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Abstract
Transformer models have been critical in accel-
erating progress in numerous fields, yet scaling
these models come at high computational costs.
In this paper, we explore sparsity properties in
transformers and manipulate existing sparsity in
transformers to be more structured for efficient
training and inference. In particular, we create
sparse structures that have inter-layer similarity
and are block sparse which have the potential to
bypass a significant amount of model loading and
computation. We present preliminary results and
ideas using a small transformer which we hope to
extend to more complex models.

1. Introduction
Though initially designed in the context of natural language
processing, transformers (Vaswani et al., 2017) have proven
to be essential assets to numerous domains, such as com-
puter vision (Dosovitskiy et al., 2020; Khan et al., 2022) and
bioinformatics (Zhang et al., 2023). The rise of transformer-
based large language models (LLMs) such as GPT-4 (Ope-
nAI, 2023), LLaMA (Touvron et al., 2023), and LaMDA
(Thoppilan et al., 2022), has constantly pushed the state-of-
the-art performance in various tasks, but they come with
heavy computational and memory burdens. In this paper, we
induce different sparse structures in transformers such that
they can be leveraged to make transformers more efficient,
both in terms of FLOPs and wall clock time. Focusing on
transformer feedforward (FF) layers, we present transform-
ers that have shared sparsity patterns across layers and block
sparse activations with negligible performance degradation.

Model sparsity has been frequently studied in the context
of model pruning where unimportant neurons are removed.
However, many of such methods require repeatedly pruning
and retraining the model to minimize performance degrada-
tion (Blalock et al., 2020), which is impractical for LLMs.
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Pruning methods exist for transformers (Frantar & Alistarh,
2023; Chen et al., 2021), but they produce unstructured
sparsity or are domain specific.

Intriguingly, trained transformer-based models naturally
contain sparse structures in their FF activations without
explicit regularizations or constraints (Zhang et al., 2021; Li
et al., 2022). There has been work to obtain a firmer grasp of
the cause (Geva et al., 2020), yet it is still lacking. Nonethe-
less, understanding this phenomenon is crucial to exploiting
it for transformer efficiency. Some initiatives to do so in-
volve turning FF layers into a mixture of experts (Zhang
et al., 2021; Fedus et al., 2022) and setting a top-k threshold
in the FF activation functions (Li et al., 2022). Getting inspi-
ration from these ideas, we hope to create more structured
and hardware-aware sparse activations which could lead to
even larger leaps in transformer efficiency.

Notation. In this paper, we define scalars, row vectors, and
matrices using capital letters (e.g. A), lowercase bold letters
(e.g. a), and uppercase bold letters (e.g. A), respectively.

Brief Background on FF layers. Vanilla transformers
consist of alternating attention layers and FF layers which
all sit in between an embedding layer and output layer. The
FF layers are typically neural networks with a single hidden
layer of dimension scaled by F where in many models,
F = 4. More formally, for x,b2 ∈ RD, b1 ∈ RF ·D,
W1 ∈ RD×F ·D, W2 ∈ RF ·D×D, and activation function
σ(·), each FF layer produces z ∈ RD by evaluating

a = σ(xW1 + b1), (1)
z = aW2 + b2. (2)

We call the first and second linear operations FF1 and FF2,
respectively. Sparsity is expressed as the fraction of nonzero
elements in a data structure, so a lower value is preferable
in our setting. When we discuss activation sparsity, we are
referring to the sparsity in a ∈ RF ·D.

2. Inherent Sparsity in Transformers
Before discussing ways to create structured sparsity, we
first seek to better understand the circumstances in which
sparsity naturally manifests in transformers and if it affects
performance. By adjusting the activation function in FF
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layers, we demonstrate that sparsity is not unique to any
activation function, broadening our methods’ applicability
to a wide class of functions.

The following experiments use the same training proce-
dure and variations of the same model, a 6 layer GPT-2
transformer (Radford et al., 2019) trained on WikiText-103
(Merity et al., 2016) for causal language modeling evaluated
using validation perplexity (PPL). We use a hidden dimen-
sion of 768, F = 4, 12 attention heads, and a dropout rate
of 0.1. All experiments are run for 15 epochs via Adam
with a cosine scheduler that warms up to a learning rate of
1e-4 for the first 5% of gradient steps using a batch size of
32, each sample having length 1024. Weight tying (WT) is
applied to the embedding layer and linear head.

2.1. Exploration on Activation Functions

While many models (including the original GPT-2) default
to using Gaussian error linear unit (GELU) activation func-
tions in FF layers, it makes studying sparsity difficult since
the GELU function only equals 0 at a single point, rather
than a region like rectified linear units (ReLUs). We note
that in practice, GELU activations can approach 0 asymp-
totically as the pre-activation value becomes more negative
which has been observed to occur at great intensities for
larger transformers (Dettmers et al., 2022). This can be seen
as a form of approximate sparsity where most elements in
a have very small magnitudes. Hence, while we focus on
ReLUs for this paper, we are optimistic that these princi-
ples can transfer to the approximate sparsity observed in
GELUs and, broadly, other 0-saturating functions. In this
section, we begin by studying the effect of different activa-
tions functions on the performance and activation sparsity.
For x ∈ RD, define the following element-wise activations:

FlipReLUk(x) =

{
ReLU(x) layer k is even
−ReLU(−x) layer k is odd

,

SplitReLU(x) =
[
ReLU(x1:D2

), −ReLU(−xD
2 +1:D)

]
.

FlipReLU alternates between ReLU and the negative version
of it from layer to layer; SplitReLU applies ReLU on half
of a vector and the negative version to the remaining half.
While these provide equivalent representational power as
ReLUs in a model, we seek to observe the robustness of
sparsity emergence. Results are shown in Table 1.

The choice of activation appears to matter very little regard-
ing performance since the validation PPL of all models with
the FF layers are approximately the same. However, acti-
vation functions that have a region that saturates at 0 have
the benefit of sparsity. Despite using different activation
functions besides GELU, the final activation sparsity levels
are all approximately the same. This opens two avenues to
explore: (i) the emergence of activation sparsity does not

Table 1. Validation PPL and average activation sparsity across all
validation inputs of models trained on different activation func-
tions.

ACTIVATION VAL. PPL SPARSITY

GELU 22.60 1.000
RELU 23.14 0.109
SPLITRELU 23.11 0.112
FLIPRELU 23.03 0.112

depend on the zero-saturating activation function deployed
and (ii) the study of activation sparsity is justified as there
is negligible performance loss when using a zero-saturating
activation function. The first suggests, counterintuitively,
directing our focus away from the activation function when
understanding the cause of activation sparsity; the second
opens the opportunity to manipulate this sparsity into a more
desirable form, the focus for the remainder of this paper.

2.2. Baseline Sparsity

The baseline we use is the 6-layer GPT-2 model with ReLU
activation functions described previously. Similar to pre-
vious observations in LLMs (Zhang et al., 2021; Li et al.,
2022), our small baseline also exhibits sparse activations
that are very unevenly distributed. Figure 1 reveals that
nearly all neurons in all layers are rarely activated, aside
from a handful of neurons which are frequently activated.
For the activation frequencies for all 6 layers, see Ap-
pendix A. The goal is to morph this natural sparsity into
more structured patterns that can be exploited for efficiency.

Figure 1. Sorted and unsorted neuron activation frequencies of the
baseline in layers 1 to 3, from top to bottom, across all validation
inputs.

3. Creating Structured Sparsity
Since we have shown activation sparsity is essentially free,
we now try to manipulate this sparsity into more useful
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forms to improve transformer efficiency.

3.1. Inter-layer Sparsity Patterns

Typically, WT is applied by tying the weights of the embed-
ding matrix and linear head of language models (Inan et al.,
2016; Press & Wolf, 2016), as we have done to our baseline.
Extending this idea, we also tie the weights of each FF layer
across all layers. In other words, all FF1s have the same
weights and similarly for the FF2s. Bias terms are not tied.
This is to encourage shared representations between layers.

WT greatly reduces the number of learnable parameters,
which allows some flexibility to add more. The baseline sets
F = 4 and has no WT between FF layers. We test F = 4, 24
with WT, in which the F = 24 model has roughly the same
number of learnable parameters as the baseline with the
exception of some bias terms. Parameter counts, validation
PPLs, and sparsities of the models are displayed in Table 2.

Figure 2. Sorted and unsorted neuron activation frequencies of the
model with WT and F = 24 in layers 1 to 6, from top to bottom,
across all validation inputs.

Table 2. Validation PPL, parameter count, and mean validation
sparsity of each model. The first row is the baseline.

FF WT F VAL. PPL PARAMS (M) SPARSITY

× 4 23.14 81.9 0.109
✓ 4 27.19 58.3 0.106
✓ 24 22.23 82.0 0.043

The model with WT and expansion factor of 24 produced
a slightly better validation PPL compared to the baseline,
implying that transformer depth can be traded for width.
Interestingly, this model can represent the baseline by just
activating 1

6 of the FF layer at each layer, but that is not
what happens. Interestingly, unsorted frequencies in Fig-
ure 2 show that similar sparsity behaviors exist even when
FF weights are tied, and some heavy-hitting neurons are
shared across layers. For instance, all layers shared the
same most frequently activated neuron. This type of inter-
layer activation sparsity structure arises naturally without
cost in PPL or number of parameters. This relationship
is also reflected when we look at the similarity between
activated neurons between layers in Figure 3.

Figure 3. Activation similarity between layers as measured by the
Dice coefficient and Jaccard index. From left to right, the columns
are results from the baseline, FF WT with F = 4, and FF WT with
F = 24.

3.2. Block Sparsity

Now, we shift our focus to block sparsity, which is of great
interest in terms of efficiency from a systems perspective
because it has the potential to sidestep a large amount of
memory loading. We define a block as a consecutive group
of neurons in a FF layer, and a block is activated if at least
one of its neurons is activated. When a FF layer is com-
pletely partitioned into blocks, we can define the block
sparsity as the sum of the fraction of the current layer’s
neurons contained in each activated block. In general, even
if an FF layer is sparse, it becomes less likely that it is block
sparse as the block size increases. For simplicity, we restrict
each block to be the same size.
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Table 3. Block penalization ablation study on WikiText-103. Spar-
sity and block sparsity levels are averaged across all validation
inputs into all FF layers.

λ EXEMPT VAL. PPL SPARSITY B. SPARSITY

0 N/A 23.14 0.109 0.971
5E-4 0 23.20 0.012 0.362
5E-4 128 23.33 0.016 0.352
5E-4 256 23.34 0.020 0.362
1E-3 0 24.48 0.005 0.204
1E-3 128 24.50 0.011 0.203
1E-3 256 24.26 0.016 0.219

One method of encouraging block sparsity is regularization.
For a length S input, define ak ∈ RS×F ·D to be the FF
activation output at layer k and a1:K to be the activations
for all K layers. For an arbitrary M ∈ RM×N , denote
B(M, B) ∈ RM×N

B ×B to be the operator that reshapes M
with a valid B. Next, let y and ŷ be the target and model
output, respectively, which are fed into an unregularized
loss function L(ŷ,y). Then, the new loss function Lb is

Lb(ŷ,y,a1:K) := L(ŷ,y) + λB

FD

∑
i,j,k

∥B(ak, B)i,j∥2

(3)

for tunable parameters λ and B. The regularization term
is an ℓ1 penalization on the magnitude of each block. The
B
FD term averages the summation over j, but this can be
absorbed into λ.

We compare performance and block sparsity levels as we
vary λ keeping B = 64. This value of B is large enough to
obtain nontrivial blocks but also small enough for adequate
sparsity to emerge. Because some neurons will be activated
very frequently, we can select a group of neurons that are
exempt from regularization. This group can be treated as
its own block that will be always activated. The motivation
is that the frequently activated neurons will be encouraged
to be concentrated among the exempt neurons, and the reg-
ularized blocks will mostly contain infrequently activated
neurons. Comparisons between setting the first 0, 128, or
256 neurons to be exempt are included in Table 3. Example
block activations can be found in Figure 4 and Appendix B.

Our regularized loss function, Equation (3), is successful
in creating block sparsity while also making the activations
even more sparse. In fact, imposing this structure has little
effect on the performance, though as expected, increasing
λ creates greater sparsity at the cost of performance. The
number of exempt neurons had no noticeable effect on the
block sparsity and performance, but based on Figure 5, this
did concentrate the heavy hitting neurons. See Appendix A.1
for more examples.

Figure 4. Activated blocks of the same 8 random validation inputs
passed into layers 1 to 6 (top to bottom) of the baseline (left) and
λ = 5e-4 with 0 exempt neurons (right) models. Dark red squares
are activated blocks, and the x-axis and y-axis are the block indices
and sample indices, respectively.

Figure 5. Sorted and unsorted neuron activation frequencies in the
first layer of the λ = 5e-4 models with 0 (top), 128 (center), and
256 (bottom) exempt neurons across all validation inputs.

4. Future Work
Transformer activation sparsity is a natural phenomenon
that is more malleable than it may seem. We have shown
that we can induce two types of structured sparsity in FF lay-
ers: sparse inter-layer similar activations and block sparse
activations. One future direction is to use these structures to
compress and accelerate transformers during training and
inference. For example, block sparsity could be used by-
pass loading significant parts of a model when dealing with
small batches or skip computations in the FF layer. Addi-
tionally, more exploration could be done such as creating
other structures to further understand how these sparse struc-
tures arise. It would also be interesting to investigate if this
naturally occurring sparsity could be destroyed while pre-
serving performance and the properties that are gained and
lost by doing so. Furthermore, we hope to also scale these
directions and results to much larger transformer models.
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A. Neuron Activation Frequencies
Neuron activation frequency plots of the model with WT and F = 24 are in the main text as Figure 2. The plots for the
baseline and model with WT and F = 4 are shown in Figure 6 and Figure 7, repsectively.

Figure 6. Sorted and unsorted neuron activation frequencies of the baseline in layers 1 to 6, from top to bottom, across all validation
inputs.

A.1. Neuron Activation Frequencies for Block Sparse Layers

Figure 8, Figure 9, and Figure 10 show how the block sparsity regularizer in Equation (3) and number of exempt neurons
affect the activation frequency distribution.

Regularizing for block sparsity dramatically reduces the frequency of activations for all neurons, compared to Figure 6.
However, the same uneven distribution of activations is present. By increasing the number of exempt neurons, we are able to
shove most of the frequently activated neurons there, reducing the activation frequency of all other neurons.

B. Block Activations
In Figure 11, Figure 12, and Figure 13, we show example block sparsity maps using the same samples.
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Figure 7. Sorted and unsorted neuron activation frequencies of the model with WT and F = 4 in layers 1 to 6, from top to bottom, across
all validation inputs.
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Figure 8. Sorted and unsorted neuron activation frequencies of the models with λ = 5e-4 (left) and λ = 1e-3 (right) in layers 1 to 6, from
top to bottom, across all validation inputs. Both models have no exempt neurons.
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Figure 9. Sorted and unsorted neuron activation frequencies of the models with λ = 5e-4 (left) and λ = 1e-3 (right) in layers 1 to 6, from
top to bottom, across all validation inputs. Both models have 128 exempt neurons.
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Figure 10. Sorted and unsorted neuron activation frequencies of the models with λ = 5e-4 (left) and λ = 1e-3 (right) in layers 1 to 6,
from top to bottom, across all validation inputs. Both models have 256 exempt neurons.
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Figure 11. Activated blocks of the same 8 random validation inputs passed into layers 1 to 6 (top to bottom) of the baseline (left), λ = 5e-4
(center), and λ = 1e-3 (right) models. Dark red squares are activated blocks.

Figure 12. Activated blocks of the same 8 random validation inputs passed into layers 1 to 6 (top to bottom) of the models with 128
exempt neurons (left) and 256 exempt neurons (right), fixing λ = 5e-4. Dark red squares are activated blocks.
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Figure 13. Activated blocks of the same 8 random validation inputs passed into layers 1 to 6 (top to bottom) of the models with 128
exempt neurons (left) and 256 exempt neurons (right), fixing λ = 1e-3. Dark red squares are activated blocks.
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