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Abstract

Euphemisms are found across the world’s lan-001
guages, making them a universal linguistic002
phenomenon. As such, euphemistic data may003
have useful properties for computational tasks004
across languages. In this study, we explore this005
premise by training a multilingual transformer006
model (XLM-RoBERTa) to disambiguate po-007
tentially euphemistic terms (PETs) in multilin-008
gual and cross-lingual settings. In line with cur-009
rent trends, we demonstrate that zero-shot learn-010
ing across languages takes place. We also show011
cases where multilingual models perform better012
on the task compared to monolingual models013
by a statistically significant margin, indicating014
that multilingual data presents additional oppor-015
tunities for models to learn about cross-lingual,016
computational properties of euphemisms. In a017
follow-up analysis, we focus on universal eu-018
phemistic "categories" such as death and bodily019
functions among others. We test to see whether020
cross-lingual data of the same domain is more021
important than within-language data of other022
domains to further understand the nature of the023
cross-lingual transfer.024

1 Introduction025

Euphemisms are a linguistic device used to soften026

or neutralize language that may otherwise be harsh027

or awkward to state directly (e.g. "between jobs"028

instead of "unemployed", "late" instead of "dead",029

"collateral damage" instead of "war-related civilian030

deaths"). By acting as alternative words or phrases,031

euphemisms are used daily to maintain politeness,032

mitigate discomfort, or conceal the truth. While033

they are culturally-dependent, the need to discuss034

sensitive topics in a non-offensive way is universal,035

suggesting similarities in the way euphemisms are036

used across languages and cultures.037

This study explores whether deep learning mod-038

els take advantage of such similarities when pro-039

cessing euphemisms. We use the multilingual040

transformer model XLM-RoBERTa-base (Conneau041

et al., 2020), or "XLM-R", as our deep learning 042

model, and work with four languages (Mandarin 043

Chinese, American English, Spanish, and Yorùbá) 044

that encompass a diverse range of linguistic and 045

cultural backgrounds. In our experiments, we focus 046

on the euphemism disambiguation task, in which 047

potentially euphemistic terms (PETs) are classified 048

as euphemistic (1) or not (0) in a given context 049

(e.g., "let go" may mean "fired" in some contexts, 050

but not all in other contexts). Models are trained on 051

labeled data from a single, or multiple languages, 052

and evaluated separately on all four languages. 053

Our contributions are as follows: (1) We aug- 054

ment existing Chinese and Spanish datasets (Lee 055

et al., 2023) and perform additional analyses (Sec- 056

tion 3). (2) We run classification experiments and 057

find cases of cross-lingual transfer (i.e. a model 058

trained on one language can classify instances in 059

another language), as well as an overall perfor- 060

mance improvement when training models on mul- 061

tiple languages versus one (Section 4). (3) We per- 062

form a follow-up experiment in which we find signs 063

that the cross-lingual transfer may be related to eu- 064

phemistic category (Section 5). These results sug- 065

gest that XLM-R picks up on "knowledge" about 066

euphemisms which it can not only transfer, but also 067

synergize across languages. 068

2 Related Work 069

In recent years, there has been growing interest 070

in computational approaches to euphemism detec- 071

tion in the NLP community. Felt and Riloff (2020) 072

introduced the recognition of euphemisms and dys- 073

phemisms using NLP, generating near-synonym 074

phrases for sensitive topics. Zhu et al. (2021) pro- 075

posed euphemism detection and identification tasks 076

using masked language modeling with BERT. Ga- 077

vidia et al. (2022) created a corpus of potentially 078

euphemistic terms (PETs). Lee et al. (2022b) de- 079

veloped a linguistically driven approach for identi- 080

fying PETs using distributional similarities. BERT- 081
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Lang TotalEx EuphEx NonEuphEx TotPETs AmbPETs α

EN 1952 1383 569 129 58 0.415
ZH 2005 1484 521 110 36 0.635
ES 1861 1143 718 147 91 0.576
YO 1942 1281 661 129 62 0.679

Table 1: Statistics of multilingual datasets used for the euphemism disambiguation experiments.

based systems that participated in a shared task on082

euphemism disambiguation showed promise (Lee083

et al., 2022a). (Keh, 2022) experimented with clas-084

sifying PETs unseen during training. Lee et al.085

(2023) perform transformer-based euphemism dis-086

ambiguation experiments, exploring vagueness as087

one of the properties of euphemisms.088

Another existing work explored the multilingual089

and cross-lingual transfer capabilities of LLMs.090

(Choenni et al., 2023) found that multilingual091

LLMs rely on data from multiple languages to a092

large extent, learning both complementary and re-093

inforcing information. (Shode et al., 2023) found094

cases where transfer learning from out-of-language095

data in a particular domain performed better than096

same-language data in a different domain.097

3 Multilingual Corpus of Euphemisms098

For our data, we use the multilingual Mandarin099

Chinese (ZH), American English (EN), Spanish100

(ES), and Yorùbá (YO) euphemism datasets cre-101

ated by (Lee et al., 2023). In these datasets, text102

examples containing PETs are annotated by native103

speakers with a 0 or a 1 (i.e. a euphemistic or104

non-euphemistic usage of the PET). We modify the105

datasets to become similar to one another in two106

ways: Firstly, Yorùbá lacked "boundary tokens" to107

the left and right side of PETs, so we add them108

in where possible; for some examples (∼25%),109

the PET tokens were sometimes separated due to110

Yorùbá word order, so multiple pairs of "boundary111

tokens" were added for these examples. Secondly,112

to balance the number of examples in each lan-113

guage, we augmented the Mandarin Chinese and114

Spanish datasets. Using the guidelines from the115

original paper, native speakers added more PETs116

(40 for Chinese and 67 for Spanish) and examples117

(453 for Chinese and 900 for Spanish) to obtain the118

final euphemism corpus used for this paper. See119

Table 1 for the updated metrics.120

As can be seen, while the number of exam-121

ples are fairly balanced across languages, there122

are still two main differences. One is the num-123

ber of ambiguous PETs; i.e. PETs which have 124

both euphemistic and non-euphemistic usages in 125

the dataset. Higher numbers of ambiguous PETs 126

and examples may contribute to a higher "degree of 127

difficulty" for classification. Two, we additionally 128

contribute interrater agreement metrics for the Man- 129

darin Chinese, Spanish, and Yorùbá datasets. We 130

recruited 2 native speakers to annotate a random 131

subset of 500 examples from each dataset and then 132

compute Krippendorf’s alpha (Hayes and Krippen- 133

dorff, 2007), α, following the example of (Gavidia 134

et al., 2022) who obtained an alpha of 0.415 for 135

the English dataset. The results can be found in the 136

last column Table 1. We believe these two differ- 137

ences may correlate with the "degree of difficulty" 138

in classifying each dataset. 139

4 Multilingual and Cross-lingual 140

Experiments 141

4.1 Methodology 142

For our experiments, we use XLM-R-base, a multi- 143

lingual transformer model pre-trained on multiple 144

languages, including Mandarin (ZH), English (EN), 145

and Spanish (ES), but not Yorùbá (YO) (Conneau 146

et al., 2020). We experiment with fine-tuning XLM- 147

R on euphemism data from multiple languages 148

(when multiple languages are present in the training 149

data, we refer to this as "multilingual") versus one 150

("monolingual"). For each test run, we randomly 151

sample 1800 examples from each language and use 152

a 80-10-10 split to create training, validation, and 153

test sets. We create the multilingual train/val sets 154

by combining and shuffling the train/val data from 155

multiple languages (e.g., the training set for the 4- 156

language setting consists of 5760 examples– 1440 157

of each language). The test sets are held constant 158

across all settings so that we can observe the impact 159

of including multiple languages during training. 160

Our non-default fine-tuning parameters were: 161

batch size=16, learning rate=1e-5, max epochs=30, 162

and early stopping patience=5. We performed 30 163

test runs for each training setting (e.g. ZH, ES+EN, 164

etc), each time using the best trained model (be- 165
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fore early stopping) for inference on the test set;166

using 4 NVIDIA Tesla A100 GPUs, fine-tuning167

30 times took approximately 6 hours for each lan-168

guage present in the training set.169

4.2 Results170

The results of these experiments can be found in171

Table 2. The values shown are averaged Macro-172

F1 scores across the 30 runs. Note that for each173

cell in the table, the row shows the training lan-174

guage(s) ("All" refers to training on all four lan-175

guages), while the column shows the test language.176

For example, the averaged Macro-F1 score when177

training on Chinese data but testing on English data178

was 0.653. A majority-class baseline is provided.179

Additionally, the colored cells indicate cases where180

the language of the test set appeared in the training181

set.182

Firstly, as expected, the performances of the183

monolingual models tested on the same language184

(green cells) are significantly better than the base-185

line. We noted the unusually high performance of186

Chinese (0.895), which was also the dataset with187

the smallest range of PETs. So, we followed up by188

repeating the monolingual fine-tuning experiments,189

but restricting the data in each language to cover ex-190

actly 52 PETs spanning 815 examples. The results,191

shown in Appendix A, show much more balanced192

results, suggesting that performance is impacted by193

the range of PETs present in the data.194

Secondly, we observed an extent of zero-shot,195

cross-lingual learning taking place with the mono-196

lingual models (white cells). For instance, the197

English-on-Chinese score was 0.607, and Spanish-198

on-English was 0.639. In general, there appeared199

to be similar interactions between Chinese, English,200

and Spanish, with scores ranging from 0.535-0.653.201

By comparison, the monolingual models performed202

poorly on Yorùbá, with scores ranging from 0.300-203

0.384. The monolingual Yorùbá models, too, did204

not perform very well on the other languages, al-205

though not as poorly (0.383-0.417). This suggests206

something transferable between Chinese, English,207

and Spanish, but not as much for Yorùbá, possibly208

due to language-specific factors (i.e. Yorùbá eu-209

phemisms differ significantly from the others) or210

the fact that XLM-R was not pre-trained on Yorùbá211

data. Interestingly, we observed slightly higher212

cross-lingual scores when replicating the experi-213

ments at a smaller number of examples (1500), the214

results of which are shown in Appendix B. Fur-215

ther testing is needed to investigate the relationship 216

between data size and cross-lingual performance. 217

Lastly, we observed that the performances of the 218

multilingual models were generally higher than 219

those of the monolingual models. The boldfaced 220

values in each column indicate the best setting for 221

that test language, which was always multilingual. 222

We observe more specific trends in the "bilingual" 223

(blue) and "trilingual" (purple) results: for Chinese, 224

the English data contributes the most, and vice 225

versa; Spanish benefits from all other languages, 226

but more so Chinese and English; Yorùbá mostly 227

benefits from English. For each test language, we 228

assess the statistical significance between the best 229

(boldfaced) multilingual scores and the monolin- 230

gual scores by computing the paired t-test value 231

(p=0.05) across the 30 test runs. The resulting 232

t-test values are as follows: Chinese, 0.0011; En- 233

glish, 6e-7; Spanish, 0.0047; Yorùbá, 0.074. From 234

this, we conclude that the effect of including data 235

from all 4 languages was statistically significant 236

for Chinese, English and Spanish, but not Yorùbá. 237

Furthermore, the varying "contributions" across dif- 238

ferent language combinations suggests that specific 239

language relationships come into play when per- 240

forming multilingual euphemism disambiguation. 241

Train
Test ZH EN ES YO

Baseline 0.426 0.416 0.381 0.394
ZH 0.879 0.653 0.535 0.300
EN 0.607 0.765 0.567 0.381
ES 0.613 0.639 0.752 0.384
YO 0.417 0.407 0.383 0.790
ZH+EN 0.897 0.804 0.508 0.397
EN+ES 0.650 0.781 0.764 0.416
ES+YO 0.605 0.630 0.758 0.794
ZH+ES 0.884 0.670 0.764 0.377
EN+YO 0.616 0.772 0.602 0.802
ZH+YO 0.881 0.646 0.585 0.795
ZH+EN+ES 0.898 0.805 0.775 0.389
EN+ES+YO 0.647 0.783 0.772 0.791
ZH+EN+YO 0.899 0.801 0.555 0.794
ZH+ES+YO 0.885 0.664 0.778 0.778
All 0.895 0.792 0.776 0.793

Table 2: Average Macro-F1s for the multilingual and
cross-lingual experiments
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5 Experiments with Euphemistic242

Category243

Motivated by the question "what is the nature of244

the cross-lingual knowledge being learned about245

euphemisms?", we ran a follow-up experiment246

in which we looked at specific euphemistic cat-247

egories1. We created test sets of examples in248

which we isolate a single language and a sin-249

gle category, out of a possible 4 categories that250

had a substantial number of examples in each251

dataset: physical/mental attributes (ATTR), bod-252

ily functions/parts (BODY), death (DEATH), and253

sexual activity (SEX). Then, we compare two254

different training settings: (1) training only on255

same-category, but out-of-language examples ("SC-256

OOL"), and (2) training only on same-language,257

but out-of-category examples ("SL-OOC"). For all258

language-category scenarios, there were always259

fewer SC-OOL examples than SL-OOC, so we260

used the maximum number of SC-OOL examples261

available, down-sampled for the SL-OOC exam-262

ples, and used a random 90-10 split to create train-263

ing and validation sets. More detailed metrics re-264

garding the number of examples can be found in265

Appendix C. We use the same parameters as in 4.1,266

except we increased the early stopping patience267

to 10 (due to having smaller datasets) and only268

perform 10 runs for each setting.269

In Table 3, we show the differences in average270

Macro-F1 scores between the SC-OOL and SL-271

OOC settings. That is, positive values (green) in-272

dicate that the SC-OOL setting performed better,273

whereas negative values (red) indicate the oppo-274

site; e.g. for the test set containing Chinese ATTR275

euphemisms, training on English, Spanish, and276

Yorùbá ATTR euphemisms yielded an average F1277

of 0.088 points higher than when training on Chi-278

nese euphemisms from other categories. We ob-279

served that SC-OOL examples performed better280

than SL-OOC in 7 out of the 16 language-category281

scenarios. While this is interesting, since we would282

expect that training on same-language examples283

to generally perform better, there are no obvious284

patterns with either language or category (except285

perhaps that Spanish did not generally benefit from286

SC-OOL examples). Despite this, the results sug-287

gest the overall possibility that examples which288

contribute cross-lingual understanding are related289

by semantic category. More testing, particularly290

with specific language combinations and categories,291

1All PETs were assigned categories in the datasets.

may reveal more definitive cross-lingual results. 292

Additionally, the full tables of Macro-F1 scores 293

for each setting (which can be found in Appendix 294

D) show that the overall scores were low. This 295

indicates the overall challenge of classifying ex- 296

amples with PETs not seen during training, even 297

to the extent that out-of-language examples could 298

outperform within-language examples.

Lang ATTR BODY DEATH SEX
ZH +0.088 +0.083 -0.026 -0.094
EN -0.038 +0.034 -0.288 +0.069
ES -0.007 -0.303 -0.019 -0.097
YO +0.12 +0.042 +0.011 -0.094

Table 3: Differences in Macro-F1 scores on category-
specific test sets between the "SC-OOL" and "SL-OOC"
settings.

299

6 Conclusions and Future Work 300

In this study, we investigate the multilingual and 301

cross-lingual capabilities of multilingual transform- 302

ers for euphemism disambiguation. We found 303

cases of zero-shot, cross-lingual learning, and that 304

fine-tuning on multiple languages yields statisti- 305

cally significant improvements for Chinese, En- 306

glish, and Spanish. This indicates that multilingual 307

approaches may work as a method of data aug- 308

mentation, which would be particularly useful for 309

data-scarce figurative language tasks (especially for 310

low-resource languages). The results also suggest 311

that some of these patterns are language-specific, 312

and dependent on training settings. More work is 313

needed to test other training parameters (e.g. num- 314

ber of examples) and languages from a variety of 315

families. 316

While it is hard to answer the question "what 317

exactly is being learned about euphemisms cross- 318

lingually?", we found preliminary evidence that 319

part of the answer may relate to euphemisms’ se- 320

mantic category. Exploring this question further is 321

left to future work, which may be important from 322

both a linguistic and computational perspective. 323

Limitations 324

While the terms "Chinese" and "English" were 325

sometimes used for brevity, the Chinese data 326

used in this study only included Mandarin data, 327

while the English data only includes American En- 328

glish. (However, the Spanish and Yorùbá data are 329
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from a variety of dialects.) Additionally, XLM-330

R is taken to be representative of other trans-331

former/multilingual deep learning models, and the332

impact of XLM-R’s pre-training scheme was not333

investigated. We did not conduct a thorough search334

for hyperparameters (which were selected mostly335

based on prior work), and limited computational336

resources prevented experimentation with other337

(larger) multilingual language models, such as338

XLM-R-large.339
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The authors foresee no ethical concerns with the341
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A Experiments Balanced for PETs396

The results below show the monolingual models’ performances when the number of unique PETs in397

the sampled data for each setting was held constant (52 PETs spanning 815 examples). Fine-tuning398

parameters were the same, except for early stopping patience, which was set to 8 (instead of 5) due to399

the smaller datasets sometimes needing more epochs to converge. 30 runs were still performed for each400

setting. As can be seen, the performance of the monolingual Chinese (ZH) model on the Chinese test sets401

is now more similar to the others, though there are still differences between languages which were seen in402

the main experiments (e.g. Spanish-on-Spanish performance being the lowest; Chinese and Yorùbá being403

the highest).404

Train
Test ZH EN ES YO

ZH 0.749 0.594 0.611 0.363
EN 0.548 0.727 0.589 0.370
ES 0.561 0.615 0.710 0.445
YO 0.365 0.353 0.358 0.752

Table 4: Average Macro-F1s for the monolingual models when examples are constrained to the same number of
PETs in the data

B Experiments with a Smaller Number of Examples (1500)405

The results below show the monolingual models’ performances when a fewer number of examples were406

used for train-val-test splits than the main experiments (1500 vs. 1800). Fine-tuning parameters were the407

same, and 30 runs were performed for each setting. While the monolingual models’ performances on the408

same languages (green cells) were generally lower, some of the zero-shot, cross-lingual performances409

(white cells) were higher than those in Table 2.410

Train
Test ZH EN ES YO

ZH 0.847 0.664 0.571 0.338
EN 0.615 0.756 0.609 0.420
ES 0.600 0.628 0.716 0.398
YO 0.411 0.417 0.401 0.767

Table 5: Average Macro-F1s for the monolingual models using 1500 examples per test
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C Numbers of Examples in the Euphemistic Category Experiments 411

The tables below show the number of examples used in the test sets for each language/category setting in 412

the follow-up study on euphemistic categories. 413

Lang ATTR BODY DEATH SEX
ZH 157 324 451 501
EN 573 83 348 89
SP 311 258 105 111
YO 151 584 459 637

Table 6: Metrics for the Euphemistic Category Experiment Test Sets

The tables below show the number of examples sampled for the training and validation sets for each 414

language/category setting. 415

Lang ATTR BODY DEATH SEX
ZH 1035 925 912 837
EN 619 1166 1015 1249
ES 881 991 1258 1227
YO 1041 665 904 701

Table 7: Metrics for Euphemistic Category Experiments Train/Val Sets

D Actual Performances of the SC-OOL and SL-OOC Tests from the Euphemistic 416

Category Experiments 417

The averaged F1s for each language/category scenario using the SC-OOL training sets are shown below. 418

Lang ATTR BODY DEATH SEX
ZH 0.598 0.588 0.564 0.420
EN 0.602 0.438 0.556 0.650
ES 0.541 0.431 0.458 0.495
YO 0.489 0.560 0.432 0.484

Table 8: Average Macro-F1 Scores for the "SC-OOL" experiments

The averaged F1s for each language/category scenario using the SL-OOC training sets are shown below. 419

Lang ATTR BODY DEATH SEX
ZH 0.510 0.505 0.591 0.515
EN 0.640 0.404 0.650 0.582
ES 0.548 0.733 0.477 0.592
YO 0.367 0.518 0.421 0.578

Table 9: Average Macro-F1 Scores for the "SL-OOC" experiments
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