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Abstract
To train a classification model that is robust to
distribution shifts upon deployment, auxiliary la-
bels indicating the various “environments” of data
collection can be leveraged to mitigate reliance
on environment-specific features. In this paper
we attempt to determine where in the network the
environment invariance property can be located
for such a model, with the hopes of adapting a
single pre-trained invariant model for use in mul-
tiple tasks. We discuss how to evaluate whether a
model has formed an environment-invariant inter-
nal representation—as opposed to an invariant fi-
nal classifier function—and propose an objective
that encourages learning such a representation.
We also extend color-biased digit recognition to
a transfer setting where the target task requires
an invariant model, but lacks the environment
labels needed to train an invariant model from
scratch, thus motivating the transfer of an invari-
ant representation trained on a source task with
environment labels.

1. Introduction
Domain generalization techniques aim to make use of train-
ing data coming from multiple domains (also called “en-
vironments”) in order to create machine learning models
which generalize to unseen domains at test time (Blan-
chard et al., 2011; Peters et al., 2016; Arjovsky et al., 2019;
Sagawa et al., 2019). Models that are able to make use of
common features (that are shared across the training do-
mains) and ignore domain-specific features are referred to
as invariant models. Given the prevalence of distribution
shift in practical settings (Balagopalan et al., 2020; Koh
et al., 2021) and propensity of neural nets to prefer features
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brittle to such shifts (Geirhos et al., 2020), invariant models
present a promising path towards realizing robust machine
learning.

In this work, we consider a scenario where we are provided
with a source task with multiple training environments, and
a target task with a single training environment. Due to
the presence of spurious features in the target task, training
directly from scratch on available target data is unlikely to
yield an invariant model. To investigate the feasibility of
robust task transfer, we develop methods for measuring, and
ultimately encouraging, environment-invariance in learned
representations. Our key contributions are as follows:

• Insight into how the Environment Invariance Constraint
(EIC) (Arjovsky et al., 2019) provides a flexible objec-
tive that can be achieved by different components of
a network, leading to a distinction between invariant
classifiers and invariant representations.

• A tractable metric (EIRS) for evaluating the degree to
which a representation satisfies the difficult-to-compute
EIC.

• An extension of a popular color-biased digit recogni-
tion benchmark to include a novel transfer task where
an invariant representation (beyond just an invariant
classifier on the source task) is needed.

• A new method for learning invariant representations
(LEIR) that helps with the aforementioned transfer
task.

2. Environment Invariant Representations
2.1. Invariant Learning Setup

We consider data that is sampled from a series of
environment-conditioned generative distributions. Formally,
we assume that each instance of the target variable Y be-
longs to one of k distinct classes. Inputs are denoted by
X ∈ X , and the discrete environment variable is denoted
E ∈ E , E = Etr ∪ Ets, where Etr and Ets are sets of train
and test environments. Our input and target variable ob-
servations are distributed according to conditional distri-
butions: X,Y ∼ P (X,Y |E = e). The training data



Towards Environment-Invariant Representation Learning for Robust Task Transfer

comprises N samples with environment labels: Dtr =
{{(xi

e, y
i
e, e)}Ni=1}e∈Etr , where xi

e, y
i
e ∼ P (X,Y |E = e).

Our model consists of an encoder h : X → H, where H
is our representation space and a classifier f : H → Rk,
which can be converted to a predictive distribution over
the k classes using a softmax function. Our full model is
described by the expression f(h(x)). The output of the
encoder h(x) is often referred to as the representation of x.
Our goal will be to train a model with strong performance on
data from all environments in E , while only training using
data from environments in Etr.

2.2. Approaches to Invariant Learning

Empirical Risk Minimization (ERM) ignores environment
labels, and instead learns by reducing aggregate training
loss, which can yield a model that is overly sensitive to
spurious features (Geirhos et al., 2020). Environment la-
bels can be used to learn an invariant model in several
different ways. Some approaches use the environment
labels to attain certain predictive properties across each
environment-conditioned distribution. Wald et al. (2021)
propose that an invariant classifier can be trained by training
a classifier that is simultaneously calibrated in each training
environment. Specifically, multi-domain calibration asks
∀e ∈ Etr, α ∈ [0, 1], E[Y |f(X) = α, ei] = α. However,
since this constraint is described using the classifier, rather
than the encoder, it is uncertain as to whether satisfying
multi-domain calibration would necessarily yield a transfer-
able representation with invariant properties.

In addition, more flexible approaches that can be applied
directly to the encoder output have been proposed. The
MMD approach (Veitch et al., 2021) involves matching
the output distribution of a function ϕ(X) across each
environment-conditioned input distribution. Specifically,
the objective of these approaches is to minimize an esti-
mate of the maximum mean discrepancy (Gretton et al.,
2012): minϕsupω∈Ω(E[ω(ϕ(X))|e1] − E[ω(ϕ(X))|e2])
where e1, e2 ∈ Etr. Taking ϕ = h, minimizing this quantity
ensures a level of consistency across environments, as the
high-dimensional representation densities will match. It
is worth noting that this traditional formulation of MMD
does not make use of the valuable information found in the
target labels. Additionally, target label information can be
used in MMD regularization by way of importance weights
(Makar et al., 2022); this approach makes use of causal
assumptions about the data generative process to apply the
penalty on a modified encoder distribution where Y and e
are decorrelated.

Other approaches to invariant representation learning use
kernel-based or adversarial regularizers that seek to match
support of the learned representation (conditioned on e, and
possibly Y ) (Edwards & Storkey, 2015; Ganin et al., 2016;

Madras et al., 2018; Long et al., 2018). A potential downfall
of this distribution matching approach is that it is known to
fail under label shift (Zhao et al., 2019).

We aim to learn invariant representations while leveraging
label information, and therefore focus our investigation on
the Environment Invariance Constraint (EIC) (Arjovsky
et al., 2019). The EIC requires that the expected target
label Y conditioned on both a representation h(x) and an
environment e must be the same regardless of which envi-
ronment it is conditioned on. Formally, the EIC asks that
∀e1, e2 ∈ E ,E[Y |h(x), e1] = E[Y |h(x), e2] for all rep-
resentations h(x) that are in intersection of supports for
h(Xe), Xe ∼ P (X|E = e), e ∈ {e1, e2}. Satisfying this
constraint in turn guarantees that for a given representation,
the optimal prediction is the same across all environments.
This therefore suggests that the representation is robust to
changes across environment, as the representation is not
encoding information that is correlated with certain values
of the target label in one environment and other values of
the target label in others.

2.3. Measuring Environment Invariance

Unfortunately, it is difficult to ascertain whether or not a
representation has met the requirements of the EIC as it
requires comparing densities in representation-spaces that
are typically high dimensional. We propose a diagnostic
kernel-based method for quantifying the degree to which a
representation abides by the EIC. Inspired by recent works
describing differentiable measures for calibration (Kumar
et al., 2018; Wald et al., 2021), our Environment-Invariant
Representation Score (EIRS) uses a Gaussian kernel as a
similarity measure between two outputs to create a distri-
bution over each output’s neighbors. Formally, we define
x to be a sample, K(., .) a kernel, ϕ an output function,
e ∈ E an environment, and x′ ∈ e, x′ ̸= x a sample in that
environment, and define the distribution:

pK(x′;x, e, ϕ) =
K(ϕ(x), ϕ(x′))∑

x′′∈e,x′′ ̸=x K(ϕ(x), ϕ(x′′))

Using this distribution, we can calculate the expected label
“conditioned” on an output and an environment, and use that
to calculate the EIRS for the encoder h and some dataset
D of (x′, y′, e′) input-target-environment label pairs. Here,
x′, y′ ∈ e refers to training examples in D with environment
label e:

EIRS(ϕ,D) =
∑

x,y∈D

∑
e,e′∈E×E

|EK(y;x, e, ϕ)−EK(y;x, e′, ϕ)|

EK(y;x, e, ϕ) =
∑

x′,y′∈e,x′ ̸=x

y′ ∗ p(x′;x, e, ϕ)

We can calculate this score by taking the output function
ϕ to be either the encoder h or the classifier output f ◦ h,
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Figure 1. We compute the average EK(·) (See Section 2.3), our kernel-based approximation to E[y|h(x), e], across various strata of the
CMNIST training set. Strata are determined by the colour, uncorrupted digit class, and environment label. Note that the regularizer
in all cases is incorporated after a number of training steps. An invariant representation is realized when, for a given (y, color), the
expected label distribution is approximately the same across environments (e.g. the opaque dotted green line lies close to the faded dotted
green line, and likewise for other color/pattern combinations). IRM sometimes learns a relatively color-invariant representation (center;
EK(y;x, e1, h) ≈ EK(y;x, e2, h)∀(y, color)), while LEIR consistently does (right). However, IRM can also learn a representation that
includes color (left; EK(y;x, e1, h) ̸= EK(y;x, e2, h)∀(y, color)). In this case, the final linear layer f projects out the color feature. All
models realize an invariant classifier f ◦ h, and thus have the same test performance.

which yields logits for the predictive distribution. Models
that use invariant representations in order to make invariant
predictions will attain a low EIRS with respect to both the
classifier f ◦ h as well as the encoder h on its own. In
contrast, models which produce invariant predictions by
finding an invariant dimension in an otherwise environment-
dependent representation will have a high EIRS with respect
to h but a low EIRS with respect to the classifier f ◦ h.
We note that due to the quadratic complexity of EIRS, we
calculate it with respect to batches B ⊂ D in practice.

2.4. Do Invariant Classifiers Always Use Invariant
Representations?

As a more tractable substitute for a direct optimization
problem involving the EIC, Arjovsky et al. (2019) propose
IRMv1 (which we refer to as IRM for brevity). IRM aug-
ments combines a predictive loss with a regularizer meant
to promote invariance across environments. However, this
regularizer is applied to f ◦ h, rather than h directly. As a
result, one might suspect that the useful properties ensured
by the EIC may only be satisfied by the classifier f ◦ h
rather than the representation h when training with IRM.
While other works have assessed the shortcomings of this
approach (Ahuja et al., 2021; Li et al., 2021; Kamath et al.,
2021; Rosenfeld et al., 2020; Madras & Zemel, 2021), we
instead focus on understanding how models trained with
IRM satisfy the EIC by measuring where the invariance
property is located within the network.

We use the Color-MNIST (CMNIST) dataset (Arjovsky
et al., 2019) to study invariant representation and classifier
learning. This is a handwritten (binarized) digit recognition
dataset where the target label is more strongly associated

with the color of the digit than its shape due to added label
noise. This correlation strength varies slightly across two
training environments, and is dramatically reversed at test
time, where classifiers relying on color fail catastrophically.1

We fit CMNIST using the following methods: IRM (Ar-
jovsky et al., 2019), ERM, and a grayscale oracle model.
We then measure EIRS w.r.t. h and f ◦ h for each model,2

and report the results in Table 1. For IRM, we find two
hyperparameter settings that outperform ERM to achieve
roughly the same test performance, but realize qualitatively
different solutions3, which we call IRM (setting 1) and IRM
(setting 2). Further investigation using EIRS reveals the
difference: IRM can induce an invariant representation h,
but it does not always do so. To see this, we note that for
setting 2, low EIRS on h indicates a color-invariant repre-
sentation similar to the invariant grayscale model, while for
setting 1 high EIRS indicates that h is not color-invariant,
even though the classifier logits f ◦ h are. This suggests
that instead of minimizing the influence of the environment-
dependent feature on the representation h, IRM (setting 1)
creates a representation similar to that created by ERM, and
induces an invariant classifier by projecting away the color
dimensions of h in the final linear layer f .
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(a) CMNIST train 1 (b) CMNIST train 2 (c) CMNIST test (d) 10CMNIST train (e) 10CMNIST test

Figure 2. We evaluate the ability of invariant representations to transfer to a related task with similar spurious features but different target
labels. We pre-train using environment labels on binarized CMNIST (2a, 2b) and freeze the representation. To evaluate transfer, we then
train logistic regressor on this representation to classify the full 10 digits (under color bias) (2d), finally evaluating on a 10-class test set
(where color bias differs) (2e). We call the transfer task 10CMNIST.

Method EIRS (f ◦ h,Dtr) EIRS (h,Dtr) Test Accuracy
ERM 943.39 ± 27.48 943.92 ± 48.19 19.66% ± 0.88%
IRM (setting 1) 209.79 ± 33.55 1292.39 ± 133.56 65.49% ± 1.22%
IRM (setting 2) 242.84 ± 33.33 592.77 ± 145.17 64.74% ± 0.65%
Grayscale (oracle) 196.25 ± 34.03 161.37 ± 46.5 71.61% ± 0.23%
LEIR (ours) 181.96 ± 22.49 154.36 ± 37.61 64.43% ± 2.1%

Table 1. EIRS (± std. dev., 10 seeds) of various methods trained
on CMNIST. High EIRS of h indicates a representation containing
information about the spurious feature (color). This may occur
even if the classifier logits f◦h project out the spurious information
(low EIRS of f ◦ h) to realize an overall invariant model.

3. Towards Invariant Representation Learning
3.1. Our Proposed Regularizer

In addition to providing a diagnostic measure for helping
to determine whether a technique is yielding an invariant
representation and/or an invariant classifier, the EIRS also
serves as a differentiable objective for regularizing the rep-
resentation towards satisfying the EIC.

We experiment with using the EIRS as a regularizer, in
combination with cross entropy loss and L2 regularization.
We also include an additional term in our regularizer to
help avoid the representation collapse that is a degenerate
minimizer of EIRS. This additional term is penalty on the
average value in the Gram matrix, the matrix of kernel
values calculated between pairs of examples:

LEIR(ϕ,D) = EIRS(ϕ,D)+

∑N
i=1

∑N
j=1 K(ϕ(xi), ϕ(xj))

N2
.

1See Appendix A for details.
2See Appendix B for details
3This can be understood as an instance of “underspecification”

(D’Amour et al., 2020).

Code to reproduce our experiments can be
found at https://github.com/btleyre/
invariant-task-transfer.

3.2. Experiment: CMNIST

We compare the performance of MLPs trained with ERM,
IRM, MMD (Veitch et al., 2021; Makar et al., 2022), CLOvE
(Wald et al., 2021), and with our LEIR regularizer on CM-
NIST. MMD-based invariant learning methods use kernel
based estimates of the maximum mean discrepancy (Gret-
ton et al., 2012) of environment-conditioned function output
distributions. We experiment with applying an MMD-based
penalty to both the encoder output (MMD-Rep) and classi-
fier output (MMD-Logit) of the model. CLOvE uses a train-
able measure for calibration (Kumar et al., 2018) to induce
calibration on each environment-conditioned distribution.
For model selection, we follow Arjovsky et al. (2019) and
select the hyperparameters from each regime which max-
imize min(training accuracy, test accuracy), which in this
circumstance is tantamount to selecting models with the
best test accuracy. See Appendix D.1 for details.

3.3. Experiment: Classification Transfer (10CMNIST)

To demonstrate the use case for invariant representations,
we investigate a classification task where learning an in-
variant classifier from scratch is difficult. Specifically, we
take inspiration from the work of Ahmed et al. (2020), and
use a variation of their color-biased 10-way digit classifi-
cation dataset. Specifically, our 10CMNIST dataset differs
from the colour-confounded MNIST datasets presented by
Arjovsky et al. (2019) and Ahmed et al. (2020) in that the

https://github.com/btleyre/invariant-task-transfer
https://github.com/btleyre/invariant-task-transfer


Towards Environment-Invariant Representation Learning for Robust Task Transfer

Method CMNIST (Train) CMNIST (Test) 10CMNIST Transfer (Train) 10CMNIST Transfer (Test)
ERM - Baseline - - 99.34% ± 0.05% 12.18% ± 0.35%
ERM 97.48% ± 1.69% 30.44% ± 2.41% 88.46% ± 0.87% 31.8 % ± 3.57%
IRM 74.47% ± 0.83% 65.49% ± 1.22% 87.06% ± 0.54% 27.48% ± 1.42%
MMD-Rep 62.09% ± 9.91% 60.05% ± 8.59% 24.81% ± 3.0% 15.72 % ± 3.28%
MMD-Logit 62.94% ± 5.38% 60.43% ± 6.69% 46.23% ± 6.11% 17.72 % ± 2.42%
CLOvE 61.27% ± 3.38% 56.92% ± 1.05% 61.78% ± 9.53% 19.67% ± 2.95%
LEIR (Ours) 71.49% ± 1.48% 64.43% ± 2.1% 74.52% ± 1.5% 42.63 % ± 3.39%

Table 2. 10CMNIST test accuracy for each training regime across 10 seeds, with models selected according to their CMNIST accuracy.

training set does not contain any examples contradicting
the strong colour-label correlation. Here, MNIST digits are
assigned labels corresponding to their digit class. Each digit
class is associated with a unique biasing color. In the train-
ing set each sample within a digit class is coloured with that
digit’s biasing color. This makes the shape of the digit and
the biasing color equally predictive of the target label on
the training set. On the test set, samples are coloured with
any color that is not their own digit class’s biasing color.
Consequently, models which have learned to rely solely on
the simpler biasing color features will perform poorly on
the test set.

We experiment with transferring representations pre-trained
on CMNIST (which has binary target labels) to 10CMNIST
(with all ten digit classes). Specifically, models are first pre-
trained with ERM, IRM, MMD, CLOvE, or LEIR on the
binary CMNIST training set. We then train a linear probe on
top of the encoder on the 10CMNIST training set. During
this process we “freeze” the encoder, meaning we perform
gradient updates on the classifier but not the encoder during
this adaptation phase. Post adaptation, models are evaluated
on the 10CMNIST test set. Pre-training hyperparameters
are selected based on binary CMNIST test accuracy (a more
fair model selection strategy than is typical in domain gen-
eralization, which usually relies on validation samples from
the test domain; see Appendix E for results using the more
standard model selection strategy). Additional details re-
garding the dataset and adaptation method can be found in
Appendices C and D.2. As a baseline, we also evaluate a
non-transfer model: a full model (encoder and classifier in
tandem) trained solely on 10CMNIST.

3.4. Results

We first note that models trained with LEIR on the binary
CMNIST dataset achieve comparable performance to IRM
on the test set, with these regimes achieving a mean 64.43%
and 65.49% test accuracy across 10 seeds, respectively (Ta-
ble 2). The LEIR model also achieves low EIRS with respect
to both f ◦ h and h, indicating that the representation and
classifier as a whole are invariant (Table 1).

Our experiments indicate that the LEIR regularizer is able

to condition the representation of the MLP model for trans-
fer performance superior to all other training regimes. We
observe this superior performance regardless if model se-
lection is performed with a validation set as in Table 3
or using binary CMNIST test accuracy as in Table 2. Fi-
nally, the model which was fully trained from scratch on
the adaptation training set performs poorly on the transfer
task, achieving a mean test accuracy of 12.18% (Table 2,
and 3 in the appendix). This demonstrates that transferring a
useful representation is necessary when environment labels
or training data from a diverse set of environments are not
available. Additionally, we note that a model trained with
LEIR outperforms an IRM model that achieves low EIRS
with respect to both f ◦ h and h. This suggests that satisfy-
ing the EIC on its own is not sufficient for a representation
to transfer to other tasks effectively.

4. Conclusion
In this work, we proposed a novel transfer task as well as
a regularizer to enhance performance on this transfer task.
This work highlights how the EIC can be satisfied by dif-
ferent representations with different qualities, as well as
completely different parts of the model. One interesting
question warranting further research concerns whether par-
ticular solutions satisfying the EIC are more useful than
others, such as high-entropy representations.
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Peters, J., Bühlmann, P., and Meinshausen, N. Causal in-
ference by using invariant prediction: identification and
confidence intervals. Journal of the Royal Statistical Soci-
ety: Series B (Statistical Methodology), 78(5):947–1012,
2016.

Rosenfeld, E., Ravikumar, P., and Risteski, A. The
risks of invariant risk minimization. arXiv preprint
arXiv:2010.05761, 2020.

Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P.
Distributionally robust neural networks. In International
Conference on Learning Representations, 2019.

Veitch, V., D’Amour, A., Yadlowsky, S., and Eisenstein,
J. Counterfactual invariance to spurious correlations:
Why and how to pass stress tests. arXiv preprint
arXiv:2106.00545, 2021.

Wald, Y., Feder, A., Greenfeld, D., and Shalit, U. On
calibration and out-of-domain generalization. Advances
in Neural Information Processing Systems, 34, 2021.

Zhao, H., Des Combes, R. T., Zhang, K., and Gordon, G. On
learning invariant representations for domain adaptation.
In International Conference on Machine Learning, pp.
7523–7532. PMLR, 2019.

https://proceedings.neurips.cc/paper/2011/file/b571ecea16a9824023ee1af16897a582-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/b571ecea16a9824023ee1af16897a582-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/b571ecea16a9824023ee1af16897a582-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/b571ecea16a9824023ee1af16897a582-Paper.pdf


Towards Environment-Invariant Representation Learning for Robust Task Transfer

A. CMNIST Dataset Details
CMNIST consists of handwritten digits that are initially assigned binary labels Y depending on whether the digit belongs to
the group 0-4 or 5-9. These binary target labels are flipped with a 25% probability of label-noise, creating the final target
labels ŷ. Finally, the digit receives a color z by flipping ŷ with probability pe according to the environment e that these
samples are being generated from. On the two training environments, pe ∈ {0.1, 0.2}, making the color of the digit more
predictive of the target label than the digit’s shape. However, on the test environment pe = 0.9, inverting the correlation
between color and the target label seen on the training set. Consequently, a model must rely on the feature that maintains
the same correlation with the target label across environments, shape, in order to generalize effectively. An invariant
representation would therefore keep samples of the same digit super group close together, while an environment-dependent
representation would keep samples sharing a color close together.

B. EIRS Experiment Details
We train MLP models on CMNIST using IRM (Arjovsky et al., 2019) with 50 different randomly selected hyperparameter
settings, and select the model with the best test accuracy. Note that these are the same sets of random hyperparameters
described in section D.1. We then use those best performing hyperparameters in 10 trials using different random seeds,
recording the EIRS with respect to h and f ◦ h in each trial. We also perform 10 trials each for two models using ERM,
with those best performing hyperparameters: the first is the same type of MLP used for the IRM model, and the second is
a grayscale MLP that does not see color in the image and is therefore required to rely on shape. Results can be found in
Table 1.

C. 10CMNIST Dataset Details
To create this dataset, we first binarize the pixel values to ensure that lighter/darker pixels do not result in biasing colors
overlapping between digits. We then create the ten biasing colors, with the first two being the red and green from the binary
CMNIST dataset. We then randomly generate the remaining colors such that no two colors are too alike in pixel values
using the process described by (Ahmed et al., 2020). For the validation set, the ten additional colors are generated using the
same random process. Samples in the validation set are coloured using a randomly selected colour from this new set, and
therefore validation colours are not seen in either the train or test sets. Unlike the binary CMNIST dataset described by
Arjovsky et al. (2019), this adaptation dataset does not make use of any label noise.

D. Additional Training Details
Across all experiments, the model architecture we experiment with is a simple neural network with one hidden layer and one
output layer. Models are always trained with cross entropy loss and L2 weight decay in addition to the additional objectives
prescribed by the individual techniques.

When training with LEIR, we use a single penalty weight λ for both the EIRS term and the average Gram matrix value term.
However, we first multiply the Gram matrix term by another weight, λGram, which is permanently set to 100. Additional
experiments could be performed to see if tuning this parameter could yield improved performance.

D.1. Binary Classification (CMNIST)

For each training method we experimented with 50 randomly selected sets of hyperparameters. Randomly selected
hyperparameters included the hidden dimension of the model, the weight for L2 regularization, and the learning rate.
For all methods except for ERM the penalty weight was also experimented with. Also included in this set of randomly
selected hyperparameters is the number of epochs for which we set the penalty weight to zero. After this number of epochs
has elapsed, we set the penalty weight to whatever the randomly selected value is. Finally, we also randomly select the
hyperparameter σ for our Radial Basis Function/ Gaussian kernel defined by K(x, x′) = exp(−γ||x− x′||2), where γ = 1

σ .

Additionally, across all trials models are trained for 301 epochs. All trials use a batch size of 10000, with 5000 samples
coming from each of the two environments.
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D.2. 10-Way Classification (10CMNIST)

To select the pre-training hyperparameters for each regime we experiment with two model selection criteria. The first
hyperparameter selection method is selecting hyperparameters based on the post-adaptation models’ performance on a
validation set. This validation set consists of digits that are coloured with colors not seen on either the training or test sets.
For the second model selection technique we simply select the hyperparameters which achieve the best test accuracy on the
binary CMNIST test set prior to adaptation.

Pre-training on the binary CMNIST dataset follows the procedure described in Section D.1. Linear probes are trained
for 100 epochs with a learning rate value of 0.001 and L2 regularization weight 0.001. A full search on the adaptation
hyperparameters was not conducted after 50 sets of randomly selected L2 regularization weights and learning rates were
tested out using the IRM and ERM models described in Table 2 as the transferred representations. Across the 50 random
hyperparameter settings, the standard deviation for ten-way test accuracy was no more than 2.5%, indicating that a full
search on the adaptation learning rate and L2 regularization weight would not yield substantially different results.

E. Additional Results
In Section 3.3, we describe a single method for performing model selection: choosing models which perform best on the
binary CMNIST test set. However, given the binary task’s differences from the 10-way classification task, it may not be a
particularly effective measure of how effectively the pre-trained model will transfer to the new task. Therefore, we make use
of the validation set described in Section C. Models are therefore selected based on their performance on this validation set.
Calculating the accuracy of the selected models, we can see that LEIR still yields models with a far greater potential for
transfer (Table 3).

Method 10CMNIST Training Accuracy 10CMNIST Test Accuracy
ERM 82.93% ± 10.01% 24.6% ± 10.49%
ERM - Baseline 99.34% ± 0.05% 12.18% ± 0.35%
IRM 88.64% ± 7.18% 36.76% ± 4.35%
MMD-Rep 88.69% ± 0.99% 43.68% ± 4.06%
MMD-Logit 86.45% ± 3.4% 31.01% ± 9.18%
CLOvE 78.88% ± 6.92% 21.14% ± 2.43%
LEIR (Ours) 78.21% ± 1.3% 48.17% ± 2.93%

Table 3. 10-way test accuracy for each training regime across 10 seeds, with models selected according to their validation accuracy


