk ∈ [N ], their replies
a1, . . . , ak ∈ {0, 1}, and finally the action a0 ∈ {0, 1} that is played. Each tree-form strategy q in
this decision problem defines a function ϕq : X → convX , which is computed by following the

4Kuhn’s theorem is also invalidated in extensive-form games with imperfect recall [Piccione and Rubinstein,
1997, Tewolde et al., 2023, Lambert et al., 2019], in which there is also a genuine difference between mixed
and behavioral strategies. In such settings, however, it is NP-hard to even minimize external regret.
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strategy q through the decision problem. Formally, we have

ϕq(x)[j0] =
∑

j1,a1,...,jk,ak

q[j0, j1, a1, . . . , jk, ak, 1]

k∏
i=1

x[ji, ai]

where x[ji, ai] = x[ji] if ai = 1, and 1− x[ji] if ai = 0. Hence ϕq is a degree-k polynomial in x.

Now, since q 7→ ϕq(x)[i] is linear, it follows that q 7→ ⟨u, ϕq(x)⟩ is also linear for any given
u ∈ Rn. Therefore, a regret minimizer on Φk

DT can be constructed starting from any regret minimizer
for tree-form decision problems; for example, counterfactual regret minimization [Zinkevich et al.,
2007], or any of its modern variants. This enables us to rely on usual techniques for dealing with
such problems, eventually leading to a complexity bound of NO(k), as we formalize in Appendix D.

For the set of low-degree polynomials Φk
poly, we leverage a result from Boolean analysis relating

(randomized) low-depth decision trees with low-degree polynomials, stated below.
Theorem 4.2 (Midrijanis, 2004). Every degree-k polynomial f : {0, 1}N → {0, 1} can be written
as a decision tree of depth at most 2k3.

In particular, this implies that Φk
poly ⊆ Φ2k3

DT . Consequently, low-degree polynomials can be reduced
to low-depth decision trees, albeit with an overhead in the exponent.

Turning to general extensive-form games, we follow a similar blueprint, although there are now
additional technical challenges. In particular, in what follows, to describe the set of deviations it
will be convenient to introduce a new formalism related to tree-form decision problems.
Definition 4.3. The dual X̄ of X is the decision problem identical to X , except that the decision
points and observation points have been swapped.

Definition 4.4. The interleaving X ⊗Y is the tree-form decision problem defined as follows. There
is a state s = (s1, s2) ∈ S1×S2. The root state is the tuple (∅,∅). The decision problem is defined
by the player being able to interact with both decision problems, in the following manner. At each
state s = (s1, s2):

• If s1 and s2 are both terminal then so is s. Otherwise:

• If either of the sis is an observation point, then so is s. The children are the states (s′i, s−i)
where s′i is a child of si. (If both sis are observation points, both children s′1, s

′
2 are selected

simultaneously. This can only happen at the root.)

• Otherwise, s is a decision point. The player selects an index i ∈ {1, 2} at which to act, and
a child s′i to transition to. The next state is (s′i, s−i).

In X ⊗ Y , the same state (s1, s2) can be reachable through possibly exponentially many paths,
because the learner may choose to interleave actions in X with actions in Y in any order. Thus, each
state (s1, s2) corresponds to actually exponentially many histories inX⊗Y . In the discussion below,
we will therefore carefully distinguish between histories and states. In light of the above exponential
gap between histories and states, it seems wasteful to represent X ⊗Y as a tree. Indeed, Zhang et al.
[2023] recently studied DAG-form decision problems, and showed that regret minimization on them
is possible so long as the DAG obeys some natural properties.

Using the language we have now introduced, we can define the set of k-mediator deviations Φk
med

as the set of reduced strategies in the decision problem X ⊗ X̄⊗k. That is, the player has access
to not one but k mediators, all holding strategy x, which the player can query at any time. This is
a significant advantage over having just one mediator since the player can send different queries to
each of the k mediators (who must all reply according to x), and therefore can learn more about the
strategy x than it could have otherwise. We will call the responses given by the mediator action rec-
ommendations. For a graphical illustration of such deviations, we refer to Figure 2 (in Appendix E).

Reduced strategies q ∈ π(X ⊗ X̄⊗k), once again, induce functions ϕq : X → convX given by

ϕq(x)[z] =
∑

z1,...,zk

q[z, z1, . . . , zk]

k∏
i=1

x[zi],
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and in particular we have that ϕq is a degree-k polynomial. We define Φk
med as the set of such

deviations. For that set, we show that there is a reduction to a particular type of DAG-form decision
problem of size NO(k). As we explained, that formulation is more suitable than tree-form decision
problems when the number of possible histories far exceeds the number of states, which is precisely
the case when the player is gradually querying multiple mediators as the game progresses.

Finally, we establish a reduction from low-degree polynomials to having few mediators; namely, we
show that Φk

poly ⊆ Φ
O(kd)3

med , where we recall that d is the depth of the game tree. Our basic strategy
is to again leverage the connection between low-depth decision trees and low-degree polynomials
we described earlier (Theorem 4.2). To do so, we need to cast our problem in terms of functions
{0, 1}N → {0, 1}N instead ofX → X . To that end, we first show how to extend a degree-k function
f : X → {0, 1} to a degree-kd function f̄ : {0, 1}N → {0, 1}; that is, f̄ coincides with f on all
points in X ⊆ {0, 1}N (Lemma E.7). This step is where the overhead factor d comes from. The
final technical piece is to show that if each component of ϕ : X → X can be expressed using K
mediators, the same holds for ϕ; the naive argument here incurs another factor of d, but we show
that this is in fact not necessary. The details of the above argument are deferred to Appendix E.

5 Further related research

A key reference point is the result of Blum and Mansour [2007], and a generalization due to Gordon
et al. [2008], which reduces minimizing swap regret to minimizing external regret. Specifically, for
the probability simplex ∆(A), it maintains a separate external-regret minimizer, one for each action
a ∈ A. Both the per-iteration complexity and the number of iterations required is generally poly-
nomial in A := |A|. Therefore, in settings where A is exponentially large in the natural parameters
of the problem (such as extensive-form games) it does not appear that the reduction of Blum and
Mansour [2007] is of much use. It is tempting to instead rely on the reduction of Stoltz and Lugosi
[2005] for minimizing internal regret, a weaker notion than swap regret, which is nonetheless suf-
ficient for (asymptotic) convergence to correlated equilibria. However, one should be careful when
relying on internal regret in settings where A is exponentially large; as we point out in Remark A.1,
internal regret can be smaller than swap regret by up to a factor of A, so it is only meaningful when
ϵ ≤ 1/A, a regime which is generally out of reach for regret minimization techniques when A is
exponentially large.

This gap motivated the new reduction by Dagan et al. [2024] and Peng and Rubinstein [2024], which
we discussed earlier. Beyond extensive-form games, those reductions apply whenever it is possible
to minimize external regret efficiently. The complexity of computing correlated equilibria beyond
the regime where the precision parameter ϵ is an absolute constant remains a major open problem,
generally conjectured to be hard [von Stengel and Forges, 2008]; the recent online lower bound in the
adversarial setting [Daskalakis et al., 2024] provides further evidence in support of that conjecture.

As a result, most prior work has focused on more permissive equilibrium concepts, understood
through the framework of Φ-regret [Morrill et al., 2021a,b, Farina et al., 2022, Bai et al., 2022,
Bernasconi et al., 2023, Noarov et al., 2023, Dudı́k and Gordon, 2009, Gordon et al., 2008, Fujii,
2023, Dann et al., 2023, Mansour et al., 2022, Sharma, 2024, Cai et al., 2024a]). In terms of the most
recent developments, Farina and Pipis [2023] established efficient learning dynamics minimizing
what is referred to as linear swap regret (cf. Dann et al. [2023], Fujii [2023] for related results in
Bayesian games). The solution concept that arises from linear swap regret was later endowed with
a natural mediator-based interpretation by Zhang et al. [2024], which can be viewed as a natural
precursor to this work. Convergence to correlated equilibria has also attracted attention in the context
of Markov (aka. stochastic) games (e.g., [Cai et al., 2024b, Jin et al., 2021, Erez et al., 2023, Liu and
Zhang, 2023], and references therein).

Moreover, as we explained earlier, our approach also gives rise to a faster algorithm for comput-
ing approximate correlated equilibria in a certain regime. As we discuss further in Appendix I.3,
improving the per-iteration complexity of Blum and Mansour [2007] has received interest in prior
work [Ito, 2020, Greenwald et al., 2006, Yang and Mohri, 2017] (see also [Huang and Pan, 2023,
Huang et al., 2023]). The main bottleneck lies in the (approximate) computation of a stationary dis-
tribution of a Markov chain, which can be phrased as a linear system. It is worth noting that solving
linear systems faster than matrix multiplication even for a crude approximation is precluded, at least
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subject to fine-grained complexity assumptions [Bafna and Vyas, 2021]; we are not aware whether
such hardness results are also known for computing the stationary distribution of a Markov chain.

Finally, although we have so far mostly directed our attention to the game-theoretic implication of
minimizing swap (or indeed Φ) regret, namely the celebrated connection with correlated equilibria
in repeated games, the notion of swap regret is a fundamental solution concept in its own right more
broadly in online learning and learning theory. Compared to the more common notion of external
regret, swap regret gives rise to a more appealing notion of hindsight rationality; as such, it is often
adopted as a behavioral assumption to model learning agents (e.g., [Deng et al., 2019]). It is also
fundamentally tied to the notion of calibration [Hu and Wu, 2024], and recently inspired work
by Gopalan et al. [2023] in the context of multi-group fairness.

6 Conclusions and future research

We provided a new family of parameterized algorithms for minimizing Φ-regret in extensive-form
games. Our results capture perhaps the most natural class of functions interpolating between linear-
swap and swap deviations, namely degree-k deviations. Along the way, we refined the usual tem-
plate for minimizing Φ-regret—taught in many courses on algorithmic game theory and online
learning—which revolves around (approximate) fixed points [Gordon et al., 2008, Blum and Man-
sour, 2007, Stoltz and Lugosi, 2005]. Instead, we showed that it suffices to rely on a relaxation that
we refer to as an approximate fixed point in expectation, which—unlike actual fixed points—can
always be computed efficiently. Our refinement of the usual template for minimizing Φ-regret is of
independent interest beyond extensive-form games. For example, it can speed up the computation
of approximate correlated equilibria even in normal-form games, as it obviates the need to solve
a linear system in every round. As in the recent works by Dagan et al. [2024] and Peng and Ru-
binstein [2024], a crucial feature of our approach is to allow the learner to select a distribution over
pure strategies, for otherwise we showed that regret minimization immediately becomes PPAD-hard
(under a strongly adaptive adversary).

There are many interesting avenues for future research. First, the complexity of our algorithm per-
taining to degree-k deviations depends exponentially on the depth of the game tree. We suspect that
such a dependency could be superfluous. To show this, it would be enough to refine Lemma E.7 by
coming up with an extension whose degree does not depend on the depth of the game tree. It would
also be interesting to devise parameterized algorithms for k-mediator deviations that recover as a
special case the PTAS of Peng and Rubinstein [2024] and Dagan et al. [2024], so as to smoothly
interpolate between existing results for linear-swap regret [Farina and Pipis, 2023] and the afore-
mentioned results for swap regret; is k = Õ(1/ϵ) enough to capture swap regret?

Finally, perhaps the most important question is to understand the computational complexity of com-
puting Φ-equilibria in extensive-form games. In particular, our results raise the interesting question
of whether there is an algorithm (in the centralized model) for computing in polynomial time an
exact correlated equilibrium induced by low-degree deviations. Extending the paradigm of Pa-
padimitriou and Roughgarden [2008] in that setting presents several challenges, not least because
computing fixed points—which are crucial for implementing the separation oracle [Papadimitriou
and Roughgarden, 2008]—is now computationally hard. Relatedly, we suspect that there is an in-
herent connection between fixed points and correlated equilibria, in the spirit of the equivalence
between Φ-regret minimization and fixed points established by Hazan and Kale [2007].
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A Further preliminaries

In this section, we introduce some further preliminaries. For additional background, we refer the
interested reader to the excellent books of Cesa-Bianchi and Lugosi [2006] and Shoham and Leyton-
Brown [2009]. Before we describe more formally the construction of Gordon et al. [2008], we make
a remark regarding minimizing internal regret in extensive-form games.
Remark A.1 (Swap versus internal regret). When it comes to defining correlated equilibria in
normal-form games, there are two prevalent definitions appearing in the literature; one is based
on internal regret, while the other on swap regret (e.g., [Ganor and Karthik C. S., 2018, Goldberg
and Roth, 2016]). The key difference is that internal regret only contains deviations that swap a
single action—thereby being weaker. Nevertheless, it is not hard to see that swap regret can only be
larger by a factor of |X | [Blum and Mansour, 2007], where we recall that X denotes the set of pure
strategies. So, in normal-form games those two definitions are polynomially equivalent, and in most
applications one can safely switch from one to the other.

However, this is certainly not the case in games with an exponentially large action space, such
as extensive-form games. In fact, the definition of internal regret itself is problematic when the
action set is exponentially large: the uniform distribution always attains an error of at most 1/|X |.
Consequently, any guarantee for ϵ ≥ 1/|X | is vacuous. That is, if |X | is exponentially large, an
algorithm that requires a number of iterations polynomial in 1/ϵ—which is what we expect to get
from typical no-regret dynamics—would need an exponential number of iterations to yield a non-
trivial guarantee; this issue with internal regret was also observed by Fujii [2023]. Nevertheless,
internal regret in the context of games with an exponentially large action set was used in a recent
work by Chen et al. [2023], who provided oracle-efficient algorithms for minimizing internal regret.

A.1 The construction of Gordon et al. [2008]

Gordon et al. [2008], building on earlier work by Blum and Mansour [2007] and Stoltz and Lugosi
[2005], came up with a general recipe for minimizing Φδ-regret. That construction relies on a no-
regret learning algorithm on the set of deviations Φδ , which we denote by RΦ. Then, a Φδ-regret
minimizer on convX can be constructed as follows: on each iteration t = 1, . . . , T , the learner
performs the following steps.

1. Receive ϕ(t) from RΦ. Select x(t) ∈ convX as an ϵ-fixed point of ϕ(t): ∥ϕ(t)(x(t)) −
x(t)∥X ≤ ϵ.

2. Upon receiving utility u(t) ∈ U , pass utility Φδ ∋ ϕδ 7→
〈
u(t), ϕδ(x(t))

〉
toRΦ.

The main guarantee regarding the above algorithm is summarized below.

Theorem A.2 (Gordon et al., 2008). Suppose that Reg
T

is the external regret incurred byRΦ. After
T rounds of the above algorithm, we have

max
ϕδ∈Φδ

1

T

T∑
t=1

〈
u(t), ϕδ(x(t))− x(t)

〉
≤ Reg

T
+ ϵ.

In Appendix C.1, we will relax the requirement of needing (approximate) fixed points, while at the
same time maintaining the guarantee of Theorem A.2.

B Hardness of minimizing Φ-regret in behavioral strategies

In this section, we show that if the learner is constrained to output in reach round a strategy in
convX , then there is no efficient algorithm (under standard complexity assumptions) minimizing
Φβ-regret (Theorem 3.3); here, β : convX → ∆(X ) is the behavioral strategy mapping (introduced
in the sequel as Definition C.5), the expression of which is not important for the purpose of this
section. The key connection is a result by Hazan and Kale [2007], showing that any Φβ-regret
minimizer is able to compute approximate fixed points of any deviations in Φβ . We then show that
the set of induced deviations, even on the hypercube X = {0, 1}N , is rich enough to approximate
PPAD-hard fixed-point problems.
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In this context, consider a transformation Φβ ∋ ϕβ : [0, 1]N → [0, 1]N for which we want to
compute an approximate fixed point x ∈ convX ; that is, ∥ϕβ(x) − x∥2 ≤ ϵ, for some precision
parameter ϵ > 0. (It is convenient in the construction below to measure the fixed-point error with
respect to ∥ · ∥2.) Hazan and Kale [2007] observed that a Φβ-regret minimizer can be readily turned
into an algorithm for computing fixed points of any function in Φβ , as stated formally below. Before
we proceed, we remind that here and throughout we operate under a strongly adaptive adversary,
which is quite crucial in the construction of Hazan and Kale [2007].
Proposition B.1 (Hazan and Kale, 2007). Consider a regret minimizerR operating over [0, 1]N . If
R runs in time poly(N, 1/ϵ) and guarantees Reg

T

Φβ ≤ ϵ for any sequence of utilities, then there is a
poly(N, 1/ϵ) algorithm for computing an (ϵ

√
N)-fixed point of any ϕβ ∈ Φβ with respect to ∥ · ∥2,

assuming that ϕβ can be evaluated in polynomial time.

Proposition B.1 significantly circumscribes the class of problems for which efficient Φβ-regret mini-
mization is possible, at least when operating in behavioral strategies. Indeed, computing fixed points
is in general a well-known (presumably) intractable problem. In our context, the set Φβ does not
contain arbitrary (Lipschitz continuous) functions [0, 1]N → [0, 1]N , but instead contains multilin-
ear functions from [0, 1]N to [0, 1]N . Nonetheless, we show that PPAD-hardness persists in our
setting. The basic idea is as follows. We start with a generalized circuit (Definition I.3), and we
show that all gates can be approximately simulated using exclusively gates involving multilinear
operations (Proposition I.7). The proof of that claim appears in Appendix I.1. As a result, we arrive
at the main hardness result of this section, restated below.
Theorem 3.3. If a regret minimizer R outputs strategies in [0, 1]N , it is PPAD-hard to guarantee
RegΦβ ≤ ϵ/

√
N , even with respect to low-degree deviations and an absolute constant ϵ > 0.

We also obtain a stronger hardness result under a stronger complexity assumption put forward
by Babichenko et al. [2016] (Theorem I.9). At first glance, it may seem that the above results
are at odds with the recent positive results of Dagan et al. [2024] and Peng and Rubinstein [2024],
which seemingly obviate the need to compute approximate fixed points. As we have alluded to, the
key restriction that drives Theorem 3.3 lies in constraining the learner to output behavioral strate-
gies. In the coming section, we show that there is an interesting twist which justifies the discrepancy
highlighted above.

C Circumventing fixed points

The previous section, and in particular Theorem 3.3, seems to preclude the ability to minimize Φ-
regret efficiently when the set of (extended) deviations contains nonlinear functions.5 In this section,
we will show how to circumvent this issue via a relaxed notion of what constitutes a fixed point
(Definition C.1). In the sequel, we will work with deviations ϕ with domain X instead of convX .

C.1 Approximate expected fixed points

The key to our construction is to allow the learner to play distributions over X , not merely points in
convX , and to use a relaxed notion of a fixed point, formally introduced below.
Definition C.1. We say that a distribution π ∈ ∆(X ) is an ϵ-expected fixed point of ϕ ∈ (convX )X
if ∥Ex∼π[ϕ(x)− x]∥X ≤ ϵ.

The key now is to replace the fixed point oracle in the framework of Gordon et al. [2008] (recalled
in Appendix A) with an oracle that instead returns an ϵ-fixed point in expectation per Definition C.1.
The learner otherwise proceeds as in the algorithm of Gordon et al. [2008] (our overall construction
is spelled out as Algorithm 1 in Appendix I.2). It is easy to show, following the proof of Gordon
et al. [2008], that a fixed point in expectation is still sufficient to minimize Φ-regret.
Theorem C.2 (Φ-regret with ϵ-expected fixed points). Suppose that the external regret ofRΦ over Φ
after T repetitions is at most Reg

T
. Then, the Φ-regret of Algorithm 1 can be bounded as Reg

T
+ ϵ.

Analogously to Proposition B.1, it turns out that there is a certain equivalence between minimizing
Φ in ∆(X ) and computing expected fixed points:

5For linear functions, fixed points can be computed exactly via a linear program.
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Proposition C.3. Consider a regret minimizer R operating over ∆(X ). If R runs in time
poly(N, 1/ϵ) and guarantees Reg

T

Φ ≤ ϵ for any sequence of utilities, then there is a poly(N, 1/ϵ)
algorithm for computing (ϵDX )-expected fixed points of ϕ ∈ Φ, assuming that we can efficiently
compute Ex(t)∼π(t) [ϕ(x(t)) − x(t)] at any time t. Here, DX is the diameter of X with respect to
∥ · ∥2.

The proof proceeds similarly to Proposition B.1, and so we include it in Appendix I.2. Next, we
present a method for computing approximate expected fixed points of functions ϕ ∈ Φ without
having to solve a PPAD-hard problem.

C.2 Extending deviation maps to convX

First, since we will work both over convX and distributions in ∆(X ), we need efficient methods
for passing between them. To that end, we introduce the following notion.
Definition C.4. A map δ : convX → ∆(X ) is

• consistent if Ex′∼δ(x) x
′ = x, and

• efficient if, given some ϕ ∈ Φ and x ∈ convX , it is easy to compute ϕδ(x) :=
Ex′∼δ(x) ϕ(x

′).

We will call the map ϕδ : convX → convX the extended map of ϕ.

One may ask why we use this indirect method of defining ϕδ rather than simply directly using the
representation of ϕ (for example, as a polynomial) to extend ϕ to convX . The answer is that, even
assuming that ϕ : X → X is represented as a multilinear polynomial (which is the representation
assumed in the majority of this paper), naively extending that polynomial to domain convX will
not necessarily result in a function ϕ̄ : convX → convX . For an example, consider the decision
problem X depicted in Figure 1, and consider the function ϕ : X → X given by ϕ(x) = (x1 +
x3, x2x4, x2x5, x2, 0). One can easily check by hand that ϕ is indeed a function X → X , but also
that, for the strategy x = (1/2, 1/2, 0, 1/2, 0) ∈ convX , we have ϕ(x) = (1/2, 1/4, 0, 1/2, 0) /∈
convX . Thus, we need a more robust way of extending functions X → convX to functions
convX → convX , ideally one that is dependent only the function ϕ, not its representation.

We now give two methods of constructing consistent and efficient maps δ : convX → ∆(X ) for
tree-form strategy sets X . The first is the behavioral strategy map.
Definition C.5. The behavioral strategy map β : convX → ∆(X ) is defined as follows: β(x) is the
distribution of pure strategies generated by sampling, at each decision point j for which x[j] > 0,
an action a according to the probabilities x[ja]/x[j]. Formally,

β(x)[y] :=
∏

ja:x[j]>0,y[ja]=1

x[ja]

x[j]
.

It is possible for ϕβ to be not a polynomial even when ϕ is a polynomial, because β is itself not a
polynomial. It is clear that β is consistent. For efficiency, we show the following claim.
Proposition C.6. Let β : convX → ∆(X ) be the behavioral strategy map. Let ϕ : X → convX
be expressed as a polynomial of degree at most k, in particular, as a sum of at most O(Nk) terms.
Then there is an algorithm running in time NO(k) that, given ϕ and x ∈ convX , computes ϕβ(x).

Proof. To compute Ex′∼β(x) ϕ(x
′), since ϕ is a polynomial, it suffices to compute Ex′∼β(x)m(x′)

for multilinear monomials m of degree at most K, that is, functions of the form mS(x) :=∏
z∈S x[z] where S ⊆ Z has size at most k. There are two cases. First, there are monomials that are

clearly identically zero: in particular, if there are two nodes ja, ja′ ⪯ S for a ̸= a′, then mS ≡ 0
because a player cannot play two different actions at j. For monomials that are not identically zero,
we have

E
x′∼β(x)

∏
ja∈S

x[ja] =
∏

ja⪯S:x[j]>0

x[ja]

x[j]
,

which is computable in time O(kd). Thus, the overall time complexity is O(kdNk) ≤ NO(k).
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The behavioral strategy map is in some sense the canonical strategy map: when one writes a tree-
form strategy x ∈ convX without further elaboration on what distribution ∆(X ) it is meant to
represent, it is often implicitly or explicitly assumed to mean the behavioral strategy.

The behavioral strategy map has the unfortunate property that it usually outputs distributions of
exponentially-large support; indeed, if x ∈ relint convX then β(x) is full-support.

The second example we propose, which we call a Carathéodory map, always outputs low-support
distributions. In particular, for any x ∈ convX , Carathéodory’s theorem on convex hulls guarantees
that x is a convex combination of N pure strategies6 x1, . . . ,xN ∈ X . Grötschel et al. [1981,
Theorem 3.9] moreover showed that there exists an efficient algorithm for computing the appropriate
convex combination. Thus, fixing some efficient algorithm for this computational problem, we
define a Carathéodory map γ : convX → ∆(X ) to be any consistent map that returns a distribution
of support at most N . Given such a mapping, computing ϕγ(x) is easy: one simply writes x =∑

i αixi by computing γ(x), and returns ϕγ(x) =
∑

i αiϕ(xi). This only requires a poly(N)-time
computation of γ, andN evaluations of the function ϕ. As before, when ϕ is a degree-k polynomial,
the time complexity of computing ϕγ is bounded by NO(k).

C.3 Efficiently computing fixed points in expectation

Now let δ : convX → ∆(X ) be consistent and efficient. Consider the following algorithm. Given
ϕ ∈ Φ, select x1 ∈ convX arbitrarily, and then for each ℓ > 1 set xℓ := ϕδ(xℓ−1). Finally, select
π := Eℓ∼[L] δ(xℓ) ∈ ∆(X ) as the output distribution. By a telescopic cancellation, we have∥∥∥ E

x∼π
[ϕ(x)− x]

∥∥∥
X

=
1

L

∥∥∥∥∥
L∑

ℓ=1

E
x∼δ(xℓ)

[ϕ(x)− x]

∥∥∥∥∥
X

≤ 1

L

∥∥∥∥ E
x∼δ(xL)

[ϕ(x)− x1]

∥∥∥∥
X
≤ 2

L
,

as desired. As a result, applying Theorem C.2, we arrive at the following conclusion.
Theorem C.7. Let RΦ be an regret minimizer on Φ whose external regret after T iterations is
Reg

T
and whose per-iteration runtime is R1, and assume that evaluating the extended map ϕδ :

convX → convX takes time R2. Then, for every ϵ > 0, there is a learning algorithm on X whose
Φ-regret after T iterations is at most Reg

T
+ ϵ and whose per-iteration runtime is O(R1 +R2/ϵ).

The above result provides a full black-box reduction from Φ-regret minimization to external regret
minimization on Φ, with no need for the possibly-expensive computation of a fixed point. We note
that the iterates of the algorithm will depend on the choice of δ—for example, setting δ = β and
setting δ = γ will produce different iterates.

D Low-degree regret on the hypercube

In this section, we let X be the hypercube {0, 1}N . For the convenience of the reader, we first recall
that the set of deviations Φk

DT is defined as follows:

1. The deviator observes an index j0 ∈ [N ].
2. For i = 1, . . . , k: The deviator selects an index ji ∈ [N ], and observes x[ji].
3. The deviator selects a0 ∈ {0, 1}.

As we observed earlier, the above process describes a tree-form decision problem of size NO(k). In
particular, terminal nodes in this decision problem are identified by the original index j0 ∈ [N ], the
queries j1, . . . , jk ∈ [N ], their replies a1, . . . , ak ∈ {0, 1}, and finally the action a0 ∈ {0, 1} that
is played. Each tree-form strategy q in this decision problem defines a function ϕq : X → convX ,
which is computed by following the strategy q through the decision problem. Namely,

ϕq(x)[j0] =
∑

j1,a1,...,jk,ak

q[j0, j1, a1, . . . , jk, ak, 1]

k∏
i=1

x[ji, ai]

6Applying Carathéodory naively would give N + 1 instead of N , but we can save 1 because the tree-form
strategy set is never full-dimensional as a subset of {0, 1}N .
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where x[ji, ai] = x[ji] if ai = 1, and 1− x[ji] if ai = 0. We see that ϕq is a degree-k polynomial
in x.

We define Φk
DT as the set of such functions ϕq . The “DT” in the name Φk

DT stands for decision tree:
the set of functions ϕ : X → convX that can be expressed in the above manner is precisely the set
of functions representable as (randomized) depth-k decision trees on N variables.

For intuition, we mention the following special cases:

• Φ0
DT is the set of external deviations.

• Φ1
DT is the set of all single-query deviations, which Fujii [2023] showed to be equivalent to

the set of all linear deviations when X is a hypercube.

• ΦN
DT is the set of all swap deviations.

Since q 7→ ϕq(x)[i] is linear, it follows that q 7→ ⟨u, ϕq(x)⟩ is also linear for any given u ∈ Rn.
Therefore, a regret minimizer on Φk

DT can be constructed starting from any regret minimizer for
tree-form decision problems, such as counterfactual regret minimization [Zinkevich et al., 2007].

Proposition D.1. There is a NO(k)-time-per-round regret minimizer on Φk
DT whose external regret

is at most ϵ after NO(k)/ϵ2 rounds.

Thus, combining with Proposition C.6 and Theorem C.7, we immediately obtain a Φk
DT-regret min-

imizer with the following complexity.

Corollary D.2. There is a NO(k)/ϵ-time-per-round regret minimizer on X whose Φk
DT-regret is at

most ϵ after NO(k)/ϵ2 rounds.

Next, we relate depth-k decision trees to low-degree polynomials. Let Φk
poly be the set of degree-k

polynomials ϕ : X → X . We appeal to a result from the literature on Boolean analysis, recalled
below.

Theorem 4.2 (Midrijanis, 2004). Every degree-k polynomial f : {0, 1}N → {0, 1} can be written
as a decision tree of depth at most 2k3.

In particular, Φk
poly ⊆ Φ2k3

DT . Corollary D.2 thus also implies a Φk
poly-regret minimizer:

Corollary D.3. Let X = {0, 1}N . There is an NO(k3)/ϵ-time-per-round regret minimizer on X
whose Φk

poly-regret is at most ϵ after NO(k3)/ϵ2 rounds.

It is reasonable to ask whether the above result generalizes to polynomials ϕ : X → convX .
Indeed, when k ≤ 1 or k = N , every degree-k polynomials ϕ : X → convX can be written as
a convex combination of degree-k polynomials ϕ : X → X , even for arbitrary tree-form decision
problems.7 However, this is not generally true. A brute-force search shows that the polynomial
ϕ : {0, 1}4 → [0, 1]4 given by

ϕ(x1, x2, x3, x4) = x1 − x1x2 −
1

2
x1x3 +

1

2
x2x3 +

1

2
x3x4

is quadratic, but it is not a convex combination of quadratics whose range is {0, 1}4. Perhaps more
glaringly, if one could efficiently represent the set of quadratic functions ϕ : {0, 1}N → [0, 1]N ,
then one could in particular decide whether a given quadratic function ϕ : {0, 1}N → RN has range
[0, 1]N . But this is a coNP-complete problem.

E Extensive-form games

The goal of this section is to extend the results in the previous section to the extensive-form setting,
that is, to generalize them to all tree-form decision problems.

7For degree 0 and N this is trivial; for degree 1 it is due to Zhang et al. [2024].
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E.1 Interleaving decision problems

We first recall the operations of merging decision problems that will be very useful as notation in
the subsequent discussion. In particular, given two decision problems X and Y with node sets S1
and S2 respectively, we restate the following definitions previously introduced in Section 4.

Definition 4.3. The dual X̄ of X is the decision problem identical to X , except that the decision
points and observation points have been swapped.

Definition 4.4. The interleaving X ⊗Y is the tree-form decision problem defined as follows. There
is a state s = (s1, s2) ∈ S1×S2. The root state is the tuple (∅,∅). The decision problem is defined
by the player being able to interact with both decision problems, in the following manner. At each
state s = (s1, s2):

• If s1 and s2 are both terminal then so is s. Otherwise:

• If either of the sis is an observation point, then so is s. The children are the states (s′i, s−i)
where s′i is a child of si. (If both sis are observation points, both children s′1, s

′
2 are selected

simultaneously. This can only happen at the root.)

• Otherwise, s is a decision point. The player selects an index i ∈ {1, 2} at which to act, and
a child s′i to transition to. The next state is (s′i, s−i).

It follows immediately from definitions that ¯̄X = X , and ⊗ is associative and commutative. The
name and notation for the dual is inspired by the observation that ⟨x,y⟩ = 1 for all x ∈ X and
y ∈ X̄ : indeed, the component-wise product x[z]y[z] is exactly the probability that one reaches
terminal node z by following strategy x at X ’s decision points and y at X ’s observation points. We
also define the notation X⊗k := X ⊗ · · · ⊗ X , where there are k copies of X .

It is important to observe that in X ⊗ Y , the same state (s1, s2) can be reachable through possibly
exponentially many paths. This is because the learner may choose to interleave actions in X with
actions in Y in any order, which means that a state (s1, s2) corresponds to exponentially many
histories in X ⊗ Y . For that reason, we have to distinguish between histories and states.

In light of the above discussion, it is inefficient to represent X ⊗ Y as a tree. Indeed, Zhang et al.
[2023] studied DAG-form decision problems, and showed that regret minimization on them is possi-
ble when the underlying DAG has some natural properties. We state here an immediate consequence
of their analysis, which we will use as a black box. Intuitively, the below result states that, as long as
utility vectors also only depend on the (terminal) state s that is reached, regret minimization on an
arbitrary interleaving of decision problems X1 ⊗ · · · ⊗ Xk is possible, and the complexity depends
only on the number of states.

Theorem E.1 (Consequence of Zhang et al., 2023, Corollary A.4). Let X := X1⊗ · · · ⊗Xk, where
Xi has terminal node set Zi. Let Z := Z1 × · · · × Zk be the set of terminal states for X . For
each such terminal state z ∈ Z , let V (z) be the set of histories of X whose state is z. Define the
projection π : X → RZ by

π(x)[z] =
∑

v∈V (z)

x[v].

Then there exists an efficient regret minimizer on π(X ) := {π(x) : x ∈ X} ⊂ RZ: its per-round
complexity is poly(|Z|), and its regret is ϵ after poly(|Z|)/ϵ2 rounds.

Whenever we speak of regret minimizing on interleavings, it will always be the case that utility
vectors depend only on the state, so we will always be able to apply the above result. We will call
vectors in π(X ) reduced strategies.

Before proceeding, it is instructive to describe in more detail a result of Zhang et al. [2024], which
we will also use later, in the language of this section. Let X and Y be any two decision problems
with terminal node sets Z1 and Z2 respectively. A reduced strategy q ∈ π(X ⊗ Ȳ) induces a linear
map ϕq : Y → convX , given by

ϕq(y)[z1] =
∑

z2∈Z2

q[z1, z2]y[z2].
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Figure 2: A representation of the deviation ϕ(x) = (x1 + x3, x2x4, x2x5, x2, 0) (discussed in
Appendix C.2) in the decision problem X in Figure 1, as a strategy in X ⊗ X̄ ⊗ X̄ , i.e., with
k = 2 mediators. (For an example of a one-mediator deviation, see Zhang et al. [2024, Figure 1].)
Again, black squares are decision nodes and white squares are observation nodes. Nodes are labeled
with their state representations: the state in X first (in blue), and the two mediator states after (in
red). Similarly, blue edge labels indicate interactions with the decision problem (i.e., playing actions
and receiving observations in X ), and red edge labels indicate interactions with the mediators (i.e.,
querying and receiving action recommendations from the mediators). Redundant edges (such as
those in which the decision problem in X has terminated) are omitted. The deviation is shown in
thick black lines. For example, ϕ2(x) = x2x4 because the only state in which the deviator plays
action 2 is when the mediator state is (2,4). ϕ1(x) = x1 + x3 because the deviator plays action
1 at mediator states (1,1) and (3,0), which would give the formula ϕ1(x) = x21 + x3x0 (where
x0 := 1− x1), but one can easily check that x21 + x3x0 = x1 + x3 for all x ∈ X .

It is instructive to think, as Zhang et al. [2024] detailed extensively in their paper, about what strate-
gies q ∈ π(X ⊗ Ȳ) represent, and why they induce the linear maps ϕq . Decision points j in Y
become observation points in X ⊗ Ȳ—at these observation points, the player should observe the
action taken by strategy y at j. The player in X ⊗ Ȳ is given the ability to query the strategy y
by taking the role of the environment in Y , while the environment, holding a strategy y ∈ Y , takes
the role of the player and answers decision point queries with the actions that it plays. The player
then uses these queries to inform how it plays in the true decision problem X . This is the sense in
which q induces a map ϕq: the output ϕq(y) is precisely the strategy that would be played if the
environment in X ⊗ Ȳ answers the queries by consulting the strategy y. We will call a device that
answers queries using strategy y a mediator holding strategy y. Zhang et al. [2024] then showed
the following fact, which we will use critically and repeatedly in the rest of this paper.

Theorem E.2 (Zhang et al., 2024, Theorem A.2). Every linear map ϕ : Y → convX is induced by
some reduced strategy q ∈ π(X ⊗ Ȳ).

E.2 Efficient low-degree swap-regret minimization in extensive-form games

We now proceed with generalizing the results of Appendix D to extensive-form games.

Let X be any decision problem of dimension N and depth d. We will assume WLOG that every
decision point in X has branching factor exactly 2. This is without loss of generality, but it incurs a
loss of O(log b), where b is the original branching factor, in the depth. Thus, in the below bounds,
when d appears, it should be read as O(d log b).
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Using the previous notation, the set of k-mediator deviations Φk
med is the set of reduced strategies in

the decision problem X ⊗ X̄⊗k. In particular, we recall that reduced strategies q ∈ π(X ⊗ X̄⊗k)
induce functions ϕq : X → convX given by

ϕq(x)[z] =
∑

z1,...,zk

q[z, z1, . . . , zk]

k∏
i=1

x[zi].

Thus, we have that ϕq is a degree-k polynomial. Φk
med is the set of such deviations. For intuition,

we once again pose a few special cases:

• When the original decision problem’s decision space is ∆N
2 (i.e., the decision problem

consists of a single root observation point with N children, each of which is a decision
point with two actions), we have Φk

DT = Φk
med. Thus, the results in this section strictly

generalize those in the previous section.

• Φ0
med and ΦN

med are, as before, the sets of external and swap deviations respectively.

• Φ1
med is, by Theorem E.2, the set of all linear deviations.

In this context, applying Theorem E.1 gives an efficient Φk
med-regret minimizer:

Theorem E.3. There is an NO(k)-time-per-round regret minimizer on Φk
med whose external regret

is at most ϵ after NO(k)/ϵ2 rounds.

Thus, once again Proposition C.6 and Theorem C.7 have the following consequence.

Corollary E.4. There is a NO(k)/ϵ-time-per-round regret minimizer on X whose Φk
med-regret is at

most ϵ after NO(k)/ϵ2 rounds.

Next, we discuss extensions of our result to low-degree polynomials. Unfortunately, we cannot
directly apply Theorem 4.2 to conclude the existence of a regret minimizer on X with Φk

poly-regret

growing as NO(k3)/ϵ2. There are two issues in attempting to do so.

First, when X is not the hypercube, polynomials f : X → {0, 1} are not total functions. That is,
it is not necessarily the case that degree-k polynomials f : X → {0, 1} can be extended to degree-
k polynomials f̄ : {0, 1}N → {0, 1}, which is required in order to apply Theorem 4.2.8 For an
example of this, consider X = D4 where DN is the standard basis in RN , that is, DN = {ei :
i ∈ [N ]} where ei ∈ RN is the ith basis vector (in other words, DN is the set of vertices of the
probability simplex ∆(N)). Let f : D4 → {0, 1} given by f(x) = x1 + x2. Then f is linear, but
there is no linear f̄ : {0, 1}4 → {0, 1} extending f . Indeed, there is a more general manifestation of
this phenomenon:

Proposition E.5. For every N , there exists a linear map f : DN → {0, 1} such that any extension
f̄ : {0, 1}N → {0, 1} of f must have degree at least Ω(logN).

Proof. Let f̄ : {0, 1}N → {0, 1} be any degree-k function. By Theorem 3.4 of O’Donnell [2014],
f̄ is a k2k-junta, that is, f̄(x) depends on at most k2k entries of x. Now consider the map f :
DN → {0, 1} given by f(x) =

∑
i≤N/2 xi. Let f̄ : {0, 1}N → {0, 1} be an extension of f . Then

f̄ depends on at least N/2 − 1 inputs: if f̄(0) = 0 then f̄ depends on at least x1, . . . ,x⌊N/2⌋, and
if f̄(0) = 1 then f̄ depends on at least x⌊N/2⌋+1, . . . ,xN . Thus, we have N/2 − 1 ≤ k2k, which
upon rearraging gives k ≥ Ω(logN).

The second issue is the following. Suppose that K mediators were enough to represent a function
f : X → {0, 1}. How does one then represent a function ϕ : X → X ? Each coordinate of ϕ could
be represented usingK mediators, but that need not mean the whole function can. In game-theoretic
terms, representing a coordinate of ϕ(x) allows the player to play a single action, not necessarily the
whole game. Naively, playing the whole game would seem to require Kd mediators: K mediators
for every level of the decision tree, to compute which action to take at each level.

8Formally, we call f̄ : {0, 1}N → {0, 1} an extension of f : X → {0, 1} if f̄ agrees with f on X .
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We will show that it is possible to circumvent both of these issues: the first with a loss ofO(d) in the
degree of the polynomial that is representable, and the second with no additional loss. In particular,
we state our main result below.

Theorem E.6. Φk
poly ⊆ Φ

O(kd)3

med . Therefore, for every k, there is a NO(kd)3/ϵ-time-per-round

algorithm whose Φk
poly-regret at most ϵ after NO(kd)3/ϵ rounds.

E.3 Proof of Theorem E.6

We dedicate the rest of this section to the proof of Theorem E.6. We deal with the two aforemen-
tioned problems one by one. First, we show that every f admits an extension at a loss of a factor of
d in the degree:
Lemma E.7. Every f : X → {0, 1} of degree k admits a degree-kd extension f̄ : {0, 1}N → {0, 1}.

Proof. We claim first that the identity function id : X → X admits a degree-d extension, that is,
there is a degree-d function īd : {0, 1}N → X that is the identity on X . Indeed, consider the
following function īd. Then we define īd(x)[ja] recursively as follows:

īd(x)[ja] =

{
x[j0] · īd(x)[pj ] if a = 0,

(1− x[j0]) · īd(x)[pj ] if a = 1.

It is easy to check that īd is indeed the identity on X by definition of tree-form decision spaces, and
that the degree of īd is at most the depth of the tree, d. But now, for any f : X → {0, 1} of degree
k, the map f̄ := f ◦ īd : {0, 1}N → {0, 1} has degree at most kd and is an extension of f .

Now we apply Theorem 4.2. That result tells us that a degree-kd function f̄ : {0, 1}N → {0, 1}
can be evaluated using K = O(kd)3 queries. One mediator is certainly more than enough to
perform a single query, and therefore such a function can also be evaluated using K mediators. It
therefore remains only to address the second problem: namely, the ability to evaluate a function
ϕ̄ : {0, 1}N → {0, 1}, since the output is only binary, in principle only allows us to play a single
action. But one needs to play d actions to reach the end of the game. Naively, this would require
losing another factor of d, for a total of O(Kd) mediators. However, we now show that it is possible
to completely circumvent this problem. The notation that we have built up will make this argument
perhaps surprisingly short.

Let ϕ : X → X be any function such that each component ϕz : X → {0, 1}, given by x 7→ ϕ(x)[z],
is expressible using K mediators. By definition, ϕz is expressible as a strategy9 qz ∈ π({0, 1} ⊗
X̄⊗K). By the argument in the previous section, qz induces a linear map ϕ̂z : X̄⊗k → {0, 1}.

Now let ϕ̂ : X̄⊗K → X be the function whose zth coordinate is ϕ̂z . Every component of ϕ is linear,
so ϕ̂ is itself also linear. But then by Theorem E.2, there exists a strategy q ∈ π(X ⊗ X̄⊗K), that is,
a K-mediator deviation, that represents ϕ. This completes the proof.

F Discussion and applications

In this section, we discuss various implications and make several remarks about the framework and
results that we have introduced.

F.1 Convergence to correlated equilibria

Notions of Φ-regret correspond naturally to notions of correlated equilibria. Therefore, our results
also have implications for no-regret learning algorithms that converge to correlated equilibria. Here,
we formalize this connection. Consider an n-player game in which player i’s strategy set is a tree-
form strategy set Xi, and player i’s utility is given by a multilinear map ui : X1 × · · · × Xn →

9This is a slight abuse of notation since {0, 1} is not a decision problem, but the argument works if one
interprets {0, 1} as the decision problem with a single decision node and two child terminal nodes. The sense
in which qz represents ϕz is that, if the environment in X̄⊗k plays according to a strategy x, the player will
(eventually) play action ϕz(x).
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[−1, 1]. For each player i, let Φi ⊆ (convXi)
Xi be a set of deviations for player i. Finally let

Φ = (Φ1, . . . ,Φn).
Definition F.1. A distribution π ∈ ∆(X1 × · · · × Xn) is called a correlated profile. A correlated
profile π is an ϵ-Φ-equilibrium if no player i can profit more than ϵ via any of the deviations ϕi ∈ Φi

to its strategy. That is, Ex∼π ui(ϕi(xi),x−i) ≤ Ex∼π ui(xi,x−i)+ ϵ for all players i and ϕi ∈ Φi.

For example, we can define k-mediator equilibria and degree-k swap equilibria by setting Φi to
Φk

med and Φk
poly, respectively. The following celebrated result follows immediately from the defini-

tions of equilibrium and regret.
Proposition F.2. Suppose that every player i plays according to a regret minimizer whose Φi-regret
is at most ϵ after T rounds. Let π(t)

i ∈ ∆(Xi) be the distribution played by player i at round t. Let
π(t) ∈ ∆(X1) × · · · × ∆(Xn) be the product distribution whose marginal on Xi is π(t)

i . Then the
average strategy profile, that is, the distribution 1

T

∑
t∈[T ] π

(t), is an ϵ-Φ-equilibrium.

Thus, from Theorems E.3 and E.6 it follows, respectively, that, given a game Γ where the dimension
of each player’s decision problem is at most N , we have the following results.

Corollary F.3. An ϵ-k-mediator equilibrium can be computed in time NO(k)/ϵ3.

Corollary F.4. An ϵ-degree-k-swap equilibrium can be computed in time NO(kd)3/ϵ3.

The issue of representing the induced correlated distribution is discussed in Appendix G.

F.2 Strict hierarchy of equilibrium concepts

Let c ∈ {med, poly}. For every k ≥ 0, let Ekc (Γ) be the set of Φk
c -equilibria in Γ. It is clear from

definitions that Ekc (Γ) ⊆ Ek−1
c (Γ). Further, even for normal-form games, it is known that coarse-

correlated equilibria are not generally equivalent to correlated equilibria, so at least one of these
inclusions is strict in some games. We now show that all of these inclusions are strict, so that the
deviations Φk

c form a strict hierarchy of equilibria.10

Proposition F.5. For every k ≥ 1, there exists a game Γ such that Ekc (Γ) ⊊ Ek−1
c (Γ).

Proof. Consider the two-player game Γ defined as follows.

• P1’s strategy space is X = {−1, 1}k. Player 2’s strategy space is simply Y = {−1, 1}.11

• P1’s utility function is u1(x, y) = x1y. That is, P1 would like to set x1 = y. P2 gets no
utility.

Consider the correlated profile π defined as follows: π is uniform over the 2k pure profiles (x, y) ∈
X×Y such that y = x1x2 . . . xk. P1’s expected utility is clearly 0, and there is a swap (i.e., Φk

c ) devi-
ation that yields a profit of 1, namely x 7→ (x1x2 . . . xk, . . . ). (it does not matter what the swap devi-
ation plays at coordinates other than the first one.) But, since all the xis are independent, no function
of degree less than k can have positive correlation with x1x2 . . . xk, and thus, there are no profitable
deviations of degree less than k. Thus, π is a Φk−1

c -equilibrium, but not a Φk
c -equilibrium.

F.3 Characterization of recent low-swap-regret algorithms in our framework

We have, throughout this paper, introduced and used a framework of Φ-regret that involves fixed
points in expectation. Proposition C.3 shows that the ability to compute fixed points in expectation
is in some sense necessary for the ability to minimize Φ-regret. It is instructive to briefly discuss how
the recent swap-regret-minimizing algorithm of Dagan et al. [2024] and Peng and Rubinstein [2024]

10The below result constructs a game that depends on k. It is not the case that there exists a single game
for which the inclusion hierarchy is strict: for example, for k ≥ N , the set Φk

c will already contain all the
deviations, so Ek

c (Γ) = EN
c (Γ) for every k ≥ N .

11These strategy spaces are not technically tree-form strategy spaces, but they are linear transformations of
tree-form strategy spaces, so one can also rephrase this argument over tree-form strategy spaces. For cleanliness
of notation, we stick to {−1, 1}k as the strategy space.
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fits into this framework. Their algorithm makes no explicit reference to fixed-point computation,
nor to the minimization of external regret over swap deviations ϕ—they do not explicitly invoke
the framework we use in this paper, nor that of Gordon et al. [2008]. Where is the expected fixed
point hidden, then? While we will not present their entire construction here, it suffices to state the
following property of it. At every round t, the learner outputs a distribution π(t) ∈ ∆(X ) that is
uniform on L strategies x(t,1), . . . ,x(t,L). The way to map this into our framework is to consider
π(t) an approximate fixed point in expectation of the “function”12 ϕ(t) that maps x(t,ℓ) 7→ x(t,ℓ+1)

for each ℓ = 1, . . . , L− 1. With this choice of ϕ(t), their algorithm indeed fits into our framework.

F.4 Revelation principles (or lack thereof)

Most notions of correlated equilibrium obey some form of revelation principle. Informally, one
can treat a player attempting to deviate profitably from a correlated equilibrium as an interaction
between a mediator (who sends useful information to the player) and the player (who tries to play
optimally by using the mediator). When studying the regret of online algorithms, one assumes that
the interaction with the mediator is canonical: the mediator holds with it some sampled strategy
profile (x1, . . . ,xn) ∼ π, and in equilibrium every player indeed plays xi. We say that the rev-
elation principle holds for a particular notion of equilibrium if allowing non-canonical equilibria
would not expand the set of equilibria. In Appendix H, we give a rather general formalization of
this notion, which is enough to encompass all the notions of correlated equilibrium discussed in the
paper. We show that, in this formalism, the revelation principle does not hold for k-mediator equi-
libria or degree-k swap equilibria when k > 1, and indeed in both cases the set of outcomes that can
be induced by non-canonical equilibria is the set of linear-swap outcomes (Theorems H.4 and H.5).

G Representation of strategies

In this section, we discuss how strategies π ∈ ∆(X1 × · · · × Xn) are represented for the pur-
poses of all of the results in this paper, and in particular for Corollaries F.3 and F.4. In both
cases, at each timestep, each player’s strategy π(t)

i is a uniform mixture of L = O(1/ϵ) strategies
δ(x

(t,1)
i ), . . . , δ(x

(t,L)
i ), and we have

π =
1

T

T∑
t=1

n⊗
i=1

(
1

L

L∑
ℓ=1

δ(x
(t,ℓ)
i )

)
, (3)

that is, π is a uniform mixture of products of mixtures of strategies that are themselves outputs of
δ. Thus, if the strategy map δ is established by convention (for example, as mentioned before, it is
often conventional to take δ to be the behavioral strategy map), it suffices to output x(t,ℓ)

i ∈ convXi

for each i, t, ℓ.

Suppose that we impose a slightly more stringent restriction on the output format, namely, we want
π to be a uniform mixture of products of mixtures of pure strategies. In that case, we can take δ to
be the Carathéodory map.13 Now, writing x

(t,ℓ)
i =

∑
j∈[N ] α

(t,ℓ,j)
i x

(t,ℓ,j)
i for x(t,ℓ,j)

i ∈ Xi, we set

π =
1

T

T∑
t=1

n⊗
i=1

 1

L

L∑
ℓ=1

N∑
j=1

α
(t,ℓ,j)
i x

(t,ℓ,j)
i

. (4)

So, our output consists of the strategies x(t,ℓ,j)
i ∈ Xi and their coefficients α(t,ℓ,j)

i for each i, t, ℓ, j.

H On the revelation principle

In this section, we give a formalization of the revelation principle which encompass all the notions
of correlated equilibrium discussed in the paper. In this formalism, the revelation principle does

12“Function” is in quotes because the stated ϕ may not be a function at all; for example, the sequence
x(t,1), . . . ,x(t,L) may contain repeats yet be aperiodic.

13We remind the reader here that the choice of δ must be the same one that was used to run the algorithm, so
by taking δ here, we mean that we are considering a distribution π that was computed by running our algorithm
with that choice of δ. That is, the π in Eq. (3) is not the same as the π in Eq. (4).
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not hold for k-mediator equilibria or degree-k swap equilibria when k > 1, and indeed in both
cases we show that the set of outcomes that can be induced by non-canonical equilibria is the set of
linear-swap outcomes (Theorems H.4 and H.5).

Let D be the class of all finite tree-form decision problems. For each pair X ,Y ∈ D let ΦX ,Y ⊆
(convX )Y be a subset of deviations. Finally let Φ =

⊔
X ,Y∈D ΦX ,Y . As in the previous section,

consider a game where player i has strategy set Xi and utility ui : X1 × · · · × Xn → [−1, 1].
Definition H.1. Let Y1, . . . ,Yn ∈ D be arbitrary tree-form strategy spaces, let π ∈ ∆(Y1 × · · · ×
Yn), and let ϕi ∈ ΦX ,Y for each player i. We call the tuple ((Yi, ϕi)ni=1, π) a generalized profile.
A generalized profile is a generalized ϵ-Φ-equilibrium if no player i can profit by switching to a
different strategy mapping ϕ′ : Yi → convXi. That is,

E
y∼π

ui(ϕ
′
i(yi), ϕ−i(y−i)) ≤ E

y∼π
ui(ϕi(yi), ϕ−i(y−i)) + ϵ

for all players i and ϕ′i ∈ ΦX ,Y . We call a generalized profile canonical if Yi = Xi and ϕi : Xi →
convXi is the identity map for every i.

In this language, the definitions of equilibrium in Appendix F.1 were definitions of canonical equi-
libria. Every generalized profile induces a canonical profile, namely, the distribution over strat-
egy given by sampling y ∼ π and returning (ϕ1(x1), . . . , ϕn(xn)). Call two generalized profiles
equivalent if they induce the same canonical profile. We can now define the revelation principle as
follows.
Definition H.2 (Revelation principle). The class of deviations Φ satisfies the revelation principle if
the induced canonical profile of every generalized ϵ-Φ-equilibrium is also an ϵ-Φ-equilibrium.

For an example, let Φ be the set of all functions, so that the notion of equilibrium is the normal-form
correlated equilibrium. Then one can think of the sample y ∼ π as a profile of signals (one signal
per player) from a correlation device, and ϕi as player i’s mapping from signals to strategies. Then
the revelation principle states that, without loss of generality (up to utility equivalence), one can
assume that signals are recommendations of strategies (Yi = Xi) and players in equilibrium play
their recommended strategies (ϕi : Xi → convXi is the identity map).

All notions of equilibrium that we have mentioned can be expressed in this language, and the reve-
lation principle applies to all of them.
Proposition H.3 (Sufficient conditon for revelation principle). Let δ be a consistent strategy map
in the sense of Appendix C.2. Suppose that, for every ϕ ∈ ΦX ,Y and ψ ∈ ΦX ,X , we have ψδ ◦ ϕ ∈
ΦX ,Y . Then Φ satisfies the revelation principle.

Proof. Given a generalized ϵ-Φ-equilibrium, ((Yi, ϕi)ni=1, π), let π′ be its induced canonical profile.
We need to show that π′ is also an ϵ-Φ-equilibrium. Consider any hypothetical deviation ψi ∈ ΦX ,X .
We have

E
x∼π′

ui(ψi(xi),x−i) = E
y∼π

ui((ψ
δ
i ◦ ϕi)(yi), ϕ−i(x−i))

≤ max
ϕ∗
i ∈ΦX ,Y

E
y∼π

ui(ϕ
∗
i (yi), ϕ−i(x−i))

≤ E
y∼π

ui(ϕi(yi), ϕ−i(x−i)) + ϵ

= E
x∼π′

ui(xi,x−i),

where the second line uses the assumed composition property.

The revelation principle has, of course, been shown for various special cases of equilibrium before
us: for example, NFCE Aumann [1974], linear-swap equilibria Zhang et al. [2024], and so on. Our
proposition above generalizes these proofs since each of those notions indeed satisfies the requi-
site compositional criterion: compositions of arbitrary functions are still arbitrary functions, and
compositions of linear maps are linear.

The definition of k-mediator functions and degree-k polynomials are both easy to generalize from
the X → X case to the Y → X case. We can therefore define generalized k-mediator equilib-
ria and generalized degree-k swap equilibria, and ask whether the revelation principle applies to
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these. Proposition H.3 does not apply, because compositions of k-mediator and degree-k functions
will usually require more mediators and a higher degree. Indeed, we now show that the revelation
principle fails for these notions when k > 1. We will, in fact, show something quite strong. Recall
Proposition F.5, which showed that both canonical Φk

med and canonical Φk
poly are strictly tighten-

ing notions of equilibrium as k increases. Here we show that this is not the case for generalized
equilibria.

Theorem H.4. For every k ≥ 1, every linear-swap equilibrium is equivalent to a (non-canonical)
k-mediator equilibrium.

Proof. Let π be any linear-swap equilibrium. We define a mediator of player i. Given a strategy
x ∈ X , the mediator will interact with the player as follows. First, for each decision point j of
player i, and let aj ∈ Aj be the action that is played by x. (If x defines no action at j, the mediator
selects one at random). The mediator samples integers a(1)j , . . . , a

(k)
j ∈ [bj ] uniformly at random

under the constraint that
∑k

ℓ=1 a
(ℓ)
j = aj (mod bj). The important property that is derived from

the above construction is simply that, in order to learn aj , the player must know all the a(ℓ)j s, and
without knowing all of them, the player learns no information whatsoever.

When the player arrives, the mediator has the following interaction with the player. First, the player
must supply an integer ℓ ∈ [k]. We will call ℓ the seed. Then, whenever the player sends a decision
point j, the mediator checks whether the decision point sent is consistent with the sequence of
decision points previously sent by the player (i.e., if j is a possible next-decision-point following
the previous decision point sent). If not, the mediator terminates the interaction. If so, the mediator
sends a(ℓ)j to the player.

Now consider how a player can use k copies of such a mediator. In order to learn any useful
information at all about any decision point j, the player must (1) supply a different seed to each
of the k mediators, and (2) query decision point j with all k mediators. Therefore, the player can
essentially only use these mediators as if they were one, giving the same sequence of queries to every
mediator and computing the true action recommendation by computing

∑
ℓ a

(ℓ)
j (mod bj). Thus,

the player can only implement deviations that it could with a single mediator, which by Theorem E.2
are the linear deviations.

What we have thus shown is the following. Let Yi be a strategy space that represents the above
interaction with the mediator, and let ϕi be the k-mediator deviation that acts according to the
previous paragraph. Let π′ ∈ ∆(Y1 × · · · × Yn) be the distribution in which a strategy x ∼ π is
sampled, the a(ℓ)j s are sampled according to the first paragraph, and each mediator plays according

to the strategy yi that answers queries according to those a(ℓ)j s. Then ((Yi, ϕi)ni=1, π
′) is a non-

canonical Φk
med-equilibrium.

Theorem H.5. Suppose that every player’s strategy space in a given game Γ is the hypercube
X = {−1, 1}N . Then every linear-swap in Γ equilibrium is equivalent to a (non-canonical) degree-
k-swap equilibrium.

Proof. The proof follows a similar idea to the previous one: we wish to construct a scenario such
that, with any polynomial of degree less than k, the deviator cannot learn anything about x, and with
a polynomial of degree k the deviator can only implement linear functions on x. Let π be any linear-
swap equilibrium. Let Y = {−1, 1}Nk, and index the coordinates of y ∈ Y by pairs (j, ℓ) where
j ∈ [N ] and ℓ ∈ [k]. Define ϕ(y)j =

∏
ℓ∈[k] y[j, ℓ]. Finally, define the distribution π′ ∈ ∆(Yn)

as follows: sampling y ∼ π′ is done by sampling x ∼ π, and then, for each player i and index
j, sampling yi[j, ·] ∈ {−1, 1}ℓ uniformly at random under the constraint that

∏
ℓ yi[j, ℓ] = xi[j].

We will write π′|x for the conditional distribution of y ∼ π′, conditioned on sampling the given
x ∼ π. Now consider the generalized profile (Y, ϕ, π′) (i.e., every player shares the same signal
set Y and equilibrium deviation function ϕ : Y → X ). We see that it is equivalent to (X , id, π)
by construction. We claim now that it is a degree-k equilibrium which would complete the proof.
Consider any degree-k function ϕ′ : Y → X , and define ψ : X → X by ψ(x) = Ey∼π′|x ϕ

′(y). It
suffices to show that ψ is a linear map, since then deviating to ϕ′ would equate to applying the linear
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deviation ψ to x. Indeed, expressing

ϕ′(y) =
∑

S⊆[N ]×[k],|S|≤k

αSmS(y) where mS(y) :=
∏

(j,ℓ)∈S

y[i, s],

we see that Ey∼π′|xmS(y) = 0 except when S = Sj := {(j, ℓ) : ℓ ∈ [k]} for some j, in which
case Ey∼π′|xmS(y) = x[j]. That is, the only monomials of nonzero expectation are those which
multiply together all the y[j, ·]s, in which case the expectation is exactly x[j]. Thus, we have

ψ(x) =
∑
S

αS E
y∼π′|x

[mS(y)] =
∑
j

αSj
E

y∼π′|x

[
mSj

(y)
]
=
∑
j

αSj
x[j]

which is indeed linear in x.

One may wonder at this point about why the above two results do not contradict the fact that NFCE,
which supposedly are the ΦN

med-equilibria, do satisfy the revelation principle and are certainly not
equivalent to linear-swap equilibria. The answer is that the equivalence between swap deviations and
N -mediator deviations only holds for strategy spaces of size at most N—and the strategy spaces Yi
constructed as part of both proofs have size (at least) Nk. When Yi has size more than N , the set
ΦN

med is no longer the set of all functions Yi → convXi. In other words, the set of canonical ΦN
med-

equilibria is equivalent to the set of canonical NFCE, but that does not contradict the fact that there
exist non-canonical ΦN

med-equilibria.

I Omitted proofs

In this section, we provide the proofs omitted from the previous sections.

I.1 Proofs from Section B

We first provide the missing proofs from Appendix B. We start with Proposition B.1, the statement
of which is recalled below.
Proposition B.1 (Hazan and Kale, 2007). Consider a regret minimizerR operating over [0, 1]N . If
R runs in time poly(N, 1/ϵ) and guarantees Reg

T

Φβ ≤ ϵ for any sequence of utilities, then there is a
poly(N, 1/ϵ) algorithm for computing an (ϵ

√
N)-fixed point of any ϕβ ∈ Φβ with respect to ∥ · ∥2,

assuming that ϕβ can be evaluated in polynomial time.

Proof. Suppose that R outputs a strategy x(t) ∈ convX at each time t ∈ [T ]. The basic idea is to
determine whether ∥ϕβ(x(t))−x(t)∥2 ≤ ϵ

√
N ; if so, the process can terminate as we have identified

an (ϵ
√
N)-fixed point of ϕβ with respect to ∥ · ∥2. Otherwise, we construct the utility function

u(t) : convX ∋ x 7→ 1√
N

1

∥ϕβ(x(t))− x(t)∥2
⟨ϕβ(x(t))− x(t),x− x(t)⟩.

We note that, by Cauchy-Schwarz, |u(t)(x)| ≤ 1 since ∥x − x(t)∥2 ≤
√
N ; hence, the util-

ity function adheres to our normalization constraint. Now, if at all rounds it was the case that
∥ϕβ(x(t))− x(t)∥2 > ϵ

√
N , we have

Reg
T

Φβ ≥
1

T

T∑
t=1

u(t)(ϕβ(x(t)))− 1

T

T∑
t=1

u(t)(x(t)) > ϵ, (5)

since u(t)(x(t)) = 0 and u(t)(ϕβ(x(t))) = 1√
N
∥ϕβ(x(t))−x(t)∥2 for all t ∈ [T ]. We conclude that

(5) contradicts the assumption that Reg
T

Φβ ≤ ϵ for any sequence of utilities, in turn implying that
there exists t ∈ [T ] such that ∥ϕβ(x(t)) − x(t)∥2 ≤ ϵ

√
N . Given that we can evaluate ϕβ in time

poly(N) (by assumption), we can also compute each error ∥ϕβ(x(t)) − x(t)∥2 in polynomial time,
concluding the proof.

We next turn our attention to the proof of Theorem 3.3. We first observe that Φβ contains functions
of the following form.
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Lemma I.1. Φβ contains all functions of the form ∑
S1⊆[N ]

ϕ1(S1)
∏
j∈S1

x[j]
∏

j∈[N ]\S1

(1− x[j]), . . . ,
∑

SN⊆[N ]

ϕN (SN )
∏

j∈SN

x[j]
∏

j∈[N ]\SN

(1− x[j])

 ,

where ϕ = (ϕ1, . . . , ϕN ) : {0, 1}N → {0, 1}N . (The convention above is that a product with no
terms is to be evaluated as 1.)

Above, we slightly abuse notation by interpreting Sj ⊆ [N ] as a point in {0, 1}N . Lemma I.1
is evident from the definition of the behavioral strategy map β: ϕβ(x) = Ex′∼β(x) ϕ(x

′), and
expanding the expectation gives the expression of Lemma I.1—the probability of a set S is exactly∏

j∈S x[j]
∏

j∈[N ]\S(1 − x[j]). We will show that PPAD-hardness for computing fixed points
persists under the set of functions contained in Φβ (per Lemma I.1).

Our starting point is the usual generalized circuit problem (abbreviated as GCIRCUIT), introduced
by Chen et al. [2009]; it is a generalization of a typical arithmetic circuit but with the twist that it
may include cycles. (In what follows, we borrow some notation from the paper of Filos-Ratsikas
et al. [2023].)

Definition I.2 (Chen et al., 2009). A generalized circuit with respect to a set of gate-types G is a list
of gates g1, . . . , gM. Every gate gi has a type Gi ∈ G. Depending on its type, gi may have zero, one
or two input gates, which will be index by j, k ∈ [M], with the restriction that i, j, k are pairwise
distinct.

We denote by v : [M] → [0, 1] a function that assigns an input gate to a value in [0, 1]. Each gate
imposes a constraint induced by its corresponding type. For example, let us consider the following
types.

• if Gi = G+, then v(gi) = min(1, v(gj) + v(gk));

• if Gi = G−, then v(gi) = max(0, v(gj)− v(gk));
• if Gi = G1, then v(gi) = 1;

• if Gi = G1−, then v(gi) = 1− v(gj); and

• if Gi = G×, then v(gi) = v(gj) · v(gk).

In accordance with the above types, we define F : [0, 1]M → [0, 1]M to be the function mapping
any initial evaluation of the gates to (v(g1), . . . , v(gM)). The main problem of interest can be now
phrased as follows.

Definition I.3 (ϵ-GCIRCUIT). The problem ϵ-GCIRCUIT asks for a fixed point of F with respect to
∥ · ∥∞; that is, an assignment v : [M]→ [0, 1] such that all gates are ϵ-satisfied.

A satisfying assignment always exists by Brouwer’s theorem, but the associated computational prob-
lem is PPAD-hard. In fact, by virtue of a recent result of Filos-Ratsikas et al. [2023], PPAD-hardness
persists even if one significantly restricts the type of gates.

Theorem I.4 (Filos-Ratsikas et al., 2023). Even when G := {G+, G1−}, there is an absolute con-
stant ϵ > 0 such that computing an ϵ-fixed point of F with respect to ∥ · ∥∞ is PPAD-complete.14

Yet, the addition gate G+ does not induce a multilinear in the form of Lemma I.1. We will address
this by showing that the gate G+ can be approximately simulated via a small number of gates with
type either G1− or G×. To provide better intuition, we first prove this claim under the assumption
that the gates are satisfied exactly, and we then proceed with the more general statement. In the
sequel, we sometimes use the shorthand notation t = t′ ± ϵ ⇐⇒ t ∈ [t′ − ϵ, t′ + ϵ].

Lemma I.5. Any addition gate G+ can be approximated with at most ϵ > 0 error using
O(log(1/ϵ)/ϵ) gates with type either G1− or G×.

14Deligkas et al. [2022] showed that, for a certain variant of this problem, any constant ϵ < 0.1 suffices. It
was Rubinstein [2016] who first proved that the problem is PPAD-hard even for a constant ϵ > 0.
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Proof. Let t(1)1 , t
(1)
2 ∈ [0, 1]. We define the mapping

f : (t1, t2) 7→ (1− (1− t1)(1− t2), t1t2).

We consider the sequence t(τ+1)
1 , t

(τ+1)
2 := f(t

(τ)
1 , t

(τ)
2 ) for τ = 1, 2, . . . . We will show that

min(1, t
(1)
1 + t

(1)
2 ) = t

(C)
1 ± ϵ, (6)

for C ≥ log(1/ϵ)

log( 1
1−ϵ )

+ 1 = Θ(log(1/ϵ)/ϵ). We first observe that t(τ+1)
1 ≥ t

(τ)
1 and t(τ)1 + t

(τ)
2 =

t
(1)
1 + t

(1)
2 . We consider two cases.

• If t(C)
1 > 1− ϵ, then t(1)1 + t

(1)
2 = t

(C)
1 + t

(C)
2 ≥ 1− ϵ, in turn implying that min(1, t

(1)
1 +

t
(1)
2 ) ≥ 1− ϵ. This clearly implies (6) as t(C)

1 ∈ [0, 1].

• In the contrary case, if t(C)
1 ≤ 1− ϵ, then t(C)

2 ≤
∏C−1

τ=1 t
(τ)
1 ≤ (1− ϵ)C−1 ≤ ϵ, where we

used the fact that t(τ)1 ≤ t
(C)
1 ≤ 1 − ϵ. So, min(1, t

(1)
1 + t

(1)
2 ) = min(1, t

(C)
1 + t

(C)
2 ) =

t
(C)
1 + t

(C)
2 ≤ t(C)

1 + ϵ.

Lemma I.6. Any addition gate G+ can be approximated with at most ϵ > 0 error using
O(log(1/ϵ)/ϵ) gates with type either G1− or G×, each with error ϵ′ = O(ϵ/C) = O(ϵ2).

Proof. Let t(1)1 , t
(1)
2 ∈ [0, 1]. We consider the sequence

[0, 1]2 ∋ (t
(τ+1)
1 , t

(τ+1)
2 ) := (1− (1− t(τ)1 )(1− t(τ)2 )± 5ϵ′, t

(τ)
1 t

(τ)
2 ± ϵ′) τ = 1, 2, . . . .

Here, (t(τ+1)
1 , t

(τ+1)
2 ) can be indeed obtained from (t

(τ)
1 , t

(τ)
2 ) using 5 gates with type either G1− or

G×, each with error at most ϵ′. We will show that

min(1, t
(1)
1 + t

(1)
2 ) = t

(C)
1 ± ϵ (7)

for C ≥ log(6/ϵ)

log( 1
1−ϵ/12 )

+ 1 = Θ(log(1/ϵ)/ϵ). Below, we will take ϵ′ := ϵ/(12C). We first observe

that t(τ+1)
1 + t

(τ+1)
2 = t

(τ)
1 + t

(τ)
2 ± 6ϵ′, thereby implying that t(C)

1 + t
(C)
2 = t

(1)
1 + t

(1)
2 ± 6Cϵ′.

Further, t(τ)1 ≤ t(τ+1)
1 + 5ϵ′. Hence, t(τ)1 ≤ t(C)

1 + 5Cϵ′. We consider two cases.

• If t(C)
1 > 1− ϵ/2, then t(1)1 + t

(1)
2 ≥ t(C)

1 + t
(C)
2 − 6Cϵ′ ≥ 1− ϵ/2− 6Cϵ′ = 1− ϵ since

ϵ′ = ϵ/(12C). This implies that min(1, t
(1)
1 + t

(1)
2 ) ≥ 1− ϵ, and (7) follows.

• In the contrary case, if t(C)
1 ≤ 1 − ϵ/2, then t(C)

2 ≤ (1 − ϵ/2 + 5Cϵ′)t
(C−1)
2 + ϵ′ =

(1− ϵ/12)t(C−1)
2 + ϵ′. Thus, t(C)

2 ≤ Cϵ′ + (1− ϵ/12)C−1 ≤ ϵ/4, where we used the fact
that C ≥ log(6/ϵ)

log( 1
1−ϵ/12 )

+ 1. In turn, we have t(1)1 + t
(1)
2 ≤ t

(C)
1 + t

(C)
2 + 6Cϵ′ ≤ 1 + ϵ/4.

We conclude by observing that t(C)
1 = t

(1)
1 + t

(1)
2 − t

(C)
2 ± 6Cϵ′ = t

(1)
1 + t

(1)
2 ± 3ϵ/4.

As a result, for any absolute constant ϵ > 0, we can reduce in polynomial time an ϵ-GCIRCUIT
instance consisting of M gates with a set of types G = {G1−, G+} to an ϵ′-GCIRCUIT instance
consisting of Θ(M) gates with a set of types G′ = {G1−, G×}, so long as ϵ′ = O(ϵ2) is sufficiently
small. Together with Theorem I.4, we arrive at the following conclusion.

Proposition I.7. Even when G := {G×, G1−}, there is an absolute constant ϵ > 0 such that
computing an ϵ-fixed point of F with respect to ∥ · ∥∞ is PPAD-complete.
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Having established this reduction, a function F arising from such circuits is clearly a multilinear
that can be expressed in the form of Lemma I.1. Indeed, we simply observe that, for S ⊆ [N ] and
S̄ ⊆ [N ] with S ∩ S̄ = ∅, we have∏

j∈S

x[j]
∏
j∈S̄

(1− x[j]) =
∏

j∈[N ]\S∪S̄

(x[j] + 1− x[j])
∏
j∈S

x[j]
∏
j∈S̄

(1− x[j])

=
∑
S′,S′′

∏
j∈S∪S′

x[j]
∏

j∈S̄∪S′′

(1− x[j]),

where the summation is over all partitions S′, S′′ of [N ] \ (S ∪ S̄). So, combining with Proposi-
tion B.1, we arrive at Theorem 3.3, which is restated below for the convenience of the reader.
Theorem 3.3. If a regret minimizer R outputs strategies in [0, 1]N , it is PPAD-hard to guarantee
RegΦβ ≤ ϵ/

√
N , even with respect to low-degree deviations and an absolute constant ϵ > 0.

In the above reduction, we used the inequality ∥ · ∥∞ ≤ ∥ · ∥2 so as to translate the guarantee
of Proposition B.1 in the language of Theorem I.4. That inequality can be loose, and so instead let us
explain how one can obtain sharper hardness results by relying on a stronger complexity assumption
which pertains to the so-called (ϵ, δ)-GCIRCUIT problem. This relaxes the ϵ-GCIRCUIT problem by
allowing at most a δ-fraction of the gates to have an error larger than ϵ. In this context, Babichenko
et al. [2016] put forward the following conjecture.
Conjecture I.8 (Babichenko et al., 2016). There exist absolute constants ϵ, δ > 0 such that solving
the (ϵ, δ)-GCIRCUIT problem with M gates requires 2Ω̃(M) time.

In light of the simplifications observed by Filos-Ratsikas et al. [2023] (Theorem I.4) in conjunction
with Lemma I.6, it is not hard to show that Conjecture I.8 can be equivalently phrased by restricting
the gates to involve solely multilinear operations—analogously to Proposition I.7. Namely, if the
number of gates increases by a factor of C = C(ϵ), it suffices to take ϵ′ = Θ(ϵ/C) and δ′ =
Θ(δ/C). Now, the point is that Conjecture I.8 is more aligned with a guarantee in terms of ∥ · ∥2.
Indeed, if at least a δ-fraction of the gates incur at least an ϵ error, it follows that ∥F (x) − x∥2 ≥
ϵ
√
δ
√
N (we can assume here that δN is an integer). We can thus strengthen Theorem 3.3 as follows.

Theorem I.9. Suppose that Conjecture I.8 holds. If R outputs strategies in [0, 1]N , guaranteeing
RegΦβ ≤ ϵ requires time 2Ω̃(N), even with respect to low-degree deviations and an absolute constant
ϵ > 0.

I.2 Proofs from Section C

We first spell out the construction that establishes Theorem C.2, which is a refinement of the al-
gorithm of Gordon et al. [2008] described earlier in Appendix A. In particular, the one but crucial
difference lies in using an ϵ-expected fixed point (Line 3). In the context of Algorithm 1, we as-
sume that the interface of a regret minimizerR consists of two components: R.NEXTSTRATEGY(),
which returns the next strategy ofR; andR.OBSERVEUTILITY(·), which provides toR as feedback
a utility function, whereuponR may update its internal state accordingly.

Algorithm 1: Φ-regret minimizer using fixed points in expectation
Input: An external regret minimizerRΦ over Φ
Output: A Φ-regret minimizerR over X

1 function NEXTSTRATEGY()
2 ϕ(t) ← RΦ.NEXTSTRATEGY()

3 π(t) ← ϵ-expected fixed point of ϕ(t) (Definition C.1)
4 return π(t)

5 function OBSERVEUTILITY(u(t))
6 Set u(t)Φ : Φ ∋ ϕ 7→

〈
u(t),Ex(t)∼π(t) ϕ(x(t))

〉
7 RΦ.OBSERVEUTILITY(u

(t)
Φ )

We next show that there is a certain equivalence between expected fixed points and Φ-regret mini-
mization over ∆(X ), which mirrors the construction of Hazan and Kale [2007].
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Proposition C.3. Consider a regret minimizer R operating over ∆(X ). If R runs in time
poly(N, 1/ϵ) and guarantees Reg

T

Φ ≤ ϵ for any sequence of utilities, then there is a poly(N, 1/ϵ)
algorithm for computing (ϵDX )-expected fixed points of ϕ ∈ Φ, assuming that we can efficiently
compute Ex(t)∼π(t) [ϕ(x(t)) − x(t)] at any time t. Here, DX is the diameter of X with respect to
∥ · ∥2.

Proof. Suppose that R outputs a strategy π(t) ∈ ∆(X ). At each time t ∈ [T ], we can terminate if
∥Ex(t)∼π(t) [ϕ(x(t)) − x(t)]∥2 ≤ ϵDX ; that is, we have identified an (ϵDX )-expected fixed point.
Otherwise, we construct the utility function

u(t) : X ∋ x 7→ 1

DX

1

∥Ex(t)∼π(t) [ϕ(x(t))− x(t)]∥2

〈
E

x(t)∼π(t)
[ϕ(x(t))− x(t)],x− π(t)

〉
,

which indeed satisfies the normalization constraint |u(t)(x)| ≤ 1. Now, if at all iterations it was the
case that ∥Ex(t)∼π(t) [ϕ(x(t))− x(t)]∥2 > ϵDX , we have

Reg
T

Φ ≥
1

T

T∑
t=1

u(t)
(

E
x(t)∼π(t)

[ϕ(x(t))]

)
− 1

T

T∑
t=1

u(t)(π(t)) > ϵ

since u(t)(π(t)) = 0 and

u(t)
(

E
x(t)∼π(t)

[ϕ(x(t))]

)
=

1

DX

∥∥∥∥ E
x(t)∼π(t)

[ϕ(x(t))− x(t)]

∥∥∥∥
2

for all t ∈ [T ]. This contradicts the assumption that Reg
T

Φ ≤ ϵ for any sequence of utilities, in
turn implying that there exists t ∈ [T ] such that π(t) is an ϵ-expected fixed point. Given that, by
assumption, we can compute Ex(t)∼π(t) [ϕ(x(t))− x(t)] for any time t, the claim follows.

I.3 Proof of Corollary 4.1

In this subsection, we discuss how expected fixed points (per Definition C.1) can be used to speed up
equilibrium computation even in settings where actual fixed points can be computed in polynomial
time. In particular, we recall the following result, which was stated earlier in the main body.
Corollary 4.1. For any n-player game in normal form, there is an algorithm that computes an
ϵ-correlated equilibrium and runs in time

O

(
A logA

ϵ2

(
EO(n,A) + n

A2

ϵ

))
.

Indeed, using the algorithm of Blum and Mansour [2007] instantiated with MWU,15 one can guarantee
(average) swap regret bounded as O(

√
A logA/T ), where T is the number of iterations; hence,

taking T = O(A logA/ϵ2) guarantees at most ϵ swap regret for each player. Further, a function
here can be represented as a stochastic matrix on A states; as such, it can be evaluated at any
point in time O(A2) via a matrix-vector product. As a result, each iteration of Algorithm 1 can be
implemented with a single oracle call to (2), along with n updates—one for each player—each of
which has complexity bounded as O(A2/ϵ) (Theorem C.7). This implies Corollary 4.1.

Let us compare the complexity of Corollary 4.1 with prior results. First, when ϵ ≫ 0 the best
running time follows from the recent algorithms of Dagan et al. [2024] and Peng and Rubinstein
[2024], but those quickly became superpolynomial even when ϵ ≈ 1/ logA; indeed, the number
of iterations of their algorithm scales as (logA)Õ(1/ϵ). On the other end of the spectrum, one can
compute an exact correlated equilibrium in polynomial time using the “ellispoid against hope” algo-
rithm [Papadimitriou and Roughgarden, 2008, Jiang and Leyton-Brown, 2011]. The original paper
by Papadimitriou and Roughgarden [2008] did not specify the exact complexity of the algorithm,
but the subsequent work of Jiang and Leyton-Brown [2011]—which analyzed a slightly different

15The exponential weights map can generate irrational outputs, but this can be addressed by truncating to a
sufficiently large number of bits, which does not essentially affect the regret.
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version based on a derandomized separation oracle—came up with a bound of n6A12 in terms of
the number of iterations of the ellipsoid; the overall running time is higher than that. While the
analysis of Jiang and Leyton-Brown [2011] can likely be significantly improved—as acknowledged
by the authors, we do not expect that algorithm to be competitive unless one is searching for very
high-precision solutions.

The original algorithm of Blum and Mansour [2007]—instantiated as usual with MWU—requires
computing a stationary distribution of a Markov chain in every iteration. This amounts to solving a
linear system, which in theory requires a running time ofO(Aω), where ω ≈ 2.37 is the exponent of
matrix multiplication [Williams et al., 2024]. Without fast matrix multiplication—which is currently
widely impractical—the running time would instead be O(A3). A strict improvement over that
running time can be obtained using the optimistic counterpart of MWU (OMWU) [Daskalakis et al.,
2021], which has been shown to reduce the number of iterations to Õ(A/ϵ) without essentially
affecting the per-iteration complexity. Corollary 4.1 improves over that in the regime where ϵ ≥
1/A

ω
2 −1, where ω ≈ 2.37 is the exponent of matrix multiplication [Williams et al., 2024]; without

fast matrix multiplication, the lower bound is instead ϵ ≥ 1/
√
A.

Another notable attempt at improving the complexity of Blum and Mansour [2007] was made
by Greenwald et al. [2008] using power iteration. For a parameter p ≥ 1, their algorithm guarantees
at most O(

√
Ap/T ) average internal regret with a per-iteration complexity of Ω(A3/p) (without

fast matrix multiplication). Casting this guarantee in terms of swap regret, and observing that the
overall running time is invariant on p, we see that the resulting complexity is no better than that
via OMWU, which we discussed earlier; the approach of Greenwald et al. [2008] is based on regret
matching, which incurs an inferior regret bound compared to MWU, but is nevertheless known to per-
form well in practice. An improvement to the algorithm of Blum and Mansour [2007] was obtained
by Yang and Mohri [2017], but requires a further assumption on the minimum probability given to
every expert; it is unclear whether such an assumption can be guaranteed in general.

The above discussion concerns algorithms operating with full feedback. In the bandit feedback,
Ito [2020] came up with a way to update a single column in each iteration, but it still requires
computing a stationary distribution in every iteration. Ito [2020] claims that this can be achieved
in time almost quadratic time through the work of Cohen et al. [2017]; however, the complexity
of the algorithm of Cohen et al. [2017] depends on the condition number of the Markov chain,
and it is unclear how to bound that in our setting. On the other hand, algorithms in the bandit
setting do not require access to an expectation oracle. This can be beneficial in certain settings,
but our discussion here focuses on the regime where the expectation oracle does not dominate the
per-iteration complexity. We conjecture that Theorem C.7 can be generalized to the bandit setting,
in which case our improvement will also manifest in the regime where the cost of the expectation
oracle far outweighs the per-iteration complexity of Theorem C.7, but that is not within our scope in
this paper.
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than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The contribution of the paper is theoretical, and conforms in every respect
with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The contribution of the paper is theoretical, and we do not foresee any societal
impact.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
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image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]
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• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.
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should describe how they avoided releasing unsafe images.
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not require this, but we encourage authors to take this into account and make a best
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-
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curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
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• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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