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Boosting Audio VisualQuestion Answering via Key
Semantic-Aware Cues

Anonymous Authors

ABSTRACT
The Audio Visual Question Answering (AVQA) task aims to an-
swer questions related to various visual objects, sounds, and their
interactions in videos. Such naturally multimodal videos contain
rich and complex dynamic audio-visual components, with only a
portion of them closely related to the given questions. Hence, effec-
tively perceiving audio-visual cues relevant to the given questions
is crucial for correctly answering them. In this paper, we propose
a Temporal-Spatial Perception Model (TSPM), which aims to em-
power the model to perceive key visual and auditory cues related
to the questions. Specifically, considering the challenge of aligning
non-declarative questions and visual representations into the same
semantic space using visual-language pretrained models, we con-
struct declarative sentence prompts derived from the question tem-
plate, to assist the temporal perception module in better identifying
critical segments relevant to the questions. Subsequently, a spatial
perception module is designed to merge visual tokens from selected
segments to highlight key latent targets, followed by cross-modal
interaction with audio to perceive potential sound-aware areas. Fi-
nally, the significant temporal-spatial cues from these modules are
integrated for answering the question. Extensive experiments on
multiple AVQA benchmarks demonstrate that our framework excels
not only in understanding audio-visual scenes but also answering
complex questions effectively.

CCS CONCEPTS
• Computing methodologies→ Scene understanding.

KEYWORDS
Multi-modal sense understanding, Audio visual question answering

1 INTRODUCTION
Audio and visual cues abundantly contribute to conveying infor-
mation in our daily lives, and both modalities jointly improve our
ability in scene perception and understanding [34]. For instance,
imagining that we are driving along a winding mountain road,
honking the horn ahead of time is often safer than relying solely
on observing the road ahead with our eyes. In recent years, we
have seen significant progress in sound source localization [12, 31]
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Figure 1: Identifing key temporal segments and spatial sound-
aware areas is critical for fine-gained audio-visual scene un-
derstanding through human-like cognitive processes. For in-
stance, in a scenario of violin and flute ensemble, regarding
a given complex question: a) directly utilizing the question
makes it difficult to effectively select key temporal segments;
b) the lack of spatial supervision signals leads to challenges
in capturing audio-visual association; c) our method, employ-
ing constructed declarative prompts, can accurately locate
critical temporal segments and spatial sound-aware areas.

and separation [9, 39, 40], event localization [3, 33], video pars-
ing [26, 28, 32], segmentation [20, 24, 41], dialog [1, 30], question an-
swering [6, 19, 35, 37], etc., towards audio-visual scene understand-
ing. Particularly, the Audio-Visual Question Answering (AVQA)
task, involving the fine-gained spatio-temporal perception and rea-
soning of complex audio-visual scenes, has emerged as valuable
and challenging focus of research interest.

To solve above AVQA task, Li et al. [19] build a large-scale
MUSIC-AVQA dataset as a strong benchmark and propose a spatio-
temporal grounding model to achieve scene understanding and rea-
soning over audio and visual modalities. Yun et al. [37] and Yang et
al. [35] also introduce the Pano-AVQA and AVQA dataset to explore
panoramic and real-life scene, respectively. Recently, LAVISH [23]
introduced a novel parameter-efficient framework for encoding
audio-visual scenes using off-the-shelf pretrained vision transform-
ers, achieving notable progress. Moreover, researchers [5, 18] have

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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considered the significance of the given question, attempting to
achieve precise perception of relevant temporal segments and spa-
tial sound sources using the question as a guiding factor, leading
to promising results. Clearly, these endeavors have markedly pro-
pelled the progress of research in audio-visual question answering.

Despite the significant progress made in AVQA, there are still
several challenges that need to be addressed. For temporal per-
ception, this task involves understanding long audio-visual videos,
which suffer fromheavy information redundancy. Existingworks [19,
23, 27] typically employ a uniform sampling strategy to reduce re-
dundancy and computational costs, but may lead to the loss of
crucial information. Others [5, 15, 18] attempt to use the CLIP pre-
trained model as a feature extractor by measuring the similarity
between given questions and video frames to select temporally
relevant segments. However, the given question’s expression for-
mat is not declarative, inconsistent with the textual format used
in the CLIP model, making it difficult to effectively align with the
semantic content of video frames, and thus challenging the search
for temporally relevant segments related to the input question. Re-
garding spatial perception, the lack of supervised information
for spatial visual objects and sound makes it challenging for mod-
els to associate visual targets with sounds in the video, thereby
making it difficult to identify potential sound-aware areas. While
existing pre-trained object detection models used in visual question
answering task can excel in key object localization, the absence of
certain specific categories (eg., suona, guzheng, etc.) in the AVQA-
related datasets, adding difficulty to locate relevant areas. Some
explorations [18] have employed ViT to convert video frames into
token sequences, utilizing semantic similarity calculations between
questions and tokens to perceive the most relevant tokens as key
targets. Nevertheless, the absence of objects’ semantics in visual
tokens makes establishing an effective correlation with questions
challenging, thus rendering accurate localization difficult. This im-
precise spatial perception makes it difficult to establish effective
associations with sounds in the video, thereby complicating the
localization of potential sound-aware areas. Hence, as shown in
Fig. 1, it is crucial to enable machines to perceive complex audio-
visual scenes in a manner akin to human cognition and accurately
infer answers to questions.

To address these challenges, we propose an effective Temporal-
Spatial Perception Model (TSPM) to perceiving crucial visual and
auditory cues related to the questions in complex audio-visual
scenes. Firstly, the content related to the question is usually scat-
tered in partial segments of the video instead of the whole sequence.
Hence, we design a Text Prompt Constructor (TPC), which con-
struct a declarative sentence text prompt derived from the question
template, effectively aligning it with the semantic content of the
visual frames. Following this, we introduce a Temporal Perception
Module (TPM) that utilizes cross-modal attention mechanisms to
identify the key temporal segments relevant to the given question.
Secondly, identifying key visual areas and their corresponding
sound source positions within critical segments, which can help to
learn audio-visual associations in complex scenarios. To achieve
this, the Spatial Perception Module (SPM) is designed to merge vi-
sual tokens on selected temporal segments to multiple joint tokens,
thus preserving the semantic information of potential targets. Then,
these joint tokens interact cross-modal interaction with audio to

perceive potential sound-aware areas. Finally, the above critical
temporal segments and sound-aware regions’ features are fused
to obtain a joint representation for question answering. Extensive
experiments on multiple benchmark demonstrate that our proposed
approach achieves precise temporal-spatial perception, highlighting
its immense potential in tackling audiovisual question-answering
task. Our contributions can be summarized as follows:

• The temporal perception module designed in TSPM transforms
questions into declarative prompts using a constructed declar-
ative sentence generator, facilitating better alignment with the
semantic of visual frames and effectively identifying key tempo-
ral segments relevant to the given question.
• The spatial perception module introduced in TSPMmerges visual
tokens on selected temporal segments to preserve key potential
targets, then engages in cross-modal interaction with audio, ef-
fectively perceiving potential sound-aware areas.
• Extensive experiments on multiple benchmarks demonstrate that
the proposed TSPM achieves precise spatio-temporal perception,
showcasing its significant potential in addressing audio-visual
question answering task.

2 RELATEDWORKS
2.1 Audio Visual Scene Understanding
Inspired by the multisensory perception of humans, the commu-
nity has paid more and more attention to audio-visual scene un-
derstanding in recent years. [34]. Compared to other modalities,
visual and auditory modalities possess unique characteristics such
as cognitive foundation, semantic consistency, spatial consistency,
temporal consistency, and rich support from real-world data. It
includes various interesting tasks such as sound source localiza-
tion [12, 13, 31], action recognition [10], event localization [3, 33],
video parsing [26, 28, 32], segmentation [20, 24, 41], dialog [1, 30],
etc. These studies integrate rich audiovisual information within
multimodal scenes to overcome limitations in perception inher-
ent to single modalities, thereby utilizing both auditory and visual
modalities to explore finer-grained scene comprehension.

Apart from the above methods that facilitate scene understand-
ing by excavating and analyzing different modalities, a unified mul-
timodal model should also be able to reason their spatio-temporal
correlation. Therefore, we focus on the audio-visual question an-
swering task [6, 19, 35, 37] and explore spatiotemporal perception
and reasoning in the audio-visual context.

2.2 Audio Visual Question Answering
Audio-visual question answering, which exploits the natural mul-
timodal medium of video, is attracting increasing attention from
researchers [4, 23]. It requires comprehensive understanding and
integration of diverse modalities, leading to precise responses to
distinct questions. To explore the above AVQA task, Yun et al. [37]
proposed the Pano-AVQA, which includes 360-degree videos and
their corresponding question-answer pairs, aimed at exploring
understanding of panoramic scenes. Li et al. [19] presented that
the MUSIC-AVQA has become a strong benchmark for promot-
ing spatio-temporal reasoning research in dynamic and long-term
audio-visual scenes. Considering that real-life scenarios contain
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Figure 2: Our proposed Temporal-Spatio Perception Model (TSPM) framework. Firstly, the video is divided into𝑇 segments, and
we use a pre-trained model to extract audio, visual, and question features. Then, a temporal perception module incorporating
constructed prompt aiming to effectively capturing 𝑇𝑜𝑝𝑘 key relevant temporal segments. Subsequently, the spatial perception
module is designed to enhance spatial awareness through the interaction of audio-visual tokens.

greater variety of audio-visual daily activities, AVQA benchmark
is proposed in [35], which further expands the audio visual scene
coverage of AVQA task. Recently, LAVISH [23] have dedicated to
exploring improvements in audio-visual association and enhancing
training efficiency, resulting in satisfactory outcomes.

Above research extract audio and visual features globally, with-
out considering the importance of local feature representation.
Chen et al. [5] consider the importance of the given question, which
guides the feature extraction of both audio and visual signals. And
then the PSTP-Net [18] is proposed explore critical temporal seg-
ments and sound-aware regions among the complex audiovisual
scenarios progressively. However, aligning questions with video
semantics is challenging due to the non-declarative nature, making
it hard to identify key relevant segments. Our work focuses on
empowering the model to gradually perceive essential visual and
auditory cues for audio-visual scene understanding.

3 METHOD
To solve the AVQA challenges, we propose an effective Temporal-
Spatial Perception Model (TSPM) to achieve fine-gained audio-
visual scene understanding, thus answering questions accurately.
An overview of the proposed framework is illustrated in Fig. 2.

3.1 Input Representation
Given an input audio-visaul video sequence, we first divide it into𝑇
non-overlapping audio and visual segment pairs {𝑎𝑡 , 𝑣𝑡 }𝑇𝑡=1, where
each segment is 1𝑠 long. Subsequently, we partition each visual
frame into 𝑀 patches and append a special [CLS] token to the
beginning of the first patch. The question sentence 𝑄 is tokenized
into 𝑁 individual words {𝑞𝑛}𝑁𝑛=1.

Audio Representation. For each audio segment 𝑎𝑡 , we use
the pre-trained VGGish [11] model to extract the audio feature
as 𝑓 𝑡𝑎 ∈ R𝐷 , where 𝐷 is the feature dimension. The pretrained
VGGish model is a VGG-like 2-D CNN network that trained on
the large-scale AudioSet [11] dataset, employing over transformed
audio spectorgrams. Then the features at the audio spectrgram
second-level can be interpreted as 𝐹𝑎 = {𝑓 1𝑎 , 𝑓 2𝑎 , ..., 𝑓 𝑇𝑎 }.

Visual Representation. A fixed number of frames are sampled
from each visual segment 𝑣𝑡 . Then we apply pre-trained CLIP [29],
with frozen parameters, extract both frame-level and token-level
features as 𝑓 𝑡𝑣 and 𝑓 𝑡𝑝 on video frames, respectively, where 𝑓 𝑡𝑣 ∈ R𝐷 ,
𝑓 𝑡𝑝 ∈ R𝑀×𝐷 and 𝑀 are token numbers of one frame. Finally, the
visual frame-level and token-level features can be denoted as 𝐹𝑣 =

{𝑓 1𝑣 , 𝑓 2𝑣 , ..., 𝑓 𝑇𝑣 }, 𝐹𝑝 = {𝑓 1𝑝 , 𝑓 2𝑝 , ..., 𝑓 𝑇𝑝 }, respectively.
Text Representation. Given an asked question𝑄 , we represent

each word 𝑞𝑛 in a fixed length vector with word embeddings, and
then feed it into the pre-trained CLIP[29] model to get the question
feature 𝐹𝑄 , where 𝐹𝑄 ∈ R𝐷 . Note that the first token pooling is
used for extracting question features.

3.2 Temporal Perception Module
To hightlight the 𝑇𝑜𝑝𝑘 crucial temporal segments that relevant to
the question, we propose a Temporal Perception Module (TPM)
with a carefully designed text prompt. While previous works [5, 18]
have considered identifying key segments through the semantic
similarity between question and temporal visual segments, aligning
questions with visual frame semantics poses a significant challenge
due to the non-declarative sentence of the questions. Therefore, the
key of TPM lies in constructing a declarative sentence, aligning it
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Algorithm 1: 𝑇𝑜𝑝𝑘 Segments Selection Operation.
Input: Visual feature 𝐹𝑣 and its temporal attention weights:

𝑊 ; audio feature 𝐹𝑎 , 𝑇𝑜𝑝𝑘 numbers;
Output: Selected 𝑇𝑜𝑝𝑘 segment features 𝐹 ′𝑎, 𝐹 ′𝑣 and its

index Ω𝑇𝑃𝑀 ;

Init list Ω𝑇𝑃𝑀 , 𝐹 ′𝑣 for selected index and feature;
if 𝑐𝑛𝑡 < 𝑇𝑜𝑝𝑘 then

Ω𝑇𝑃𝑀 ← Index[argmax𝑊 ]
𝑊 ←𝑊 − argmax𝑊 ;
𝑐𝑛𝑡 ← 𝑐𝑛𝑡 + 1;
Update Ω𝑇𝑃𝑀 ,𝑊 ;

end
for 𝑖𝑑𝑥 in Ω𝑇𝑃𝑀 do

𝐹 ′𝑣 ← 𝑖𝑑𝑥-th 𝐹𝑣 ; 𝐹 ′𝑎 ← 𝑖𝑑𝑥-th 𝐹𝑣 ;
Update 𝐹 ′𝑎, 𝐹 ′𝑣,Ω𝑇𝑃𝑀 ; Minus the current idx

end

effectively with the semantic content of the video, and facilitating
the identification of critical segments.

To achieve this, we devised a Text Prompt Constructor (TPC)
with the goal of generating declarative statements based on input
questions. This help semantic alignment between the generated
statements and the visual frame, facilitating to identify key tempo-
ral segments to enhance the model’s temporal perception ability.
Since the input question do not contain answers, directly trans-
forming them into declarative statements pose difficulties. Hence,
we approached the problem from a new perspective, considering
the design of statements that exclude irrelevant segments, guid-
ing the model’s attention toward temporal content relevant to the
questions. Illustrated by the example in Fig. 2, for input question
“Where is the first sounding instrument?", the objective is to identify
the moment when the first instrument starts playing. Considering
that instruments in the video do not play simultaneously but fol-
low a sequential order, we direct the model’s attention to segment
in the video where instruments do not play simultaneously. This
way directs the model focus on segments where there are changes
in the order of instrument sounds, identifying crucial segments.
Leveraging the TPC, we manually transform the question into a
declarative sentence “The instruments in the video do not sound at
the same time.", denote as TPrompt, aligning its feature represen-
tation well with the semantic content of the video. This allows
us to locate segments related to TPrompt and subsequently locate
temporal segments relevant to the question.

For a given declarative sentence TPrompt, its feature embedding
𝐹𝑇𝑃𝑟𝑜𝑚𝑝𝑡 using the same encoder as the given question. Concretely,
we firstly use one linear projection layer Key(·) to transform index-
ing visual features 𝐹𝑣 to indexing keys k. Then we get an attention
score for each indexing key in the video temporal sequence. A
Softmax layer normalizes the attention scores and generates an
attention weight vector𝑊 by:

𝑊 = Softmax(
𝐹𝑇𝑃𝑟𝑜𝑚𝑝𝑡 � [k1, k2, ..., k𝑇 ]⊺√

𝑑
), (1)

where k𝑗 = Key(𝐹 𝑗
𝑣 ), 𝑗 ∈ {1, 2, ...,𝑇 }, and 𝑑 is the dimensionality

of the key vector. Considering that the higher weight indicates a
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Figure 3: Spatial Perception Module. Similar tokens are
merged. For example, for a given complex sense, the man is
playing flute if merged into a single token, and the woman is
playing violin is merged into a single token. Following this,
the proposed model identify the sounding instrument, thus
inferring the correct answer to the input question.

stronger correlation between the video content and TPrompt, we
conduct 𝑇𝑜𝑝𝑘 feature selection over 𝑇 segments. To be specific,
we employ a temporal selection operation algorithm, denoted as
Ψ, which is implemented by the sorted algorithm for ranking and
sorting to pick out the crucial relevant segments with the highest
attention weights and their corresponding indices:

𝐹 ′𝑎, 𝐹
′
𝑣,Ω𝑇𝑃𝑀 = Ψ(𝐹𝑎, 𝐹𝑣,𝑊 ,𝑇𝑜𝑝𝑘 ), (2)

where Ψ is shown in Algorithm 1 , Ω𝑇𝑃𝑀 is the index position corre-
sponding to the𝑇𝑜𝑝𝑘 highest weights, Ω𝑇𝑃𝑀 ∈ {0, 1, ..., 𝑘 − 1}𝑇𝑜𝑝𝑘 ,
𝐹 ′𝑎, 𝐹

′
𝑣 is selected temporal feature, 𝐹 ′𝑎 ∈ R𝑇𝑜𝑝𝑘×𝐷 , 𝐹 ′𝑣 ∈ R𝑇𝑜𝑝𝑘×𝐷 .

Note that the 𝑇𝑜𝑝𝑘 temporal audio segments are corresponding to
positions on the 𝑇𝑜𝑝𝑘 visual segments relevant to the question.

3.3 Spatial Perception Module
To identify visual regions that are pertinent to the key instrument,
the Spatial PerceptionModule (SPM) is designed to merge visual to-
kens in selected temporal segments based on similarity, preserving
their semantics, and subsequently engages in cross-modal interac-
tion with audio to enhance audio-visual association. Given previous
works [18] attempt to identify crucial regions by leveraging the
semantic similarity between questions and visual tokens, the lack
of semantic about objects within these tokens presents a challenge
in establishing effective correlations with sound.

To address this, we enhanced the preservation of semantic infor-
mation in visual tokens along selected key temporal sequences. We
achieve this by merging similar tokens within each visual frame,
resulting in merged tokens that carry richer semantic information
about objects. Specially, given the visual token-level embedding 𝐹𝑝
and 𝑇𝑜𝑝𝑘 curious temporal segment index, we obtain the temporal
visual token-level features as follow:

𝐹 ′𝑝 = Φ(𝐹𝑝 ,Ω𝑇𝑃𝑀 ), (3)

where 𝐹 ′𝑝 ∈ R𝑇𝑜𝑝𝑘×𝑀×𝐷 . and Φ the algorithm that determines the
temporal position in 𝐹𝑝 based on the index in Ω𝑇𝑃𝑀 . For the given
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selected visual token-level feature 𝐹 ′𝑝 , we employ a token-merging
strategy to enhance the semantic features between the attention and
MLP branches of each transformer block. Then, similar tokens are
merged in each transformer block with per layer, and the merged
visual token-level feature 𝐹𝑝 as:

𝐹𝑝 = Merge(𝐹 ′𝑝 ), (4)

where 𝐹𝑝 = { ˆ𝑓 1𝑝 , ˆ𝑓 2𝑝 , ...,
ˆ
𝑓 𝜆𝑝 }, 𝐹𝑝 ∈ R𝜆×𝑆×𝐷 and 𝜆 is selected tempo-

ral segments’ moment, 𝑆 is merged tokens number. Specifically, as
shown in Fig. 3, evenly divide the𝑀 tokens in 𝐹 ′𝑝 into two subsets
𝐴 and 𝐵 of roughly equal size in Step 1. Then, for one subset 𝐴,
calculating the similarity between each token and every token in
the other subset 𝐵, drawing an edge for each calculated similar-
ity. Subsequently, apply mean fusion to the tokens connected by
the similar edges. And in Step 2, concatenating the two subsets to
generate a merged visual token-level feature 𝐹𝑝 . It’s worth noting
that between each transformer block’s attention branch and MLP
branch, Step 1 through Step 3 of the visual token merging process
are executed, resulting in the creation of multiple merged tokens
with semantic representations.

Then, considering that the sound and the location of its visual
source usually reflects the patial association between audio and vi-
sualmodality, we leverage the powerful cross-modal perception abil-
ity to interact between selected visual merged token-level features
and audio embeddings 𝐹𝑝 , 𝐹 ′𝑎 . This enables concrete audio-visual
correlation which performs attention-based patch-level merged
tokens sound source perception. Denote Attn(·) to be the scaled
dot-product conducted on the query, keys, and values, the aggre-
gated feature can be obtained by:

𝐹 𝑣 =
ˆ
𝑓 𝜆𝑝 + Attn(

ˆ
𝑓 𝜆𝑝 , 𝐹𝑝 , 𝐹𝑝 ) + Attn(𝑓 𝜆𝑎 , 𝐹𝑝 , 𝐹𝑝 ), (5)

where 𝐹𝑝 ∈ R𝑇𝑜𝑝𝑘×𝑆×𝐷 . Thus far, we have progressively identified
the key temporal segments that are most relevant to the input
question, and its potential sound-aware areas.

3.4 Multimodal Fusion and Answer Prediction
To achieve AVQA task, we concatenate the updated visual features
𝐹 ′𝑣, 𝐹 𝑣 , and the audio features 𝐹 ′𝑎 obtained from TPM and SPM,
respectively. Then the visual fusion feature 𝐹𝑎𝑣 obtained by a linear
layer. To verify the audio-visual fusion of our proposed effective
Temporal-Spatial Perception Model, we employ a simple element-
wise multiplication operation to integrate the question feature 𝐹𝑞
and the previously obtained audio-visual fusion embedding 𝐹𝑎𝑣 .
And it can be formulated as:

𝐹𝑎𝑣 = 𝐹𝐶 (𝐶𝑜𝑛𝑐𝑎𝑡 [𝐹 ′𝑎, 𝐹 ′𝑣, 𝐹 𝑣]), (6)
𝑒 = 𝐹𝑞 ⊙ 𝐹𝑎𝑣, (7)

where ⊙ is element-wise multiplication operation, 𝛿 and 𝐹𝐶 repre-
sent 𝑇𝑎𝑛ℎ activation function and linear layer, respectively. Then
a Softmax function is used to output probabilities 𝑝 ∈ R𝐶 for can-
didate answers, where 𝐶 is the size of the pre-defined candidate
answer vocabulary pool. With the predicted probability vector and
the corresponding groundtruth label y, we optimize it using a cross-
entropy loss:L𝑞𝑎 = −∑𝐶

𝑐=1 𝑦𝑐𝑙𝑜𝑔(𝑝𝑐 ). During testing, we can select
the predicted answer by 𝑐 = argmax𝑐 (𝑝).

4 EXPERIMENTS
4.1 Datasets
MUSIC-AVQA [19], it contains 9,288 videos covering 22 different
musical instruments, with a total duration of over 150 hours and
45,867 question-answering pairs. The questions are designed under
multi-modal scenes containing 33 question templates covering nine
types, i.e., the audio-visual, separate visual, and separate audio, de-
pending on which modalities are used to discover question-related
clues for answer prediction. The diversity question-answering pairs
which occupy a large portion of the entire dataset, and there are
five audio-visual question types referring to existential, counting,
location, comparative, and temporal. The large-scale MUSIC-AVQA
dataset is well suited for studying temporal-spatial perception for
dynamic and long-term audio-visual scenes.
AVQA [35], is designed for audio-visual question answering in
general real-life scenario videos. It contains 57,015 videos from daily
audio-visual activities, along with 57,335 question answering pairs
designed relying on clues from both modalities, where information
from a single modality is insufficient or ambiguous.

For both datasets, we adopt the official split of the two bench-
marks into training, evaluation, and test sets.

4.2 Implementation Details
For the visual stream, we divide the video into 1-second segments
and frames sample rate at 1𝑓 𝑝𝑠 . We utilize the CLIP-ViT-L/14 [29]
model pre-trained on ImageNet to extract 512-𝐷 feature represen-
tations for each visual segment, where [𝐶𝐿𝑆] token denote visual
frame-level features. For the audio signal, it is sampled at 16kHz,
which is a standard sampling rate for audio. we use the VGGish
network pre-trained on AudioSet to extract 128-𝐷 features. For
each input question sentence, we extract its feature same as visual
frame-level encoder to obtain 512-𝐷 feature vector. In all exper-
iments, we use Adam optimizer with an initial learning rate of
1𝑒-4 and will drop by multiplying 0.1 every 10 epochs. The batch
size and number of epochs are set to 64 and 30, respectively. The
constructed statement templates are provided in the supplemen-
tary code files. We use the 𝑡ℎ𝑜𝑝 library in PyTorch to calculate the
model’s parameters and FLOPs. Our proposed model is trained on
NVIDIA GeForce RTX 3090 and implemented in PyTorch.

4.3 Quantitative Results and Analysis
To verify the effectiveness of the proposed TSPM, we compare
it with multiple existing mehtods: AVSD [30], Pano-AVQA [37],
AVST [19], LAVISH [23], COCA [16], PSTP-Net [18], etc. Tab. 1
indicate that the TSPM outperforms all comparison methods. Spe-
cially, the TSPM method shows significant improvements in the
subtask types of Audio-visual, including Localization, and Tempo-
ral. Specifically, compared to the recent PSTP-Net [18], the model
achieves remarkable improvements of 0.92% (73.51% and 71.26%)
in the above-mentioned complex audio-visual question types. It is
worth noting that the model shows a performance boost of 5.14%
(82.29% and 77.15%) and 7.54% (84.90% and 77.36%) in the Count-
ing and Localization subtasks of the visual modality, respectively,
when compared to PSTP-Net [18]. The significant performance im-
provements indicate that our TSPM is effectively identifies crucial
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Audio Visual Audio-VisualMethod Count Comp Avg Count Local Avg Exist Count Local Comp Temp Avg Avg

FCNLSTM [8] 70.80 65.66 68.90 64.58 48.08 56.23 82.29 59.92 46.20 62.94 47.45 60.42 60.81
GRU [2] 71.29 63.13 68.28 66.08 68.08 67.09 80.67 61.03 51.74 62.85 57.79 63.03 65.03

BiLSTM [42] 67.75 63.64 66.23 59.65 29.80 44.55 80.97 56.05 36.09 62.67 32.60 54.93 54.17
Hco_Att [25] 70.80 54.71 64.87 63.49 67.10 65.32 79.48 59.84 48.80 56.31 56.33 60.32 62.45
MCAN [36] 78.07 57.74 70.58 71.76 71.76 71.76 80.77 65.22 54.57 56.77 46.84 61.52 65.83
PSAC [22] 75.02 66.84 72.00 68.00 70.78 69.41 79.76 61.66 55.22 61.13 59.85 63.60 66.62
HME [7] 73.65 63.74 69.89 67.42 70.20 68.83 80.87 63.64 54.89 63.03 60.58 64.78 66.75

HCRN [17] 71.29 50.67 63.69 65.33 64.98 65.15 54.15 53.28 41.74 51.04 46.72 49.82 56.34
AVSD [30] 72.47 62.46 68.78 66.00 74.53 70.31 80.77 64.03 57.93 62.85 61.07 65.44 67.32

PanoAVQA [37] 75.71 65.99 72.13 70.51 75.76 73.16 82.09 65.38 61.30 63.67 62.04 66.97 69.53
ST-AVQA [19] 77.78 67.17 73.87 73.52 75.27 74.40 82.49 69.88 64.24 64.67 65.82 69.53 71.59
COCA [16] 79.35 67.68 75.42 75.10 75.43 75.23 83.50 66.63 69.72 64.12 65.57 69.96 72.33

PSTP-Net [18] 73.97 65.59 70.91 77.15 77.36 77.26 76.18 72.23 71.80 71.79 69.00 72.57 73.52
LAVISH [23] 82.09 65.56 75.97 78.98 81.43 80.22 81.71 75.51 66.13 63.77 67.96 71.26 74.46
TSPM (Ours) 84.07 64.65 76.91 82.29 84.90 83.61 82.19 76.21 71.85 65.76 71.17 73.51 76.79
Table 1: Temporal-Spatial Perception Model results on the test set of MUSIC-AVQA. The top-2 results are highlighted.

Method Audio Visual Audio-Visual Avg
AVSD [30] 71.74 69.21 65.41 67.53

ST-AVQA [19] 71.74 70.71 66.53 68.56
LAVISH [23] 73.00 77.62 70.09 72.60
PSTP-Net [18] 73.58 76.44 67.66 71.06
TSPM (Ours) 76.93 81.07 71.93 75.27

Table 2: TSPM results on the test set of MUSIC-AVQA (split
by video id). The top-2 results are highlighted.

temporal segments and spatio tokens in videos. Moreover, in com-
parison to LAVISH [23], which fine-tunes large pretrained models,
our model demonstrates superior efficiency without the need for
fine-tuning. We conducted tests with an equal number of epochs
under the same hardware configuration, and it was observed that
LAVISH incurred a cost 14× higher than our model. Additionally,
we observed limitations in the performance of Comparative type
questions, and we consider this may be attributed to the challenges
of separating multiple sound in complex audio-visual scenes. This
motivates us to explore strategies (such as dynamic fusion) in future
work that can achieve better performance on both single-modality
and multi-modality aspects.

To further validate the capabilities of the proposed TSPM, in
contrast to splitting by Question ID, we also partitioned the MUSIC-
AVQA dataset based on Video ID, apportioning it into training,
validation, and test sets in a ratio of 7 : 1 : 2. As shown in Tab. 2,
it can be seen that our proposed TSPM achieves the best overall
performance compared to the latest AVQA methods. Particularly,
in the three subtask types of audio, visual, and audio-visual, our
TSPM outperforms others significantly, showcasing the excellent
generalization capability and performance of the proposed TSPM.

In summary, the TSPM offers significant improvements over
existing approaches and provides a novel insight into question-
oriented audio-visual scene understanding.

4.4 Ablation Studies
In this subsection, we delve into examining the impact of various
modules within the TSPM on the performance of the MUSIC-AVQA.

Method Audio Visual Audio-Visual Avg
w/o. all 73.93 79.23 70.37 73.35
w/o. TPM 75.85 82.74 72.53 75.82
w/o. SPM 77.16 81.92 72.25 75.68
w/o. TPC 75.54 82.20 72.96 75.87

w/. QPrompt 76.47 81.30 71.82 75.16
w/o.Merge 75.79 82.91 72.84 76.03

TSPM (Ours) 76.91 83.61 73.51 76.79
Table 3: TSPM’s module configuration results.

To verify the effectiveness of the proposed components, i.e., TPM,
SPM, TPC, Tokens merge, etc., we remove them from the primary
model and re-evaluate the new model’s performance. Tab. 3 shows
that after removing a single component, the overall model’s perfor-
mance decreases, and different modules have different performance
effects. The specific analysis is as follows:
• TSPM w/o. all. When we remove all designed modules or com-
ponents within the framework, retaining only the simple fusion
operation of input audio, video, and question features, a sig-
nificant decline (76.79% and 73.35%) in model performance can
be clearly observed from Tab. 3. This pronounced deterioration
serves as compelling evidence that the multiple components in-
tricately designed within the proposed TSPM play a pivotal role
in bolstering the model’s overall effectiveness.
• TSPMw/o. TPM. The motivation behind designing the TPM is to
enable themodel to select temporal segments most relevant to the
given question. To validate the necessity of the TPM, we removed
the TPM from the TSPM and assessed the performance of the
new model. As shown in Tab. 3, when the TPM was removed, the
new model’s performance decreased to 75.82%, representing a
0.97% decrease compared towhen TPMwas utilized. Furthermore,
noticeable performance declines were observed across the audio,
visual, and audio-visual subtask types. These experimental results
underscore the importance of TPM, which effectively enables the
model to perceive crucial temporal segments, thereby enhancing
temporal perception performance.
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Method Audio Visual Audio-visual Avg
Top-𝑘=10 76.91 83.61 73.51 76.79
Top-𝑘=20 76.60 82.58 73.41 76.40
Top-𝑘=30 77.41 82.70 73.55 76.66
Top-𝑘=40 76.41 82.78 72.94 76.16
tokens=8 75.54 82.00 73.08 75.88
tokens=14 76.91 83.61 73.51 76.79
tokens=27 76.16 82.20 73.00 76.00

TSPM (Ours) 76.91 83.61 73.51 76.79
Table 4: Effects of TSPM’s parameter configuration.

Method Training Param (M) FLOPs (G) Acc (%)
ST-AVQA [19] 18.48 3.19 71.59
PSTP-Net [18] 4.30 1.22 73.52
LAVISH [23] 21.09 – 74.46
TSPM (Ours) 6.22 1.42 76.79

Table 5: Parameter and FLOPs.

• TSPM w/o. SPM. The purpose of the SPM is to identify key
objects and potential sound-aware areas within the visual frame.
To demonstrate the significance of the SPM, we conducted an
experiment where it is removed. As shown in Tab. 3, compared
with TSPM, the result decreased to by 1.11% (from 76.79% to
75.68%), indicating the importance of the spatial perception in
improving performance.
• TSPM w/o. TPC. The designed TPC primarily generates declara-
tive sentence text based on the given question, aligning it with
the semantic of video frames to better identify temporal segments
relevant to the question. Removing this module implies that all
video frames (T=60) will be selected, potentially leading to tem-
poral redundancy. As observed in Tab. 3, the utilization of TPC
effectively enhances model performance, resulting in a 1.12%
improvement (from 75.87% to 76.79%), thereby strengthening
temporal perception capability.
• TSPM w/o. QPrompt. To validate whether transforming the
given question into declarative statement indeed leads to better
selection of key temporal segments, thereby effectively improv-
ing model performance, we replaced the constructed statements
with input questions. As shown in Tab. 3, in this scenario, the
model’s performance is significantly lower compared to when us-
ing declarative statements (76.79% and 75.16%). The experimental
results demonstrate the necessity of using declarative statements
and indirectly highlight the importance of TPC.
• TSPM w/o. Tokens merge. Removing the Tokens merge opera-
tion from TSPM allows us to investigate whether it can preserve
the semantic information of visual frame tokens. When this oper-
ation is removed, direct cross-modal interactions are conducted
between all visual tokens and their corresponding temporal audio
features. Tab. 3 shows that when Tokens merge is removed, there
is a decrease in model performance, highlighting the importance
of the Tokens merge strategy.
In general, each module contributes to the better performance.

When all modules are present, the TSPM achieves best result on
the MUSIC-AVQA dataset. Similarly, we explored the impact of
key parameter configurations on model performance. As shown

Method Ensemble Total Accuracy (%)
HME [7] HAVF [35] 85.0
PSAC [22] HAVF [35] 87.4
LADNet[21] HAVF [35] 84.1

ACRTransformer [38] HAVF [35] 87.8
HGA [14] HAVF [35] 87.7
HCRN [17] HAVF [35] 89.0

PSTP-Net [18] – 90.2
TSPM w/o. all – 87.1
TSPM w/o. TPM – 89.4
TSPM w/o. SPM – 88.6
TSPM (Ours) – 90.8
Table 6: TSPM results on the test of AVQA.

in Tab. 4, when the 𝑡𝑜𝑝𝑘 value is large, it may introduce temporal
redundancy. When there are too many tokens, semantic merging
on the token is not thorough enough; conversely, an excessive
merging may result in semantic loss. The model achieves optimal
performance when 𝑡𝑜𝑝𝑘 = 10 and 𝑡𝑜𝑘𝑒𝑛𝑠 = 14, respectively.

4.5 Computational costs
Tab. 5 illustrates the computational costs of TSPM compared with
ST-AVQA [19], PSTP-Net [18] and LAVISH [23]. It can be observed
that TSPM has fewer training parameters, lower FLOPs, and higher
accuracy compared to ST-AVQA. Although PSTP-Net boasts lower
computational costs, our TSPM achieves superior results at ex-
tremely low computational costs. LAVISH achieves a well accuracy,
but its parameter is more than three times that TSPM. This is be-
cause LAVISH fine-tunes large pretrained models, whereas TSPM
achieves comparable results without fine-tuning. In summary, our
proposed TSPM achieves high performance at relatively low cost,
fully demonstrating the effectiveness and efficiency of the model.

4.6 Experiments on AVQA dataset
To verify the generalization capability of the proposed TSPM, we
compared it with multiple existing AVQA-based methods, includ-
ing ACRTransformer [38], HCRN [17] , PSTP-Net [18], etc., on the
AVQA dataset. As illustrated in Tab. 6, the TSPM exhibits remark-
able performance compared to recent methods. Specifically, our
approach outperforms PSTP-Net [18] by 0.6% (90.8% and 90.6%),
demonstrating notable superiority over earlier methods such as
ACRTransformer [38]. Furthermore, while the performance im-
provement of TSPM on the AVQA dataset seems limited compared
to its performance on the MUSIC-AVQA dataset, we attribute this
primarily to the AVQA dataset’s shorter duration (10s . 60s) and
simpler audio-visual components.

Despite these differences, our TSPM maintains its effectiveness
even in this scenario. Notably, in Tab. 6, the PSTP-Net [18] achieved
a 1.2% improvement over the HCRN [17], while our TSPM exhibited
a more substantial 1.8% enhancement, indicating the significant
effectiveness of TSPM’s performance boost. Additionally, ablation
studies further confirm the effectiveness of both TPM and SPM
components. Moreover, for the experimental settings on the AVQA
dataset, we selected the Top-𝑘 = 8 temporal segments relevant
to the given question, with a merged token count of 𝑡𝑜𝑘𝑒𝑛𝑠 = 14.
It’s worth noting that HAVF [35] in Tab. 6, serving as the baseline
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t=60time
Input Question: Where is the first sounding instrument?

Answer:

right
t=1 t=2

Temporal Perception results Spatial Perception results

b) TSPM (Ours)

t=7 t=14

Temporal Perception results Spatial Perception results

a) PSTP-Net

Answer:

middle

Example 01

Temporal Perception results Spatial Perception results Temporal Perception results Spatial Perception results

t=1 t=5

Input Question: What is the right instrument of the first sounding instrument? t=60time

t=8 t=9

Answer:

guitar

Answer:

violin

a) PSTP-Net b) TSPM (Ours)
Example 02

Figure 4: Visualized TSPM results. In the showcased examples, we compared our proposed TSPM with the recent AVQA-related
method PSTP-Net [18]. It can be observed that TSPM can progressively select relevant temporal segments and locate potential
sound-aware areas, thus accurately providing correct answers to the given questions. This process vividly demonstrates TSPM’s
effective spatiotemporal perception capabilities in complex audiovisual scenarios.

method for the AVQA dataset, includes three fusion modalities and
integrates their outputs using an averaging strategy to generate
answers. In summary, the proposed TSPM effectively demonstrates
both its effectiveness and generalization.

4.7 Visualization Results
To showcase the temporal and spatial perception capabilities of the
proposed TSPM, we provide two examples contrasting with the
recent AVQA-related method PSTP-Net in Fig. 4. In Example 01,
when presented with the question "Where is the first sounding in-
strument?", the TPM first identifies the temporal indices relevant to
the question. Subsequently, the SPM sequentially locates potential
sound-aware areas, with the heatmap indicating these regions. In
this example, it becomes apparent that initially, only the "flute" on
the right side is playing, but as time progresses, the violin on the
left side also begins playing. The heatmap effectively illustrates the
variation in multiple instruments playing within this dynamic and
complex audio-visual scene. Consequently, it can be inferred that
the correct answer to the question is the instrument on the "right"
side. Similarly, in Example 02, the progressive temporal-spatial

perception process is aptly demonstrated, resulting in the correct
answer. These visualizations indicate that the proposed TSPM can
effectively perceive the temporal segments relevant to the question
and the spatial areas associated with sound, showcasing its efficacy
in audio-visual question answering task.

5 CONCLUSION
In this work, we propose an effective Temporal-Spatial Perception
Model framework for addressing complex question-answering task
in dynamic audio-visual scenarios. It includes a temporal percep-
tion module with a declarative sentence text prompt and a spatial
perception module incorporating token merging. These modules
are employed to locate temporal segments relevant to the question
and enhance spatial audio-visual associations, thereby facilitating
fine-gained audio-visual scenes understanding. Extensive experi-
ments demonstrate that the proposed framework achieves precise
temporal-spatial perception on multiple benchmark, effectively
showcasing the reasoning process involved in answering questions.
We believe that our work will serve as inspiration researchers in
the field of audio-visual scene understanding.
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