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ABSTRACT

Quantum computing is in its infancy. While it promises to solve some of the in-
tractable problems of computing, real world application is scarce. It is mainly
challenged by the hardware which are currently limited both in circuit width and
depth. Finding a real world application with an advantage compared to classi-
cally available solutions is even harder in the current state-of-the-art machines.
However, given the vastly different nature of quantum computers, it is possible
the advantage may come from unexpected corners when applied to wide range
of classical problems. Machine learning using quantum algorithms are of par-
ticular interest due to their ease of parameterization and possible resource effi-
ciency. In this work, we apply a quantum machine learning (QML) algorithm
to real world data and benchmark some of the well established scaling laws in
a resource constraint scenario using both ideal and noisy ion trap quantum com-
puter platform. The real world problem we investigated comes from the accurate
identification of cytotoxic CD8+ T cell activation states from high-dimensional
cytometric data. Hand-engineered features extracted from imaging flow cytom-
etry capture morphological, intensity, texture and shape descriptors that are es-
sential for discriminating between quiescent and stimulated cellular states. Lever-
aging a dataset of processed blood cell images from three patients, we compare
quantum data re-uploading classifiers (QDRCs) with classical feedforward neu-
ral networks (FNNs) for the task of binary classification of cellular activation.
The study is driven by three findings: (1) both quantum and classical models
achieve high test accuracy (≈ 99%) when trained with sufficient data and epochs,
and models trained on one patient generalize well to the other two, demonstrat-
ing the learnability of the engineered feature space; (2) the generalization error
of QDRCs exhibits a predictable power-law scaling with training size consis-

tent with a
√

T
N bound for T trainable parameters, whereas FNNs lack a com-

parable scaling relationship; and (3) QDRCs converge to high accuracy in early
epochs under low-data constraints, aligning with a convex kernel interpretation of
the re-uploading model. We further validate a theoretical bound derived from
quantum generalization theory and provide an intuitive proof under a convex-
ity assumption. These results indicate that quantum architectures can be com-
petitive with classical baselines while offering faster early generalization and
theory-consistent behavior in data-limited regimes, although our conclusions are
restricted to hand-crafted features and do not imply clinical readiness or broader
generalization.

1 INTRODUCTION

Recent developments in quantum computing have spurred interest in quantum machine learning
(QML) models, which use parameterized quantum circuits to generate non-classical feature maps
or learn unitary transformations. Among these, quantum data re-uploading classifiers (QDRCs) em-
ploy a small number of qubits and repeatedly encode input features into quantum states through
rotation gates. Classical models such as feedforward neural networks (FNNs), by contrast, learn
both the feature representation and classifier through back-propagation on a non-convex loss land-
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scape. Theoretical work analysing QML has shown that the generalization error of a QDRC with

T trainable gates scales at worst as
√

T
N when trained on N data points Caro et al. (2022). This

scaling suggests that small quantum circuits with few parameters may generalize well in low-data
regimes, provided the quantum feature map is sufficiently expressive, whereas classical neural net-
works lack a comparable bound because their effective dimension can grow with depth and width,
making theoretical error control more difficult. Moreover, Quantum Data Re-uploading algorithm
has been shown to require much fewer training resources as compared to other quantum models
Jerbi et al. (2023).

The potential for QML models to generalize well from few examples makes them ideal candidates
for problems where data is high-dimensional yet scarce, a common scenario in biomedical anal-
ysis. Imaging flow cytometry is a powerful platform that enables high-throughput acquisition of
multi-channel images of individual blood cells. Each cell can be described by dozens of object-level
features measuring size, shape, intensity and texture Dominical et al. (2017). For example, the
IDEAS® Image Data Exploration and Analysis Software computes numerous base features per im-
age channel, grouped into size, location, shape, texture and signal categories Lippeveld et al. (2020).
These measurements are crucial for identifying subtle morphological changes that reflect distinct
cellular states, such as cellular activation. For example, during infection or tumor progression,
stimulation with inflammatory signals like TNFα, can induce immune cells to exhibit altered size,
shape, or protein localization patterns compared with their quiescent counterparts. Rapid and accu-
rate AI/ML-enabled classification of such cellular states can provide valuable insights for clinical
diagnosis and therapeutic monitoring across a range of conditions, including chronic inflammation,
cancer, and acute infections, without the need for time- and cost-intensive staining. However, the
high dimensionality of the feature vectors relative to the small number of labeled samples poses a
statistical challenge. Standard discriminative models risk overfitting when training data are scarce,
motivating the exploration of algorithms that generalize well from few examples.

In this paper, we conduct a comparative study between Quantum Data Re-uploading Classifiers
(QDRCs) and classical Feedforward Neural Networks on the task of classifying TNFα-stimulated
cells from high-dimensional cytometric features. Our work makes three primary contributions. First,
we provide a comprehensive empirical benchmark, demonstrating how quantum models perform
relative to classical baselines in both data-rich and data-limited scenarios, including under realistic
simulated hardware noise. Second, we present an empirical validation of recent theoretical bounds
on QML generalization error, testing their predictions on a complex biomedical dataset. Finally,
we analyze the learning dynamics of both model families, revealing a notable faster early learning
behavior in the quantum models. Furthermore, we provide a theoretical argument to explain this
phenomenon.

1.1 FEATURE ENGINEERING WITH IDEAS SOFTWARE

Imaging flow cytometry produces rich, multi-channel morphological descriptors that are informative
yet statistically challenging when labeled data are scarce. This high-dimensional, low-N setting is
a natural testbed. The IDEAS software package produces an extensive set of object-based features
from each cytometric image, spanning size (area, perimeter), shape (aspect ratio, compactness),
intensity (mean, max), texture (contrast, entropy) and signal location Lippeveld et al. (2020). Im-
portantly, both morphological measurements and intensity information are available for calculating
feature values Amn (2009). These features are engineered by domain experts to capture salient as-
pects of cell morphology and sub-cellular structure. In our study we extract 76 such features per
cell, following the same pipeline used in the IDEAS® manual. Because these descriptors incorpo-
rate expert knowledge of cellular biology, they provide a strong foundation for classification even
with simple models. Given that the feature dimension is high relative to labels, we study models
where capacity is explicit in the parameter count T ; QDRCs realize a fixed feature map with a small
trainable readout, which aligns well with our scaling tests.

1.2 THEORETICAL MOTIVATION FOR FASTER LEARNING DURING EARLY EPOCHS

To interpret the observed early-epoch learning behavior of quantum models under low-data con-
straints, we view a QDRC as a fixed feature map ϕ(·) followed by a linear readout. Let {(xi, yi)}Ni=1,
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Raw Cytometry


Cell Image

Cellular Image


Feature Extraction Classical (top) or Quantum (bottom) Model Training

Figure 1: Schematic diagram of the classifier: (left and middle column) The raw cytometry data
are processed to extract high dimensional features. The features can then be fed into a feedforward
neural network (right top) or a quantum circuit with one or more qubits (right bottom) employing
the quantum data re-uploading algorithm for classification of the cells based on their activity.

yi ∈ {±1}, and let ϕ : Rd → RT denote the fixed feature map realized by a QDRC. Write
Φ ∈ RN×T for the design matrix with rows ϕ(xi)⊤ and G := 1

NΦ⊤Φ.

Assumptions. (A1) G has λmin(G) = µ > 0 on the span of {ϕ(xi)} (no degenerate directions at
the data). (A2) Step size η ≤ 1/λmax(G). (A3) The readout is linear with parameters w ∈ RT .

Lemma (linear rate under squared loss). Bubeck et al. (2015) Under (A1)-(A3), gradient de-
scent on squared loss satisfies

∥wt − w⋆∥G ≤ (1− ηµ)t ∥w0 − w⋆∥G.

Local PL (Polyak–Łojasiewicz) for early-epoch regime. Karimi et al. (2016) Let zi(w) =
w⊤ϕ(xi) and σ(u) = 1/(1 + e−u). The Hessian of the empirical cross-entropy is

∇2L(w) = 1

N
Φ⊤D(w)Φ, D(w) = diag

(
σ(zi(w))(1− σ(zi(w)))

)
.

For any radius R such that |zi(w)| ≤ c for all i whenever ∥w∥ ≤ R, we have

σ(zi)(1− σ(zi)) ≥ γ(c) := σ(c)
(
1− σ(c)

)
> 0,

hence on the ball {∥w∥ ≤ R},

∇2L(w) ⪰ γ(c)G, with G = 1
NΦ⊤Φ.

If λmin(G) = λ > 0 on the data span, then L satisfies a Polyak–Łojasiewicz (PL) inequality on that
ball with parameter µ = γ(c)λ, and gradient descent with step size η ≤ 1/L enjoys

L(wt)− L⋆ ≤ (1− η µ)t
(
L(w0)− L⋆

)
, L ≤ 1

4 λmax(G).

Early-epoch validity. With small or zero initialization, zi(w0) = 0 so γ(0) = 1
4 , and for sufficiently

small step sizes the iterates remain in a region where |zi(wt)| ≤ c for the first several epochs,
yielding geometric decay with rate parameter µ = γ(c)λ. As training progresses and some |zi|
grow, γ(c) decreases, explaining the observed slowdown and FNN catch-up at later epochs.

Remark on capacity. When T ≥ N or features are collinear, µ can be near zero, slowing the rate
and explaining late-epoch catch-up by FNNs at larger N .
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1.3 OUTLINE OF THE PAPER

The remainder of this paper is organized as follows. Section 2 describes the experimental setup,
including data collection, feature extraction, model architectures and training procedures. Section 3
presents our results, highlighting three findings: high test accuracy and cross-patient generalization
for both quantum and classical models; predictable generalization error scaling in QDRCs but not in
FNNs; and an early epoch faster learning behavior of QDRCs under low data. Section 4 discusses
the broader implications, limitations and future directions of this comparative study.

2 EXPERIMENTAL SETUP

Figure 2: Example cytometry cell images for Patient A. TNF-α (tumor necrosis factor alpha), is a
key pro-inflammatory cytokine released during the immune response, typically triggered by infec-
tion, tissue damage, or immune activation.

2.1 DATA COLLECTION AND FEATURE EXTRACTION

We analyzed imaging flow cytometry data from three individual patients, Fig 2. For each patient,
≈ 1.3 million of blood cells were processed through a flow cytometer equipped with the IDEAS
software. The raw images were segmented to isolate individual cell masks, and 76 quantitative fea-
tures were computed per cell. These features, as shown in table 1, cover size (e.g., area, perimeter),
location (centroid coordinates), shape descriptors (aspect ratio, eccentricity, circularity), intensity
measures (mean pixel intensity, standard deviation), and texture descriptors (contrast, entropy, en-
ergy). Both morphological and intensity-based measurements are included, providing a rich repre-
sentation of each cell. The feature names and extraction procedures are detailed in the IDEAS User
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Manual, but readers should note that this domain knowledge is proprietary to the imaging platform
and not easily replicated by generic convolutional networks.

Category Definition Example features

Size Descriptors Features quantifying the physi-
cal dimensions of the cell or its
components.

Area; Diameter; Length;
Perimeter

Shape Descriptors Features that describe the mor-
phology and form of the cell.

Aspect Ratio; Circularity;
Compactness; Elongatedness

Texture Descriptors Features that measure the spa-
tial variation of pixel intensi-
ties, capturing the granularity
and pattern within the cell.

Contrast; Gradient RMS; Mod-
ulation; Spot Count

Signal Intensity Descriptors Features quantifying the
brightness of fluorescent sig-
nals.

Intensity; Max Pixel; Mean
Pixel; Median Pixel

Table 1: Example descriptor categories we extracted from cell image for analysis.

2.2 MODEL ARCHITECTURES

2.2.1 QUANTUM MODELS

We implemented quantum data re-uploading classifiers using pytorch and pennylane simulation. The
simulations are based on both noiseless and noisy circuits. The noisy circuits are implemented with
the same noise model as in case of our earlier work on real quantum hardware based on ion trap Yum
et al. (2017); Dutta et al.. Three QDRC architectures are considered: a single-qubit classifier without
noise, a single-qubit classifier with realistic noise, and a two-qubit classifier without noise. Input
features were encoded into rotation gates, with re-uploading layers stacked to increase expressivity.
The number of trainable parameters T depended on the number of re-uploadings and qubits. For
noisy simulations we added bit-flip (0.5%), phase-flip (0.5%) and depolarizing noise (1%) per layer
to mimic the 138Ba+ trapped-ion system used in our laboratory. We will provide an illustration of
the single-qubit DQRC, as shown in fig 1, below. The multi-qubit ones are constructed similarly
with additional entangling gates such as CNOT.

Hyperparameters and shapes. We begin with a single qubit in ground state |0⟩, input dimension
d = dim in, number of blocks B = n blocks, segment length L = ansatz len, and hence
T = B(L+ 1) trainable parameters. Define

S :=
⌈ d
L

⌉
, P :=

⌈S
2

⌉
.

Parameters per block k ∈ {0, . . . , B − 1}:

Wk ∈ Rd, bk ∈ RS .

Input padding and segmentation. Given x ∈ Rd, pad to x̃ ∈ RSL by zeros:

x̃j =

{
xj , 0 ≤ j < d,

0, d ≤ j < SL.

Partition x̃ into S contiguous length-L segments

Is := {sL, sL+ 1, . . . , sL+ L− 1}, s = 0, . . . , S − 1.

Per-segment affine map to angles. For each block k and segment s define

θk,s = bk,s +
∑
j∈Is

Wk,j x̃j ∈ R.

5
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Split even and odd segments into rotation angles (the added 0’s for the 2r + 1 ≥ S case is to ensure
consistent parameter dimensions when S is odd)

ψk,r := θk, 2r, ζk,r :=

{
θk, 2r+1, 2r + 1 < S,

0, 2r + 1 ≥ S,
r = 0, . . . , P − 1,

so each pair (ψk,r, ζk,r) parameterizes a Ry then Rz rotation.

Per-block unitary and full circuit. For block k the unitary is the ordered product of P pairs

Uk =

P−1∏
r=0

Rz(ζk,r)Ry(ψk,r) = Rz(ζk,P−1)Ry(ψk,P−1) · · ·Rz(ζk,0)Ry(ψk,0).

The full depth-B unitary is
U = UB−1 UB−2 · · · U0.

State preparation and optional noise. Start from ρ0 = |0⟩⟨0|. If there is no noise, the output state
is the pure state

ρout = U ρ0 U
†.

If noise channels are enabled, insert a completely positive trace-preserving map Nk,r after each pair
in block k:

ρk,r+1 = Nk,r

(
Rz(ζk,r)Ry(ψk,r) ρk,r Ry(ψk,r)

†Rz(ζk,r)
†) , ρk+1,0 = ρk,P ,

and set ρout = ρB,0.

Observable and readout. The observable is H ∈ C2×2 Hermitian with default H = σz =
diag(1,−1). The raw scalar output is the expectation

y = Tr
(
H ρout

)
=

{
⟨ψout|H|ψout⟩, noiseless,
Tr

(
H ρout

)
, noisy.

Since the readout from quantum measurement is an expectation value, we can simply treat it as the
probability of the predicted label, or optionally apply a sigmoid.

Parameter counts. For input dimension d, segment length L, and S = ⌈d/L⌉ segments, each
block k has an affine map with weights Wk ∈ Rd and biases bk ∈ RS . With B re-uploading blocks
on Q qubits using fixed entanglers, the number of trainable parameters is

TQDRC = QB (d+ S) ,

We fix entangling layers (e.g., CNOT) so they do not contribute trainable angles.

Noise model. Noisy QDRCs insert, after each (Ry, Rz) pair, independent bit-flip (pX ), phase-flip
(pZ), and depolarizing (pdep) channels.

2.2.2 CLASSICAL MODELS

Using FNNs as our classical baseline, we varied activations between one to five hidden layers.
Activations were selected from {ReLU, Sigmoid,Tanh,SeLU} with output sigmoid for binary clas-
sification. With input size d=76 and hidden width h, a one-hidden-layer FNN’s trainable parameter
count is

TFNN = 76h︸︷︷︸
input→hidden

+ h︸︷︷︸
b1

+ h︸︷︷︸
hidden→out

+ 1︸︷︷︸
b2

= 78h+ 1.

We choose h to match TQDRC as closely as possible. Concretely, we chose T ∈ [80, 800] by varying
number of hidden layers and hidden dimensions.

6
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2.3 TRAINING AND EVALUATION PROTOCOL

A rigorous and fair evaluation protocol was established to compare the models.

Data Splits and Cross-Validation: For each of the three patients, the corresponding dataset was
split into training, validation, and test sets using a stratified sampling approach to maintain the class
distribution. To assess the generalization of learned biological features beyond individual-specific
artifacts, we also performed a cross-patient evaluation, where models trained on the data from one
patient were tested on the data from the other two.

Generalization error estimation: We estimated the generalization error ϵgen := lossprediction −
losstrain of each model as the difference between its train loss and test loss on held-out data at
different epochs. For each architecture family, we computed ϵgen at varying model sizes T and
training sizes N and fitted a log–log regression log ϵgen = a + b log(T/N). According to the

theory, QDRCs should satisfy b ≈ 0.5 in line with the
√

T
N bound. The regression coefficient b and

correlation coefficient r2 were recorded.

Constrained Training Regimes and Early Epoch Behavior: To specifically investigate per-
formance in data-limited scenarios, we considered seven constrained training sizes N ∈
{10, 25, 50, 100, 250, 500, 1000}. Faster early learning behavior was characterized by plotting test
accuracy over epochs for a fixed small training size and small training epochs.

3 RESULTS

3.1 ASYMPTOTIC PERFORMANCE AND CROSS-PATIENT GENERALIZATION

QDRC (1-qubit noiseless)
Train Pat. A Pat. B Pat. C
Pat. A 91.3-93.3 93.1-96.3 97.2-99.7
Pat. B 90.4-97.3 91.8-100 96.8-100
Pat. C 91.8-93.7 94.0-96.6 97.5-99.8

QDRC (1-qubit noisy)
Train Pat. A Pat. B Pat. C
Pat. A 92.6-97.1 94.2-98.8 93.6-98.9
Pat. B 92.7-98.4 94.7-99.2 95.4-99.3
Pat. C 89.3-94.4 91.4-97.8 96.4-99.7

QDRC (2-qubit noiseless)
Train Pat. A Pat. B Pat. C
Pat. A 94.3-98.5 96.1-99.7 95.4-99.7
Pat. B 95.8-98.6 97.1-99.8 98.4-99.6
Pat. C 92.1-94.4 95.9-97.8 99.1-99.8

FNN (w/ Sigmoid, Tanh, or SeLU)
Train Pat. A Pat. B Pat. C
Pat. A 90.5-99.8 92.7-100 94.7-99.9
Pat. B 97.5-99.5 99.2-99.9 98.7-100
Pat. C 96.6-98.8 99.0-99.9 97.7-100

Table 2: Test accuracy of QDRC and FNN architectures across patients A, B, and C. First column
shows where the model is trained on. The range indicates minimum and maximum test accuracies
across different runs (different weight initializaiton and different training data selection) with dif-
ferent model sizes. We have excluded FNN with ReLU activation as it occasionally failed to learn
(lower than 70% final test accuracy).

We first asked whether quantum and classical models can accurately distinguish TNFα-stimulated
cells from their unstimulated counterparts when provided with sufficient training data. Both QDRCs
and FNNs achieved high test accuracies, often exceeding 99% after 100 epochs on the full training
sets. Cross-patient evaluation further revealed that models trained on one patient generalize well
to the other two, indicating that the engineered features capture patient-independent morphological
signatures of cellular activation. Table 2 summarizes representative accuracies for models trained
on one patient (rows) and tested on another (columns).

3.2 GENERALIZATION ERROR SCALING

To test the theoretical prediction that the generalization error of a quantum model scales as
√

T
N , we

plotted the empirical generalization error against the ratio between trainable parameters and training

7
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Figure 3: Generalization error scaling of various models trained on Patient B (chosen as a typical
data). Log-generalization-error against log-(T/N), where T is the number of trainable parameters
and N is the training size. T ranges between 80 to 800 and N ranges between 10 to 1000. The best
linear regression is given as y = ax+ b and the correlation value is given as R2. Here, N represents
the number of points. The shaded band shows the 95% confidence band for the fitted regression line.

size on as a log–log plot in fig 3. The results compare QDRCs with FNNs after 10, 20, or 30
training epochs. For QDRCs the data points lie approximately on a straight line with slope between
0.6 and 0.7, yielding high coefficients of correlation (R2 ≈ 0.72 − 0.84). This indicates that the
generalization error decreases roughly as (T/N)−s, s ∈ (0.6, 0.7), close to the theoretical bound,
which is asymptotic and may not tightly describe finite-sample behavior. Classical FNNs, however,
exhibit no regular pattern: the slope varies between 0.3 and 0.4, and R2 values are markedly lower.
These observations support the claim that quantum models obey a predictable scaling law while
classical models do not. Note that the absolute generalization error for both model families drops
significantly once Numepochs ≥ 100, explaining the high test accuracies reported above.

3.3 LEARNING IN EARLY EPOCHS UNDER DATA-LIMITED REGIMES

While both model families perform comparably in data-rich settings, significant differences in their
learning dynamics emerge under data-constrained conditions. A key finding of this study is the
early-epoch performance of QDRCs, particularly when the training set size (N ) and the model size
(T ) are small. The quantum models reach higher test accuracy faster than their classical counterparts.

This behavior is illustrated in comparative hue plots shown in Figure 4. For small training sets and
small models, the average test accuracy of the QDRC models after just 10 epochs is higher than
that of the FNN models. The gap gets smaller after 20 epochs and the FNNs eventually catch up
and overtake QDRC after further epochs, the QDRCs establish a good performance baseline within
few epocs. This performance gap points to a possible learning-efficiency effect for quantum models
when data and compute are limited. This is observed across several tested QDRC architectures,
including both noiseless and noisy model, suggesting the advantage is a structural property of the
classifier’s learning dynamics rather than an artifact of idealized conditions.

8
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(a) (b)

Figure 4: Limited-resource training: (a) Constrained training for 10 epochs. X-axis is number of
trainable parameters and Y-axis is number of training size. We compared the test accuracy of two
quantum and two classical architectures: 1-qubit noiseless QDRC, 1-qubit noisy QDRC, FNN with
Tanh activation and FNN with SeLU activation. Each configuration was trained for 50 independent
runs with random seeds and we report the numerical test accuracy mean (also shown as hue) and
test accuracy standard deviation (as circle radius). (b) Same as (a) but model trained for 20 epochs.

4 DISCUSSION

This comparative study explored quantum and classical machine learning approaches to classify
cellular activation states based on hand-engineered features. The three main findings are: (1)
both QDRCs and FNNs achieve near-perfect accuracy when trained on sufficient data and gener-
alize well across patients, confirming that the 76-dimensional feature space effectively captures the
morphological response to TNFα stimulation; (2) the generalization error of QDRCs obeys a pre-

dictable power-law scaling with training size, with scaling values close to the theoretical
√

T
N bound,

whereas FNNs lack such a relationship; and (3) quantum models learn faster in early epochs under
low-data and small model settings. We attribute the early-epoch learning behavior to a fixed-feature,
linear-readout view: in early epochs the logits remain bounded, so cross-entropy satisfies a local
PL condition with a rate constant proportional to λmin(G). As logits saturate, this constant shrinks,
explaining the later slowdown of quantum models. These results suggest that small quantum circuits
can be competitive with classical neural networks while providing theoretical guarantees and rapid
learning.

Nevertheless, several limitations warrant caution. First, our dataset comprises only three patients
and 76 handcrafted features; extending the analysis to larger cohorts and raw image inputs would be
necessary to establish clinical utility. Second, the performance differences observed here are modest
and manifest mainly under low-data constraints; with abundant data both model families perform
similarly. Third, the noise simulations assume idealized error rates; real quantum hardware may
exhibit correlated errors not captured in our model. Finally, our results should not be interpreted as
evidence of general quantum advantage over classical computers. Rather, they highlight a specific
context—feature-based classification of cellular activation states—where quantum models exhibit
favorable scaling and learning dynamics. Future work could investigate hybrid quantum–classical
architectures, extend the theory to deep circuits, and evaluate the impact of more complex noise
models. With continued advances in quantum hardware and algorithm design, QML may offer
practical benefits for biomedical applications, but rigorous benchmarking against classical baselines
remains essential.
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Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning, 8(3-4):231–357, 2015.

Matthias C Caro, Hsin-Yuan Huang, Marco Cerezo, Kunal Sharma, Andrew Sornborger, Lukasz
Cincio, and Patrick J Coles. Generalization in quantum machine learning from few training data.
Nature communications, 13(1):4919, 2022.

Venina Dominical, Leigh Samsel, and J Philip McCoy Jr. Masks in imaging flow cytometry. Meth-
ods, 112:9–17, 2017.
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A APPENDIX

LLM usages. ChatGPT 5 and Gemini 2.5 Pro are used to help polish the writing, format tables
and formula in a more presentable manner, improve logical jumps between sections and paragraphs,
as well as finding sources and related works.
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