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ABSTRACT

Cryo-electron microscopy (cryo-EM) allows for the high-resolution reconstruc-
tion of 3D structures of proteins and other biomolecules. Successful reconstruc-
tion of both shape and movement greatly helps understand the fundamental pro-
cesses of life. However, it is still challenging to reconstruct the continuous mo-
tions of 3D structures from hundreds of thousands of noisy and randomly oriented
2D cryo-EM images. Recent advancements use Fourier domain coordinate-based
neural networks to continuously model 3D conformations, yet they often strug-
gle to capture local flexible regions accurately. We propose CryoFormer, a new
approach for continuous heterogeneous cryo-EM reconstruction. Our approach
leverages an implicit feature volume directly in the real domain as the 3D rep-
resentation. We further introduce a novel query-based deformation transformer
decoder to improve the reconstruction quality. Our approach is capable of refining
pre-computed pose estimations and locating flexible regions. In experiments, our
method outperforms current approaches on three public datasets (1 synthetic and
2 experimental) and a new synthetic dataset of PEDV spike protein. The code and
new synthetic dataset will be released for better reproducibility of our results.

1 INTRODUCTION

Dynamic objects as giant as planets and as minute as proteins constitute our physical world and pro-
duce nearly infinite possibilities of life forms. Their 3D shape, appearance, and movements reflect
the fundamental law of nature. Conventional computer vision techniques combine specialized imag-
ing apparatus such as dome or camera arrays with tailored reconstruction algorithms (SfM (Schon-
berger & Frahm| |2016) and most recently NeRF (Mildenhall et al.l 2020)) to capture and model
the fine-grained 3D dynamic entities at an object level. Similar approaches have been adopted to
recover shape and motion at a micro-scale level. In particular, to computationally determine protein
structures, cryo-electron microscopy (cryo-EM) flash-freezes a purified solution that has hundreds
of thousands of particles of the target protein in a thin layer of vitreous ice. In a cryo-EM experi-
ment, an electron gun generates a high-energy electron beam that interacts with the sample, and a
detector captures scattered electrons during a brief duration, resulting in a 2D projection image that
contains many particles. Given projection images, the single particle analysis (SPA) technique iter-
atively optimizes for recovering a high-resolution 3D protein structure (Kiihlbrandt, 2014} Nogales)
2016; Renaud et al.,|2018). Applications are numerous, ranging from revealing virus fundamental
processes (Yao et al.,|2020) in biodynamics to unveiling drug-protein interactions (Hua et al.| 2020)
in drug development.

Compared with conventional shape reconstruction of objects of macro scales, cryo-EM reconstruc-
tion is particularly challenging. First, the images of particles are in the low signal-to-noise ratio
(SNR) with unknown orientations. Such low SNR typically affects orientation estimation due to
the severe corruption of the structural signal of particles. In addition, the flexible region of pro-
teins induces conformational heterogeneity that disrupts orientation estimation and is harder to re-
construct. Conventional software packages (Scheres| 2012} [Punjani et al., 2017)) only reconstruct
a small discrete set of conformations to reduce the complexity. However, such approaches of-
ten yield low-resolution reconstructions of flexible regions without guidance from human experts.
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Recently, neural approaches exploit
coordinate-based  representations  for
heterogeneous cryo-EM  reconstruc-
tion (Donnat et al.| [2022; |Zhong et al.|
2021ajb; [Levy et al., 2022bj; Kimanius
et al| 2022). To reduce the compu-
tational cost of image projection via
the Fourier-slice theorem (Bracewell,
1956), they perform a 3D Fourier re-
construction. A downside, however, is Noisy Images
that it is counter-intuitive to model local

density changes between conformations

in the Fourier domain. In contrast, Figure 1: Overview. With noisy images and pre-
3DFlex (Punjani & Fleet, 2021) performs computed poses as inputs, our method continuously re-
reconstruction in the real domain where constructs the heterogeneous structures of proteins. It
motion is more naturally parameterized also enables the identification of local flexible motions
and more interpretable, but it requires an  through the analysis of 3D attention values.

additional 3D canonical map as input.

Heterogeneous Flexible Region
Structures Highlights

In this paper, we propose CryoFormer for high-resolution continuous heterogeneous cryo-EM re-
construction (Fig.[T). Different from previous Fourier domain approaches (Zhong et al.| 2021b} Levy
et al.|2022a)), CryoFormer is conducted in the real domain to facilitate the modeling of local flexi-
ble regions. Taking 2D particle images as inputs, our orientation encoder and deformation encoder
first extract orientation representations and deformation features, respectively. Notably, to further
disentangle orientation and conformation, we use pre-computed pose estimations to pre-train the
orientation encoder. Next, we build an implicit feature volume in the real domain as the core of our
approach to achieve higher resolution and recover continuous conformational states. Furthermore,
we propose a novel query-based transformer decoder to obtain continuous heterogeneous density
volume by integrating 3D spatial features with conformational features. The transformer-based de-
coder not only can model fine-grained structures but also supports highlighting spatial local changes
for interpretability.

In addition, we present a new synthetic dataset of porcine epidemic diarrhea virus (PEDV) trimeric
spike protein, which is a primary target for vaccine development and antigen analysis. Its dynamic
movements from up to down in the domain 0 (DO) region modulate the enteric tropism of PEDV via
binding to sialic acids (SAs) on the surface of enterocytes. We validate CryoFormer on the PEDV
spike protein synthetic dataset and three existing datasets. Our approach outperforms the state-
of-the-art methods including popular traditional software (Punjani et al.| 2017} [Punjani & Fleet,
2021) as well as recent neural approaches (Zhong et al., [2021a} |Kimanius et al., 2022) in terms
of spatial resolution on both synthetic and experimental datasets. Specifically, our method reveals
dynamic regions of biological structures of the PEDV spike protein in our synthetic experiment,
which implies functional areas but are hardly recovered by other methods. We will release our code
and PEDV spike protein dataset.

2 RELATED WORK

Conventional Cryo-EM Reconstruction. Traditional cryo-EM reconstruction involves the creation
of a low-resolution initial model (Leschziner & Nogales|, 2006} Punjani et al.,|2017) followed by the
iterative refinement (Scheres}, 2012} |Punjani et al., |2017; |Hohn et al., 2007). These algorithms per-
form reconstruction in the Fourier domain since this can reduce computational cost via Fourier-slice
Theorem (Bracewell, [1956). When tackling structural heterogeneity, they classify conformational
states into several discrete states (Scheres| 2010; |[Lyumkis et al.l [2013). While this paradigm is
sufficient when the structure has only a small number of discrete conformations, it is nearly impos-
sible to individually reconstruct every state of a protein with continuous conformational changes in
a flexible region (Plaschka et al., 2017).

Dynamic Neural Representations. Neural Radiance Fields (NeRFs) (Mildenhall et al., [2020)
and their subsequent variants (Miiller et al.l 2022} [Kerbl et al.l [2023)) have achieved impressive
results in novel view synthesis. Numerous studies have introduced extensions of NeRF for dy-
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Figure 2: Pipeline of CryoFormer. 1) Given an input image, our orientation encoder and deforma-
tion encoder first extract orientation representations and deformation features. We use pre-computed
pose estimations to pre-train the orientation encoder. 2) We convert the orientation representation
into a pose estimation and transformed coordinates are fed into our implicit neural spatial feature
volume to produce a spatial feature. 3) The spatial feature and the deformation image feature then
interact in the deformation transformer decoder to output the density prediction.

namic scenes (Xian et al., 2021} [Li et al, 2021} 2022} [Park et al., 2021b; [Yuan et al., 2021} [Fang
et al., 2022; Song et al., 2023). Most of these dynamic neural representations either construct a
static canonical field and use a deformation field to warp this to the arbitrary timesteps (Pumarola
et al. 2021} [Tretschk et al., |2021; Zhang et al.l 2021} |Park et al., [2021a), or represent the scene
using a 4D space-time grid representation, often with planar decomposition or hash functions for
efficiency (Shao et al.|[2023; |Attal et al.| 2023} |/Cao & Johnson, [2023}; [Fridovich-Keil et al.| 2023).

Neural Representations for Cryo-EM Reconstruction. Recent work has widely adopted neural
representations for cryo-EM reconstruction (Zhong et al.,2021a; Levy et al.,2022ajb; Shekarforoush
et al., |2022). CryoDRGN (Zhong et al., [2021a)) first proposed a VAE architecture to encode con-
formational states from images and decode it by an coordinated-based MLP that represents the 3D
Fourier volume. Such a design can model continuous heterogeneity of protein and achieve higher
spatial resolution compared with traditional methods. To reduce the computational cost of large
MLPs, [Kimanius et al.| (2022) uses a voxel grid representation. To enable an end-to-end recon-
struction, there are some ab-initio neural methods (Zhong et al.| 2021b; [Levy et al.| 2022azbj; |Chen
et al., [2023) directly reconstruct protein from images without requiring pre-computed poses from
traditional methods. CryoFIRE (Levy et al., 2022b)) attempts to use an encoder to estimate poses
from input image by minimizing reconstruction loss directly, but the performance is still limited due
to the ambiguity of conformation and orientation in the extremely noisy image. To model the 3D
local motion, |Punjani & Fleet (2021]) and |(Chen & Ludtke|(2021) perform reconstruction in the real
domain by using a flow field to model the structural motion, while they require a canonical structure
as input.

3 METHOD

We propose CryoFormer, a novel approach that leverages a real domain implicit spatial feature
volume coupled with a transformer-based network architecture for continuous heterogeneous cryo-
EM reconstruction. In this section, we begin by laying out the cryo-EM image formation model
in Sec.[3.1} We then introduce the procedural framework of CryoFormer (Fig. [2), encompassing
orientation and deformation encoders (Sec. , an implicit spatial feature volume Vg (Sec. and
a query-based deformation transformer (Se%, with the training scheme described in Se%

In this section, we use Attention to denote the scaled dot-product %ttention, which operates as

Attention(Q, K, V') = softmax (Q\/Ké) Vv, (1
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where Q, K,V € RNX © are called the query, key, and value matrices; N and C' indicate the token
number and the hidden dimension.

3.1 CRYO-EM IMAGE FORMATION MODEL

In the cryo-EM image formation model, the 3D biological structure is represented as a function
o : R3 = RT, which expresses the Coulomb potential induced by the atoms. To recover the
potential function, the probing electron beam interacts with the electrostatic potential, resulting in
projections {I;}1<;<y,. Specifically, each projection can be expressed as

Ia,y) = g+ / cRTx+t)dz e, x=(ry.2) @)
R

where R € SO(3) is an orientation representing the 3D rotation of the molecule and t = (¢, ,,0)"
is an in-plane translation corresponding to an offset between the center of projected particles and
center of the image. The projection is, by convention, assumed to be along the z-direction after
rotation. The image signal is convolved with g, a pre-estimated point spread function (PSF) for the
microscope, before being corrupted with the noise € and registered on a discrete grid of size D x D,
where D is the size of the image along one dimension. We give a more detailed formulation for
cryo-EM reconstruction in Sec. [B]

3.2 IMAGE ENCODING FOR ORIENTATION AND DEFORMATION ESTIMATION

Given a set of input projections and their initial pose estimations, we extract latent representations for
their orientation and conformational states using image encoders. Following (Zhong et al.| |2021aj
2020) we adopt MLPs for both encoders.

Orientation Encoding. Given an input image I, our orientation encoder predicts its orientation rep-
resentation F; € R®. For optimization purposes, we represent rotations within the 6-dimensional
space S? x S? (Zhou et al., 2019) and translations with the remaining 2 dimensions. We map
each image’s orientation representation Fp into a pose estimation (ﬁ = (f{, f). In line with cry-
oDRGN (Zhong et al., [2021a; 2020), for each image I, we compute an initial pose estimation
oo = (Ryo,to) (via off-the-shelf softwares (Scheres, 2012} [Punjani et al., 2017)). While these
initial estimations are not perfectly precise, particularly for cases with substantial motion, we utilize
them as a guidance for our orientation encoder by pre-training it using

n
1l
‘Cpose = Z(g HRz - RO,i
i=1
During the main stage of training, the orientation encoder estimates each image’s pose to transform
the 3D structure representation to minimize image loss (Eqn. [6). The gradient of the image loss is
back-propagated to refine the pose encoder.

1,
LT 5 llB = tos]l). 3)

Deformation Encoding. The deformation encoder maps a projection I into a latent embedding for
its conformational state, denoted as Fp,. Fp subsequently interacts with 3D spatial features within
the query-based deformation transformer decoder to produce the density estimation &. In this way,
our approach models the structural heterogeneity and produces the density estimation conditioned
on the conformational state of each input image.

3.3 IMPLICIT SPATIAL FEATURE VOLUME IN THE REAL DOMAIN

In contrast with central slice sampling for Fourier domain reconstruction, real domain reconstruction
requires sampling along z-direction for estimating each pixel. Consequently, leveraging a NeRF-
like global coordinate-based MLP adopted by Zhong et al.[|(2021a) and [Levy et al. (2022aib) for
real-domain cryo-EM reconstruction becomes computationally prohibitive. We instead adopt multi-
resolution hash grid encoding (Miiller et al., [2022) which has been used for real-time NeRF ren-
dering as our 3D representation. We derive the high-dimensional spatial feature at each coordinate
from it to better preserve the high-frequency details with highly reduced computational cost.

We use a hash grid Vg parameterized by © as our 3D representation. For any given input coordinate
x = (x,y,2) ", the high-dimensional spatial feature is represented as

Fs =Ve(x;0). “4)
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Figure 3: Visualization of PEDV spike protein dataset. On the left in each pair are our manually
modified atomic models (PDB files) in their intermediate states; on the right are their corresponding
converted density fields (MRC files).

This feature encapsulates the local structural information of the specified input location. It later
interacts with deformation features Fp, in the deformation transformer decoder to yield the local
density estimation for the coordinate conditioned on Fp.

3.4 QUERY-BASED DEFORMATION TRANSFORMER ARCHITECTURE

To generate the final density estimation & at an arbitrary coordinate x, we introduce a novel query-
based deformation transformer decoder, where spatial features Fg from the implicit feature vol-
ume interact with conformational state representation Fp. We denote randomly initialized learnable
structure queries as Q@ € RY*C where N is the number of queries and C' is the number of di-
mensions of each query. Spatial features and conformational states have shapes that match the
dimensions of structure queries, specifically, Fs, Fp € RV*C,

Deformation-aware Decoder Block. Given an image with its conformational state Fp, the struc-
ture queries @ first interact with Fp in the deformation-aware decoder blocks. Each deformation-
aware block sequentially consists of an inter-query self-attention block (Attention(Q, Q, Q)), a
deformation-aware cross-attention layer, and a feed-forward network (FFN), where the deformation-
aware cross-attention layer is computed as Attention(Q, Fp, Q). We stack three decoder blocks for
fusing deformation cues into structure queries.

Spatial Density Estimation. To estimate the density value at a specific coordinate, structure queries
@ then interact with the spatial feature Fy at this coordinate by spatial cross attention, computed as
Attention(Q, Fs, Q). Finally, an FFN maps the queries to the estimated density &.

3.5 TRAINING SCHEME

To train our system, we first calculate the projected pixel values as

I(z,y) = Q*/ (RTx+t)dz+e, x=(2,9,2)" 5)
R

where ¢ is the point spread function (PSF) of the projected image, assumed to be known from
contrast transfer function (CTF) correction (Rohou & Grigorieff], 2015)) in the image pre-processing
stage. The loss function for training is to measure the squared error between the observed images

{L;}1<i<n and the predicted images {ii}lgignl

c-y
i=1

~ (12
L1 . (6)
2

4 PEDYV SPIKE PROTEIN DATASET

To evaluate CryoFormer and other heterogeneous cryo-EM reconstruction algorithms, we create a
synthetic dataset of the spike protein of the porcine epidemic diarrhea virus (PEDV). The spike
protein is a homotrimer, with each monomer containing a domain 0 (D0) region that modulates the
enteric tropism of PEDV by binding to sialic acids (SAs) on the surface of enterocytes
and can exist in both “up” and “down” states. [Huang et al.] (2022) determined the atomic
coordinates and deposited them in the Protein Data Bank (PDB) (Berman et al., 2000) under the
accession codes 7W6M and 7W73.

We utilized Pymol (DeLano et al) [2002) to manually supplement the reasonable process of the
movement of the DO region in the format of intermediate atomic models (Fig. El (a)). We converted
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Figure 4: Heterogenous reconstruction on PEDV spike dataset. Left: Ground truth volume and
reconstructed 3D volumes with SNR = 0.01 and SNR = 0.001. Right: Curves of the Fourier Shell
Correlation (FSC) to the ground truth volumes. Our method produces a more refined reconstruction
than both cryoDRGN and SFBP, especially in better recovery of the flexible DO region across both
noise scale levels. In addition, our approach yields the highest FSC curves.

these atomic models (PDB files) to discrete potential maps (MRC files) using pdb2mrc module from
EMAN?2 2007), which were then projected into 2D images (Fig.[3|(b)). We then simulate
the image formation model as in Eqn. [2] at uniformly sampled rotations and in-plane translations.
On clean synthetic images, we add a zero-mean white Gaussian noise and apply the PSF. We adjust
the noise scale to produce the desired SNR such as 0.1,0.01 and 0.001. We will make the atomic
models, density maps, and simulated projections publicly available.

5 RESULTS

In this section, we evaluate the performance of CryoFormer for homogeneous and heterogeneous
cryo-EM reconstruction on two synthetic and two real experimental datasets and compare it with the
state-of-the-art approaches. We also validate the effectiveness of our building components. Please
also kindly refer to our appendix and supplementary video.

Implementation Details We adopt MLPs that contain 10 hidden layers of width 128 with ReLU
activations for both the orientation encoder and the deformation encoder. For the implicit spatial
feature volume, we utilized a hash grid with 16 levels, where the number of features in each level
is 2, the hashmap size is 2'°, and the base resolution is 16. This hash grid is followed by a tiny
MLP with one layer and hidden dimension 16 to extract final spatial features. For the query-based
deformation transformer, we adopt N = 64 queries with C' = 64 dimensions. For synthetic datasets,
we use ground truth poses for all the methods. For real datasets, we use CryoSPARC
for initial pose estimation (following |[Zhong et al.[(2021a) and Kimanius et al.| (2022)). All
experiments including training and testing have been conducted on a single NVIDIA GeForce RTX
3090 Ti GPU.

Reconstruction Metrics. For quantitative evaluations, we employ the Fourier Shell Correlation
(FSC) curves, defined as the frequency correlation between two density maps (Harauz & van Heel,
11986)). A higher FSC curve indicates a better reconstruction result. For synthetic datasets, we com-
pute FSC between the reconstructions and the corresponding ground truths and take the average
if there are multiple conformational states. For real experimental datasets where the ground truth
volume is unavailable, we compute FSC between two half-maps, each reconstructed from half the
particle dataset. For EMPIAR-10180 (real data with multiple states), we conduct a principal com-
ponent analysis on the deformation latent space obtained from both reconstructions. By uniform
sampling along the principal component axes, we obtain corresponding volumes at the same con-
formational states and report the average of 10 FSC curves. We report the spatial resolutions of the
reconstructed volumes, defined as the inverse of the maximum frequency at which the FSC exceeds
a threshold (0.5 for synthetic datasets and 0.143 for experimental datasets).
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5.1 HETEROGENEOUS RECONSTRUCTION ON SYNTHETIC DATASETS

We first evaluate CryoFormer on two synthetic datasets: 1) the synthetic dataset proposed by (Zhong
et al.| [2021a)), generated from an atomic model of a protein complex (cryoDRGN synthetic dataset),
and 2) our proposed PEDV spike dataset. We compare CryoFormer against cryoDRGN (Zhong
et al.,2021a) (MLPs) and Sparse Fourier Backpropagation (SFBP) (Kimanius et al., 2022)) (voxel
grids) as representatives of coordinate-based methods.

CryoDRGN Synthetic Dataset. This dataset contains 50,000 images with size D = 128 (pixel
size = 1.0A) and SNR = 0.1(—10dB) from an atomic model of a protein complex containing a 1D
continuous motion (Zhong et al.| |2021a). We demonstrate that our reconstruction aligns quantita-
tively with the ground truth in Tab[l] Detailed results on the cryoDRGN synthetic dataset can be
found in Sec.[E.1l

PEDV Spike Protein Dataset.
To further investigate Cry-
oFormer’s capability, we use
the new PEDV spike protein

dataset  containing 50,000
image with size D = 128
(pixel size = 1.6A) to create

more challenging experiment
settings. These settings involve
more complicated 3D density
maps and lower signal-to-noise

CryoDRGN

Ground truth Ours

Figure 5: Qualitative comparison of the joint visualizations

ratios (SNR). We conducted
experiments in two different
levels of noise scale: SNR
= 0.01(—20dB) and SNR

of multiple reconstructed states on PEDV spike dataset. Our
approach recovers all the conformational states and captures fine-
grained details. In contrast, the baselines either exhibit lower
spatial resolution or fail to capture all the states.

= 0.001(—30dB). As is shown

in Fig.[d (left panel), our method CryoDRGN PEDV PEDV
produces a more refined recon- Synthetic (SNR=0.01) (SNR=0.001)
struction than cryoDRGN and  CryoDRGN 3.45 6.5 19.21

: g SFBP 2.18 6.06 20.8
SFBP, with a better-recovered Ours 503 Y 747

flexible DO region under both
levels of the noise scale. In
Fig. B we jointly visualize the
reconstructed states from vari-
ous approaches with SNR = 0.1
(=10dB). Our results not only
recover all the conformational states but also capture fine-grained details. In contrast, cryoDRGN’s
reconstructions exhibit lower spatial resolutions for details, and SFBP fails to capture all the
states. The quantitative results from Fig[] (right panel) and Tab/[T] indicate that our reconstruction
outperforms competing approaches in terms of the FSC curve and the spatial resolution, with an
exception in a low-frequency region where our curve marginally falls below that of SFBP.

Table 1: Quantitative comparison for heterogeneous recon-
struction on synthetic datasets. Spatial resolution (in A, ]) is
quantified by an FSC=0.5 threshold.

5.2 HOMOGENEOUS RECONSTRUCTION ON EXPERIMENTAL DATASETS

To demonstrate CryoFormer’s reconstruction performance on the real experimental data, we begin
with homogeneous reconstruction on an experimental dataset with the ignorable biological motions
from EMPIAR-10028 (Wong et al., 2014), consisting of 105,247 images of the 80S ribosome down-
sampled to D = 256 (pixel size = 1.88A). Our baselines include neural reconstruction approaches
cryoDRGN (Zhong et al., |2021a) and SFBP (Kimanius et al., [2022) as well as a traditional state-
of-the-art method cryoSPARC (Punjani et al| 2017). As illustrated in the left panel of Fig.[6] our
method manages to recover the shape and integrity of detailed structures like the a-helices (as seen
in the zoom-in region) in contrast to baseline approaches. The right panel of Fig. [6] shows that
our FSC curve consistently surpasses those of all the baselines, quantitatively demonstrating the
accuracy of our reconstructed details. For the resolution, defined as the inverse of the maximum
frequency at which the FSC exceeds 0.143, our approach achieves the theoretical maximum value
of 3.80A. This surpasses CryoDRGN (3.93A), SFBP (6.19A), and CryoSPARC (8.63A).
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Figure 6: Homogeneous cryo-EM reconstruction on EMPIAR-10028. Left: Reconstructed 3D
volumes. Right: Curves of FSC between half-maps. Our method recovers detailed structures, such
as the a-helices in zoom-in regions, more clearly than baselines and achieves the highest FSC curve.

EMPIAR-10180 FSC Curves
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Resolution

ours CryoDRGN
CryoSPARC CryoSPARC*
3DFlex 3DFlex*

CryoDRGN 3DFlex 3DFlex*

Figure 7: Heterogeneous cryo-EM reconstruction on EMPIAR-10180. Left: Reconstructed 3D
volumes. We display two states for each method. Right: Curves of FSC between two half-maps.
Our method manages to recover continuous motions with a clearer outline of the secondary structure
and achieve the highest FSC curve.

5.3 HETEROGENEOUS RECONSTRUCTION ON EXPERIMENTAL DATASETS

To test CryoFormer’s capability of heterogeneous reconstruction on real experimental datasets, we
evaluate it on EMPIAR-10180 (Plaschka et al [2017), consisting of 327,490 images of a pre-
catalytic spliceosome downsampled to D = 128 (pixel size = 4.2475A). We compare CryoFormer
with CryoDRGN (Zhong et all,[2021a)), CryoSPARC (Punjani et al., 2017) and 3DFlex. Notably,
we follow the original paper of 3DFlex to use CryoSPARC’s reconstructed volume as an input
canonical volume reference. As low-quality particles highly decrease CryoSPARC’s reconstruction
performance, we manually remove particles with lower quality after 2D classification to improve
subsequent reconstruction performance and denote this result as CryoSPARC?*. In addition, we de-
note 3DFlex with CryoSPARC*’s reconstruction as the input canonical reference map as 3DFlex*.
As shown on the left side of Fig.[7} CryoSPARC and thus 3DFlex fail to provide reasonable recon-
structions. Our method and CryoDRGN, CryoSPARC#*, and 3DFlex* manage to maintain structural
integrity during dynamic processes, while our reconstructions exhibit a clear outline of the sec-
ondary structure. Quantitatively, as depicted on the right side of Fig. [/} our method achieves the
highest FSC curve.

5.4 EVALUATION

To validate our architecture designs of CryoFormer, we conduct the following evaluations on our
synthetic PEDV spike protein dataset. We generate a dataset with 50,000 projections of the ground
truth volume with SNR = 0.1. We sample particle rotations uniformly from SO(3) space and
particle in-plane translations uniformly from [—10pix., 10pix.]? space. To simulate imperfect pre-
computed poses, we perturb the ground truth rotations using additive noise (A(0,0.11)), and the
translations using another uniform distribution [—10pix., 10pix.]2. We use the perturbed poses as
simulated initial coarse estimations for the pre-training of our orientation encoder. We report the
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Ori. Encoder Deformation Spatial Cross- . . Trans.
Refinement Encoder Attention Domain Resolution(]) Rot. Error(}) Error(])
v v Real 26.1 0.144 0.138
v v Real 8.7 0.118 0.128
v v Real 6.5 0.066 0.036
v v v Fourier 7.3 0.088 0.021
v v v Real 4.1 0.030 0.018

Table 2: Quantitative ablation study. Resolution is reported using the FSC = 0.5 criterion, in A.
Rotation error is the mean square Frobenius norm between predicted and ground truth. Translation
error is the mean L2-norm over the image side length.

resolution at the 0.5 cutoff in A and the errors of the final pose estimations. We conduct analysis on
the orientation encoder and the deformation encoder in Sec.

Orientation Encoder Refinement. We test a variant of our method without fine-tuning the orien-
tation encoder using image loss. As seen in Tab. 2] the refined orientation encoder fixes inaccurate
initial estimations, and without refinement, the model cannot reconstruct structures reasonably.

Deformation Encoder. We conducted experiments
with CryoFormer without the deformation encoder
for extracting deformation features. As evident from
Tab. 2] this variant cannot accurately account for
structural motions, resulting in a lower resolution.

Real Domain Representation. We conducted ex-
periments using the Fourier domain variant of our
method. As evident from Tab. [2| real domain re-
construction achieves significantly better resolutions
and lower pose errors.

Query-based Deformation Transformer Decoder.

To verify the effectiveness of our query-based defor-

mation transformer decoder, we experimented with ~Figure 8: Visualization of PEDV spike pro-
a variant of our method, replacing it with sim- tein attention map. We map the attention
ple concatenation and an MLP. Tab. [2] shows that Vvalue to the surface color of the reconstructed
the replacement will decrease CryoFormer’s per- volume of PEDV spike protein. The high-
formance. Furthermore, we can analyze attention light (high attention value) reflects its flexi-
maps to locate flexible regions. The 3D attention ble regions. Every row shows three different
maps are computed at each coordinate through spa- ~ states from the same perspective.

tial cross-attention between its spatial feature and

deformation-aware queries. For visualization, we map the attention value of one channel to the
surface color of the reconstructed volume. As shown in Fig.[8] the displayed channel of attention
map reflects a flexible region of the PEDV spike.

6 DISCUSSION

Limitations. As the first trial to achieve continuous heterogeneous reconstruction of protein in
real space without the need for a 3D reference map, CryoFormer still suffers from some limita-
tions. Though we use hash encoding for efficient training and inferring, our method still demands a
significant amount of computational resources and requires a long training time for full-resolution
reconstruction due to we have to query every voxel in implicit feature volume for 3D projection op-
eration, as discussed in Sec.[E-2] Also, our orientation encoder depends on pre-training with initial
pose estimation so CryoFormer cannot handle ab-initio reconstruction while CryoFormer shows the
capability to further refine them during the training.

Conclusion. We have introduced CryoFormer for high-resolution continuous heterogeneous cryo-
EM reconstruction. Our approach builds an implicit feature volume directly in the real domain as
the 3D representation to facilitate the modeling of local flexible regions. Furthermore, we propose
a novel query-based deformation transformer decoder to enhance the quality of reconstruction. Our
approach can refine pre-computed pose estimations and locate flexible regions. Quantitative and
qualitative experiment results show that our approach outperforms traditional methods and recent
neural methods on both real datasets and synthetic datasets. In the future, we believe real-domain
neural reconstruction methods can play a greater role in cryo-EM applications.
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APPENDIX

A VIDEO

For better visualization of cryo-EM reconstruction results, we use ChimeraX (Goddard et al., [2018))
to create a set of video visualizations with free-viewpoint rendering and multiple conformational
states. Please refer to supplementary_video.mp4 for more results and evaluations of CryoFormer.

B IMAGING MODEL OF CRYO-EM

Cryo-EM is a revolutionary imaging technique used to discover the 3D structure of biomolecules,
including proteins and viruses. In a typical cryo-EM experiment, a purified sample containing many
instances of the specimen is plunged into a cryogenic liquid, such as liquid ethane. This causes the
molecules to freeze within a vitreous ice matrix. The frozen sample is loaded into a transmission
electron microscope and exposed to parallel electron beams (Fig. [A] (a)), resulting in projections of
the Coulomb scattering potential of the molecules (Fig.[A](b)). These raw micrographs can then be
processed by algorithms to reconstruct the volume.

Figure A: Illustration of a cryo-EM experiment. (a) A sample containing molecules of interest is
frozen in a thin layer of vitreous ice and exposed to parallel electron beams. (b) Two-dimensional
projection images of the Coulomb scattering potential of the molecules.

In the cryo-EM image formation model, the 3D biological structure is represented as a function
o : R? — RT, which expresses the Coulomb potential induced by the atoms. The probing electron
beam interacts with the electrostatic potential, and ideally, one can formulate its clean projections
without any corruption as

Liean(7,y) = / cR'x+t)dz, x=(z,9,2)", (7)
R

where R € SO(3) is an orientation representing the 3D rotation of the molecule and t = (¢, ¢,,0) "
is an in-plane translation corresponding to an offset between the center of projected particles and
center of the image. The projection is, by convention, assumed to be along the z-direction after ro-
tation. In practice, images are intentionally captured under defocus in order to improve the contrast,
which is modeled by convolving the clean images with a point spread function (PSF) g. All sources
of noise are modeled with an additional term ¢ and are usually assumed to be Gaussian white noise.
The image formation model considering PSF and noise is expressed as

I= g* Iclean + €. (8)

C STRUCTURAL DEFORMATIONS IN DIFFERENT DOMAINS

To elucidate the advantages of reconstructing motions in the real domain, we use two neighbor
conformational states of the PEDV spike protein as an illustration. As shown in Fig. |B| there are
two volumes colored in grey and yellow that represent state O and state 1, respectively, the difference
between these two states is manifested as a local motion in the real domain. However, in the Fourier
domain, they present a global difference.
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Figure B: Visualization of two conformational states and their differences in the real domain and the
Fourier domain.

Fourier reconstruction methods such as CryoDRGN (Zhong et al 2021al)), require the decoder to
model the global and large value changes in the Fourier domain between two neighbor states, which
should have very similar conformational embedding from the image encoder. However, our ap-
proach performs reconstruction in real domain so the neural representation only needs to model
local and small changes between two neighbor conformational states.

D EXPERIMENT DETAILS

D.1 DATASETS

We adopt a number of synthetic and real experimental datasets in our experiments. We show sample
images in Fig.[C|and list parameters in Tab. [A]

CryoDRGN
Synthetic

PEDV(SNR=0.1) PEDV(SNR=0.01) PEDV(SNR=0.001) EMPIAR-10028 EMPIAR-10180

Figure C: Sample images from synthetic and experimental datasets.

D.2 BASELINE SETTINGS

CryoDRGN (Zhong et al., [2021a). We use the official repositoryﬂ The number of latent dimen-
sions is 8, and both the encoder and decoder have 3 layers and 1024 units per layer.

!"The repository is available at|https ://github.com/ zhonge/cryodrgnl
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Dataset Number of Particles  Image Resolution (pixel)  Pixel Size (A)  Number of States
PEDV Spike Protein 50,000 128 1.60 10
CryoDRGN Synthetic 50,000 128 1.00 10
EMPIAR-10028 105,247 256 1.88 N/A
EMPIAR-10180 327,490 128 4.25 N/A

Table A: Summary of the parameters for synthetic and experimental datasets.

Sparse Fourier Backpropagation (Kimanius et al., 2022). As there is no open-source code avail-
able for SFBP, we re-implement the method, following the same setting as in the original paper, with
an encoder consisting of five layers and a decoder consisting of a single linear layer, 256 units per
layer. The number of structural bases is 16.

CryoSPARC (Punjani et al., 2017) and 3DFlex (Punjani & Fleet, 2021). We use CryoSPARC
v4.2.1. For homogenerous dataset, we follow the typical workflow (import particle stacks, perform
ab-initio reconstruction before homogeneous refinement) with default parameters. For heteroge-
neous dataset, we change the number of classes parameter in ab-initio reconstruction job to 5, and
run heterogenous refinement between ab-initio reconstruction and homogeneous refinement. We
run 3DFlex following the official tutorial with default parameters using CryoSPARC’s reconstruc-
tion map as input canonical maps.

E EXPERIMENTAL RESULTS (CONT’D)

E.1 CRYODGRN SYNTHETIC DATASET RESULT

In Fig[D| (left and middle panels), we demonstrate that our reconstruction not only aligns qualita-
tively with the ground truth but is also adept at capturing the dynamics of the structure. Notably,
although we only illustrate 10 structures sampled from various points along the latent space, our
approach is capable of reconstructing the full continuous conformational states. As shown in Fig.
(right panel), our reconstruction’s FSC curve is predominantly higher than that of the baselines, with
a singular exception where it falls marginally below cryoDRGN in a low-frequency region.

R
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Figure D: Heterogenous reconstruction on the cryoDRGN synthetic dataset. Left: The ground
truth volume and reconstructions from our approach and baselines. Middle: Multiple conforma-
tional states of the ground truth and our reconstruction. Right: Curves of the Fourier Shell Corre-
lation (FSC) to the ground truth volumes. Our reconstruction qualitatively aligns with the ground
truth, with an FSC curve predominantly higher than baselines’.

E.2 ANALYSIS

To better understand the behaviors of our approach and its building components, we conduct the
following analysis on the synthesized datasets from the PEDV spike proteins. In this section, we
follow the same experimental setting as Sec.[5.4]

Deformation Encoder. To analyze our deformation encoder, we perform principal component anal-
ysis (PCA) on the deformation features of all images and plot their distributions in Fig.[E} We apply
K-means algorithm with 10 clusters and color-code the points with their corresponding K-means
labels. We display the reconstructed volumes corresponding to 6 of the cluster centers in Fig.[F]

Orientation Encoder Refinement. To analyze our orientation encoder, we visualized the initial
pose estimation and the refined pose in Fig[G] (left panel) and the video. It can be seen that after the
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Figure E: Distribution of deformation features. We visualize the distribution of all the images’
deformation features in 2D with PCA and color-code the points by their corresponding K-means
labels. The cluster centers are annotated.

Figure F: Reconstructed states of PEDV spike protein. We sample six cluster centers in Fig. El
and visualize the corresponding reconstructed states. The volumes, from left to right, correspond to
the following clusters: 5, 6, 4, 2, 8, and 1.

refinement of the orientation encoder via image loss, the previously inaccurate initial pose estimation
has been optimized and aligns with the ground truth. In Fig[G| (right panel), we compare multiple
reconstructed states of the variant without the refinement approach and our full model. It can be
observed that if we do not refine the pose estimation, the initial inaccurate pose estimation results in
a very low resolution of the reconstruction.

Pre-training Refinement
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Figure G: Left: Visualization of the initial poses and the predicted poses from orientation encoder
after pre-training and refinement. We draw the predicted pose with a smaller size for better distinc-
tion. Right: Reconstructed volumes without and with the refinement of the orientation encoder.

Running Time. To demonstrate the runtime of our algorithm, we present the execution times on a
single NVIDIA GeForce RTX 3090 Ti GPU in Tab. B} We also report the runtime of CryoDRGN as
a reference. The reported time corresponds to 20 epochs. The timings for our method include both
the pre-training of the orientation encoder (200 epochs) and the training of the system (20 epochs).
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As can be observed, when the image size is 128, our algorithm and CryoDRGN have comparable
runtimes. However, for a larger image size of 256, our approach takes significantly more time. This
may be attributed to the increased time complexity of the spatial cross-attention mechanism in our
method when processing high-resolution images.

Dataset Ours CryoDRGN

CryoDRGN Synthetic 2h22min 2h48min
PEDV Spike Protein 3h12min 3h16min
EMPIAR-10028 31h14min 8h12min
EMPIAR-10180 18h34min 19h50min

Table B: Comparison of processing times between our method and CryoDRGN.
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