
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REAL2CODE: RECONSTRUCT ARTICULATED OBJECTS
VIA CODE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Real2Code, a novel approach to reconstructing articulated objects via
code generation. Given visual observations of an object, we first reconstruct its
part geometry using image segmentation and shape completion. We represent these
object parts with oriented bounding boxes, from which a fine-tuned large language
model (LLM) predicts joint articulation as code. By leveraging pre-trained vision
and language models, our approach scales elegantly with the number of articulated
parts, and generalizes from synthetic training data to real world objects in unstruc-
tured environments. Experimental results demonstrate that Real2Code significantly
outperforms the previous state-of-the-art in terms of reconstruction accuracy, and is
the first approach to extrapolate beyond objects’ structural complexity in the train-
ing set, as we show for objects with up to 10 articulated parts. When incorporated
with a stereo reconstruction model, Real2Code moreover generalizes to real-world
objects, given only a handful of multi-view RGB images and without the need for
depth or camera information. 1

1 INTRODUCTION

Real2Code

In: Unstructured RGBs Out: Interactable Digital Twins

R
eal2C

ode

R
eal2C

ode

Figure 1: We propose a novel method for reconstructing articulated objects via code generation,
leveraging pre-trained large language models (LLMs). Real2Code takes visual observations as input,
and performs both part-level geometry reconstruction and joint prediction. When evaluated on an
extensive set of real and synthetic objects with varying level of kinematic complexity (up to 10 parts),
Real2Code can accurately reconstruct these complex articulated objects, and generalize to real world
objects from a handful of pose-free RGB images.

The ability to reconstruct real-world objects in simulation (real-to-sim) promises various downstream
applications: automating asset creation for building VR/AR experiences, enabling embodied agents to
verify their interaction in simulation before execution in the real world (Lim et al., 2022; Wang et al.,
2023a; Torne et al., 2024), or building large-scale simulation environments that support data-driven
policy learning (Katara et al., 2023). We are particularly interested in articulated objects, for both
their ubiquity in household and industrial settings and the unique challenges they pose in contrast to
single-body rigid objects. To reconstruct articulated objects, prior learning-based methods typically
train supervised (Jiang et al., 2022b) or test-time-optimized (Liu et al., 2023a) models on synthetic

1Submission Website: https://sites.google.com/view/real2code-submission

1

https://sites.google.com/view/real2code-submission

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

objects with simple articulation structures (i.e., one or two moving parts per object). This results
in limited generalization ability to objects with more complex visual appearances and kinematics.
In addition, prior work only provides object part reconstructions of limited quality: the extracted
meshes are often incomplete and the predicted articulation parameters require manual cleanup before
being usable for simulation.

We propose Real2Code, a novel approach to address the above limitations. We represent object
articulation with code programs, and use language modeling to predict these code programs from
visual observations. This formulation scales elegantly with objects’ structural complexity: to process
an articulated object with multiple joints, prior methods would require either changing the output
dimension of their articulation prediction model, or run multiple inferences on pairs of before- and
after- interaction observations to predict one joint at a time. In contrast, the next-token prediction
formulation in language modeling allows generating arbitrary-length outputs, i.e., the model archi-
tecture needs no adjustment to handle varying number of object joints. Whereas prior work on
shape programs (Tian et al., 2019) needs to define task-specific code syntax, we represent objects
with simulation code in Python, which takes advantage of recent progress in large language models
(LLMs) that are pre-trained with code generation capabilities.

Although capable at code generation, LLMs pre-trained on text are not as equipped at predicting
accurate numerical values from spatial geometry information, which is required in our task in order
to obtain articulated joint parameters. To address this, we propose to use oriented bounding boxes
(OBBs) as an abstraction layer that summarizes the raw sensory observation to the LLM in a concise
yet precise manner. Given partial observations of an object, we first perform part-level segmentation
and reconstruction via a combination of 2D segmentation and a 3D shape completion model; next,
OBBs are extracted from the reconstructed object parts, and serve as input to the LLM. The LLM
then predicts joints as a classification problem by selecting the closest OBB rotation axis and box
edges.

In unstructured real world environments, another challenge is the lack of accurate depth and camera
information. To address this, we incorporate a pre-trained dense stereo reconstruction model, namely
DUSt3R (Wang et al., 2023b), into our pipeline: we show the dense 2D-to-3D point-map prediction
from DUSt3R can be combined with our fine-tuned SAM model to achieve view-consistent 3D
segmentation. As a result, Real2Code can then reconstruct real world objects from only a handful of
pose-free RGB images.

For a more systematic evaluation, we validate the performance of Real2Code on the well-established
PartNet-Mobility dataset (Mo et al., 2019), using an extensive test set of unseen objects that contain
various numbers of articulated parts. Compared to the prior state of the art, Real2Code significantly
improves both 3D reconstruction and joint prediction accuracy. Real2Code is the only approach
to reliably reconstruct objects with more than three articulated parts, whereas prior methods fail
completely on such objects. Fig. 1 highlights our results on both synthetic multi-part objects (first
column), where we show Real2Code reconstructs both synthetic objects with up to 10 parts (first
column) and real-world objects (second column) using in-the-wild RGB images.

In summary, our contributions are threefold:

1. We present Real2Code, a novel approach to reconstructing articulated objects from a handful of
unstructured RGB images. We formulate joint prediction as a code generation problem and adapt
pre-trained large language models to specialize in this task.

2. We address part reconstruction via kinematic-aware view-consistent image segmentation and a
learned 3D shape completion model, which leads to high-quality mesh extraction that generalizes to
multi-part real-world objects.

3. Empirical results demonstrate that Real2Code significantly outperforms the prior state of the art
at both articulation estimation and part reconstruction. To the best of our knowledge, Real2Code is
the first method to accurately predict objects with more than three parts, and generalizes beyond the
training dataset with at most 7 parts to objects with up to 10 parts.

2 RELATED WORK

LLMs for Visual Tasks. Pre-trained LLMs have been used for visual reasoning and grounding
tasks (Zeng et al., 2022; Hsu et al., 2023b). LLMs’ code-generation capability has also been

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

exploited for generating programs that solve visual tasks (Gupta & Kembhavi, 2022; Surı́s et al.,
2023; Subramanian et al., 2023). These works use zero-shot pre-trained LLMs such as GPTs (Brown
et al., 2020; OpenAI, 2023) and require prompt engineering, such as providing in-context examples,
to guide the model to generate desirable outputs; in contrast, we directly fine-tune the weights of a
code-generation model to specialize in our articulation prediction task without prompt tuning.

Shape Programs. Code-like programs have been studied in computer vision as a compact rep-
resentation for 2D and 3D shapes. A main challenge for learning code programs is the lack of
supervision, and prior work has explored using learned differentiable code executor (Tian et al.,
2019), pseudo-labeling (Jones et al., 2022), differentiable rendering (Liang, 2022), imitation learning
on code sequences (Willis et al., 2021), or reinforcement learning (Tulsiani et al., 2016). More
recent work has explored constructing large-scale datasets of shapes (Ganin et al., 2021) or scene
layouts (Avetisyan et al., 2024) and train supervised LLM-like models to generate code outputs. In
contrast to ours, these prior works focus on either individual object shapes or scene-level room layouts,
but do not estimate joint articulations. In addition, instead of the task-specific code programs, such as
customarily-designed language syntax (Tian et al., 2019; Jones et al., 2022; Avetisyan et al., 2024) or
Computer-Aided Design (CAD) code (Willis et al., 2021; Ganin et al., 2021), we represent object
articulation with Python code that 1) closely matches the pre-training distribution of code-generation
LLMs, which allows fine-tuning with limited data, and 2) can be directly executed by a physics
simulator (Todorov et al., 2012), which makes the reconstruction more usable for simulation and
requires less manual cleanup.

Articulation Model Estimation. Prior work has investigated estimating pose and joint properties of
articulated objects without full reconstruction. A common setup is to assume physical interactions on
an object to infer its articulation information: classical sampling-based algorithms (Huang et al., 2014;
Katz et al., 2013) are proposed to estimate joint parameters based on sensory inputs from an object’s
different configuration states; other learning-based methods train end-to-end models to predict part-
level segmentation, kinematic structure, object part poses, or articulated joint parameters (Hu et al.,
2017; Yi et al., 2018; Wang et al., 2019; Michel et al., 2015; Li et al., 2020; Zeng et al., 2021;
Huang et al., 2021; Tseng et al., 2022; Abdul-Rashid et al., 2022; Jiang et al., 2022a; Liu et al.,
2023b). Buchanan et al. (2023); Heppert et al. (2022); Sun et al. (2023) propose specialized neural
network architectures to improve the estimation performance. Other works focus on learning to
propose the most informative physical interactions on an object to help robot manipulation (Mo
et al., 2021), or to better isolate and segment articulated parts and joints (Gadre et al., 2021). These
articulation estimation tasks provide useful metrics for 3D shape reasoning (Wang et al., 2019), and
Liu et al. (2022); An et al. (2023); Geng et al. (2023b;a) show that the predicted object pose and joint
information are useful for robotic tasks. However, prior work typically handles objects with simple
structure (i.e., one or two moving parts) and does not address full object reconstruction. In contrast,
our method handles objects with more than ten moving parts, and performs shape reconstruction via
extraction of part meshes.

Articulated Object Reconstruction. Most closely related to ours are methods that reconstruct both
the geometry and joints of articulated objects. A popular approach is to train end-to-end models
on synthetic data to jointly segment articulated parts and predict joint parameters, assuming either
observations from interactions (Jiang et al., 2022b; Hsu et al., 2023a; Nie et al., 2023; Mu et al.,
2021) or single-stage (Heppert et al., 2023; Irshad et al., 2022; Kawana et al., 2022; Wei et al.,
2022) observations. Another approach uses per-object optimization (Liu et al., 2023a;b) without
training. Based on observations of the object in two or more different joint states, it optimizes for joint
parameters to match observed motion correspondences and optionally performs 3D reconstruction
using learned neural fields. Most existing methods assume a single joint and do not scale well with an
increasing number of joints: for example, to handle an object with N joints, methods like Ditto (Jiang
et al., 2022b) would need to move the N joints one by one, record the observations before and after
each interaction, and run N inferences on each observation pair. PARIS (Liu et al., 2023a) would
need to optimize N neural fields and joint parameters, which may lead to a much more complex
optimization landscape. The approach presented by Liu et al. (2023b) handles multiple joints but
requires a complete sequence of point-cloud observations and is not able to reconstruct 3D shapes.

3 METHOD

We address the problem of reconstructing multi-part articulated objects from visual observations. An
articulated object is composed of a set of rigid-body parts that are connected via joints. We assume

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Pose-free RGBs
Oriented
Bounding Boxes

Segmented Part
Point Clouds

Output: Part Mesh & Joints

Part
Meshes

…

Oriented
Bounding Boxes

Segmented Part
Point Clouds

Part
Meshes

Code output

Figure 2: Overview of Real2Code pipeline. Given unstructured multi-view RGB images, we leverage
the pre-trained DUSt3R model (Wang et al., 2023b) to obtain dense 2D-to-3D pointmaps, and use
a fine-tuned 2D segmentation model(Kirillov et al., 2023) to perform part-level segmentation and
project to segmented 3D point clouds. We train a shape-completion model to take partial point cloud
input and predict a dense occupancy field, which is used for part-level mesh extraction. We fine-tune
a large language model (LLM) (Rozière et al., 2023) that takes mesh information in the form of
oriented bounding boxes, and outputs full code descriptions of the object that can directly be executed
in simulation.

that joint types are either prismatic or revolute: a prismatic joint is parameterized by a joint axis
up ∈ R3 and a translation offset d; a revolute joint is parameterized by a position pr ∈ R, a rotation
axis ur ∈ R3, and a rotation angle θ. For an object with N moving parts, we assume each to be
connected with its parent via exactly one 1-DoF joint. Therefore, the transformation between each
part’s frame and its parent’s frame is uniquely determined by the joint parameters. Furthermore, for
hinge joints, we focus on objects what have joint position lie closely with one of its oriented bounding
box (OBB) edges — we remark that this is true for many common household objects with cuboid
shapes, such as doors, boxes, laptops, etc.

To obtain visual inputs, we assume an object is manipulated such that each articulated joint is at a
non-zero state, i.e., d > 0 or θ > 0, when we capture multi-view RGB (and optionally depth) images.
Our system outputs a set of 3D meshes – each a reconstruction of the object’s parts – and a list of
joint types and parameters represented as code. The outputs can then be used to create the object’s
digital twin in simulation for downstream applications.

Fig. 2 provides an overview of our method. Real2Code consists of two main steps: reconstruction
of object parts’ geometry (described in Sec. 3.1) and joint estimation via LLM code generation
(described in Sec. 3.2). Between the two steps, the oriented bounding boxes (OBBs) of the object
parts serve as an abstraction layer, enabling the LLM to reason about 3D spatial information and
predict accurate joint parameters.

3.1 PART RECONSTRUCTION

To reconstruct an object’s part-level shapes, we propose a 2D-to-3D approach that is category-agnostic
and handles objects with an arbitrary number of parts. First, we fine-tune a SAM model that generates
2D segmentations from RGB images, and project them to partially-observed 3D point clouds. Next,
we train a shape completion model that takes 3D point cloud input and extracts watertight meshes.

3.1.1 KINEMATICS-AWARE PART SEGMENTATION

We leverage the pre-trained 2D segmentation model SAM (Kirillov et al., 2023) to segment object
parts based on their kinematic structure. This design is motivated by the need to 1) generalize to real
world data, and 2) scalability to the number of object parts. In contrast to prior works that train 3D
segmentation models using limited amount of synthetic data (Jiang et al., 2022b; Mo et al., 2019;
Xiang et al., 2020), SAM (Kirillov et al., 2023) was pre-trained on a much larger dataset. Therefore,
SAM generalizes better to in-the-wild real world images, with a strong prior to identify moving object
parts without the need for multi-step interactions.

However, because SAM (Kirillov et al., 2023) is originally designed for iterative user prompting, its
zero-shot predictions do not always match the articulation structure, e.g., segmenting unnecessary de-
tails on an object part. To address this, we fine-tune the pre-trained model using PartNet-Mobility (Mo

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

et al., 2019; Xiang et al., 2020) data: the model’s heavy-weight image encoder is kept frozen, we
update the lightweight prompt-decoder layer to take an image and one sampled 2D point prompt as
input, and predict the correct corresponding mask. See appendix A.3 for more details.

3.1.2 TEST-TIME PROMPTING FOR VIEW-CONSISTENT SEGMENTATION.

SAM Aggregated
Part Point Cloud

SAMSAM

Project to a different viewView#1 View#2
+ keypoint prompt

Predicted Mask#2

Sampled 2D point
on one of the part segment

View Consistent Mask

Project to 3D
using depth

View#1

View#N

…

Sampled 3D Points on
Object Surface

SAM

…

Figure 3: View-consistent segmentation. Illustration of our
method for test-time prompting the fine-tuned SAM model. We
first sample 3D points from the foreground object point clouds,
project each point onto 2D RGB images captured from different
camera views, which are used to prompt the model to generate
view-consistent segmentations.

The point-based segmentation de-
scribed above scales easily with the
number of the object parts. However,
this formulation also inherently lacks
view consistency, as SAM is unaware
of the correspondences across differ-
ent camera views. To address this, we
introduce a test-time prompting pro-
cedure to project predicted 2D masks
into a view-consistent 3D segmenta-
tion. We discuss two different input
settings based on the availability of
depth and camera data: 1) Multi-view
RGB-D and Camera Input: we first
coarsely sample 2D points on each
RGB image and run the SAM model
to obtain the background masks. This
allows us to segment the foreground object in the different views and sample 3D points uniformly
on the object point cloud. Next, we project each such 3D point back onto each image, and obtain
view-consistent 2D points for SAM prompting. Further, we rank the model’s predicted masks based
on the confidence and stability scores proposed by Kirillov et al. (2023), and filter them using
non-maximum suppression (NMS) to produce the final 3D segmentation. 2) Multi-view Unstruc-
tured RGB Input. To handle real world settings which often lack high-quality depth and camera
information, we adopt a multi-view stereo reconstruction model to achieve part segmentation. We
use the recently proposed DUSt3R (Wang et al., 2023b) model, which is pre-trained to predict dense
3D point-maps from RGB input images. We then sample 2D points from one RGB image and find
each point’s corresponding point in every other RGB images via nearest-neighbor. More details are
described in appendix A.4. This overall procedure of projecting between 3D to 2D prompting is
similar to SA3D (Cen et al., 2023), which samples on a NeRF(Mildenhall et al., 2020) field and uses
inverse rendering to effectively prompt SAM in 3D.

3.1.3 PART-LEVEL SHAPE COMPLETION.
Due to frequent self-occlusion, e.g. the inside of a drawer is often not visible, RGB-D input does
not provide full observation of each object part, and subsequently a segmented point cloud does not
recover complete part shape. This motivates learning a shape completion model to obtain watertight
meshes. Because part-segmentation is already handled in the previous step, we here tackle shape
completion on the object part level. We build on top of Convolutional Occupancy Nets (Peng et al.,
2020): the model architecture consists of a PointNet++(Qi et al., 2017) point-cloud encoder, followed
by a 3D Unet (Özgün Çiçek et al., 2016) encoder and a linear MLP decoder that predicts logits
for occupancy. We use the ground-truth part meshes from PartNet-Mobility (Mo et al., 2019) to
generate a dataset of partial point cloud inputs and occupancy labels. We normalize the occupancy
grid using partial OBBs extracted from the input point cloud to avoid under-fitting the smaller-sized
meshes. Marching Cubes (Lorensen & Cline, 1987) is used to extract the completed part meshes
from predicted occupancy. See appendix A.3 for more details.

3.2 ARTICULATION PREDICTION VIA CODE GENERATION

Given a set of segmented object parts, we next predict their articulation structure using LLM-based
code generation. This approach yields several advantages: first, code offers a compact representation
for joints, and when combined with LLM’s ability to predict arbitrary-length outputs, it scales
elegantly with the complexity of object kinematic structure; second, pre-trained LLMs are equipped
with strong priors for both common-sense objects and for generating syntactically correct code,
making them easily adaptable to our task; lastly, the LLM-generated code can be directly executed
in simulation, removing the need for manual cleanup of predicted joint parameters as seen in prior

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Extract Oriented
Bounding Boxes (OBBs)

Output:
Joint Parameters as Code

 Helper Function

Extract OBBs
CodeLlama

Compute Joints

Select OBB axis & edge
 Helper Function

Figure 4: Articulation Prediction as Code. We fine-tune a Codellama (Rozière et al., 2023) model
that takes in oriented bounding boxes (OBBs) for segmented parts as input, and generates joint
predictions via selecting OBB rotation axes and edges (model generation is highlighted in green). A
helper function is used to compute the absolute joint axis and position that assembles the object parts
in simulation

work (Jiang et al., 2022b). The following sub-sections first introduce our formulation of predicting
joint parameters from oriented bounding boxes, then discuss our LLM fine-tuning procedure.
3.2.1 ORIENTED BOUNDING BOX AS INPUT ABSTRACTION.
Articulation prediction requires numerical precision at joint parameters (i.e., position and rotation)
and reasoning from raw sensory input, but an LLM pre-trained on text is not adept at these challenges.
We address this by representing the sensory input (object point clouds) as a set of oriented bounding
boxes (OBBs), each representing a segmented and completed object part. Compared to alternative
object representations such as 3D point clouds or 2D images, OBBs strike a balance between
compactness (i.e., do not require an extra feature encoder) and preciseness (i.e., provide numerical
3D pose information). Further, OBBs provide a reference for joint information. Recall that the pose
of an object part is determined by its 1-DoF joint at a non-zero state — we can hence recover joint
parameters from the observed displacement of object parts. Given an OBB of a part connected to its
parent, the joint axis will be parallel to one of the three axes of the OBB’s rotation matrix regardless
of its joint type. We observe many common articulated objects consist of cuboid-like parts (e.g. doors
or laptops), hence the position of their corresponding revolute joints will lie closely to, if not overlap
with, one of the OBB edges. Combining these observations, we re-formulate the joint axis prediction
problem by selecting an OBB rotation axis as the joint axis and, for revolute joints, choosing an OBB
edge parallel to the axis as the joint position. See Fig. 4 for an illustration.

3.2.2 FINE-TUNING A CODE GENERATION LLM.
We now have an input formulation that effectively converts a regression task (i.e., predicting contin-
uous values) to an easier classification task (i.e., selecting axes and edges) for LLMs. We use the
7B-CodeLlama (Rozière et al., 2023) model for its open-source-availability and built-in priors for
code generation. We construct a fine-tuning dataset using PartNet (Mo et al., 2019) objects (the same
assets used to generate our segmentation and shape completion data), and convert the native URDF
files into MJCF code (Tunyasuvunakool et al., 2020), which 1) is in the more compact Python syntax,
2) can be executed in MuJoCo (Todorov et al., 2012) physics simulation, and 3) has each object’s
joints assigned with respect to the corresponding part’s OBB information. The LLM takes a list of
part-OBB information (i.e., center, rotation, and half-lengths) as input, and outputs joint predictions
as a list, where each line contains indices into the axes and edges of an OBB. More details can be
found inappendix A.3.

4 EXPERIMENTS

We evaluate Real2Code and compare to baseline methods to validate the effectiveness of our approach.
Sec. 4.2 describes experiments on our kinematics-aware 2D image segmentation and 3D shape

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Category Laptop Box Fridge Furniture Furniture
Number of Parts 2 2 2-3 2-4 5-15
Metric whole part whole part whole part whole part whole part

Real2Code+gtSeg 0.57 2.33 1.54 7.65 0.51 2.04 1.46 13.3 5.84 16.8

Ditto 2.54 2.04 1.73 82.82 2.80 462.25 2.25 1105.86 2.21 4608.08
PARIS 84.29 206.31 15.35 158.73 20.63 1297.27 6.02 544.64 11.44 816.86

Real2Code-SegOnly 1.74 7.19 11.46 10.52 0.90 23.44 17.43 206.49 N/A N/A
Real2Code (Ours) 0.44 3.02 1.31 5.94 0.60 1.28 3.47 65.79 19.70 118.58

Table 1: We evaluate surface reconstruction quality by measuring Chamfer-Distance (CD) between
predicted and ground-truth meshes. Results are reported separately for each object category, where
we take average CD of objects’ entire surface reconstruction (‘whole’ column) and of all part wholes
(‘part’ column). Objects from Storage-Furniture and Table are reported under Furniture and divided
based on the number of parts.

completion models. Sec. 4.3 evaluates our fine-tuned code-generation model on articulation prediction.
Sec. 4.5 contains ablation studies that provide additional insights into our method. Sec. 4.6 shows
qualitative results of our pipeline on real world objects.

4.1 EXPERIMENT SETUP

Datasets. We use assets from five categories in PartNet-Mobility (Mo et al., 2019) dataset: Laptop,
Box, Refrigerator, Storage-Furniture and Table. The same split of 467 train and 35 test objects are used
to construct our image segmentation, shape completion, and code datasets. We use Blender (Com-
munity, 2018; Denninger et al., 2023) to render RGB-D and segmentation masks. The RGB-D
images and masks are then used to generate part-level point clouds as partial observations. For
code data, we extract OBBs from part meshes and process each object’s raw URDF file into Python
MJCF (Tunyasuvunakool et al., 2020), where the joint rotation and position are relative to the OBB
of the child part that this joint connects to the parent part. Refer to appendix A.2 for more details.

Baselines. We compare Real2Code to the following baseline methods:

• PARIS (Liu et al., 2023a) is the prior state-of-the-art for articulated object reconstruction. It
takes multi-view RGB observations of a two-part articulated object at two different joint states, then
optimizes NeRF-based reconstructions and joint parameters based on motion cues from the two
observed states. We render our test objects at two random joint states, report the average performance
across 5 random initialization seeds. We modify their method to optimize for more than two parts at
once. However, we observe that their design of optimizing one neural field for each part runs out of
memory when the number of joints exceeds 4.

• Ditto (Jiang et al., 2022b) is an end-to-end learned model that takes in a pair of before- and
after-interaction point cloud inputs and predicts implicit part shapes and joint parameters. Notably,
Ditto assumes only one object part is moved at a time, which requires step-by-step interactions and
observations, making evaluation less efficient. For an object with N joints, we move one part at a
time, render the corresponding N pairs of point cloud observations, and run their pre-trained model
N times to obtain the final results.

• GPT-4 (OpenAI, 2023) is representative of recent state-of-the-art LLMs with strong reasoning
and code-generation capability. We use it as a reference for zero-shot LLM performance on our task
without fine-tuning. We prompt it with the same code header used in our LLM fine-tuning dataset,
plus additional instructions on how to format the output, which our fine-tuned LLM does not need.

4.2 PART SEGMENTATION AND RECONSTRUCTION EXPERIMENTS

4.2.1 3D PART-LEVEL SHAPE COMPLETION.
Following the prompting procedure described in Sec. 3.1, we first run our fine-tuned SAM on images
from the test set of unseen objects and obtain segmented part point clouds. We observe that, because
we rank and filter the mask predictions (i.e., prioritize high predicted confidence score and stability
score), the low-quality masks have less impact on the final segmented point-cloud after the projection
step. Next, we use the segmented part point clouds as input to evaluate our learned shape completion
model: following Mu et al. (2021); Jiang et al. (2022b); Liu et al. (2023a), we uniformly sample
10, 000 points on the extracted mesh surface, and report the average Chamfer Distance between the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

2 Parts (15) 3 Parts (9) 4-5 Parts (6) 6-15 Parts (7)
rot↓ pos↓ type↑ rot↓ pos↓ type↑ rot↓ pos↓ type↑ rot↓ pos↓ type↑

Real2Code+gtBB 0.0 0.07 0.93 0.0 0.04 1.00 0.0 0.04 1.00 11.6 0.03 0.94

Ditto 40.04 4.04 0.57 35.57 2.47 0.70 49.77 3.20 0.43 63.06 4.16 0.30
PARIS 48.44 2.67 0.51 32.35 3.63 0.84 55.97 2.14 0.43 N/A N/A N/A
GPT4 57.3 0.26 0.73 10.0 0.08 0.61 45.0 0.21 0.51 30.0 0.05 0.71

Real2Code (Ours) 7.5 0.08 0.80 0.0 0.04 0.89 0.63 0.07 0.97 30.2 0.05 0.89

Table 2: Joint prediction results from Real2Code and baseline methods, grouped by the number
of moving parts in each object. We remark that Real2Code consistently outperforms baseline
methods across objects with different kinematic structures; on objects with 4 or more moving parts,
Real2Code predicts joints accurately whereas baseline methods fail.

extracted and ground-truth part meshes in Tab. 1. Because the predictions are semantics-agnostic
(i.e., the model does not know if a segmented part is a drawer or a door), we generate permutations of
the set of predicted meshes and take the permutation that results in lowest error; the same logic is
used for joint prediction results.

Overall, Real2Code achieves the best reconstruction quality and elegantly scales to a larger num-
ber of parts (column ‘Real2Code (Ours)’). We remark on the performance difference between
Real2Code and baselines: the joint optimization of all parts in PARIS (Liu et al., 2023a) suffers from
a complex loss landscape and produces unsatisfactory reconstructions, especially when the number of
parts increases. Ditto (Jiang et al., 2022b) performs well on training categories (i.e., Laptop) but does
not generalize well to unseen categories. In contrast, ours obtain better results because we factorize
the problem into segmentation and shape completion, aggregate 2D segmentation from fine-tuned
SAM and perform part-level shape completion.

To validate the need for our shape completion model, we observe that 1) Due to the partial observation
and noise in the segmentation masks, simply extracting meshes from the part-level point clouds also
results in subpar reconstruction results (column ‘Real2Code-SegOnly’, where ‘N/A’ indicates the
mesh extractions are too noisy to match with GT mesh). 2) If we use ground-truth segmentation, the
mesh extraction from the aggregated point clouds are better than using SAM segmentation, but are
still incomplete (column ‘Real2Code-gtSeg’).

4.2.2 KINEMATICS-AWARE 2D IMAGE SEGMENTATION.
To demonstrate the effectiveness of SAM fine-tuning, we evaluate the fine-tuned model on unseen
object images by uniformly sampling a grid of 32 × 32 query points and compare the predicted
segmentation with ground-truth masks. We use NMS filtering on the predicted masks, then sort with
the model’s predicted confidence score to take the top-K masks that fill the image to more than 95%
total pixels. We observe a significant improvement over zero-shot SAM: object parts are segmented
much more closely following their kinematics structure, obtaining a 92% mean IoU score on the final
used masks and 84% match rate to ground-truth masks.

4.3 ARTICULATION PREDICTION EXPERIMENTS

After completing part-level reconstruction on test objects, we extract OBBs for each object part and
compose a text-prompt for our fine-tuned CodeLlama model. We parse the model’s code generation
and append it with code header lines (e.g. import packages) such that the post-processed code can
be directly executed to produce object simulation. We then evaluate the accuracy of articulation
prediction by measuring the error of joint type, joint axis, and (for revolute joints only) joint position
predictions. As shown in Tab. 2, Real2Code outperform all baseline methods by a large margin. The
effectiveness of our OBB abstraction is further accentuated by column ‘Real2Code+gtBB’, where
we feed oracle OBB to the code generation module and achieve highly accurate predictions even on
unseen objects with a large number of parts.

4.4 QUALITATIVE RESULTS
For qualitative results, we show objects with a range of varying kinematic complexities, from a
two-part laptop to a ten-part multi-drawer table. We visualize the final reconstructed objects from
ours and baselines methods in Fig. 6. Whereas all methods handle the simpler laptop articulation,
baseline methods struggle as the number of object part increases while Real2Code performs much
more accurate reconstruction. See our submission website for more visualizations: https://sites.
google.com/view/real2code-submission

8

https://sites.google.com/view/real2code-submission
https://sites.google.com/view/real2code-submission

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

2 Parts (15) 3 Parts (9) 4-5 Parts (6) 6-15 Parts (6)
Inp. Out rot↓ pos↓ type↑ rot↓ pos↓ type↑ rot↓ pos↓ type↑ rot↓ pos↓ type↑
OBB Abs. 7.5 0.06 0.92 0.0 0.03 1.0 0.0 0.6 0.83 0.0 0.7 0.73
OBB Rot. 0.0 0.18 0.73 0.3 0.23 1.00 0.9 0.19 0.83 5.9 0.06 0.59
+RGB Rel. 0.0 0.06 0.80 5.0 0.03 1.0 0.0 0.03 0.89 0.0 0.02 0.67

OBB Rel. 0.0 0.07 0.93 0.0 0.04 1.0 0.0 0.04 1.00 11.6 0.03 0.94

Table 3: Joint prediction results from ablation experiments on Real2Code. Using a regression
formulation, the LLM is still able to output reasonable values for two or three part objects, but
generates much less accurate joint positions when the number of articulated parts increase. Additional
RGB image input yields no clear improvements, which suggests the OBB input alone can provide
sufficient information.

4.5 ABLATION STUDIES
To further validate our formulation of using OBB as reference for articulation prediction, experiment with
alternative input and output representation for ablation:

• Regression on Joint Parameters. We fine-tune two more CodeLlama models to take the same input but
outputs continuous numerical values for joint parameters: the first model directly predicts 3 values for each joint
axis and 3 for every joint position (Sec. 4.5 row ‘OBB Abs.’); the second model predicts joint axis the same way
as Real2Code, but predicts joint position as a relative position to the OBB’s center (Sec. 4.5 column ‘OBB Rel.’).

• Provide LLM with Visual Inputs. We fine-tune a model with both RGB and OBB inputs. We adopt the
OpenFlamingo (Alayrac et al., 2022; Awadalla et al., 2023) approach for interleaving image embeddings with
the CodeLlama model weights, and uses the same pre-trained ViT (Dosovitskiy et al., 2020) weights for image
encoder.

Results from the ablation experiments are reported in Tab. 3. We make the following remarks: first, regression
formulation predicts less accurate joint positions. Both predicting absolute joint positions (column ‘OBB
Abs.’) and relative position from OBB center (column ‘OBB Rot.’) yield a higher error. In contrary, the
rotation error is still on a reasonable scale: we found this is due to the model learns to copy the correct axis
column from the OBB rotation matrices contained in the input prompt. Second, RGB input does not yield
significant improvement. Comparing row ‘+RGB Rel.’ and ‘OBB Rel.’, we see the OBB input provides sufficient
information for articulation prediction task.

4.6 EXPERIMENTS ON REAL WORLD OBJECTS

Additional RGB Input

Prompt with OBB Input

Regress

Classify

Additional RGB Input

Prompt with OBB Input

Different Joint Output Types

Absolute Pos. + Axis

Relative Pos.
+ OBB Axis

OBB Edge + Axis

Figure 5: Qualitative comparison of the code output format in
ablation experiments. Each formulation occupies one line. In
‘Absolute Pos. + Axis’, LLM outputs continuous position and axis
values; in ‘Relative Pos. + OBB Axis’, LLM outputs one index
into the OBB’s rotation axis, and a 2D joint position relative to the
selected axis; Real2Code uses ‘OBB Edge + Axis‘, where LLM
outputs index to rotation axes in an OBB, and two values to indicate
the OBB edge. Bottom right of the figure shows one example of
additional RGB image input to the LLM.

To validate the generalization ability of
Real2Code, we gather a set of in-the-
wild articulated objects and collect multi-
view RGB data as inputs. We run
Real2Code with DUSt3R (Wang et al.,
2023b) to achieve reconstruction from
multi-view pose-free RGB images. Due to
the lack of ground-truths, we show quali-
tative results in Fig. 7 that Real2Code gen-
eralizes well to real objects and pro-
duces good quality reconstructions from
RGB-only inputs. However, although
the learned DUSt3R (Wang et al., 2023b)
model performs well on overall shape and
exterior surface areas of the objects, it pre-
dicts less accurate point maps at areas in-
side the drawers, (likely due to the lack of
similar data in their training dataset). As
a result, the segmented part point clouds
display noises (second row in Fig. 7), and
leads to lower quality mesh extractions.
See appendix A.4 for more details on our
evaluation setup.

5 CONCLUSION
We present Real2Code, a novel method for reconstructing articulated objects that leverages the capability of pre-
trained vision and large language models. We empirically show that Real2Code achieves a new state-of-the-art
in both geometry reconstruction and articulation prediction. We hope Real2Code unlocks new opportunities in
robotics and mixed reality applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

PARIS

Ditto

Real2Code
w/o Shape
Completion

Real2Code
(ours)

GT

N/A

Figure 6: Qualitative results that compare Real2Code to baseline methods. We show test on objects with
varying kinematic complexities, from a two-part laptop to a ten-part multi-drawer table. Whereas all methods
handle the simpler laptop articulation, baseline methods struggle as the number of object parts increases, and
Real2Code performs reconstruction much more accurately. PARIS runs out of memory and fails to run on the
ten-part table object (‘N/A’).

Figure 7: We evaluate Real2Code on real world objects using RGB data. For each object, we use 10 pose-free
RGB images captured in-the-wild and run Real2Code with DUSt3R(Wang et al., 2023b). We show one example
RGB input (1st row), segmented point clouds (2nd row) and full reconstruction (3rd row) for each object.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

3D Scanner App. 3D Scanner App. https://3dscannerapp.com/, 2024. Accessed: 2024-03-13.

Hameed Abdul-Rashid, Miles Freeman, Ben Abbatematteo, George Konidaris, and Daniel Ritchie. Learning to
infer kinematic hierarchies for novel object instances. In 2022 International Conference on Robotics and
Automation (ICRA), pp. 8461–8467. IEEE, 2022.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur
Mensch, Katie Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda Han, Zhitao
Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian Borgeaud, Andrew Brock, Aida
Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman,
and Karen Simonyan. Flamingo: a visual language model for few-shot learning, 2022.

Boshi An, Yiran Geng, Kai Chen, Xiaoqi Li, Qi Dou, and Hao Dong. Rgbmanip: Monocular image-based
robotic manipulation through active object pose estimation. ArXiv, abs/2310.03478, 2023. URL https:
//api.semanticscholar.org/CorpusID:263672087.

Armen Avetisyan, Christopher Xie, Henry Howard-Jenkins, Tsun-Yi Yang, Samir Aroudj, Suvam Patra, Fuyang
Zhang, Duncan Frost, Luke Holland, Campbell Orme, Jakob Engel, Edward Miller, Richard Newcombe, and
Vasileios Balntas. Scenescript: Reconstructing scenes with an autoregressive structured language model,
2024.

Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe, Yonatan
Bitton, Samir Gadre, Shiori Sagawa, Jenia Jitsev, Simon Kornblith, Pang Wei Koh, Gabriel Ilharco, Mitchell
Wortsman, and Ludwig Schmidt. Openflamingo: An open-source framework for training large autoregressive
vision-language models, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners, 2020.

Russell Buchanan, Adrian Röfer, João Moura, Abhinav Valada, and Sethu Vijayakumar. Online estimation of
articulated objects with factor graphs using vision and proprioceptive sensing. ArXiv, abs/2309.16343, 2023.
URL https://api.semanticscholar.org/CorpusID:263134377.

Jiazhong Cen, Zanwei Zhou, Jiemin Fang, Chen Yang, Wei Shen, Lingxi Xie, Dongsheng Jiang, Xiaopeng
Zhang, and Qi Tian. Segment anything in 3d with nerfs, 2023.

Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foundation, Stichting
Blender Foundation, Amsterdam, 2018. URL http://www.blender.org.

Maximilian Denninger, Dominik Winkelbauer, Martin Sundermeyer, Wout Boerdijk, Markus Knauer, Klaus H.
Strobl, Matthias Humt, and Rudolph Triebel. Blenderproc2: A procedural pipeline for photorealistic
rendering. Journal of Open Source Software, 8(82):4901, 2023. doi: 10.21105/joss.04901. URL https:
//doi.org/10.21105/joss.04901.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
image is worth 16x16 words: Transformers for image recognition at scale, 2020.

Clement Fuji Tsang, Maria Shugrina, Jean Francois Lafleche, Towaki Takikawa, Jiehan Wang, Charles Loop,
Wenzheng Chen, Krishna Murthy Jatavallabhula, Edward Smith, Artem Rozantsev, Or Perel, Tianchang
Shen, Jun Gao, Sanja Fidler, Gavriel State, Jason Gorski, Tommy Xiang, Jianing Li, Michael Li, and Rev
Lebaredian. Kaolin: A pytorch library for accelerating 3d deep learning research. https://github.
com/NVIDIAGameWorks/kaolin, 2022.

Samir Yitzhak Gadre, Kiana Ehsani, and Shuran Song. Act the part: Learning interaction strategies for articulated
object part discovery, 2021.

Yaroslav Ganin, Sergey Bartunov, Yujia Li, Ethan Keller, and Stefano Saliceti. Computer-aided design as
language, 2021.

Haoran Geng, Ziming Li, Yiran Geng, Jiayi Chen, Hao Dong, and He Wang. Partmanip: Learning cross-category
generalizable part manipulation policy from point cloud observations, 2023a.

11

https://3dscannerapp.com/
https://api.semanticscholar.org/CorpusID:263672087
https://api.semanticscholar.org/CorpusID:263672087
https://api.semanticscholar.org/CorpusID:263134377
http://www.blender.org
https://doi.org/10.21105/joss.04901
https://doi.org/10.21105/joss.04901
https://github.com/NVIDIAGameWorks/kaolin
https://github.com/NVIDIAGameWorks/kaolin

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Haoran Geng, Helin Xu, Chengyang Zhao, Chao Xu, Li Yi, Siyuan Huang, and He Wang. Gapartnet: Cross-
category domain-generalizable object perception and manipulation via generalizable and actionable parts,
2023b.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning without training,
2022.

Nick Heppert, Toki Migimatsu, Brent Yi, Claire Chen, and Jeannette Bohg. Category-independent articulated
object tracking with factor graphs. In 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, October 2022. doi: 10.1109/iros47612.2022.9982029. URL http://dx.doi.
org/10.1109/IROS47612.2022.9982029.

Nick Heppert, Muhammad Zubair Irshad, Sergey Zakharov, Katherine Liu, Rares Ambrus, Jeannette Bohg,
Abhinav Valada, and Thomas Kollar. Carto: Category and joint agnostic reconstruction of articulated objects.
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 21201–21210, 2023.
URL https://api.semanticscholar.org/CorpusID:257771447.

Cheng-Chun Hsu, Zhenyu Jiang, and Yuke Zhu. Ditto in the house: Building articulation models of indoor scenes
through interactive perception. 2023 IEEE International Conference on Robotics and Automation (ICRA), pp.
3933–3939, 2023a. URL https://api.semanticscholar.org/CorpusID:256503754.

Joy Hsu, Jiayuan Mao, and Jiajun Wu. Ns3d: Neuro-symbolic grounding of 3d objects and relations, 2023b.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models, 2021.

Ruizhen Hu, Wenchao Li, Oliver Van Kaick, Ariel Shamir, Hao Zhang, and Hui Huang. Learning to predict part
mobility from a single static snapshot. ACM Transactions on Graphics (TOG), 36(6):1–13, 2017.

Jiahui Huang, He Wang, Tolga Birdal, Minhyuk Sung, Federica Arrigoni, Shi-Min Hu, and Leonidas Guibas.
Multibodysync: Multi-body segmentation and motion estimation via 3d scan synchronization. In Proceedings
of the Computer Vision and Pattern Recognition (CVPR), 2021. URL https://arxiv.org/abs/2101.
06605.

Xiaoxia Huang, Ian D. Walker, and Stan Birchfield. Occlusion-aware multi-view reconstruction of ar-
ticulated objects for manipulation. Robotics Auton. Syst., 62:497–505, 2014. URL https://api.
semanticscholar.org/CorpusID:15357698.

Muhammad Zubair Irshad, Thomas Kollar, Michael Laskey, Kevin Stone, and Zsolt Kira. Centersnap: Single-
shot multi-object 3d shape reconstruction and categorical 6d pose and size estimation, 2022. URL https:
//arxiv.org/abs/2203.01929.

Hanxiao Jiang, Yongsen Mao, Manolis Savva, and Angel X Chang. Opd: Single-view 3d openable part
detection. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part XXXIX, pp. 410–426. Springer, 2022a.

Zhenyu Jiang, Cheng-Chun Hsu, and Yuke Zhu. Ditto: Building digital twins of articulated objects from
interaction, 2022b.

R. Kenny Jones, Homer Walke, and Daniel Ritchie. Plad: Learning to infer shape programs with pseudo-labels
and approximate distributions, 2022.

Pushkal Katara, Zhou Xian, and Katerina Fragkiadaki. Gen2sim: Scaling up robot learning in simulation with
generative models, 2023.

Dov Katz, Moslem Kazemi, J Andrew Bagnell, and Anthony Stentz. Interactive segmentation, tracking, and
kinematic modeling of unknown 3d articulated objects. In 2013 IEEE International Conference on Robotics
and Automation, pp. 5003–5010. IEEE, 2013.

Yuki Kawana, Yusuke Mukuta, and Tatsuya Harada. Unsupervised pose-aware part decomposition for man-made
articulated objects. In European Conference on Computer Vision, pp. 558–575. Springer, 2022.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer
Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. Segment anything, 2023.

Xiaolong Li, He Wang, Li Yi, Leonidas Guibas, A. Lynn Abbott, and Shuran Song. Category-level articulated
object pose estimation, 2020.

12

http://dx.doi.org/10.1109/IROS47612.2022.9982029
http://dx.doi.org/10.1109/IROS47612.2022.9982029
https://api.semanticscholar.org/CorpusID:257771447
https://api.semanticscholar.org/CorpusID:256503754
https://arxiv.org/abs/2101.06605
https://arxiv.org/abs/2101.06605
https://api.semanticscholar.org/CorpusID:15357698
https://api.semanticscholar.org/CorpusID:15357698
https://arxiv.org/abs/2203.01929
https://arxiv.org/abs/2203.01929

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yi-Chuan Liang. Learning to infer 3d shape programs with differentiable renderer. ArXiv, abs/2206.12675, 2022.
URL https://api.semanticscholar.org/CorpusID:250072948.

Vincent Lim, Huang Huang, Lawrence Yunliang Chen, Jonathan Wang, Jeffrey Ichnowski, Daniel Seita, Michael
Laskey, and Ken Goldberg. Planar robot casting with real2sim2real self-supervised learning, 2022.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection,
2018.

Jiayi Liu, Ali Mahdavi-Amiri, and Manolis Savva. Paris: Part-level reconstruction and motion analysis for
articulated objects, 2023a.

Liu Liu, Wenqiang Xu, Haoyuan Fu, Sucheng Qian, Yang Han, and Cewu Lu. Akb-48: A real-world articulated
object knowledge base, 2022.

Shaowei Liu, Saurabh Gupta, and Shenlong Wang. Building rearticulable models for arbitrary 3d objects from
4d point clouds. In Proceedings of the Computer Vision and Pattern Recognition (CVPR), 2023b. URL
https://arxiv.org/abs/2306.00979.

William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d surface construction algorithm.
In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’87, pp. 163–169, New York, NY, USA, 1987. Association for Computing Machinery. ISBN 0897912276.
doi: 10.1145/37401.37422. URL https://doi.org/10.1145/37401.37422.

Frank Michel, Alexander Krull, Eric Brachmann, Michael Ying Yang, Stefan Gumhold, and Carsten Rother.
Pose estimation of kinematic chain instances via object coordinate regression. In British Machine Vision
Conference, 2015. URL https://api.semanticscholar.org/CorpusID:12510451.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields for view synthesis, 2020.

Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and Hao Su. PartNet:
A large-scale benchmark for fine-grained and hierarchical part-level 3D object understanding. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Kaichun Mo, Leonidas Guibas, Mustafa Mukadam, Abhinav Gupta, and Shubham Tulsiani. Where2act: From
pixels to actions for articulated 3d objects, 2021.

Jiteng Mu, Weichao Qiu, Adam Kortylewski, Alan Yuille, Nuno Vasconcelos, and Xiaolong Wang. A-sdf:
Learning disentangled signed distance functions for articulated shape representation, 2021.

Neil Nie, Samir Yitzhak Gadre, Kiana Ehsani, and Shuran Song. Structure from action: Learning interactions
for articulated object 3d structure discovery, 2023.

OpenAI. Gpt-4 technical report, 2023.

Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. Convolutional
occupancy networks. In European Conference on Computer Vision (ECCV), 2020.

Polycam. Polycam - LiDAR & 3D Scanner for iPhone & Android. https://poly.cam/, 2024. Accessed:
2024-03-07.

C. Qi, L. Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hierarchical feature learning on point
sets in a metric space. In Neural Information Processing Systems, 2017. URL https://api.
semanticscholar.org/CorpusID:1745976.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt,
Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar,
Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open
foundation models for code, 2023.

Sanjay Subramanian, Medhini Narasimhan, Kushal Khangaonkar, Kevin Yang, Arsha Nagrani, Cordelia Schmid,
Andy Zeng, Trevor Darrell, and Dan Klein. Modular visual question answering via code generation, 2023.

Carole H. Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin, and M. Jorge Cardoso. Generalised Dice
Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations, pp. 240–248. Springer
International Publishing, 2017. ISBN 9783319675589. doi: 10.1007/978-3-319-67558-9 28. URL http:
//dx.doi.org/10.1007/978-3-319-67558-9_28.

13

https://api.semanticscholar.org/CorpusID:250072948
https://arxiv.org/abs/2306.00979
https://doi.org/10.1145/37401.37422
https://api.semanticscholar.org/CorpusID:12510451
https://poly.cam/
https://api.semanticscholar.org/CorpusID:1745976
https://api.semanticscholar.org/CorpusID:1745976
http://dx.doi.org/10.1007/978-3-319-67558-9_28
http://dx.doi.org/10.1007/978-3-319-67558-9_28

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Xiaohao Sun, Hanxiao Jiang, Manolis Savva, and Angel X. Chang. Opdmulti: Openable part detection
for multiple objects. ArXiv, abs/2303.14087, 2023. URL https://api.semanticscholar.org/
CorpusID:257757423.

Dı́dac Surı́s, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for reasoning,
2023.

Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T. Freeman, Joshua B. Tenenbaum, and Jiajun
Wu. Learning to infer and execute 3d shape programs, 2019.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033, 2012. doi:
10.1109/IROS.2012.6386109.

Marcel Torne, Anthony Simeonov, Zechu Li, April Chan, Tao Chen, Abhishek Gupta, and Pulkit Agrawal.
Reconciling reality through simulation: A real-to-sim-to-real approach for robust manipulation, 2024.

Wei-Cheng Tseng, Hung-Ju Liao, Yen-Chen Lin, and Min Sun. Cla-nerf: Category-level articulated neural
radiance field. 2022 International Conference on Robotics and Automation (ICRA), pp. 8454–8460, 2022.
URL https://api.semanticscholar.org/CorpusID:237397845.

Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A. Efros, and Jitendra Malik. Learning shape abstractions
by assembling volumetric primitives. 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 1466–1474, 2016. URL https://api.semanticscholar.org/CorpusID:
2380406.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom Erez,
Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm control: Software and tasks for continuous control.
Software Impacts, 6:100022, November 2020. ISSN 2665-9638. doi: 10.1016/j.simpa.2020.100022. URL
http://dx.doi.org/10.1016/j.simpa.2020.100022.

Luobin Wang, Runlin Guo, Quan Vuong, Yuzhe Qin, Hao Su, and Henrik Christensen. A real2sim2real method
for robust object grasping with neural surface reconstruction, 2023a.

Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r: Geometric 3d
vision made easy, 2023b.

Xiaogang Wang, Bin Zhou, Yahao Shi, Xiaowu Chen, Qinping Zhao, and Kai Xu. Shape2motion: Joint analysis
of motion parts and attributes from 3d shapes, 2019.

Fangyin Wei, Rohan Chabra, Lingni Ma, Christoph Lassner, Michael Zollhöfer, Szymon Rusinkiewicz, Chris
Sweeney, Richard Newcombe, and Mira Slavcheva. Self-supervised neural articulated shape and appearance
models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15816–15826, 2022.

Karl D. D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G. Lambourne, Armando Solar-Lezama,
and Wojciech Matusik. Fusion 360 gallery: A dataset and environment for programmatic cad construction
from human design sequences, 2021.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu
Yuan, He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas, and Hao Su. SAPIEN: A simulated part-based
interactive environment. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2020.

Li Yi, Haibin Huang, Difan Liu, Evangelos Kalogerakis, Hao Su, and Leonidas Guibas. Deep part induction
from articulated object pairs. ACM Transactions on Graphics, 37(6):1–15, 2018. URL https://arxiv.
org/abs/1809.07417.

Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian Wong, Stefan Welker, Federico
Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani, Johnny Lee, Vincent Vanhoucke, and Pete Florence.
Socratic models: Composing zero-shot multimodal reasoning with language, 2022.

Vicky Zeng, Tabitha Edith Lee, Jacky Liang, and Oliver Kroemer. Visual identification of articulated object
parts. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2443–2450.
IEEE, 2021.

Özgün Çiçek, Ahmed Abdulkadir, Soeren S. Lienkamp, Thomas Brox, and Olaf Ronneberger. 3d u-net: Learning
dense volumetric segmentation from sparse annotation, 2016.

14

https://api.semanticscholar.org/CorpusID:257757423
https://api.semanticscholar.org/CorpusID:257757423
https://api.semanticscholar.org/CorpusID:237397845
https://api.semanticscholar.org/CorpusID:2380406
https://api.semanticscholar.org/CorpusID:2380406
http://dx.doi.org/10.1016/j.simpa.2020.100022
https://arxiv.org/abs/1809.07417
https://arxiv.org/abs/1809.07417

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DISCUSSIONS & LIMITATIONS

In this section, we discuss a few key limitations that point to interesting directions for future work:

1. Real2Code currently handles one single object at a time. To achieve scene-level reconstruction, i.e.
multiple objects each with multiple articulated parts, additional processing is required on top of the
current pipeline. For example, given a sequence of multi-view image inputs of a multi-object scene,
we can first use an object detection model to single-out each detected object, then use the original
Real2Code pipeline to handle object-level reconstruction.

2. Test-time computational efficiency. Due to the iterative prompting method described in 3.1.2, i.e. 1)
grid-sampling of prompt points on each single RGB image and 2) prompting on all camera views
for each object part, our test-time compute for SAM forward pass scales linearly with the number
of input camera views: if an object has M camera views, K object parts, and uses NxN grid for
initial prompt points sampling (we use N = 16), then the SAM Kirillov et al. (2023) is prompted
with N + K(M − 1) single 2D-point and RGB image pairs. Notably, M is the main compute
bottleneck because we can cache the image embedding from SAM Kirillov et al. (2023), and only call
the light-weight prompt decoder for additional prompt points. Additionally, the inference compute for
LLM code generation is dependent on the number of object parts, and roughly scales linearly with
the generation token length. Overall, our system is slower at inference time when compared with
end-to-end methods such as CARTOHeppert et al. (2023) and Ditto Jiang et al. (2022b), but is more
scalable to more complex articulation structures because it handles arbitrary numbers of object parts.

3. Cascading dependency. Because Real2Code is composed of multiple modules, failure cases happen
when the errors from each module propagate and lead to sub-optimal final object reconstructions.
We found that the articulation prediction accuracy is sensitive to failures in the first 2D image
segmentation module, i.e., OBBs from wrong segmentations directly obstruct the LLM reasoning of
object structures. To increase robustness, we can improve the system by providing human corrective
feedback as proposed in Kirillov et al. (2023), i.e., a user provides additional points and prompt the
model to adjust its mask predictions. Then only feed the input with satisfactory OBB extractions to
LLM for code generation.

4. Objects with hinge joints that do not overlap with OBB edge. To handle new object categories,
we remark that 1) the geometry reconstruction part of Real2Code (both part segmentation shape
completion) can handle complex geometry shapes (e.g. scissors, faucet handles) when given the
training data for fine-tuning the part segmentation model and shape completion model. 2) However,
because we select OBB edge as rotation center, our method can handle sliding joints (e.g. a sliding
oven rack) but will be inaccurate for hinge joints where the joint is not overlapping with any OBB
edge (e.g. scissors). To address this, one could add another fine-tuning head to further adjust the
LLM outputs (which selects one OBB edge) by predicting an offset value to improve the joint position
accuracy.

A.2 DATASET PREPARATION DETAILS

Base: PartNet-Mobility Object Assets. We use the same set of 467 training and 35 testing objects from 4
categories in PartNet-Mobility (Mo et al., 2019). The raw dataset contains a rich collection of object meshes,
textures, and URDF files that contain articulation information. We further process the data as follows:

RGB-D Image Rendering We render each object individually using Blender (Community, 2018; Denninger
et al., 2023) for 5 loops. For each rendering loop, the object is centered at the scene origin and the rendering
camera poses are randomly sampled; we render 12 RGB-D images and all the segmentation masks corresponding
to the all the object parts. During rendering, we also randomly sample joint states in the object such that all its
doors or drawers are partially open — we make the assumption that all the parts our train and test objects are
partially open to remove ambiguity and provide more observation view into object insides.

Mesh Pre-processing. The original PartNet-Mobility assets contain highly fine-grained meshes, i.e.,one drawer
part is comprised of more than ten panel or bar-shaped meshes. To prepare data for part-level shape completion,
we group these fine-grained meshes such that meshes from the same object part are merged into one single
mesh. Mesh textures are ignored during grouping, resulting in grouped texture-less part-level meshes. The
RGB-D images and masks are then used to generate part-level point clouds as partial observations. We use
Kaolin (Fuji Tsang et al., 2022) to sample label occupancy values from object part meshes.

Code-Generation Data. To prepare data for fine-tuning code-generation LLMs, we first use the rendered
RGB-D images and segmentation masks to obtain ground-truth part-level point-clouds, which are used to extract
oriented-bounding boxes (OBBs) for each part. Next, we take the raw object URDF files and generate a shorter

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

copy with our grouped part meshes. Because the raw URDF/XML syntax contain long unnecessary details,
we manually translate them into Python-like MJCF (Tunyasuvunakool et al., 2020) code, which are a lot more
compact and familiar to the pre-trained LLMs. Finally, for each of the 5 rendering loops per object, we re-write
the object code again to replace the absolute joint information with the relative position and rotation of each
joint with respect to the extracted OBBs. We further augment the data by randomly rotating the OBBs along the
z-axis, 5 times per object. This results in 468× 5× 5 = 11700 training samples for LLM fine-tuning.

A.3 MODEL TRAINING DETAILS

SAM Fine-tuning. The fine-tuning data consists of 28, 020 RGB images, and each image corresponds to a set
of binary segmentation masks, one per each object part plus a background mask. We fine-tune only the decoder
layers of pre-trained SAM (Kirillov et al., 2023) on this custom dataset while keeping the rest of the model
weights frozen. Each fine-tuning batch contains 24 RGB images; for every RGB image in the batch, we sample
16 prompt points uniformly across each image’s ground-truth masks, i.e.,only sample points from the positive
mask area. Hence each training batch of size B = 24 contains 24 images and 24× 16 pairs of prompt point and
ground-truth masks. Following the original paper (Kirillov et al., 2023), we update the model with a weighted
average of Focal Loss (Lin et al., 2018), Dice Loss (Sudre et al., 2017) and MSE IoU prediction loss.

Fine-tuning DatasetInput image Zero-shot SAM Fine-tuned SAM

Figure 8: Kinematics-aware SAM Fine-tuning. Given an RGB input image, the pre-trained
zero-shot SAMKirillov et al. (2023) produces unnecessarily detailed segmentation masks (column
Zero-shot SAM’. We construct a dataset of objects’ RGB images and kinematics-aligned ground-truth
masks (column ‘Fine-tuning Dataset’). The model is fine-tuned to take one image and one sampled
2D query point and predict the corresponding part mask. We compare the output of the model after
fine-tuning on the same image (column ‘Fine-tuned SAM’).

Training Shape Completion Model. We use 6, 260 pairs of partial point clouds and size 963 occupancy grids
and train our PointNet++ (Qi et al., 2017) based occupancy prediction model from scratch. For a training batch
of size B, we sample B point clouds of size 2048, and sample B × 12, 000 query points on the label occupancy
grids. Notably, because object parts are of different scales, we normalize the occupancy grid using partial OBBs
extracted from the input point cloud to avoid under-fitting the smaller-sized meshes. When sampling training
query points, we found sampling 25% occupied works the best for balancing between occupied areas and empty
space, and we add a random shifting step on the occupied grids to improve model accuracy on the near-surface
areas. At test time, we query on a 963 grid and use Marching Cubes (Lorensen & Cline, 1987) to extract the
completed part meshes.

Fine-tuning Code Generation LLM. We use the pre-trained Codellama (Rozière et al., 2023)-7B model on
our code dataset, which contains code samples generated from PartNet (Mo et al., 2019) objects as described
above. We use LoRA (Hu et al., 2021), a low-rank weight fine-tuning technique, to fine-tune the model with the
next-token prediction loss. For training efficiency, we compress the training sequences by removing unnecessary
empty character spaces and overhead code lines (such as package import statements). The resulting training set
contains under 800 tokens per sequence for objects with up to 7 parts (i.e., 6 articulated joints). Despite the short
training data, we found the model to be able to extrapolate to unseen test set objects with up to 15 parts when the
ground-truth segmentation is provided.

A.4 DETAILS ON REAL WORLD EVALUATIONS

Data Collection. We collect data from a set of common furniture objects, including cabinets, laptops, night
stands, dressers, ranging from 1 to 3 moving parts. Each object is scanned using a LiDAR-equipped iPhone
camera and 3dScanner App (3D Scanner App, 2024) to capture a series of RGB images from the front 180◦

view. We then select 10 RGB images per object, and crop and resize them into 512 × 512 images used by
SAM (Kirillov et al., 2023) and DUSt3R (Wang et al., 2023b).

Part Segmentation from Unstructured RGB images. Fig. 9 visualizes the DUSt3R model output on an
example object in: notably, the model predicts dense point-maps on the object’s surface area that can be
globally-aligned into a object point cloud; but the 3D points are less accurate on the partially occluded areas,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Globally Aligned Dense Point-maps from DUSt3R View-consistent Prompt Points

Figure 9: 3D part segmentation from Pose-free RGB images. Illustration of how DUSt3R (Wang
et al., 2023b) is used to achieve 3D part segmentation from unstructured RGB images. For each
object, we take around 10 pose-free RGB images as input to the pre-trained DUSt3R (Wang et al.,
2023b) model, which outputs a set of globally-aligned 2D-to-3D dense point-maps, i.e.,every 2D
pixel on each image is matched to a point in 3D. This correspondence enables cross-view pixel
matching via finding nearest-neighbor in 3D space. We can therefore sample view-consistent 2D
points for prompting our fine-tuned SAM model, and the resulting segmented masks are grouped into
3D part segmentation.

Jewelry Box Gameboy

Figure 10: We demonstrate that Real2Code can be used for labeling and animating real world objects.
We evaluate Real2Code on scanned real objects from Polycam (Polycam, 2024) and export the
resulting mesh and joints in MuJoCo (Todorov et al., 2012). Blue arrows indicate the simulated joint
axis and position; mesh corresponding to the moving part is colored in green.

such as the inside of the drawer. This is likely due to these areas are less common in the model’s pre-training
dataset. Also notice that, because we sample each 2D point from one RGB image first and uses nearest neighbor
in the predicted 3D point-map to find its matching 2D point in another image, it might find a wrong match if the
point is occluded and not visible in the other image. We address this by manually setting a distance threshold,
and decide a match cannot be found if its 3D point’s distance to the nearest neighbor is above set threshold.

B ADDITIONAL RESULTS ON ANIMATING SCANNED REAL WORLD OBJECTS

In addition to object reconstruction from raw RGB images, we show Real2Code can also be used to animate
scanned objects. We use real world scanned object meshes uploaded by users of the Polycam (Polycam, 2024)
App, and use our Blender rendering pipeline to render RGB-D images. We evaluate our image segmentation,
shape completion, and code generation models on these images, and demonstrate only the qualitative results due
to the lack of ground-truth data. We execute the final model output code to show the objects can be simulated
in MuJoCo (Todorov et al., 2012). See Fig. 10 for visualizations. These real world objects feature complex
visual appearance that falls outside our SAM fine-tuning distribution, but Real2Code is still able to successfully
segment parts and predict reasonable joint positions and rotations.

17

	Introduction
	Related Work
	Method
	Part Reconstruction
	Kinematics-aware Part Segmentation
	Test-time Prompting for View-consistent Segmentation.
	Part-level Shape Completion.

	Articulation Prediction via Code Generation
	Oriented Bounding Box as Input Abstraction.
	Fine-tuning a Code Generation LLM.

	Experiments
	Experiment Setup
	Part Segmentation and Reconstruction Experiments
	3D Part-level Shape Completion.
	Kinematics-aware 2D Image Segmentation.

	Articulation Prediction Experiments
	Qualitative Results
	Ablation Studies
	Experiments on Real World Objects

	Conclusion
	Appendix
	Discussions & Limitations
	Dataset Preparation Details
	Model Training Details
	Details on Real World Evaluations

	Additional Results on Animating Scanned Real World Objects

