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Abstract001

We introduce Refeeding State Embeddings002
aligned using Environmental Data (RESEED),003
a novel method for grounding language in envi-004
ronmental data. While large language models005
(LLMs) excel at many tasks, they continue to006
struggle with multi-step sequential reasoning.007
RESEED addresses this by producing latent008
embeddings aligned with the true state of the009
environment and refeeding these embeddings010
into the model before generating its output. To011
evaluate its effectiveness, we develop three new012
sequential reasoning benchmarks, each with013
a training set of paired state-text trajectories014
and several text-only evaluation sets that test015
generalization to longer, unseen trajectories.016
Across all benchmarks, RESEED significantly017
improves generalization and scalability over a018
text-only baseline. We further show that RE-019
SEED outperforms commercial LLMs on our020
benchmarks, highlighting the value of ground-021
ing language in the environment.022

1 Introduction023

The continued scaling of large language models024

(LLMs) has led to impressive capabilities across025

a range of natural language tasks. Yet, the field is026

nearing the limits of available high-quality text data027

(Villalobos et al., 2024), and models trained solely028

on text data exhibit persistent limitations in their029

compositional reasoning (Dziri et al., 2023), plan-030

ning (Valmeekam et al., 2023), and length general-031

ization (Xiao and Liu, 2025). These challenges mo-032

tivate the integration of non-text modalities—often033

referred to as grounding—to enhance model capa-034

bilities. However, existing grounding approaches035

either explicitly depend on auxiliary modules at036

inference, or implicitly align encoder-only models037

that lack generative capacity. We introduce Refeed-038

ing State Embeddings aligned using Environmental039

Data (RESEED), a flexible framework to directly040

ground decoder-based LLMs in structured environ-041

ment data, leveraging both implicit and explicit042

signals. We show that RESEED improves sample 043

efficiency, length generalization, and compositional 044

reasoning in long-horizon sequential tasks. 045

Modern LLMs are trained in three stages: unsu- 046

pervised causal language modeling (CLM) (Rad- 047

ford et al., 2018), a supervised finetuning with 048

CLM, and alignment via preference optimization 049

(Ouyang et al., 2022). Throughout this process, 050

models are exposed to text data and human prefer- 051

ence data. While both have been instrumental to 052

recent progress, they omit key elements required 053

for human-like language understanding. Text offers 054

linguistic structure and encodes world knowledge 055

(Bisk et al., 2020), but abstracts away key spatial, 056

temporal, and causal relationships between con- 057

cepts (Bender and Koller, 2020). Moreover, text 058

tends to omit self-evident information, resulting 059

in reporting bias that negatively impacts language 060

modeling (Grice, 1975; Paik et al., 2021). Hu- 061

man preference data, while useful for alignment, 062

is both sparse—a single bit for sequences of text— 063

and subjective—some humans may prefer a more 064

grammatical output, while others a more factual 065

output. To this end, we posit that a third kind of 066

data is required: data from the environment. Mo- 067

tivated by research outlining the necessary role a 068

human’s interaction with their environment plays 069

in language understanding (Glenberg and Kaschak, 070

2002; Gallese and Lakoff, 2005), we hypothesize 071

that structured environmental signals can improve 072

language modeling. Environment data, which we 073

define as sequences of states that capture how an en- 074

vironment changes, complements text and human 075

preference data in four key ways: (1) it preserves 076

spatial and temporal relations; (2) it is concrete and 077

fully specified, avoiding abstraction and reporting 078

bias; (3) it provides a dense and informative train- 079

ing signal; and (4) it is consistent and objective. 080

Existing grounding work has demonstrated the 081

benefits of grounding in improving the reasoning 082

capabilities of LLMs, with two main directions 083
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emerging. The first direction augments the system084

with a separate external model (Yang et al., 2022;085

Liu et al., 2023; Zellers et al., 2021); these are used086

to generate explicit modality-aware outputs which087

are fed into an LLM. While these works provide088

insights into the value of non-text modalities, they089

are inherently limited by their external model and090

masks rather than addresses the lack of ground-091

ing in the underlying language model. This is an092

important distinction because more complex and093

abstracted concepts may be difficult to simulate,094

but may still require the foundational grounded095

components to correctly interpret. The second line096

of work used for grounding is the use of additional097

modalities during training to align internal repre-098

sentations (Hsu et al., 2022; Tan and Bansal, 2020;099

Tang et al., 2021). These provide a direct signal to100

language models to improve their alignment with101

the environment. However these works rely on im-102

plicitly improving internal alignment; at inference,103

there is no clear representation of the environment104

to leverage. Further, these works focus on encoder-105

only models. Notably, modern LLM architecture106

has favored decoder architectures as the ability to107

generate open-ended outputs vastly increases the108

range of tasks they can accomplish.109

RESEED combines the strengths of implicit110

alignment and explicit representations by train-111

ing an LLM to predict latent state representations,112

which are then refed to the LLM to guide the lan-113

guage generation in a way that reflects with the true114

state of the environment. This approach provides115

the foundation for a scalable, grounded language116

model that operates in a manner consistent with117

modern LLMs. To evaluate RESEED, we require118

datasets that have paired text–trajectory data for119

training, but can test language models on text-only120

tasks. As these requirements cannot be found in121

existing benchmarks, we introduce three sequen-122

tial reasoning datasets focused on cardinal direc-123

tion navigation (ABCDs), block stacking (CUBES),124

and household object interactions (HOUSE). These125

tasks span increasingly complex state and action126

spaces. Compared to a text-only baseline, RE-127

SEED yields substantial gains in generalization128

and sample efficiency in sequential reasoning tasks.129

Our contributions are: 1) RESEED, a novel130

grounding mechanism for decoder LLMs; 2) three131

new sequential reasoning benchmarks; 3) empirical132

validation of RESEED, demonstrating improved133

sample efficiency and generalizability; and 4) abla-134

tions analyzing the components of RESEED.135

2 Related Work 136

2.1 Grounding with External Models 137

A subset of existing systems enhance language- 138

based reasoning by incorporating external 139

modality-specific models. Wang et al. (2023) 140

leverages CLIP (Radford et al., 2021) to retrieve 141

relevant images which are used to improve 142

question answering. Tang et al. (2023); Yang et al. 143

(2022) remove the need for an image database 144

by using text-to-image diffusion models, while 145

Zhang et al. (2024) directly leverages CLIP’s 146

text-model embeddings. While images offer 147

rich spatial information, they cannot properly 148

capture temporal information, which is key to 149

sequential reasoning. To address this, Liu et al. 150

(2023) feeds outputs from a physics simulation 151

engine into an LLM to improve physical reasoning. 152

In all these approaches, language models are 153

augmented with other modalities, rather than 154

grounded to other modalities. We believe this 155

distinction is critical, as we posit that grounded 156

models can compositionally build on observed 157

interactions, whereas augmented models face 158

end-to-end training challenges and are constrained 159

by the capacity of their external modules. PIGLeT 160

(Zellers et al., 2021) partially addresses these 161

issues by using a trainable action prediction 162

module to reason about household tasks. However, 163

PIGLeT requires access to the ground-truth start 164

state and only performs single-step reasoning. In 165

contrast, RESEED operates on text-alone and is 166

designed for multi-step reasoning. 167

2.2 Grounding through Internal Alignment 168

A complementary line of work focuses on align- 169

ing an LLM’s internal representations across text 170

and auxiliary modalities. Like RESEED, these 171

methods use additional cross-modal modules dur- 172

ing training, which are then discarded. We refer to 173

these as implicit internal alignment methods. 174

Certain approaches in this space use additional 175

modalities to produce more relevant text data. 176

Carta et al. (2023) adapts the BabyAI environment 177

(Chevalier-Boisvert et al., 2019) to a text-based 178

version, giving LLMs the ability to explore the 179

environment in text. Xiang et al. (2023) gener- 180

ates goal-oriented and random exploration experi- 181

ences in VirtualHome (Puig et al., 2018), and uses 182

templates to create a home-navigation fine-tuning 183

dataset. Li et al. (2023) create state annotations 184

in TextWorld (Côté et al., 2019) and TRIP Storks 185
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Figure 1: Architecture of RESEED. RESEED is comprised of a transformer with a language modeling head (LM)
and a state modeling (SM) head (in purple). It leverages a pre-trained and frozen state auto-encoder (in red) during
training. RESEED requires two forward passes. The first pass (in blue) encodes the special [S] input tokens and
uses the output of these tokens to generate state representations Z’. In the second pass (in green), the special tokens
are replaced with linear projections of Z’, which are used to generate the description of the final state. The alignment
of Z’ is trained using a Reconstructive Cross-Entropy (RCE), a Contrastive (Cont.), and a Mean Squared-Error
(MSE) loss (in yellow). A Causal Language modeling (CLM) is used to train the generation.

et al. (2021) to generate more coherent outputs.186

However, these methods remain limited by the ab-187

straction and reporting bias inherent in text data.188

Other approaches incorporate auxiliary losses189

conditioned on other modalities. Tan and Bansal190

(2020) adds a visual token (voken) classification191

objective in pre-training. Hsu et al. (2022) intro-192

duces a cross-modal adaptation phase with joint193

MLM, voken classification, and image-text match-194

ing. Most similar to our approach, Tang et al.195

(2021) train a teacher model using MLM and a con-196

trastive cosine similarity task between video and197

text embeddings and then distill this knowledge198

into a student model. Jin et al. (2022) combine the199

voken classification and distillation tasks to further200

improve results. However, these methods are all201

designed for encoder-only architectures, which are202

not well-suited for text generation. In contrast, RE-203

SEED is developed for generative decoder-based204

models. More importantly, we identified that dur-205

ing implicit internal alignment, RESEED was pro-206

ducing embeddings that were aligned with the state207

of the environment, and that these could be effec-208

tively re-used rather than being discarded.209

3 Method210

Our method, Refeeding State Embeddings aligned211

using Environmental Data (RESEED), is depicted212

in Fig. 1. It can be broken down into three stages:213

1) pre-training a state auto-encoder (Section 3.2),214

2) generating latent state representations using spe- 215

cial tokens (Section 3.3) 3) re-feeding these tokens 216

before generating the output (Section 3.4). 217

3.1 Prerequisites 218

RESEED requires access to paired text-trajectory 219

data. Specifically, for a given sequence of states 220

(s ∈ {s0, s1, ..., sf}), there should be a text de- 221

scription of the initial state (d0 ↭ s0), a descrip- 222

tion of actions applied (di ↭ ∆(si−1, si)), and 223

a description of the final state (df ↭ sf ). In 224

Section 3.5 we outline the datasets we use. 225

3.2 State Auto-Encoder 226

To create salient latent representations of the states, 227

Z in our environment, we first train an auto-encoder 228

(AE) using a reconstruction loss. Our AE is com- 229

prised of a 3-layer encoder multi-layer percep- 230

tron (MLP) and a 3-layer decoder MLP, both with 231

dropout and trained using a cross-entropy recon- 232

struction loss. The size of the latent representa- 233

tions is a hyperparameter hdim, which we sweep 234

hdim ∈ {16, 64, 128, 256, 512} for each dataset. 235

We freeze the parameters of the AE when training 236

the LLM and discard it after training is completed. 237

3.3 Generating Latent Representations 238

Our grounded language model adopts the conven- 239

tion of modern LLMs as a causal transformer. 240

Given a description of the initial state and a se- 241

quence of actions, the model is trained to infer its 242
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own latent representation of the resulting states,243

denoted as Z ′, which should align with the true244

latent states Z. To enable this, we inject a special245

token [S] after each input description di. The cor-246

responding output embedding is passed through247

a single-layer state modeling head, projecting it248

to hdim. We additionally pass the produced latent249

state through the pre-trained decoder to produce a250

prediction of the full state, S′ = Dec(Z ′).251

To guide alignment, we apply three complemen-252

tary losses: a contrastive (Cont.) loss (Oord et al.,253

2018) between Z ′ and Z, a mean-squared error254

(MSE) loss between Z ′ and Z, and reconstruction255

cross-entropy (RCE) loss between S′ and S.256

LCont. = Ei

[
− log

exp(sim(Z ′
i, Zi)/τ)∑N

j=1 exp(sim(Z ′
i, Zj)/τ)

]
257

LMSE = Ei

[
∥Z ′

i − Zi∥22
]

258

LRCE = Ei

[
−
∑
m

S
(m)
i log

(
S′
i
(m)

)]
259

where N =
∑B

k=1 |Sk|, B is the batch size and260

|Sk| is the number of states in sequence k, i.e.,261

we use in-batch and in-sequence negatives in our262

contrastive loss.1 A comparison of the impact of263

each loss is shown in Table 1.264

3.4 Refeeding Embeddings265

Sections 3.2 and 3.3 produce an LLM that is im-266

plicitly aligned and capable of generating salient267

latent representations of states. Motivated by the268

idea that these latent representations carry useful269

information about the environment, we develop a270

refeeding mechanism, in which a second forward271

pass is performed with the special [S] tokens being272

replaced with linear projections of Z ′. This enables273

the model to explicitly condition its generation on274

its own representation of the environment. On this275

second pass we apply the traditional causal lan-276

guage modeling loss on the final state description:277

278

LCLM = −
T∑

t=k

logP (xt | x<t)279

where k indexes of the first token of the final state280

description and T is the total number of tokens.281

We note here three clear differences with the282

most related work of VidLanKD (Tang et al., 2021).283

The first is the use of a causal language modeling284

1i, j, k are overloaded and used as general indexing terms.

which enables text generation. Second, unlike Vid- 285

LanKD that uses a single embedding to encode the 286

entire sequence, we leverage separate embeddings 287

for each timestep in the sequence. This provides 288

two benefits: 1) it allows the LLM to align itself 289

multiple times per sequence, providing a denser 290

learning signal, and 2) it provides more useful neg- 291

atives in the contrastive loss as the model has to 292

identify the impact of the actions to be able to dif- 293

ferentiate different states from the same sequence. 294

Without these more difficult negatives, the model 295

may be able to rely on more surface level features— 296

e.g., the objects in the scene—to differentiate em- 297

beddings and lose the specificity required for suc- 298

cessful grounding. Third, instead of relying solely 299

on implicit internal alignment, the refeeding pro- 300

vides an explicit mechanism to make use of our 301

aligned representations. We report the impact using 302

multiple state representations and explicit refeed- 303

ing in Tables 2 and 3, respectively. 304

3.5 Datasets 305

RESEED is designed to leverage the rich informa- 306

tion found in environments during training, while 307

relying solely on text during inference. Naturally, 308

this requires datasets that provide paired natural 309

language and trajectory data for training, along 310

with language-only evaluation sets. While prior 311

work in natural language task specification—such 312

as Mees et al. (2022); Zeng et al. (2020); Collabora- 313

tion et al. (2024)—offers partially aligned training 314

data, their evaluation protocols remain grounded in 315

agent-based execution, lacking the necessary text- 316

only test conditions. To bridge this gap, we intro- 317

duce three new datasets that span distinct domains: 318

cardinal direction navigation, block stacking, and 319

interaction with common household objects. We 320

describe each in detail below, and an example ques- 321

tion and trajectory of each is shown in Fig. 2. 322

ABCDs: Asking ’Bout Cardinal Directions The 323

first domain requires an model to understand navi- 324

gation of cardinal directions. In ABCDs, an agent 325

starts facing one of the four cardinal directions— 326

{North, East, South, West}—then the agent per- 327

forms a sequences of turns, and is then asked which 328

direction it is facing at the completion of all turns. 329

To create the text component of the dataset we use 330

a template and create a mapping between a set 331

of natural language action phrases and the equiv- 332

alent base action. For example, the action phrase 333

"turn 270 degrees clockwise" would map to the 334

action turn left. We can then combine a descrip- 335
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The robot is facing north.

The robot turns left.  Then the robot...

The robot is now facing east.

A green, a purple, a red, a blue, and a yellow block start in columns one through five respectively.

The robot picks up the green block and places it in column five.  Then the robot picks up the blue block ...

The tallest stack is in column two and is three blocks tall. It consists of the yellow, green, and blue blocks.

There is an apple, a ladle, and a pan on an oven. 

The robot opens the oven. Then the robot picks up the apple. Then the...

The apple is now cooked, hot, and inside of the oven. The oven is now hot.
Name Apple ... Oven

Cooked True ... False

Open False ... False

... ... ... ...

Temp. Hot ... Hot

In Oven ... None

On None ... Floor

Name Apple ... Oven

Cooked False ... False

Open False ... False

... ... ... ...

Temp. Room ... Room

In None ... None

On Oven ... Floor

ABCDs HOUSE

CUBES...
s0 sf

s0 sf

s0 sf

...
...

Figure 2: A sample from the ABCDs, CUBES, and HOUSE datasets. The blue text defines the initial state (so) and
the actions performed (truncated for space). The orange text defines the final state (sf ). The model is also provided
with access to intermediate states, which are collapsed into ellipses in the figure due to space.

tion of the start state with a sequence of A action336

phrases, and a description of the end state. For the337

trajectories, we create a small grid environment us-338

ing gym-minigrid (Chevalier-Boisvert et al., 2023)339

with compass-style markers in the walls to indicate340

the direction and use an egocentric grid representa-341

tion to encode each state.342

For training and validation, we use up to A ≤ 5343

action phrases. To evaluate length generalization,344

we construct five evaluation sets, each containing345

2000 samples and using a fixed number of action346

phrases, with A ∈ 6, 7, 8, 9, 10. We report exact347

match accuracy on each of these held-out sets.348

This dataset provides a test bed where the state349

and action spaces are small, with only four differ-350

ent observations and underlying actions. This leads351

to a domain where the syntax of the language is352

similar and difficult to distinguish, but the seman-353

tics contained within the trajectory are clear and354

easily distinguishable.355

Comprehensive Understanding of Block-356

stacking and Effects of Sequences (CUBES)357

CUBES tests a models ability to identify the358

tallest stack of blocks after a sequence of stacking359

actions. An initial state is presented with five360

different-colored blocks in a random order. A361

series of A stacks are then performed. Similarly362

to ABCDs, we use templates for the language363

component and gym-minigrid to create paired state364

trajectories. Unlike ABCDs, we use a full view of365

the all the blocks.366

We match the setup for ABCD, with A ≤ 5367

action phrases for training and validation, and five368

length generalization sets which use 6 ≤ A ≤ 10.369

We report the exact match accuracy on these length370

generalization sets.371

Compared to ABCDs, the state space and action 372

spaces are significantly larger, however the lan- 373

guage still only requires a small vocabulary. The 374

syntax of the language is still difficult to distin- 375

guish, however the semantics contained within the 376

trajectory are less distinguishable than in ABCDs. 377

HOUSE: Household Object Use in Sequential 378

Execution HOUSE is inspired by the PigPen 379

dataset used in the Piglet framework (Zellers et al., 380

2021). In this dataset, a series of tasks are car- 381

ried out using 100 common household objects with 382

varying affordances. HOUSE consists of 9 atomic 383

actions (e.g., pick up object, toggle object on, ...), 384

which we compose into 10 low-level tasks (e.g., 385

put X in Y, heat X, ...) and 10 high-level tasks 386

(e.g., ’brew tea’, ’water plants’, ...). The low-level 387

tasks are comprised of 2-5 atomic actions, while 388

the high-level tasks are themselves composed of 389

2-3 low level tasks with a total of 6-10 atomic ac- 390

tions. Each task uses up to four objects, and the 391

state space is defined as the state of the four ob- 392

jects, including the object name and the current 393

features of the objects. A full description of the 394

dataset, including a comparison to PigPen, the set 395

of atomic actions, low-level tasks, and high-level 396

tasks is outlined in Appendix A. 397

Mirroring ABCDs and CUBES, we train and 398

validate using the low-level tasks, which include 399

sequences of 2 ≤ A ≤ 5, and evaluate the LLMs 400

on the high-level tasks. There are two high-level 401

tasks for each A ∈ 6, 7, 8, 9, 10, and we use 1000 402

samples per high-level task. We report the exact 403

match accuracy on the high-level task sets. 404

HOUSE provides a step toward more general 405

tasks that includes a wide range of objects and 406

actions. Compared to ABCD and CUBES, the vo- 407
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(a) Sample efficiency evaluation (b) Length generalization evaluation

Figure 3: Sample efficiency and length generalization results on the three benchmarks.

cabulary, action space, and state space are all larger,408

which increases difficulty. However, the syntatic409

variation is also larger, making the impact of ac-410

tions more apparent. Lastly, whereas ABCDs and411

CUBES evaluate length generalization by repeat-412

edly applying the same kind of actions, HOUSE’s413

evaluations requires compositionally applying ob-414

served sequences, which is an additional challenge.415

3.6 Experimental Setup416

The baseline for our experiments is a text-only417

(TO ) model that shares the same underlying trans-418

former and language modeling head and only dif-419

fers in its lack of a state modeling head and pro-420

jection layer. With an hdim of 256 (the largest421

used across our datasets), RESEED only uses 0.4%422

more parameters (83.5M vs 83.9M parameters).423

The TO model is trained using the standard causal424

language modeling loss. For both RESEED and425

TO, we initialize the transformer and language mod-426

eling head using HuggingFace’s (Wolf et al., 2020) 427

pretrained gpt2-base (Radford et al., 2019). The 428

state modeling head is randomly initialized. We 429

then finetune the model on the datasets until conver- 430

gence is reached on a validation set that is 12.5% 431

(1/8th) the size of the training set. We define con- 432

vergence as having no improvement for more than 433

5 epochs. To enable evaluation context lengths that 434

are longer than those seen in the training dataset, 435

we freeze the positions ids of the pre-trained gpt2. 436

We train the models using an AdamW optimizer 437

(Loshchilov and Hutter, 2019) with an exponential 438

learning rate decay. We tuned the TO model us- 439

ing a grid search on the learning rate, batch size, 440

decay rate, and warm up steps, and used the same 441

parameters for RESEED. We run each experiment 442

using five random seeds, and report the standard 443

error across seeds. Additional details can be found 444

in Appendix D. We will open source all code at the 445

end of the anonymity period. 446
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4 Research Questions447

RQ1: Does the grounding provided by RESEED448

improve sample efficiency? As RESEED has ac-449

cess to additional rich and unabstracted informa-450

tion during training in the form of environment451

data, we hypothesize that RESEED will be more452

sample efficient than an LLM trained solely on text,453

TO. To test this, for each dataset, we generate six454

different training sets, with number of samples ∈455

{1024, 4096, 16384, 65536, 262144} respectively.456

RQ2: Does the grounding provided by RE-457

SEED improve length generalization? RE-458

SEED’s generation of latent state representations,459

Z ′, enables it to produce estimates of the true states460

at regular intervals before decoding the final state,461

which we hypothesize will allow it to maintain a462

more consistent interpretation of the environment463

even in longer time horizons. To test this, we com-464

pare the results of RESEED and TO on the differ-465

ent length generalization evaluation sets we created466

when trained on the full 218 samples.467

RQ3: Which alignment signal—contrastive, re-468

constructive, or mean square error—best grounds469

language? A crucial step in our process is the align-470

ment of the latent state representations produced471

by the LLM with latent state produced from our472

auto-encoder. To this end, we compare RESEED473

(RS for short), which uses all three losses, to vari-474

ations that use one of the three alignment losses475

(RSCont, RSMSE, RSRCE), and a variation which uses476

no alignment loss (RSNone). This last variation is477

equivalent to providing the refeeding mechanism478

to the TO baseline.479

RQ4: Does providing alignment at each state480

improve grounding? One of the core differences481

with Tang et al. (2021) is the alignment of our482

model at each state compared to a single alignment483

per text/state sequence pair. To understand the484

impact of this difference, we generate three vari-485

ations of each dataset. The first uses the existing486

setup, where [S] tokens are added for each state487

in the ground-truth trajectory. The second uses a488

[S] token only for the first and last state in the true489

trajectory. The third, only uses a [S] token for the490

last state; this final variation most closely resem-491

bles the token setup in Tang et al. (2021), albeit for492

a decoder transformer.493

RQ5: How beneficial is explicit refeeding com-494

pared to implicit alignment? A second core dif-495

ference with Tang et al. (2021) is our method of496

explicitly refeeding the aligned representations be-497

fore decoding. To ablate the benefits of explicit 498

refeeding, we compare RESEED with an implic- 499

itly aligned version that is trained using all the same 500

losses, but only performs a single forward pass. 501

5 Results & Discussion 502

RQ1: Does the grounding provided by RESEED 503

improve sample efficiency? The graphs on the 504

left side of Fig. 3 show the average results across 505

all evaluation splits of the text-only baseline (in 506

orange) and of RESEED (in green). While there 507

is a small benefit when using a small amount of 508

data, the benefit continues to grow larger after this 509

point. Notably, once a minimum amount of data is 510

reached, RESEED is able to leverage the environ- 511

ment data to improve upon text-only training. This 512

leads to RESEED scaling better than than text-only 513

training, which is an extremely promising result. 514

RQ2: Does the grounding provided by RE- 515

SEED improve length generalization? The graphs 516

on the right side of Fig. 3 show the results on each 517

of the evaluation splits when using all training sam- 518

ples (218) for both the text-only baseline (in or- 519

ange) and of RESEED (in green). Once again, we 520

see RESEED outperforming the text-only baseline 521

on every evaluation split. In addition to instruc- 522

tion length, the range of the underlying atomic 523

actions and low-level tasks in the HOUSE dataset 524

directly impact the complexity of the high-level 525

tasks, adding an additional dimension to the evalu- 526

ation splits. For this reason, we present the results 527

in a bar chart rather than the line chart used in 528

ABCDs and CUBES. The varying complexity of 529

actions also explains the noisier trends seen in the 530

HOUSE dataset results. 531

Model ABCDs CUBES HOUSE
Text-Only 24.3 ±0.1 37.9 ±0.9 56.1 ±5.0

RSNone 12.1 ±4.0 39.4 ±1.5 52.7 ±6.1

RSCont 10.8 ±4.3 66.5 ±1.1 68.2 ±2.4

RSMSE 99.7 ±0.3 33.4 ±1.3 60.7 ±4.1

RSRCE 81.0 ±19.0 59.7 ±1.8 68.2 ±3.1

RSAll3 100.0 ±0.0 65.0 ±0.9 75.7 ±1.7

Table 1: Comparison of alignment losses used in RE-
SEED (RS). All3 indicates a combination of all three
alignment losses. Results are the avg. accuracy and std.
error across 5 seeds.

RQ3: Which alignment signal—contrastive, re- 532

constructive, or mean square error—best grounds 533

language? From Table 1, we see that alignment 534

is necessary; RSNone performs similarly to the TO 535

model. Interestingly, the alignment signal that is 536
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the most beneficial varies per dataset, but using all537

alignment signals, RSAll3, provides competitive re-538

sults in all three datasets. As such, this is the setup539

we use for all other experiments.540

Model ABCDs CUBES HOUSE
TOFinal 24.6 ±0.2 37.3 ±0.9 69.9 ±1.1

TOInit&Final 24.5 ±0.1 36.6 ±1.1 68.7 ±1.1

TOPer Phrase 24.3 ±0.1 37.9 ±0.9 56.1 ±5.0

RSFinal 24.2 ±0.0 61.9 ±1.1 68.1 ±2.9

RSInit&Final 33.0 ±8.6 62.7 ±1.9 71.9 ±3.4

RSPer Phrase 100.0 ±0.0 65.0 ±0.9 75.7 ±1.7

Table 2: Comparison of RESEED (RS) and a text-only
(TO) baseline with varying [S] token frequencies. Re-
sults are the average accuracy and standard error across
5 seeds.

RQ4: Does providing alignment at each state541

improve grounding? From Table 2, for the text-542

only baseline, including additional [S] tokens ei-543

ther has minimal impact, or, in the case of HOUSE,544

is deteriorates performance. In this latter case, we545

hypothesize the additional token(s) can be used546

by the model to further overfit to the training data.547

In contrast, for RESEED, we see a clear trend of548

improvement when including additional state rep-549

resentations, with RSPer Phrase providing the best550

result and lowest standard error in each dataset.551

Model ABCDs CUBES HOUSE
Text-Only 24.3 ±0.1 37.9 ±0.9 56.1 ±5.0

RSImplicit 24.5 ±0.1 34.3 ±3.1 59.1 ±4.3

RSExplicit 100.0 ±0.0 65.0 ±0.9 75.7 ±1.7

Table 3: Comparison of RESEED with and without
explicit refeeding. Results are the average accuracy and
standard error across 5 seeds.

RQ5: How beneficial is explicit refeeding com-552

pared to implicit alignment? Table 3 demonstrates553

that explicitly refeeding the learned representations554

is core to the performance of RESEED. Unlike555

prior work, implicit alignment provides little to556

no benefit in our experiments. As the system was557

tuned for explicit refeeding, it is possible that im-558

plicit alignment could be improved if different sub-559

sets of losses or hyper parameters are used, or if560

additional methods, such as Tang et al. (2021)’s561

teacher-student distillation, are integrated. How-562

ever, given the more direct signal it provides and563

the results in Table 3, we believe explicit refeeding564

is a stronger mechanism to ground language. We565

note that refeeding does comes at the cost of a sec-566

ond forward pass, increasing compute and training567

time. However, this is a relatively small cost for568

improved generalizability of the model.569

5.1 Comparison to State of the Art 570

The primary motivation of this paper was the inher- 571

ent limitations of text-only training. To this end, we 572

evaluate several State-of-the-Art LLMs from the 573

Qwen2.5 (Yang et al., 2024) and GPT4o (OpenAI, 574

2023) family on our benchmarks. In each instance, 575

we provide a prompt describing the task and pro- 576

vide 10 in-context examples. The full prompt can 577

be found in Appendix B. We report the results in Ta- 578

ble 4. The results are in line with other work (Dziri 579

et al., 2023; Valmeekam et al., 2023), which demon- 580

strate that current text-only LLMs struggle on tasks 581

involving multi-step reasoning. Notably RESEED 582

outperforms every model on every dataset, while 583

being orders of magnitudes smaller. 584

Model Size ABCDs CUBES HOUSE
RESEED 84M 100.0 ±0.0 65.0 ±0.9 75.7 ±1.7

Qwen2.5 0.5B 31.4 ±1.0 0.2 ±0.2 1.8 ±0.6

Qwen2.5 3B 42.8 ±1.6 0.6 ±0.2 4.0 ±0.5

Qwen2.5 7B 40.0 ±2.2 0.4 ±0.4 26.4 ±0.4

GPT4o mini 45.6 ±2.1 1.0 ±0.5 28.4 ±1.8

GPT4o 51.6 ±2.5 9.0 ±0.7 20.8 ±1.4

Table 4: Comparison of RESEED (RS) to modern
LLMs. Modern LLMs are provided 10 in-context ex-
amples and are evaluated on a subset of 100 examples
divided evenly across evaluation splits. Results are the
average accuracy and standard error across 5 seeds.

6 Conclusion 585

In this paper, we present a novel grounding mecha- 586

nism, RESEED, which produces and then refeeds 587

latent states embeddings to improve the sequential 588

reasoning of LLMs. We then evaluate RESEED 589

and a text-only baseline on three sequential rea- 590

soning benchmarks that we developed—ABCDs, 591

CUBES, and HOUSE—and demonstrate that RE- 592

SEED not only substantially improves the abil- 593

ity of LLMs to generalize to longer instruction 594

lengths, but also scales better than text-only train- 595

ing. These results underscore the importance of 596

grounding language in structured environmental 597

feedback. However, progress in this area is cur- 598

rently limited by the scarcity of high-quality, paired 599

text-trajectory datasets. To accelerate advances in 600

grounded reasoning and robust generalization, we 601

call on the community to prioritize the creation 602

and open dissemination of diverse, richly anno- 603

tated text-trajectory datasets. Such resources will 604

become critical for training models that can reason 605

over actions, states, and sequences in ways that 606

align more closely with real-world dynamics. 607
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Limitations608

RESEED faces two primary limitations.609

First, it introduces additional computational610

overhead due to the need for two forward passes.611

This cost is most significant during training, as612

the longer gradient path requires more memory613

and the addtional forward pass increase the time614

taken to complete one epoch. At inference time,615

no gradients are used used and iterative generation616

is already standard. To mitigate memory require-617

ments, we explored a two-stage optimization pro-618

cedure: one forward and backward pass to align619

latent states, followed by a second separate for-620

ward and backward pass to train generation. As621

shown in Appendix C, this approach still outper-622

forms the baseline and only slightly underperforms623

the one-stage procedure, making a viable alterna-624

tive is memory constraints exist.625

Second, RESEED requires access to paired text-626

trajectory data for training. While this limits ap-627

plicability in domains lacking such resources, our628

results demonstrate the substantial value of this su-629

pervision signal. We hope this work encourages630

the development of more diverse and scalable text-631

trajectory datasets, and we view this as a necessary632

step for progress in grounded language understand-633

ing.634

Finally, we note an additional limitation of our635

evaluation benchmarks, which while diverse in636

structure, are still limited in scope. All three are637

deterministic, template-based, and operate in rela-638

tively constrained state and action spaces. In con-639

trast, real-world environments often involve ambi-640

guity, stochasticity, and varied linguistic expression.641

Moreover, even our largest benchmark contains642

only 218 examples—small relative to modern pre-643

training corpora. Extending RESEED to broader,644

more complex, and non-deterministic domains is645

an important direction for future work. Doing so,646

however, will require scaling up dataset creation647

efforts accordingly.648
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A HOUSE details897

Atomic Actions Low-Level Tasks High-Level Tasks
PickupObject put_X_on_Y stack_3
PutObject put_X_in_Y stack_4
OpenObject heat_X water_plants_using_X
CloseObject fill_X make_iced_coffee_in_X
ToggleObjectOn brew_X brew_tea_in_X
ToggleObjectOff clean_X toast_X
PourFromObject slice_X cook_X
SliceObject pour_X_onin_Y cook_and_remove_X
WipeObject wipe_X_dry clean_and_dry_X

wipe_X_clean clean_large_X

Table 5: List of atomic actions, low-level tasks, and high-level tasks.

State Feature Related Affordance
ObjectName (100) –
isWet (2) wettable
isCooked (2) cookable
isClean (2) cleanable
isFilledWithLiquid (2) fillable
isOpen (2) openable
isPickedUp (2) pickupable
isSliced (2) sliceable
isToggled (2) toggleable
objectTemperature (3) canChangeTemp
mass_change (3) fillable (indirectly)
parentReceptaclesOn (6) receptacleOn
parentReceptaclesIn (6) receptacleIn

Table 6: Mapping of state features to their related affordances. Number in (parentheses) denote the range of values
the feature can take on.

HOUSE is a dataset inspired by the PigPen dataset used in Zellers et al. (2021). We made the decision898

to adapt PigPen, rather than using the original dataset, for three primary reasons: 1) PigPen divides each899

full high-level task trajectory into a single (st, at, st+1) transition tuple, whereas we are interested in900

outcome of multiple sequential steps. 2) We found a range of inconsistencies and non-deterministic901

outcomes within the PigPen dataset (e.g. toast getting hot when turning ON the toaster in one instance,902

and the toast getting hot when turning OFF the toaster in one instance). 3) We wanted more control over903

the compositionality of tasks. A full list of actions and tasks is shown in Table 5.904

To this end, we manually crafted a deterministic transition function for each low-level action based on905

the affordances of each object and used it to create trajectories our trajectories. Matching ABCDs and906

CUBES, we use templates to create the language description of the trajectory. A full list of state features907

(used to encode the state) and affordances (unchangeable properties of objects which are not visible, but908

effect the outcome of the transition function) are shown in Table 6.909
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B ICL prompt 910

Fig. 4 outlines the full prompt used for in context learning. <> denote placeholder values. All examples 911

came from the same distribution as the training set. For HOUSE, we ensured that a representative example 912

for each of the 10 low-level tasks were used. 913

system >>>
You are tasked to solve sequential reasoning problems in which you will be given an initial
state and a sequence of actions. Your job is to predict the final state after the sequence
of actions is applied to the initial state. You will be given a list of examples that you
can use to learn how to solve the problem. You must match the output format of the final
state exactly. You will be graded on the exact accuracy of your predictions.

Expected output format:
<dataset specific formatting>.
Where terms enclosed in <> should be replaced with the actual output values.

user >>>
---Example 1---
Initial State and Actions:
<example 1 initial state & actions>

assistant >>>
Final State:
<example 1 final state>

...

user >>>
---Example 10---
Initial State and Actions:
<example 10 initial state & actions>

assistant >>>
Final State:
<example 10 final state>

user >>>
---Problem---
Initial State and Actions:
<initial state and actions for problems to solve>

Figure 4: In-context learning prompt example.

C Two-Step Training 914

To explore a more computationally friendly approach, we test a variation of RESEED, named that fully 915

separates the alignment step from the generation step. Specifically, on alternating batches, we either 916

perform a forward and backwards pass using the alignment losses, or we perform a forward pass with 917

no gradients to generate Z ′ and then use those for the forward pass with gradients which decodes the 918

final state description. A comparison of results between these two approaches is shown in Table 7. While 919

separating the alignment and generation steps does slightly reduce the performance of RESEED, it still 920

outperforms the TOmodel, and does so with no additional memory requirements. 921

Model ABCDs CUBES HOUSE
Text-Only 24.3 ±0.1 37.9 ±0.9 56.1 ±5.0

RSSingle Pass 100.0 ±0.0 65.0 ±0.9 75.7 ±1.7

RSSeparate Passes 99.8 ±0.2 64.6 ±1.5 70.5 ±2.9

Table 7: Comparison of RESEED (RS) with and without separate backward passes. Results are the average accuracy
and standard error across 5 seeds.
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D Additional Implementation Details922

D.1 Hyper parameters923

To tune the TO, we performed a grid search on the learning rate (lr ∈ {1e− 5, 3e− 5, 1e− 4}, batch size924

(bs ∈ {32, 64, 128}), decay rate (per update step) (dr ∈ {0.9999, 0.99995, 0.99999}, and warm up steps925

(ws ∈ {400, 1000, 2000}). We found that across datasets, a batch size of 64 and 1000 warm up steps926

consistently provided the best results. For learning rate, we found 1e− 4 performed best on CUBES and927

HOUSE, while a learning rate of 3e− 5 performed best on ABCDs. For decary rate, we found 0.99995928

performed best on CUBES and HOUSE, while a decay rate of 0.99999 performed best on ABCDs.929

We used the same above hyper parameters for RESEED, only tuning hdim ∈930

{16, 32, 64, 128, 256, 512} for each dataset. We found hdim = 16, hdim = 128, and hdim = 256931

performed best ABCDs, CUBES, and HOUSE respectively.932

For the in-context learning LLMs used, all in-context learning examples came from the training set933

and were manually verified to be representative examples. The GPT-4o-mini checkpoint used was:934

gpt-4o-mini-2024-07-18, and the GPT-4o checkpoint used was gpt-4o-2024-08-06.935

The five random seeds used were: [9590, 1282, 5742, 4674, 2921].936

D.2 Computational Budget937

All experiments were run using a single A100 (all experiments fit on a 40GB A100, although 80GB A100s938

were used as well). To reach convergence on a single run took between 10 minutes (1024 samples) and 16939

hours (262144 samples). Compared to the TO model, RESEED took between 1.1x and 2x the amount of940

time to reach convergence. The additional cost is primarily due to the two forward passes, although on941

the ABCDs dataset, RESEED reached convergence much faster, mitigating the cost substantially. The942

experiments in this paper involved 20 runs per seed per dataset (with 5 seeds and 3 datasets), for a total of943

300 runs.944

E AI assistant use945

Claude-3.7-Sonnet-Thinking (Anthropic, 2024) was used to develop small portions of the code base.946

GPT-4o (OpenAI, 2023) was used as to edit the text at a paragraph level. All code and writing output947

from AI assistants were manually verified and edited as necessary by a human before use.948

F Additional Attributions and Attribution Info949

The seed icon used in Fig. 1 is from Flaticon.com. All artifacts were used in a manner consistent with950

their intended use.951
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