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Abstract001

We propose EditID, a training-free approach002
based on the DiT architecture, which achieves003
highly editable customized IDs for text-to-004
image generation. Existing text-to-image mod-005
els for customized IDs typically focus more006
on ID consistency while neglecting editabil-007
ity. It is challenging to alter facial orientation,008
character attributes, and other features through009
prompts. EditID addresses this by deconstruct-010
ing the text-to-image model for customized IDs011
into an image generation branch and a character012
feature branch. The character feature branch is013
further decoupled into three modules: feature014
extraction, feature fusion, and feature integra-015
tion. By introducing a combination of map-016
ping features and shift features, along with con-017
trolling the intensity of ID feature integration,018
EditID achieves semantic compression of local019
features across network depths, forming an ed-020
itable feature space. This enables the successful021
generation of high-quality images with editable022
IDs while maintaining ID consistency, achiev-023
ing excellent results in the IBench evaluation,024
which is an editability evaluation framework for025
the field of customized ID text-to-image gener-026
ation that quantitatively demonstrates the supe-027
rior performance of EditID. EditID is the first028
text-to-image solution to propose customizable029
ID editability on the DiT architecture, meeting030
the demands of long prompts and high-quality031
image generation.032

1 Introduction033

ID customization generation (Guo et al., 2024; Gal034

et al., 2022; Kumari et al., 2023; Ruiz et al., 2023;035

Liu et al., 2023), as a personalized type of text-to-036

image generation, integrates IDs with prompts to037

create specific appearances. It offers significant038

application value in scenarios such as story gener-039

ation and character creation, and it is one of the040

core selling points of major text-to-image creative041

production platforms today.042

Figure 1: We introduce EditID, a training-free ID cus-
tomization approach. EditID achieves better editability
compared to similar methods. It demonstrates excellent
editability in long prompts (where action prompts are
marked in red) and aligns well with Flux’s T2I.

ID customization methods include fine-tuning 043

(Ruiz et al., 2023; Liu et al., 2023), tuning-free 044

(Guo et al., 2024; Xiao et al., 2024; Ye et al., 045

2023; Zhang et al., 2024), and training-free (Tewel 046

et al., 2024) approaches. Fine-tuning requires time- 047

consuming, ID-specific training. Tuning-free meth- 048

ods pretrain an ID fusion module on a large portrait 049

dataset, avoiding ID-specific customization during 050

inference. Training-free methods enhance tuning- 051

free approaches, eliminating retraining in both 052

training and inference. Our training-free frame- 053

work enables ID editability in any ID customization 054

model with a character feature branch. 055

Current ID customization methods generally pri- 056

oritize character consistency, thereby overlooking 057

character editability. We define character editability 058

as the ability to generate multidimensional control 059

relative to the input ID in response to changes in 060

text prompts, including variations in facial orien- 061

tation and limb positioning, as well as the flexible 062

modification of related attributes of the input ID, 063

such as hairstyle, accessories, and even age and 064

gender. Under our definition, current consistency- 065
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focused methods generally lack editability. Taking066

the state-of-the-art consistency generation method067

PuLID (Guo et al., 2024) as an example, the model068

achieves fidelity through ID loss but also introduces069

semantic and layout losses to control the diversity070

of the input ID during generation. However, in071

practical applications, it is nearly impossible to072

induce significant pose changes in the input ID073

through prompt words. This prompted us to inves-074

tigate the reasons behind the loss of editability. We075

found that the model is essentially performing an076

ID reconstruction task. During the pre-training of077

tuning-free methods, the ID and prompt descrip-078

tions remain almost identical, and the model lever-079

ages feature information from the ID to bias the080

training parameters toward the distribution of the081

training set. This implies that the model intends082

to directly replicate the character’s features. How-083

ever, during inference, when the prompts and ID084

are inconsistent, excessively strong feature con-085

straints from the character branch result in the out-086

put ID lacking the ability to adapt to changes in the087

prompt. In some cases, this even leads to a "copy-088

paste" effect between the input ID and output ID in089

the facial region, as shown in Figure 1. The core090

contribution of this paper lies in modulating the091

control strength of the character branch within a092

training-free framework, achieving a text-to-image093

model that significantly enhances ID editability094

while maintaining ID consistency.095

The core of our approach lies in enhancing ed-096

itability while maintaining character consistency,097

achieving a stable balance between the two. We098

deconstruct the text-to-image model for ID cus-099

tomization, dividing it into an image generation100

branch and a character feature branch. The charac-101

ter feature branch is further decoupled into three102

modules: feature extraction, feature fusion, and103

feature integration. In feature extraction, we iso-104

late five layers of identity-aware features from the105

fine-grained local feature extractor EvaCLIP (Sun106

et al., 2023), which we term “mapping features.”107

In feature fusion, due to the one-to-one correspon-108

dence between mapping features and five groups of109

neural networks, we designate features outside the110

five-layer mapping features of EvaCLIP as “shift111

features.” We discovered that these two types of112

features essentially perform semantic compression113

of local features across network depths, forming an114

editable feature space. The combination of these115

features enables predictable editability variations.116

In feature integration, when the fused features in-117

teract with the image generation branch, we intro- 118

duce a dynamic information fusion mechanism in 119

cross-attention to further enhance editability, ulti- 120

mately achieving state-of-the-art (SOTA) results in 121

the IBench evaluation framework. 122

Additionally, most current models are based on 123

the UNet architecture, with SD (Rombach et al., 124

2022) and SDXL (Podell et al., 2023) serving as 125

foundational models. In practical applications, 126

such as story generation scenarios, there are typ- 127

ically two requirements: 1) the input of long 128

prompts, and 2) higher aesthetic quality for the 129

generated images. Consequently, image generation 130

based on the DiT (Peebles and Xie, 2023) archi- 131

tecture, such as Flux (Flux, 2024), becomes the 132

preferred choice. However, there is scarcely any 133

literature discussing methods to enhance character 134

editability while preserving character consistency 135

in DiT-based image generation. To the best of our 136

knowledge, we are the first to explore improving 137

character editability within the DiT architecture. 138

Considering the current lack of unified datasets 139

and metrics for evaluating both ID consistency and 140

editability in the field of ID customization, we pro- 141

pose a configurable and modular automated eval- 142

uation framework. We designed multiple sets of 143

evaluation character images, accounting for real 144

IDs and generated IDs, and adapted them to various 145

types of prompts, including editability-measuring 146

prompts, short prompts, and more. For the first 147

time, we comprehensively introduce a variety of 148

editability verification metrics to quantitatively as- 149

sess model performance. 150

In summary, our contributions are as follows: 151

1. EditID is the first character customization 152

method to address editability enhancement 153

within the DiT architecture. 154

2. We propose an editability enhancement ap- 155

proach under a training-free framework, uti- 156

lizing mapping features, shift features, and dy- 157

namic ID integration across three modules. By 158

decoupling the character feature branch, we 159

achieve a highly editable text-to-image model 160

while maintaining ID consistency. 161

3. We introduce a unified ID consistency evalua- 162

tion framework and, for the first time, propose 163

multiple editability metrics. EditID demon- 164

strates excellent performance on editability- 165

focused prompts. 166
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2 Related Works167

2.1 ID Consistency Methods168

Recent personalized T2I diffusion models em-169

phasize ID consistency generation, focusing on170

robust semantic facial features. Key methods171

include IP-Adapter-FaceID (IP-Adapter-FaceID,172

2024), which uses facial embeddings and de-173

coupled cross-attention for ID consistency; Pho-174

tomaker (Li et al., 2024), encoding multiple ID175

images into stacked embeddings; InstantID (Wang176

et al., 2024), employing IdentityNet to integrate177

facial features, landmarks, and text via semantic178

and spatial constraints; and PuLID (Guo et al.,179

2024), combining Lightning and standard diffusion180

branches with contrastive alignment and precise181

ID loss for high ID fidelity with minimal model182

interference.183

2.2 ID Editable Methods184

Few T2I works on ID customization prioritize185

editability, focusing instead on ID consistency.186

PortraitBooth (Peng et al., 2024) enables text-187

based expression editing using subject embeddings188

and emotion-aware cross-attention. ConsistentID189

(Huang et al., 2024a) integrates multimodal facial190

prompts and an ID preservation network with facial191

attention localization for precise detail and consis-192

tent identity. Current UNet-based methods (e.g.,193

SD, SDXL) are tuning-free, yield average texture194

quality, struggle with long prompts, and require195

pre-training on large facial datasets.196

2.3 Training-Free Framework197

The training-free framework, distinct from fine-198

tuning and tuning-free methods, is used in image199

and video generation. FreeU (Si et al., 2024) uses200

backbone and skip-connection scaling factors to201

improve denoising and retain clarity. Freelong (Lu202

et al., 2024) combines global and local video fea-203

tures for coherent long video generation.To the204

best of our knowledge, we are the first to intro-205

duce the training-free framework to the domain of206

customized ID editable in text-to-image generation207

under the DiT architecture.208

3 Method209

Our approach focuses on enhancing character ed-210

itability while maintaining consistency. Figure 2211

shows the architecture, splitting the ID customiza-212

tion into an image generation main branch and a213

character feature branch. The feature branch is di- 214

vided into three modules: feature extraction, fusion, 215

and integration. This framework identifies editabil- 216

ity sources as: 1) local ID features from extraction; 217

2) ID shift features from fusion; and 3) embedding 218

strength for integrating ID information into the DiT 219

backbone. The third aspect affects both editability 220

and consistency. By carefully combining local ID 221

features, we achieve optimal editability. 222

3.1 Preliminary 223

3.1.1 DiT Flow Matching 224

The DiT architecture leverages flow matching to 225

model data generation as an ODE, replacing tradi- 226

tional UNet with Transformer modules to capture 227

global context via self-attention, with details pro- 228

vided in the Appendix (Section A.1). We adopt the 229

Flux framework as the base model for its regular- 230

ized flow matching and improved noise scheduling. 231

3.1.2 DiT-Based ID Consistency 232

ID customization under DiT is rare, mostly using 233

UNet-based SD/SDXL. FluxCustomID (FluxCus- 234

tomID, 2024) employs ArcFace (Deng et al., 2019) 235

and CLIP (Hafner et al., 2021) with PerceiverRe- 236

sampler (Alayrac et al., 2022), but lacks in fidelity, 237

consistency, and editability. PuLID (Guo et al., 238

2024), the state-of-the-art, uses a Flux-based ap- 239

proach with a Lightning T2I and standard diffusion 240

branch to address ID embedding interference and 241

fidelity via contrastive semantic comparison and 242

ID loss. Its character feature branch uses ArcFace 243

and EvaCLIP for global and local features. We 244

use PuLID as the baseline, leveraging its ID and 245

alignment losses, and study editability in a training- 246

free framework by segmenting the character feature 247

branch into three modules. 248

3.2 Feature Mapping 249

In the character feature extraction module, most 250

methods combine global and local features, with 251

editability found mainly in local features. EditID’s 252

extraction module has two branches: Branch 1 uses 253

SCRFD (Deng et al., 2021) for lightweight face 254

detection and ArcFace for global feature extraction 255

of the detected region. Branch 2 employs Reti- 256

naFace for detecting five facial keypoints followed 257

by frontal alignment. After facial semantic seg- 258

mentation, a refined facial region is obtained and 259

EvaCLIP extracts fine-grained local features.From 260

EvaCLIP’s 23-layer features, we select five identity- 261

aware layers. Surprisingly, we found that the selec- 262
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Figure 2: Overview of the EditID Framework. The right half features a DiT-based image generation process. The left
half is the ID feature branch, divided into three modules: 1) the ID feature extraction module, which extracts global
and local features to generate mapping features; 2) the ID feature fusion module, which fuses mapping features
to produce shift features; and 3) the ID feature integration module, which implements a dynamic ID embedding
mechanism.

Figure 3: The character feature extraction module com-
bines blue facial features and dark green EvaCLIP CLS
token as global features. Yellow marks mapping fea-
tures from EvaCLIP layers 4, 8, 12, 16, 20. Gray shows
unselected features.

Figure 4: Impact of global and local features on genera-
tion editability. Gray indicates unselected features, set
to zero.

tion of these five identity-aware layers significantly263

enhances editability. We refer to these five identity-264

aware features as "mapping features." The global265

features are composed of the face features from266

Branch 1 and the CLS token features from Branch267

2, while the mapping features directly correspond268

to local features. Ultimately, both global and local269

feature sets are output and fed into the feature fu-270

sion module. A detailed diagram of the module is271

shown in Figure 3.272

We conducted further analysis on global and273

local features. When inputting prompts with no-274

ticeable action changes, as shown in Figure 4(a)275

and Figure 4(b), setting the facial features or CLS276

Figure 5: Relationship between mapping feature vari-
ations and editability. White indicates unselected fea-
tures.

token features of the global features to zero re- 277

vealed no significant changes in limb or facial ori- 278

entation. However, Figure 4(b) exhibited higher 279

character consistency than Figure 4(a), indicating 280

that ArcFace extracts finer-grained facial features 281

compared to CLIP, capturing distinctions more ef- 282

fectively. In Figure 4(c), when all features and 283

local features were set to zero, the character fea- 284

ture branch became ineffective, degenerating into 285

standard Flux image generation. This significantly 286

improved editability but eliminated character con- 287

sistency. In Figure 4(d), setting local features to 288

zero still preserved good editability, though charac- 289
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ter consistency decreased. This led us to discover290

that global features predominantly control char-291

acter consistency, while editability is concealed292

within local features. Global features tend to en-293

code overall ID information of the face, such as294

facial structure, exhibiting high coupling and stabil-295

ity. In contrast, local features, through the identity-296

aware filtering of EvaCLIP, reduce 23 layers of297

features to 5, essentially achieving semantic com-298

pression across network depths. This process de-299

couples features of different facial attributes at a300

fine-grained level, forming independently operable301

semantic units. We performed a more granular de-302

composition of the mapping features in EvaCLIP.303

As shown in Figure 5, from Figure 5(a) to Fig-304

ure 5(f), we observed that as the mapping features305

were filtered, editability changed accordingly, but306

character consistency was also affected. An in-307

crease in editability corresponded to a decrease in308

character consistency. This prompted us to explore309

the optimal balance point between consistency and310

editability.For a more detailed derivation of the311

formulas, refer to the Appendix (Section A.2.1).312

3.3 Feature Shift313

In the feature fusion module, global features are314

input into the ID embedding network, a neural315

network consisting of three linear layers, while316

local features are fed into the mapping network.317

The mapping network shares a similar structure318

to the ID embedding network, and both facilitate319

feature transformation. Our method is based on320

a training-free architecture. Therefore, during the321

tuning phase, the mapping features and the map-322

ping network establish a one-to-one mapping rela-323

tionship. When we replace the mapping features324

with shift features, a feature shift occurs between325

them and the mapping network. The mapping fea-326

tures consist of only five groups, selected as five327

identity-aware features from the 23 layers of Eva-328

CLIP. This selection essentially achieves semantic329

compression across network depths: shallow lay-330

ers capture compositional structure information,331

middle layers encode detailed geometric structures,332

and deep layers associate with high-level semantics.333

This hierarchical selection constructs an editable334

semantic space, where different layers correspond335

to facial editing dimensions of varying granularity.336

Visualizing the facial features of EvaCLIP provided337

us with guidance for selecting features. We found338

that the choice of shift features also significantly339

impacts editability, and we ultimately selected the340

Figure 6: Upper half shows feature fusion with shift
features; lower half visualizes EvaCLIP’s 23-layer facial
features, with yellow modules as mapping features and
blue boxes as combined shift and mapping features.

Figure 7: The left figure shows ID interaction between
the integration module and image generation, while the
right depicts soft ID control within the module.

feature combination of layers 4, 14, 16, 18, and 341

20.For a more detailed derivation of the formulas, 342

refer to the Appendix (Section A.2.2). 343

3.4 ID Feature Integration 344

After the feature fusion module, a single feature 345

set is sent to the ID feature integration module, 346

which interacts with the image generation branch 347

via PerceiverAttention. In Flux’s 57 blocks (19 348

dual-stream + 38 single-stream), 10 are chosen to 349

embed ID information. Early generation focuses on 350

low-frequency features (color, composition), while 351

later stages refine high-frequency details. We mod- 352

ulate ID embedding intensity accordingly during 353

initial denoising (see Figure 7), but overly strong 354

embedding disrupts noise balance, hindering low- 355

frequency decoding. This naive adjustment causes 356

initial generation bias, harming convergence and 357

resulting in darker images with loss of lighting and 358

stability. 359

Secondly, we adopted a softer approach to ID 360

strength control. In the feature integration mod- 361

ule, the generated noise image serves as the Query, 362

while the ID information acts as the Key and Value 363

for weighting. During output, we perform reweight- 364

ing on the Query to align it with the same dimen- 365

sional size as the ID feature, followed by informa- 366

tion supplementation through a residual connection, 367

using concatenation for fusion. Reweighting can be 368

implemented in various ways. To achieve dimen- 369

sional transformation without excessively weaken- 370

ing the generated noise, we designed a transfor- 371
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mation matrix. Considering the characteristics of372

information retention, we explored methods such373

as randn linear, DCT, and partial Fourier, ultimately374

adopting the randn linear approach. The editability375

of image generation primarily stems from the im-376

age side. However, text information is embedded377

within the noise image, which essentially serves378

as the starting point of the denoising process and379

contains latent semantic information. By compen-380

sating for the noise image, the semantic influence381

of the text can more smoothly permeate the image382

generation process that integrates ID embedding383

information. This is equivalent to introducing ad-384

ditional degrees of freedom in the latent space, en-385

abling text-driven editability to be realized under386

the constraints of ID information without being387

overly restricted by the ID embedding.388

Ultimately, by combining the mapping features389

of the ID feature extraction module, the shift fea-390

tures of the ID fusion module, and the soft ID391

strength control mechanism of the ID integration392

module, we achieved excellent editability while393

preserving ID consistency.394

4 IBench395

To address the lack of robust evaluation metrics396

for character consistency and editability in per-397

sonalized character image generation, we propose398

IBench, a configurable, modular, automated evalu-399

ation framework. It implements diverse editability400

verification metrics to quantify improvements in a401

training-free architecture.402

4.1 Dataset403

The evaluation data of IBench consists of two parts:404

prompts and evaluation images. The evaluation im-405

ages are divided into three groups: Unsplash, Chi-406

neseID, and GenerateID.The prompts in IBench are407

categorized into three dimensions: short prompts,408

action prompts for editability (Huang et al., 2024b),409

and manually collected prompts.for detailed de-410

scriptions, see the Appendix (Section A.4.1).411

4.2 Evaluation Metrics412

We designed the metrics from three dimensions:413

consistency, editability, and the T2I general eval-414

uation dimension. The T2I general evaluation in-415

cludes FID, Aesthetic, and Imaging Quality (Ke416

et al., 2021) metrics. The consistency dimension417

includes Facesim, ClipT, ClipI, Dino (Zhang et al.,418

2022), and Fgis metrics. The editability dimen-419

sion includes Posediv (Yin and Liu, 2017) (Doosti420

et al., 2020), Landmarkdiff, and Exprdiv metrics. 421

For detailed information, see the Appendix (Sec- 422

tion A.4.2). 423

5 Experiments 424

5.1 Setting 425

We use the Flux version of PuLID as the base 426

model. For the Flux model, the sampling steps 427

are set to 20, with a guidance scale of 3.5, a CFG 428

scale of 1, and the Euler sampler is employed. Our 429

final combination of mapping features and shift 430

features consists of five groups [4, 14, 16, 18, 20], 431

and we implement residual dynamic ID informa- 432

tion embedding in the ID integration module, using 433

concatenation as the fusion method. All experi- 434

ments are conducted on four NVIDIA A100 GPUs, 435

with the inference framework being ComfyUI. 436

Figure 8: Qualitative Comparison: T2I w/o ID shows
Flux T2I output without ID insertion. EditID ensures
higher editability and ID consistency, accurately editing
hairstyle, accessories, age, face, and limbs.

5.2 Qualitative Comparison 437

We adopt the SDXL version of InstantID, PuLID, 438

and the Flux version of PuLID as the comparative 439

model group, where the base models for Instan- 440

tID and PuLID SDXL are sdxl_base_1.0. As 441

shown in Figure 8, EditID takes long text prompts 442

as input and, while maintaining model consistency, 443

achieves better editability compared to the nearly 444

synchronous copy-paste face insertion of PuLID 445

Flux. In the first column, when adding “with two 446

playful pigtails peeking out from under her helmet”, 447

EditID successfully alters the hairstyle. Compared 448

to Flux T2I, the ID embedding enhances the ability 449

to align the scene synchronously. In the second 450

column, when adding “A young woman with long, 451

flowing hair”, EditID enables age changes; how- 452

ever, the expression changes are less pronounced 453

compared to the generation by Flux T2I. In the 454
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Model FID Aesthetic Image Quality Posediv Landmarkdiff Exprdiv

Yaw Pitch Roll

InstantID 9.780 0.585 0.394 12.62 7.545 5.266 0.044 0.647
PuLID (SDXL) 11.28 0.675 0.502 19.48 6.187 12.69 0.099 0.593
PuLID (Flux) 14.59 0.681 0.431 9.298 5.872 9.473 0.070 0.562
EditID 13.52 0.683 0.454 11.81 6.722 10.60 0.082 0.554

Facesim ClipI ClipT Dino Fgis

InstantID 0.642 0.613 0.185 0.301 0.449
PuLID (SDXL) 0.399 0.768 0.248 0.129 0.353
PuLID (Flux) 0.735 0.757 0.243 0.178 0.501
EditID 0.714 0.769 0.249 0.162 0.459

Table 1: Evaluation metric results from IBench on Chi-
neseID with editable long prompts

third column, with a side-profile ID image input455

and the addition of "facing forward directly toward456

the camera," EditID achieves facial rotation and457

completes the face when turned from a side pro-458

file to a front view. In contrast, PuLID Flux can459

hardly rotate the face. In the fourth column, with460

a front-facing ID image input and the addition of461

“The subject is wearing a fitted white tank top and462

a denim jacket, the sleeves of which are rolled up463

to reveal a relaxed look", EditID realizes a front-to-464

side profile transition while maintaining alignment465

with Flux T2I. The ID generation quality and detail466

handling of the PuLID SDXL version are generally467

poor, with low fidelity, possibly due to the limited468

generation capability of the SDXL base model. The469

character consistency is also inferior to the Flux470

version, and the generated images exhibit a weak471

non-realistic stylistic attribute. Top closed-source472

text-to-image models offer good richness in gener-473

ation, producing scene associations not present in474

the prompts, but their fidelity and character consis-475

tency are both poor.476

We primarily focus on the performance of EditID477

with long prompts. In Table 1, using the evalua-478

tion combination of ChineseID with editable long479

prompts, EditID performs well across the three con-480

ventional aesthetic metrics: FID, Aesthetic, and Im-481

age Quality. In the Facesim metric, which measures482

consistency, EditID shows only a slight decrease483

compared to the Flux version of PuLID. However,484

as shown in Figure 8, the Flux version of PuLID485

exhibits excessively strong consistency, even re-486

sulting in a copy-paste replication of the input ID487

face in the output, which significantly limits the488

applicability of text-image consistency generation.489

Facial and limb features need to exhibit different490

variations across various scenes. In the ClipI met-491

ric, it is evident that the ID insertion in EditID does492

not strongly interfere with the original generation493

capability. The ClipT metric also demonstrates494

good text-following ability, while Dino and Fgis,495

which are finer-grained consistency evaluation met-496

rics, show significant improvements. For the most497

critical editability metrics, EditID achieves a total 498

improvement of 5 points in the three Euler angles 499

of Posediv compared to the Flux version of PuLID, 500

and it also shows a substantial increase in Land- 501

markdiff. The Facesim metric decreases by only 502

2 points, indicating that EditID sacrifices only a 503

slight degree of similarity while delivering excel- 504

lent editability. In fact, the overly strong charac- 505

ter consistency constraint in PuLID Flux suggests 506

that releasing excessive consistency in exchange 507

for enhanced editability is a highly prudent choice. 508

Compared to the SDXL version of PuLID, while 509

editability is high, it sacrifices too much character 510

consistency. 511

5.3 Ablation Study 512

In our training-free framework, it is necessary to 513

evaluate the impact of changes and combinations 514

of multiple metrics. The following experimental 515

groups primarily focus on similarity and editability 516

metrics. 517

5.3.1 Combination of Mapping and Shift 518

Features 519

In Section 3, we qualitatively analyzed the sources 520

of editability variations from mapping features and 521

shift features. The multi-level, fine-grained local 522

semantic features introduced by EvaCLIP are the 523

source of editability. Below, we quantitatively dis- 524

cuss this in two groups. In Table 2, we mainly 525

examine the first two feature selections. In fact, the 526

choice of the first feature is critical. As a shallow 527

feature, it contains rich editable semantic informa- 528

tion. In the first four groups, the first feature is the 529

fourth-layer feature of EvaCLIP, and the second 530

feature is the 8th, 12th, and 16th layers, respec- 531

tively. It is evident that as semantic information 532

weakens, Facesim decreases, but editability sig- 533

nificantly increases, showing a strong inverse re- 534

lationship. Comparing the third to sixth groups, 535

where the first feature is replaced, we observe a 536

decrease in Facesim but a greater increase in ed- 537

itability. This indicates that feature offsets at the 538

same level (shallow layers) can provide substantial 539

editability. Using IBench, we further dissect the 540

combination information at a finer granularity. 541

In Table 3, after selecting the shallow-layer fea- 542

tures, we further examine the mid-layer and deep- 543

layer features. Selecting only shallow-layer fea- 544

tures significantly improves editability but results 545

in greater loss of character consistency. When in- 546

putting rich long prompts, the generated images 547
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Features Facesim ClipT Posediv Landmarkdiff Exprdiv

Raw Pitch Roll

[4,-,-,-,-] 0.512 0.262 27.46 11.28 13.17 0.115 0.621
[4,8,-,-,-] 0.635 0.256 17.59 8.288 11.46 0.096 0.589
[4,12,-,-,-] 0.617 0.258 19.25 9.033 11.89 0.102 0.591
[4,16,-,-,-] 0.591 0.259 23.10 9.689 12.41 0.108 0.581
[0,12,-,-,-] 0.601 0.261 20.51 9.343 12.18 0.106 0.593
[0,16,-,-,-] 0.574 0.262 24.75 10.41 13.26 0.112 0.585

Table 2: Compare shift features of ChineseID with ed-
itable long prompts, where features are 5-layer lists and
"-" denotes a layer set to 0.

Features Facesim ClipT Posediv Landmarkdiff Exprdiv

Raw Pitch Roll

[4,12,18,20,-] 0.689 0.253 12.73 6.858 10.42 0.085 0.566
[4,14,18,20,-] 0.684 0.254 13.28 6.973 10.76 0.087 0.565
[4,16,18,20,-] 0.668 0.255 14.46 7.328 11.10 0.090 0.562
[4,12,16,18,20] 0.713 0.247 11.24 6.610 10.26 0.081 0.561
[4,14,16,18,20] 0.714 0.247 11.81 6.722 10.60 0.082 0.554
[4,16,16,18,20] 0.701 0.249 12.77 7.029 10.92 0.086 0.555

Table 3: Quantitatively compare feature combinations of
ChineseID with editable long prompts, where features
are 5-layer lists and "-" denotes a layer set to 0.

closely resemble ID-free text-to-image (T2I) re-548

sults. We further screen mid-layer and deep-layer549

features, as deep-layer features provide richer de-550

tails, contributing to improved image fidelity. We551

plotted the differences in Facesim and PoseDiv552

(raw/pitch/roll) values between our base model553

PuLID (Flux) and our proposed model in Figure 9.554

We observed that as the feature groups are adjusted,555

Facesim and PoseDiv exhibit a linear relationship.556

We selected the most cost-effective combination557

from the curve, ensuring high-level consistency558

while enhancing editability.559

5.3.2 Shift Strategy560

For the combination of mapping features and shift561

features, the feature fusion module selects five sets562

of features to enter the mapping network, ultimately563

outputting ID features. These features are then in-564

tegrated into the main image generation branch565

through the ID dynamic embedding mechanism in566

the ID integration module. When fewer than five567

feature sets are available, interpolation can replace568

zero-padding; when more than five are available,569

average fusion is an option. Figure 10 compares570

two strategies for excess features (average and max)571

and two for insufficient features (padding and in-572

terpolate). In Figure 10(a)(b), the max strategy573

yields sharper images with stronger lighting. In Fig-574

ure 10(c)(d), interpolation results in lower image575

quality. Selecting features from 23 layers outper-576

forms feature modification, favoring the mapping577

and shift feature combination. The average method,578

based on mean shift, also performs effectively.579

Figure 9: Variation curves of the differences in
raw/pitch/roll values from PoseDiv and Facesim com-
pared to the corresponding values of PuLID (Flux).

Figure 10: Feature shift strategies: first row for more
than five feature sets, second row for five or fewer.

6 Conclusion 580

This paper proposes EditID, a training-free ID cus- 581

tomization method for text-to-image generation. 582

We are the first to explore enhancing editability 583

within the DiT architecture, achieving state-of-the- 584

art performance with long prompts. Taking the 585

PuLID model as an example, we deconstruct it into 586

a character feature branch and an image genera- 587

tion main branch, further decoupling the character 588

feature branch into three major modules: feature 589

extraction, feature fusion, and ID integration. We 590

analyze the sources of editability from the combi- 591

nation of mapping features and shift features, as 592

well as dynamic ID integration, thereby improving 593

the editability of ID customization. Our approach 594

requires no training, demonstrating its potential for 595

flexible and efficient character-customized image 596

generation. Moreover, this training-free framework 597

can be adapted to enhance any ID customization 598

generation algorithm equipped with a character fea- 599

ture branch. In future work, we will continue to 600

explore and investigate the dynamic ID integration 601

module with the introduction of a training mode. 602

We believe that dynamic ID integration holds great 603

vitality, but it still requires the design of loss func- 604

tions incorporating richer multi-angle facial infor- 605

mation to further achieve simultaneous improve- 606

ments in both character consistency and editability. 607
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Limitations608

As required by ACL Rolling Review, we outline609

the limitations of our work. EditID, while achiev-610

ing significant improvements in editability within611

a training-free framework, has certain constraints.612

First, the approach relies heavily on the quality613

of the pre-trained DiT model (e.g., Flux) and the614

feature extractors (e.g., EvaCLIP, ArcFace). Any615

limitations in these foundational models, such as616

biases in the training data or suboptimal feature617

representations, may affect EditID’s performance.618

Second, the trade-off between editability and ID619

consistency requires careful tuning of mapping and620

shift features, which may not generalize perfectly621

across all types of IDs or prompts. Third, the com-622

putational complexity of processing long prompts623

and integrating ID features may pose challenges624

for deployment on resource-constrained devices.625

Finally, the IBench evaluation framework, while626

comprehensive, may not capture all nuances of ed-627

itability and consistency, particularly for highly628

subjective or context-specific scenarios. Future629

work will address these limitations by exploring630

more robust feature extractors, automated tuning631

mechanisms, and expanded evaluation metrics.632
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A Example Appendix797

The structure of the supplementary material is as798

follows:799

A.1 DiT Flow Matching800

The core of diffusion models lies in achieving data801

generation through a progressive denoising process.802

Traditional diffusion models define the forward803

diffusion process as804

q(xt|x0) = N (xt;αtx0, σ
2
t I) (1)805

where αt and σt are noise scheduling coefficients,806

and t ∈ [0, T ] represents continuous time steps.807

Based on flow matching theory (Esser et al., 2024),808

the generation process can be modeled as an ordi-809

nary differential equation (ODE):810

dx = vθ(xt, t, c)dt (2)811

where vθ is the vector field to be learned, and c812

is the conditional input (e.g., text prompts). Com-813

pared to traditional diffusion models, which rely814

on noise prediction targets, flow matching directly815

learns the transport mapping from the data distribu-816

tion to the noise distribution. Its training objective817

can be expressed as:818

LFM (θ) = Et,q(x0),p(x1)

[
∥vθ(xt, t, c)− (x1 − x0)∥2

]
(3)819

where xt = (1 − t)x0 + tx1 represents a linear820

interpolation path, and t ∈ [0, 1].821

In the DiT architecture, we replace the traditional822

UNet with Transformer modules, leveraging the823

self-attention mechanism to model global context.824

Given a conditional embedding sequence c, the825

vector field predictor in DiT can be decomposed826

as:827

vθ = Proj(Attn(Q,K, V )) (4)828

where Q = xtWQ, K = cWK , and V = cWV are829

the query, key, and value matrices, respectively. W830

denotes learnable projection matrices, and Attn rep-831

resents the multi-head attention mechanism. This832

architecture is particularly well-suited for long-text833

conditional generation, as its self-attention mecha-834

nism effectively captures long-range dependencies835

between prompts.836

Currently, image generation models based on the837

DiT architecture and flow matching are primarily838

represented by SD3 (Esser et al., 2024) and Flux839

(Flux, 2024). This paper selects Flux as the founda-840

tional framework. The Flux framework builds upon841

DiT by introducing a regularized flow matching 842

strategy, employing an improved noise scheduling 843

function: 844

αt = cos2(πt/2), σt = sin2(πt/2) (5) 845

This ensures a smooth transition from data to noise 846

while maintaining numerical stability during the 847

flow matching process. 848

A.2 Method Formula 849

A.2.1 Feature Mapping Formula 850

Feature mapping module consists of two parts: 851

global features and cross-layer local features (map- 852

ping features). Its core objective is to decouple the 853

global features that control ID consistency from the 854

local features that carry the freedom of editability. 855

As shown in Branch 1, global features are jointly 856

extracted by two-dimensional encoders: 857

Fglobal = [Ψarcface(I); ΦCLS(I)] ∈ Rdg (6) 858

where Ψarcface : RH×W×3 → Rda represents the 859

ArcFace-based dense facial encoder, responsible 860

for extracting deep semantic features related to fa- 861

cial ID; ΦCLS : RH×W×3 → Rdc denotes the CLS 862

token feature from the EvaCLIP image encoder, 863

capturing the overall visual context information of 864

the character. The two are fused through a concate- 865

nation operation [; ] into a global feature vector of 866

dimension dg = da + dc. 867

As shown in Branch 2, in the cross-layer lo- 868

cal features, editable local features are obtained 869

through hierarchical semantic compression: 870

Flocal = {ϕl(I)}l∈Lmap ∈ R5×dl (7) 871

where Lmap = {l1, l2, . . . , l5} represents the five 872

feature layers selected from the 23 layers of Eva- 873

CLIP, and ϕl(I) denotes the output feature map of 874

the l-th layer. Through a cross-layer filtering mech- 875

anism, feature responses strongly correlated with 876

facial attributes are isolated, forming independently 877

manipulable semantic units. 878

A.2.2 Feature Shift Formula 879

Feature shift module fuses global and local features, 880

introducing richer editability through mapping fea- 881

tures and shift features. The formula is as follows: 882

Fedit = Attn
(
θID(I),MMap(F

′
local)

)
∈ Rdid , (8) 883

where F ′
local = [Flocal(l);Fshift(l)] and Fedit is the 884

output combined feature, θID(I) is derived from 885
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an ID embedding network composed of three lin-886

ear layers, and MMap represents the mapping net-887

work. Here, F ′
local is the combination of mapping888

features and shift features, Flocal denotes the local889

features composed of mapping features, and Fshift890

represents the shift features. The total number of891

mapping features and shift features satisfies:892

|Lmap|+ |Lshift| = 5, (9)893

where Lmap and Lshift denote the sets of mapping894

features and shift features, respectively.895

A.3 More Details about Ablation Study896

A.3.1 Editability in ID Integration Module897

The dynamic ID integration design in the ID inte-898

gration module is also a significant source of ed-899

itability. In this module, we primarily considered900

two dimensions: reweighting and feature fusion901

methods. Reweighting ensures dimensional con-902

sistency with the ID embedding features without903

compromising the noise features, while the fusion904

method appropriately compensates the features af-905

ter ID integration back into the sampled noise fea-906

tures, enhancing editability in the text dimension.907

We conducted a qualitative analysis in Figure 11 to908

examine the impact of the randn linear approach909

in reweighting and various fusion methods. The910

fusion methods include: Weight: Assigning differ-911

ent fusion weights to the two feature sets; Dropout:912

Randomly masking features after reweighting to913

reduce information redundancy; Concat: Concate-914

nating the two feature sets and then computing their915

mean for fusion; Sum: Directly summing the two916

feature sets; Multiply: Multiplying the two feature917

sets; Max: Taking the maximum of the two fea-918

ture sets. We observed that in Figure 11(a)(b)(c),919

the ID still exhibited a strong binding effect, with920

no significant changes in facial orientation, though921

the image fidelity decreased considerably. In Fig-922

ure 11(d)(e)(f), ID consistency declined, but ed-923

itability gradually increased. Ultimately, we se-924

lected the concat fusion method from Figure 11(d),925

combining it with mapping features and shift fea-926

tures to achieve a high level of consistency.927

A.4 More Details about IBench928

A.4.1 Dataset929

The evaluation data of IBench consists of two parts:930

prompts and evaluation images. The evaluation931

images are divided into three groups: Unsplash,932

ChineseID, and GenerateID. The Unsplash group933

Figure 11: Effect diagram of different feature fusion
methods after reweighting.

includes 49 images, covering a variety of skin tones, 934

significant variations in character angles, and in- 935

stances of facial occlusion. ChineseID comprises 936

100 images of Chinese individuals collected from 937

the internet, including well-known figures from 938

fields such as film and sports, representing diver- 939

sity in gender, age, and multiple angles. Gener- 940

ateID consists of 100 ID images generated by a 941

text-to-image model, featuring refined facial fea- 942

tures, diverse poses, accessories, and hairstyles, as 943

well as characters under light and shadow render- 944

ing, ensuring both aesthetic quality and prominent 945

ID characteristics.We present partial data from Chi- 946

neseID, GenerateID and Unsplash in Figure 12 947

Figure 13 Figure 14. 948

The prompts in IBench are categorized into three 949

dimensions: short prompts, action prompts for ed- 950

itability, and manually collected prompts. Short 951

prompts, designed to be compatible with the evalu- 952

ation of the UNet architecture, are largely sourced 953

from mainstream evaluation reports. Editable long 954

prompts are sourced from the augmented prompts 955

in VBench (Huang et al., 2024b), with 41 groups 956

selected, including long descriptions of character 957

actions and scene stories, serving as a key focus 958

of this evaluation. Manually collected prompts 959

consist of 80 groups of prompts collected from 960

text-to-image users, manually curated to include 961

rich action descriptions with story elements.We dis- 962

play the prompt words for short prompt, editable 963

long prompt, and manually collected prompt in the 964

Table 6 Table 7 Table 8 below. 965

In IBench, we pair Unsplash with short prompts 966

as one group, ChineseID with editable long 967

prompts as another group, and GenerateID with 968

manually collected prompts as a third group. How- 969

ever, in practice, these images and prompts can be 970

cross-validated. 971
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A.4.2 Evaluation Metrics972

We designed the metrics from three dimensions:973

consistency, editability, and the T2I general eval-974

uation dimension. In the T2I general evaluation,975

the focus is primarily on the aesthetic attributes976

of the images. In the consistency dimension, the977

evaluation centers on the similarity of character978

ID generation and prompt-following consistency.979

In the editability dimension, we propose multiple980

innovative measurement indicators to assess the981

editability of character IDs.982

T2I General Evaluation Dimension FID: By983

comparing the distribution differences between984

imagewithid (generated images with ID infor-985

mation) and imagewithoutid (generated images986

without ID information) in the feature space of a987

pre-trained InceptionV3 model, we quantify the988

similarity between the two distributions.989

Aesthetic: The LAION aesthetic predictor is990

used to evaluate the aesthetic quality score of991

imagewithid images. It reflects dimensions such992

as the harmony and richness of layout and color, as993

well as the realism and naturalness of the images.994

Imaging Quality: This assesses distortions (e.g.,995

overexposure, noise, blur) present in imagewithid996

images, using the MUSIQ (Ke et al., 2021) image997

quality predictor trained on the SPAQ dataset for998

evaluation.999

Consistency Dimension Facesim: This calcu-1000

lates the facial similarity between the ID image and1001

imagewithid. We use SCRFD from InsightFace to1002

detect facial regions and ArcFace to extract facial1003

feature vectors, then compute the cosine similarity1004

to measure the similarity of the generated facial1005

regions.1006

ClipT: This computes the cosine similarity be-1007

tween the CLIP text encoding of the input1008

prompt and the CLIP image encoding features of1009

imagewithid. It is used to evaluate the ability1010

of the generated images to follow changes in the1011

prompt.1012

ClipI: This calculates the cosine similarity between1013

the CLIP image encodings of imagewithid and1014

imagewithoutid. It measures the similarity be-1015

tween the two images before and after ID insertion.1016

A higher ClipI score indicates that the modifica-1017

tions to image elements after ID insertion cause1018

less interference compared to the original model’s1019

generation.1020

Dino (Zhang et al., 2022): This computes the co-1021

Model FID Aesthetic Image Quality Posediv Landmarkdiff Exprdiv

Yaw Pitch Roll

InstantID 12.87 0.613 0.403 13.31 7.994 5.977 0.046 0.662
PuLID (SDXL) 8.514 0.663 0.530 18.61 7.093 10.13 0.087 0.541
PuLID (Flux) 20.31 0.684 0.452 7.620 5.647 8.445 0.064 0.482
EditID 19.28 0.682 0.464 9.795 6.881 9.683 0.075 0.485

Facesim ClipI ClipT Dino Fgis

InstantID 0.646 0.607 0.178 0.301 0.375
PuLID (SDXL) 0.384 0.768 0.252 0.189 0.390
PuLID (Flux) 0.724 0.729 0.231 0.286 0.579
EditID 0.701 0.739 0.238 0.262 0.475

Table 4: Evaluation metric results from IBench on Gen-
erateID with manually collected prompts

Model FID Aesthetic Image Quality Posediv Landmarkdiff Exprdiv

Yaw Pitch Roll

Instantid 61.13 0.568 0.422 24.23 13.94 12.60 0.125 0.541
PuLID(sdxl) 31.24 0.659 0.490 22.41 11.58 12.74 0.107 0.669
PuLID(flux) 43.64 0.697 0.461 20.29 12.14 12.19 0.099 0.574
EditID 16.84 0.696 0.486 21.07 12.88 13.16 0.104 0.612

Facesim ClipI ClipT Dino Fgis

Instantid 0.184 0.699 0.219 0.071 0.099
PuLID(sdxl) 0.372 0.832 0.251 0.113 0.206
PuLID(flux) 0.393 0.803 0.238 0.128 0.211
EditID 0.380 0.813 0.240 0.091 0.131

Table 5: Evaluation metric results from IBench on Un-
splash with short prompts

sine similarity between the DINO image encodings 1022

of the ID image and imagewithid. DINO features 1023

are more fine-grained and can be used to measure 1024

the changes in the generated image relative to the 1025

ID image. 1026

Fgis: Corresponding to the DINO metric, this cal- 1027

culates the cosine similarity of the DINO image 1028

encodings for the facial regions of the ID image 1029

and imagewithid. 1030

Editability Dimension Posediv: This calculates 1031

the differences in Euler angles (yaw, pitch, and 1032

roll) of the facial regions between the ID image and 1033

imagewithid. Facial detection is performed using 1034

MTCNN (Yin and Liu, 2017), and Euler angles are 1035

extracted using Hopenet (Doosti et al., 2020). This 1036

metric is used to assess the editability of the facial 1037

regions. 1038

Landmarkdiff: This computes the difference in 1039

the average Euclidean distance of five normalized 1040

key points between the facial regions of the ID 1041

image and imagewithid. 1042

Exprdiv: This calculates the proportion of expres- 1043

sion changes in the facial regions between the ID 1044

image and imagewithid. 1045

A.5 More Results 1046

A.5.1 ChineseID Experimental Results 1047

We observed that the performance on ChineseID 1048

with editable long prompts and GenerateID with 1049

manually collected prompts is similar. Therefore, 1050

we will focus on the performance of ChineseID 1051

editable long prompts in subsequent analysis. 1052
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No. Prompt

1 Clothing portrait, a person wearing a spacesuit
2 Portrait, a person wearing a surgical mask
3 Background portrait, with a beautiful purple sunset at the beach in the background
4 Portrait, pencil drawing
5 Portrait, latte art in a cup
6 Portrait, side view, in papercraft style
7 Portrait, Madhubani, wearing a mask
8 Portrait, anime artwork
9 Portrait, energetic brushwork, bold colors, abstract forms, expressive, emotional

10 Portrait, a person wearing a doctoral cap

Table 6: Examples of partial prompts from short prompt

A.5.2 Unsplash Experimental Results1053

This paper focuses more on long prompts, but1054

IBench itself also includes an evaluation for short1055

prompts. When compared with the ChineseID1056

editable long prompt and GenerateID Typemovie1057

prompt, our evaluation metrics on the Unsplash1058

short prompt typically show lower facesim (face1059

similarity) and higher posediv (pose diversity),1060

which aligns with general variation patterns. How-1061

ever, as shown in Figure 14 and Table 6, the large1062

variations in portrait angles in Unsplash, combined1063

with overly short prompts, lead to generally poor1064

model performance. Due to the coarse text control1065

of short prompts, we incorporated a [man/woman]1066

design in the prompts. When the model correctly1067

identifies the gender of the image, it replaces "per-1068

son" in the prompt accordingly.1069

A.6 Supplementary Experimental Materials1070

Prompts from Figure 10 and Figure 11:1071

• A figure in a contemplative stance, partially1072

turned away from the viewer, dressed in a1073

composed outfit that enhances his serene de-1074

meanor. The gentle play of light highlights1075

the subtle expressions on his face, capturing1076

the delicate contours of his jawline and the1077

graceful curve of his neck in a side view. His1078

profile is framed by the tranquil setting in the1079

background, which complements the mood of1080

introspection.1081

• This is a young Asian individual with fair skin,1082

whose straight, deep brown hair falls just be-1083

low the shoulders. Thick bangs partially cover1084

the forehead, accentuating a sharply defined1085

side profile and large, gentle eyes that exude1086

a hint of tenderness. She is slightly turning, 1087

with her shoulder gently tilted, displaying an 1088

elegantly natural pose as if she is slowly turn- 1089

ing to admire the lush green scenery around 1090

her. Her high, refined nose stands out in the 1091

soft sunlight, and her slightly parted lips re- 1092

veal a serene yet enchanting smile. Sunlight 1093

filters through the dense branches and leaves, 1094

casting dappled shadows on her profile and in- 1095

fusing the entire scene with a gentle, peaceful 1096

ambiance. 1097

A.7 Show case of Some EditID Results 1098

Figure 15 shows some results of editid.As shown in 1099

the image, for the input ID, not only can it display 1100

facial and body movements, but it can also alter at- 1101

tributes such as age and hairstyle through prompts, 1102

demonstrating exceptional editability. Moreover, 1103

the quality of the generated images is extremely 1104

high. 1105
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Figure 12: Examples of partial character ID images from ChineseID

Figure 13: Examples of partial character ID images
from GenerateID

Figure 14: Examples of partial character ID images
from Unsplash
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No. Prompt

1 A solitary man, clad in a long, dark trench coat and a wide-brimmed hat, walks through a dimly
lit alleyway, the only illumination coming from flickering street lamps casting elongated
shadows. His footsteps echo softly against the cobblestones, creating a rhythmic pattern in the
stillness of the night. The air is thick with mist, swirling around his silhouette, adding an air of
mystery to his journey. Occasionally, he pauses, glancing over his shoulder, as if sensing an
unseen presence. The distant sound of a train whistle punctuates the silence, enhancing the eerie,
atmospheric setting of his solitary walk.

2 A young boy with tousled hair and a curious expression kneels in a sunlit garden, surrounded by
vibrant blooms. He carefully places a delicate glass dome over a single, exquisite red rose, its
petals glistening with morning dew. The sunlight filters through the glass, casting a kaleidoscope
of colors onto the grass. His small hands gently adjust the dome, ensuring the rose is perfectly
encased. The scene captures a moment of wonder and protection, as the boy admires the rose’s
beauty, the garden’s lush greenery and colorful flowers providing a serene, enchanting backdrop.

3 A joyful child, wearing a bright yellow raincoat and red rubber boots, splashes gleefully in a
series of puddles on a rainy day. The scene captures the child’s infectious laughter as they jump,
sending droplets flying in all directions. The overcast sky and gentle rain create a soothing
backdrop, while the child’s playful antics bring warmth and energy to the scene. As they stomp
through the water, their reflection shimmers in the puddles, adding a magical touch. The child’s
carefree spirit and the rhythmic sound of raindrops create a heartwarming and lively atmosphere.

4 A young athlete, clad in a sleek black swimsuit and swim cap, stands at the edge of an
Olympic-sized pool, the water shimmering under bright overhead lights. With a focused gaze,
she adjusts her goggles, preparing for her training session. She dives gracefully into the water,
her form streamlined and powerful, creating minimal splash. As she glides through the water, her
strokes are precise and rhythmic, showcasing her dedication and skill. The camera captures her
underwater, bubbles trailing behind her as she propels forward with determination. Finally, she
emerges at the pool’s edge, breathing deeply, her expression a mix of exhaustion and triumph.

5 A bearded man with a thoughtful expression stands in a cozy, dimly lit room filled with vintage
decor, wearing a plaid shirt and jeans. He carefully selects a vinyl record from a wooden shelf
lined with albums, the warm glow of a nearby lamp casting soft shadows. As he gently places
the record onto the turntable, his fingers move with precision and care, reflecting his
appreciation for music. The room is filled with the soft crackle of the needle touching the vinyl,
and he closes his eyes momentarily, savoring the nostalgic sound. The ambiance is intimate,
with the gentle hum of the record player and the soft lighting creating a serene atmosphere.

6 A passionate teacher stands at the front of a bright, modern classroom, holding a vibrant red
marker in her hand, gesturing animatedly as she explains a complex concept to her attentive
students. Her expression is one of enthusiasm and engagement, with her eyes sparkling with the
joy of teaching. The whiteboard behind her is filled with colorful diagrams and notes,
illustrating the topic at hand. Sunlight streams through large windows, casting a warm glow over
the room, while students, seated at sleek desks, listen intently, some taking notes, others nodding
in understanding, creating an atmosphere of dynamic learning and interaction.

7 A fierce woman stands confidently in her intricately detailed cosplay costume, embodying a
warrior from a fantasy realm. Her armor, crafted from shimmering silver and deep blue materials,
glistens under the ambient light, highlighting the ornate designs etched into the metal. Her long,
flowing cape billows behind her as she strikes a powerful pose, her eyes focused and determined.
The costume includes a helmet adorned with intricate patterns and a pair of gauntlets that
suggest strength and agility. She holds a beautifully crafted sword, its blade reflecting the light,
ready for battle. The background is a mystical landscape, with towering mountains and a sky
painted in hues of twilight, enhancing the epic atmosphere of her warrior persona.

Table 7: Examples of partial prompts from editable long prompt
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No. Prompt

1 Person B, surprised, flying car, backyard, daytime, casual outfit, excitement, medium shot, A
young Black woman, dressed in simple, comfortable home attire, steps out of her house into the
bright daylight. She gazes in awe at a futuristic flying car gracefully descending in her backyard,
close to the landing point. Her expression transforms from astonishment to sheer excitement,
capturing the moment perfectly. The scene is set in a modern American neighborhood, with
elements of advanced technology like sleek flying vehicles and high-tech devices enhancing the
atmosphere. The composition is a medium shot, focusing on her joyful reaction amidst the
backdrop of her home.

2 Young female singer, microphone, concert stage, retro neon lights, posters, evening, shiny silver
jacket, skinny jeans, high heels, curly hair, dynamic atmosphere, mid-shot, eye level, A vibrant
young female singer stands confidently in front of a microphone, prepared to captivate the
audience with her performance. She is on a lively concert stage adorned with dazzling retro
neon lights and colorful posters, evoking a nostalgic ambiance. It is a bustling evening, and she
is dressed in a striking shiny silver jacket that glimmers under the lights, complemented by
tight-fitting skinny jeans and stylish high heels. Her hair is voluminous and curly, adding to her
energetic presence. The stage lights pulse and flicker in sync with the upbeat music, enhancing
the dynamic atmosphere of the scene. The composition is framed as a mid-shot from an
eye-level perspective, inviting viewers into the exhilarating moment of the performance.

3 Young woman, self-service check-in system, modern office, morning, professional attire, tablet,
busy staff, large screen, real-time data, A focused young Chinese woman with long hair, dressed
in professional attire, is operating a sleek tablet at a self-service check-in kiosk. The scene is set
in a contemporary office filled with busy staff moving around her. It’s 9 AM in the morning,
with natural light streaming through large windows. In the background, a large screen displays
real-time data, adding a high-tech feel to the atmosphere. The composition is a medium shot at
eye level, capturing the dynamic environment and the woman’s concentration on her task.

4 Animated character, cashier interaction, shopping process, afternoon, friendly cashier, crowd of
customers, A cheerful animated character with large, expressive eyes and a stylish outfit,
handing selected items to a friendly cashier at a brightly lit checkout counter. The character is
smiling while making a payment, and the cashier is engaging in friendly conversation. In the
background, a diverse crowd of customers, including Asian individuals, patiently waits in line.
The scene takes place in the afternoon, with warm sunlight streaming through the store’s
windows, creating a lively and inviting atmosphere.

5 Li Bai, courtyard, well railing, poetry, candlelight, night, warm light, glowing words, close-up,
eye level, A young Chinese poet, Li Bai, dressed in a soft moon-white robe, stands in a serene
traditional courtyard at night, his face warmly illuminated by the gentle flicker of candlelight.
He gazes thoughtfully at the well railing, deeply immersed in reciting poetic verses. Each word
he utters releases a faint glow that softly drifts into the air. The ancient courtyard is adorned with
lush green pine trees and a bright, shining moon above, adding to the tranquil and poetic
atmosphere. The scene is captured in a close-up, eye-level perspective, evoking a sense of
intimacy and reflection.

6 Young man, park bench, Shanghai, evening, dark coat, jeans, lost expression, skyline, wilted
trees, A young Chinese man wearing a dark coat and jeans, sitting alone on a weathered park
bench in a quiet park in Shanghai during the evening. He has slightly disheveled hair and a lost
expression in his eyes, reflecting deep thoughts. The background features a few wilted trees and
a distant city skyline, creating a serene yet melancholic atmosphere. The scene is captured in a
mid-range view, at eye level, emphasizing his solitude and contemplation as the soft evening
light casts gentle shadows around him.

Table 8: Examples of partial prompts from manually collected prompt
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Figure 15: Some results of EditID
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